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A b s tra c t

The differential cross section dcr/dt is measured as a function of |t| for 

diffractive J/*? production in the kinematic region |t| =  0 — 10 GeV2c-2 using 

data taken during 1997 by the H I detector at HERA. Events are selected in which 

proton remnants masses greater than about 1.6 GeVc-2 are produced at the proton 

vertex and in which a J / f  vector meson is produced elastically, with a photon 

elasticity z > 0.8, off an incoming photon of virtuality Q2 <  0.01 GeV2c-2 at 

the photon vertex. The measurement is made in the photon-proton centre-of-mass 

energy ranges 60 GeV < W7P < 147 GeV and 165 GeV < W7P < 233 GeV. An 

exponential behaviour of the differential cross section is observed in both centre- 

of-mass energy ranges. A shift towards lower values of |t| appears in the observed 

cross sections as W7P increases. Gradients of a' =  0.016 dr 0.005 GeV-2c2 and 

a' =  0.016±0.010 GeV-2c2 are extracted from functional fits to the differential cross 

section for the pomeron trajectory in the lower and higher W7P ranges respectively. 

These observations are consistent with a shrinkage of the diffraction peak predicted 

by Regge theory, but not expected within the framework of perturbative QCD. The 

differential cross section dcr/dW 2p is measured as a function of s =  W 2p in the same 

kinematic regions for diffractive J / ^  production in which a remnant mass less than 

about 1.6 GeVc-2 is produced at the proton vertex . The differential cross section 

is converted into a measurement of the total cross section as a function of s. The 

total cross section rises over the s-range investigated. It is not possible to rule out 

deviations away from a smooth dependence in the total cross section with increasing 

s, and in the differential cross section with increasing s. The measurements are 

consistent with the Regge theory description of the pomeron and with the results of 

similar analyses in the muon channel.
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C hapter 1

Introduction .

One of the best ways to develop a deeper understanding of the structure 
of particles and of the nature of the forces between them  is to scatter them off one 
another. A good way to proceed is to perform experiments in which the projectile 
particle, together with its interaction with other particles, is reasonably well under
stood and the target particle is to be investigated. A good choice for the projectile 
particle would be the electron, for example, since a great deal of work towards un
derstanding this particle and the electromagnetic force has already been completed. 
The target particle might then be chosen to be the neutron or the proton, of which 
comparatively little is known. The fact that the negatively charged electron interacts 
at all with the neutrally charged neutron, for example, suggests that the neutron 
may be made up from smaller charged constituents [1],

Since the early 1950s large particle collision experiments have been built 
to probe the structure of the smallest known particles. Colliding beam experiments 
today complement the earlier fixed target approach, however the total cross section 
and its related differential cross sections, are still usually the first quantities to 
be investigated experimentally. Cross sections are im portant quantities in particle 
physics since they are proportional to the probability for scattering and contain 
a large amount of information about the structure of the target, and of the forces 
between it and the projectile. It was therefore surprising when many of the first cross 
sections to be measured displayed very similar properties, even though a variety of 
different target and projectile particles had been used.
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To understand the origin of these similarities work began to try  to develop 
a theoretical model of the scattering process. This proved to be very difficult at first 
since no detailed knowledge as to whether any constituent particles were contained 
inside the target particles existed, no such constituent particles having ever been 
directly observed. A theory based on very general assumptions concerning scattering 
behaviour was therefore developed which was expected to describe the behaviour of 
almost all scattering processes. This theory, which was essentially completed during 
the 1960s, is often referred to as Regge theory, after Italian scientist T. Regge who 
made an im portant contribution towards its completion. W hen compared with 
experimental data the predictions of Regge theory were found to agree with many 
of the scattering measurements. At higher centre-of-mass energies, however, it could 
no longer describe certain experimentally measured cross sections unless an entire 
set of particles existed which had not been detected experimentally. This group of 
particles is referred to as the pomeron, after Russian physicist I. Y. Pomeranchuk.

The member particles of the pomeron are very specific in tha t it is ex
pected tha t when their external angular momentum values are plotted as a function 
of the square of their masses it will be possible to draw a smooth function, or tra 
jectory, through the points. Also, within the framework of Regge theory, it could 
be shown tha t they must each carry the same quantum numbers as the vacuum. 
Since these new particle states could be made up from smaller constituent parti
cles, the constituents would then have to collect themselves together in such a way 
tha t they create a bound-state which is effectively invisible against a background 
of empty space. The member particles of the pomeron are therefore very difficult 
to detect directly. In 1994, however, some evidence was presented for a possible 
bound two-gluon, or glueball, state with a mass of about 1.9 GeVc-2 and the cor
rect quantum numbers to be a member of the pomeron set [2]. This observation, 
however, has never been confirmed, so the member particles of the pomeron still 
await experimental verification today.

Since the 1960s a more complex extension to the theory of particle scat
tering has also been developed. This contains hypotheses as to which particles have 
smaller constituents, what these constituents might be and how these would then 
bind together. This theory is referred to as the standard model. A section of this 
model, which is used to describe the strong interaction, predicts processes in which 
‘objects’ with the quantum numbers of the vacuum may be exchanged between the
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particles participating in a scattering experiment. This is referred to as quantum 
chromodynamics, or QCD, and its predictions are expected to agree with those of 
Regge theory. QCD is also able to describe many scattering measurements. It does 
not, however, usually incorporate the possible existence of bound particles with the 
quantum numbers of the vacuum. In addition, its predictions may disagree with 
some of those of Regge theory concerning the physical behaviour of the pomeron. 
The pomeron is therefore an object of some considerable interest in particle physics.

Rather than attem pting to directly detect the pomeron particles it is also 
possible that evidence for their existence might be found in processes in which they 
would be expected to play a role if they exist. It has recently been demonstrated that 
the predicted QCD cross sections for one such process, the diffractive production 
of vector mesons, in which the magnitude of the M andelstam variable t is large, 
are not expected to be restrictively small in the kinematic regime accessible to the 
HERA lepton-proton collider. The HERA collider was designed to perform a deeper 
investigation of the substructure of the proton and is located in Hamburg at DESY 
(Deutsches Elektronen-Synchrotron). Since this process is mediated by the exchange 
of the quantum numbers of the vacuum, should any member particles of the pomeron 
exist with masses corresponding to this kinematic region then it may be possible to 
identify them.

In the work described here the differential cross section dcr/dt is measured 
as a function of t for diffractively produced J / ^  vector mesons selected via their 
decays into electron-positron pairs. This measurement is made for processes in 
which the proton dissociates, in two different photon-proton centre-of-mass energy 
regions. Since the Regge theory description of the scattering force is based on fam
ilies of particle resonances, the proton-intact process is also investigated, in both 
centre-of-mass energy regions, for resonance effects. All measurements are made in 
the kinematic region of photoproduction, in which the incoming lepton at HERA 
is scattered through a small angle emitting an almost-real photon. Since the cross 
section is high at HERA for photoproduction events this is expected to help com
pensate for the small cross section of the diffractive process. These measurements 
apply to data taken during 1997 by the HI detector, one of the four detector exper
iments of the HERA accelerator. The integrated luminosity at the end of 1997 was 
higher than for previous data-taking periods. HERA collided beams of 27.6 GeV 
positrons with beams of 820 GeV protons during this period.
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One explanation for the current disagreements between Regge theory and 
QCD is tha t the QCD prediction only becomes valid at larger values of t. The 
Regge theory behaviour, which was extracted at lower values of t , may agree with 
the QCD prediction in this higher t-region. The aim of this work, is to determine 
whether any particles belonging to the pomeron exist with masses corresponding to 
the kinematic range accessible to the HERA collider and to test the QCD and Regge 
theory predictions for the behaviour of this process experimentally.
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C hapter 2

R egge T heory and th e Pom eron.

Many scattering processes, first experimentally investigated using the fixed 
target colliders of the 1950s, display very similar properties. Since no detailed knowl
edge was available as to whether any constituent particles existed in the target par
ticles the first theoretical expressions for particle scattering were derived from very 
simple assumptions concerning the general scattering process. These assumptions 
were expected to apply to almost all scattering processes and the expressions ob
tained were therefore expected to account for the similarities between scattering 
measurements.

In this chapter the derivation of the Regge theory description of particle 
scattering is followed from its origin in quantum theory. The quantum mechanical 
wave treatm ent of the scattering process is chosen and it is explained how expres
sions for the total and differential cross sections are obtained from an expression for 
the amplitude of the scattered wave. The scattering amplitude is then examined in 
more detail, expanded as a series in partial waves, each partial wave describing one 
angular momentum component of the incoming beam. A useful relationship referred 
to as the optical theorem is then derived. A complete expression for the scattering 
amplitude is then obtained if the phase shifts between the incoming and scattered 
waves are known. This is illustrated using the process of resonance production. The 
phase shifts, however, are not usually available. The quantum mechanical descrip
tion of the scattering process is then extended to relativistic scattering energies so 
that comparisons may be made to relativistic scattering measurements. The frame-
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dependent quantities are first replaced by the relativistic ally invariant Mandelstam 
variables and the similarities between scattering measurements are accounted for us
ing crossing symmetry. The centre-of-mass energy is then allowed to become large 
and an im portant method using dispersion relations which attem pted to extract the 
behaviour of the scattering amplitude in this limit is then discussed. A discussion 
of the successful Regge approach, in which angular momentum was treated as a 
complex and continuous variable, then follows. The scattering force may then be 
interpreted in terms of Reggeon exchange, the exchange of Regge trajectories. The 
discussion tha t follows then concentrates on those aspects which suggested the ex
istence of a pomeron family and the properties that the member particles of this 
family are expected to possess. This chapter opens with the definition of the total 
and differential cross sections and the relationship between them.

In a typical fixed target experiment a beam of particles is fired at a sta
tionary target made up from some material. Some of the particles will pass through 
the target material unaffected and continue in the same direction as the incoming 
beam. From time to time, however, incoming particles will meet particles present 
in the target material, interact and scatter. There are various directions in which 
these may then leave the interaction region. Provided the incoming particles are uni
formly incident on the target the probabilty (Ps) that an incoming particle scatters 
is related to the total cross section (er) according to

P s =  n0<rdz

where the target material has a particle number density n0 and thickness dz. The 
total cross section is a measure of the ‘effective’ cross sectional area of a target parti
cle which gives rise to scattering. This ‘effective’ area may vary as the energy of the 
incoming particles is increased, for example, and therefore contains a large amount 
of information concerning the structure of the target particles. O ther processes such 
as absorption of the incident particles by the target particles may also occur but 
these are not considered here. The process of diffraction will be considered later.

To obtain an expression for the probabilty (Pn) tha t an incoming particle 
scatters into a smaller angular region of opening angle d£7, the expression for the 
total scattering probability is differentiated with respect to solid angle. This gives
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This quantity is related to the angular differential cross section dcr/dO which con
tains a large amount of information concerning the forces between the target and 
the projectile. These influence the probability tha t an incoming particle will scatter 
in a given direction. A differential cross section describing the probabilty tha t an 
incoming particle scatters into a small range in any measurable variable may clearly 
be obtained by instead differentiating the to tal scattering probability with respect 
to other variables.

The total cross section may be re-obtained by integrating-back any differ
ential cross section over all possible values of the variable to which it applies. This 
is because the smaller probabilities for scattering into each smaller region, when 
summed, must equal the total probability for scattering. It is only necessary, there
fore, to obtain a single theoretical expression for the angular differential cross section 
since this may be integrated-back to obtain an expression for the total cross section. 
Expressions for other differential cross sections, if required, may then be obtained 
by differentiating the to tal cross section with respect to other variables.

An expression for the angular differential cross section may be derived for 
non-relativistic scattering energies. To obtain an expression for relativistic particle 
scattering its behaviour as the typical energy of the projectile is increased, together 
with any alterations necessary to incorporate any other processes which enter at 
relativistic energies, must then be considered. At non-relativistic speeds the general 
scattering process may be viewed in either the particle or the equivalent quantum- 
mechanical wave picture. The expressions obtained will be equivalent to each other 
due to wave-particle duality. The general scattering process in the wave picture is 
shown in figure 2.1. Here the beam of particles constantly incident on the target is 
described by an incoming wave W, which is chosen to approach the target along the 
positive z-axis. The origin is chosen to be at the centre of the target. Each of the 
particles approaching in the beam are assumed to have the same energy. The beam 
would normally be produced from a general initial particle beam by collimators 
which only allow particles to pass through a small opening. Provided this opening 
is larger that the wavelength of the initial incoming wave and larger than the size 
of the target then the incoming wave may be approximated by a plane wave [3]. 
Some of the particles in the beam will pass through the target unaffected giving rise 
to an outgoing unscattered wave The unscattered wave will also be described 
by a plane wave. The amplitude of the unscattered wave, however, is expected to
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Incoming Plane 
Wave (w ) Outgoing 

Unscattered 
Plane Wave (Vf)

Outgoing Scattered Wave

(V sc)

Figure 2.1: The general scattering process in the wave-picture. The incoming beam 

of particles is described by a plane wave 'Fj. Some particles pass through the target 

material unaffected giving rise to an unscattered wave ’Ff. The rest interact with 

particles present in the target and scatter giving rise to a scattered wave \PSC.

be smaller than that of the incoming wave since it will contain fewer particles. If, 
for example, the amplitude of the incoming wave is normalised to unity then the 
probability for no scattering will be given by the square of the amplitude of the 
unscattered wave. Clearly this is expected to be lower than unity since, in general, 
some of the incident particles will interact with particles present in the target and 
give rise to an outgoing scattered wave \FSC.

To obtain an expression for the angular differential cross section it is nec
essary to know the form of the scattered wave. This contains the details on how 
particles scatter as a function of theta and phi, where theta  and phi refer to the 
spherical polar coordinate system. For non-relativistic scattering the wavefunction 
describing the scattering process is expected to be a solution to the Schrodinger 
equation. It is expected then that the set of eigenfunctions (’F) describing the scat
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tering problem in the region away from the target can be written in the form

$  =  g * ' +  $ sc.

Here the plane waves corresponding to the incoming and unscattered waves have 
been combined into a single term , and the normalisation of the wavefunction has 
been chosen so tha t the amplitude of the combined plane wave equals unity. By 
first obtaining the eigenfunctions of the scattering problem and then extracting the 
term  corresponding to the plane wave it will be possible to separate the contribution 
of the scattered wave to the wavefunction. This may then be used to calculate the 
angular differential cross section.

It may be assumed tha t the force between the projectile and the target is 
described by a potential which dies away as the distance from the target increases. 
In the region close to the target detailed knowledge of the potential arising from the 
target particles, and also any constituents that these particles may have, would be 
required. This region was avoided in the development of Regge theory. In the region 
away from the target the influence of the potential is neglected. Since an incoming 
plane wave is constantly entering the interaction region, and an unscattered and 
a scattered wave are constantly leaving, a steady-state situation develops. The 
wavefunction describing this region is therefore expected to be a solution to the 
time-independent Schrodinger equation.

2,1 The Scattered  Wave.

Consider first the general solutions to the time-independent Schrodinger 
equation in a region where absolutely no potential is present, including the region 
close to the origin. These are the general solutions (\Pk) to the so-called free-particle 
Schrodinger equation

h2
— V 2®k +  E $ k =  0.
zm

The solutions may be obtained in any coordinate system. The solutions in spherical 
polar coordinates, however, are the most sensible to consider, since it will then be 
a simple m atter to fit them  into the region away from the target in the scattering 
picture by considering the limit r —> oo. It will be recalled tha t the general method
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for obtaining the general solutions is to begin by writing the wavefunction as a 
product of a function which depends only on the radius r, a function which depends 
only on the ta  and a function which depends only on phi. The wavefunction in this 
form is then substituted into the Schrodinger equation and operated through the 
Laplacian operator V 2, w ritten in spherical polar coordinates. The result may then 
be rearranged such that one side of the expression only depends on the radius, and 
the other side contains all the angular dependence. The only way in which this 
expression can hold is then if both sides individually equal some constant. This 
may be written as Aih2. The problem is then reduced to two separate equations, 
one describing the behaviour of the radial function and one describing the angular 
behaviour. Both equations individually equal the same constant.

The same process, however, may then be repeated for the angular equation, 
separating it into a theta  equation and a phi equation. Both equations once again 
must individually equal some constant A2 . The radial, theta  and phi dependencies 
of the wavefunction can therefore be separated. The phi equation may be solved 
first to obtain the phi-dependent part of the wavefunction. If the constant A2 is 
written as m 2, where m is the magnetic quantum number, then these solutions are 
proportional to exp(am<ft). Since the full wavefunction is required to be single valued, 
the value of the phi-dependent solutions at (j> are required to equal their value at 
<j6 +  27r, and the magnetic quantum number must therefore be restricted to take only 
positive or negative integer values, or zero. The value of A2 =  m 2, together with the 
restriction on m, are then propagated through to the the ta  equation which may be 
solved next. The solutions to the theta  equation for m =  0 are then the Legendre 
Polynomials Pi(cos 6). If m ^  0 the solutions are the more complicated associated 
Legendre functions. In both cases, however, the value of the constant Ai is given by

Ai =  1(1 +  1)

where 1 is the angular momentum quantum number. The the ta  solutions may be 
combined with the phi solutions and written as The functions
are referred to as the spherical harmonic functions. The angular momentum quan
tum  number 1 may also only take positive or negative integer values, or zero, due to 
the restriction on m. Only those values greater than or equal to zero are selected, 
however, since a particle is not physically expected to carry a negative angular mo
mentum value. For any fixed angular momentum 1, the magnetic quantum number 
may only take integer values ranging between +1 and -1.
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Finally the angular solutions together with the restrictions on both quan
tum  numbers are carried through to the radial equation. To solve this a raising and 
a lowering operator may be defined which generate the entire set of solutions to the 
radial equation from its solutions at an angular momentum of 1 =  0. Since there 
are two solutions at 1 =  0, two towers of total solutions are generated by repeatedly 
operating with the raising operator on each 1 =  0 solution. One 1 =  0 solution 
generates the set of spherical Bessel functions ji(kr) and the other generates the set 
of spherical Neumann functions ni(kr). Some general linear combination of these 
two results then gives the general form of the total solution to the radial equation. 
Combining all of this together gives the following result

*k =  E E ( A i  ji(kr) + Bi m(kr)) YT(0,4>) (2.1)
1 TO

where A\ and Bi are the constants arising from the general linear combination in the 
radial solution [1],

These general solutions, however, apply to a region where there is abso
lutely no potential. In the scattering problem a potential exists in the region close to 
the target. The general solutions to the free-particle Schrodinger equation are there
fore only expected to apply in the scattering problem when the separation from the 
origin (r) is large. The spherical Bessel functions in this limit [4] behave as follows

(kr —
ji(kr) ™  1 2)

smT—+CO
kr

and the spherical Neumann functions in the same limit have the following behaviour

-  cos (kr -  ' f )
ni(kr)

kr

The eigenfunctions $  to the scattering problem in the region outside of which the 
potential acts are therefore

* - EE ( |  *> (*■-1) - 1 « (fa - 1))
The expression may be simplified by combining the sine and cosine functions into a 
single sine function using the trigonometric identity

R sin(0 -f- 5) =  a sin 0 +  b cos 0
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which follows from the relationship

sin(0 +  8) = sin 0 cos 8 -f cos 6 sin 8

if the cosine and sine of the angle 8 are written in terms of the side lengths of a right 
angled triangle. W ith cos 8 = — and sin£ =  where R2 =  a2 +  b2 and tan £  =  ~, 
the result follows. The wavefunction is then

*  =  Z )  53  sin ^kr -  Y  +  «i(k) j  j  Yf*(0,<j>).

It is now clear tha t the effect of the potential close to the origin is to introduce a 
phase shift <5i(k) to the wave function.

To identify the form of the scattered wave this now needs to be separated 
into the sum of two terms, one of which may be identified with the plane wave. Before 
approaching this the wavefunction may be further simplified, however, using the fact 
that a great many scattering processes show no variation with azimuthal angle phi. 
The azimuthal dependence is therefore not needed. Since the phi-dependent part of 
the wavefunction is proportional to exp(mi<^) this is done by only considering the 
m =  0 terms. The sum over m may therefore be removed and the spherical harmonic 
functions replaced by the Legendre polynomials

p i(cos0) =
47r
T

These were the solutions to the theta  equation for m =  0. The expression for the 
wavefunction which is to be separated therefore becomes

^  =  1 2  sin “  y  +  P i(cos Q)

where

To separate the wavefunction the sine function is first written in its complex form 
giving

*  =  £  "T" (e'(kr“^ +{l(k)) -  e- ’(kr-T+5i(k))') p^cos 0).

The eigenfunctions are now given by a sum of an incoming and an outgoing spherical 
wave. The general form of a spherical wave is A e^/r, where A is some fixed constant.
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An exponential factor is now factorised out to give

$  =  V s / e »(kr+2«1(k)) _  - * ( k r - l , r ) \  p  ( c o s 0 \

6 0  2zkr

A factor etkr is now added and subtracted, so that the net effect of doing this is to 
add zero, giving

0 0  f M

^  =  £  2 lT  ( e ^ * 2*1̂  -  e- tCkr" lir) +  e2kr -  elkr) P^cos 0).

The wavefunction may now be separated into the sum of two terms. The first is 
given by

0 0  f M  .

J 2  e ~ i f +Sl(k)) (e’kr -  e“,(kr_ljr)) Pi(cos 0). (2.2)
1=0

and corresponds to the sum of the second and third terms of the previous expres
sion. This may be identified with the plane wave. This follows because the general 
solutions to the free-particle Schrodinger equation in Cartesian coordinates must 
equal the general solutions in spherical polar coordinates. The general solutions in 
spherical polar coordinates have already been considered and are given by equation 
2 .1 . The general solution in Cartesian coordinates is just a plane wave for a general 
particle momentum 3-vector pi [5],

* = ( i ) i exp f i r )  •
If this is substituted into the time-independent Schrodinger equation the well known 
expression

h 2 |ki| 2 
E =  —^ L- 

2 m
is obtained. The plane wave solution in Cartesian coordinates is equal to the ex
pression given in equation 2.1. A plane wave travelling in the direction of increasing 
z, however, has the form

exp(akz) =  exp(zkrcos 9).

This will be equal to some special linear combination of the eigenfunctions in spheri
cal polar coordinates. Since the incoming plane wave is independent of the azimuthal 
angle here also only the m =  0  solutions in spherical polar coordinates will be
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needed. The spherical harmonic functions may again be replaced by the Legendre 
polynomials. The expression [6 ] turns out to be

OO
exp(zkr cos 0) = XXOX2! +  l)ji(kr)Pi(cos 0).

1=0

In the region away from the potential, where the radius r tends to infinity, the 
behaviour of the spherical Bessel functions in this region, where the sine function 
has again been w ritten in its complex form, gives

i  c o

exp(akz) =  —  ^  il(2l +  1 )-^—-------------- —------ -P i(cos 0).
Z'iK j q r

Here the factor may be re-written using the fact that t =  e*? giving

i  o o  _  e - i ( k r - l 7r ) \

exp(zkz) =  +  1 )-^—  '  Pi(cosfl).
2%s. 1=0 r

This is equal to Equation 2.2. if the constant C{ is chosen to be

C; =  ( 2 1 + l)e*(!f +5l(k)).

The normalisation of the plane waves is now set to equal unity. Clearly other 
normalisations may be chosen. The second term corresponds to the first and fourth 
terms of the separated wavefunction and is given by

£ 1 (e2,W- 0 *("»*>•1=0 2 ikr

This must therefore correspond to the scattered wave. Here an additional factor of 
etkr has been factorised out. Inserting the value of the constant C( gives

I ' ( • *“ > - 1 )  *«-•»> ■

This may be written in the form

\HSC =  f(k, cos #)-— .
r

The scattered wave is therefore outgoing spherically symmetric. The function f(k, cos 0) 
is given by

1 CO
f(k, cos 9) =  —  £ (2 1  +  1) (eM'<k> -  l )  Pi(cos 9) (2.3)

1=0

and is referred to as the scattering amplitude.
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2.2 The A ngular D ifferential Cross Section.

Now th a t the form of the scattered wave is known an expression for the 
angular differential cross section may be obtained by considering the probability 
current densities (j) associated with the plane wave and the scattered wave. The 
probability current density associated with a wave is an expression for the probability 
flowing per unit time per unit area, where the area is perpendicular to the direction 
of the vector quantity j. The probability current density may be considered as being 
analogous to the current density of electromagnetism.

In electromagnetism the amount of charge which lies inside a volume V is 
conserved. Should the amount of charge fall inside the volume then this must be 
accompanied by a flow of charge through the surface enclosing the volume. In quan
tum  theory the conserved quantity is the probability for finding a particle inside a 
volume V. Should the probability fall inside the volume then this must be accom
panied by a flow of probability through the enclosing surface. This relationship is 
described by the continuity equation in quantum theory. The probability current 
density is defined by the continuity equation and is calculated from a wavefunction 
according to the following expression

J = (®*V® -  ®V® ')
2im 1

where the * represents complex conjugation. The scattered probability current den
sity is then obtained by setting

elkr
=  $ sc =  f(k, cos 0)-----.

r
Since r, the distance from the origin, has been allowed to tend to infinity the V- 
operator only contains an r-component, since the other components are all negligible 
in comparison due to their inverse r-dependencies. Therefore

V ^ f ( k ,c o s 0 ) ^ i  =  b ( k , c o s 0 ) j k ^ j  r

and the scattered probability current density is

t* 1 , . nhk.
Jsc =  -T f(k,COS0)  T.

r "1 m

The quantity j sc • dS is then the probability flowing per unit time through a small 
element of the surface area of size |dS|. Since the expression is calculated in spherical
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polar coordinates the surface is chosen to enclose a sphere centred at the origin. In 
spherical polar coordinates the surface vector then points radially outwards from 
the origin and is given by

dS =  r2df)r.

The amount of probability flowing outwards per second through a small angular 
region of solid angle dO is then given by

j sc  • dS =  |f(k ,cos$)|2— dfh
m

This is the expression for the number of particles dNs th a t scatter per second into 
a small angular region of opening angle dfl.

Rather than considering the target as being comprised of many target 
particles, for the purpose of deriving a theoretical expression it is of interest to 
know how particles will scatter off a single target particle. The number of incoming 
particles which meet the target per second is given by

■4 "4
Jinc ' cLS — ^ |j in c |

where cr is the to tal cross section, or the area of the target particle. The magnitude 
of the probability current density associated with the plane wave may be obtained 
using the same expression as before and is given by

hk
m

Assuming all the particles which meet the target scatter then the number Ns that 
scatter is given by

—  &  | j in c  |

and the number scattering into a small angular subregion is found by differentiating 
this with respect to solid angle. Therefore

, do* ,
=  dX2

and the differential cross section is obtained according to

dcr dN„ 
dfi ~  |j;nc|d(2 '

Inserting all the relevant expressions into the right-hand side gives finally

ir/i *\|2— — —  =  |f(k, cos 0 )| .

I j in c
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2.3 T he Partial W ave Expansion.

The expression for the angular differential cross section is given entirely in 
terms of the scattering amplitude. An expression for the scattering amplitude has 
already been obtained and is given in Equation 2.3. It is often, however, written in 
the form OO

f(k, cos 0) = ^ ( 2 1  -f* l)ai(k)Pi(cos 0).
1=0

where

This is the partial wave expansion of the scattering amplitude [7]. It is a series which 
separates the individual angular momentum components of the scattered wave. The 
ai(k) factors are referred to as the partial wave amplitudes. The partial wave ampli
tudes are a measure of the scattering of each individual angular momentum compo
nent of the incoming beam. The partial wave amplitudes may be written as follows

ez5l(k) sin <5i(k) 
ai(k) = -------------

by simply isolating the factor corresponding to sin <$i(k) in its complex form. If an 
expression for the total cross section is then derived, using the formula

cr =  J  |f(k,cos0)|2dS7,

it leads to the following expression

OO4*7r __
^ E ( 21 +  1 ) s in 2  W -  (2-4)
k2 1=0

The integral which is required to obtain this is given by

f  Pi(cos #)Pi(cos 9) sin 0d0 =  .
J 21 -f 1

The total cross section may therefore be written in the form

CO
(T= ]TVi 

1=0

where
47T



C H APTER 2. REGGE T H E O R Y AND  THE PO M ERO N . 33

The to tal cross section is given by the sum of each of the partial cross sections 
<7i. An incident beam of particles comprised of states of different angular momenta 
must therefore behave such that each individual angular momentum component 
scatters independently. Each individual partial cross section has an upper bound, 
determined by its value when the phase shift is an odd multiple of which is given 

by

o f “  =  £ (2 1  +  1)

These bounds are referred to as a unitarity bounds. The property of unitarity 
will be considered in more detail in the next chapter. By comparing Equation 2.4 
with Equation 2.3, however, the to tal cross section may be related directly to the 
scattering amplitude as follows

a■ = £ l m  f( 0  =  0 ).

This relationship between the to tal cross section and the imaginary part of the 
6 — 0, or forward, scattering amplitude is called the optical theorem. It arises 
because when 0 = 0 the Legendre polynomials equal unity. This expression is of 
particular use since it often avoids the need to perform difficult integrations.

The expression for the scattering amplitude has been derived for processes 
in which particles have equal energies before and after scattering. A similiar result is 
obtained for other processes. It can be seen that the phase factor introduced by the 
potential attaches itself to the outgoing scattered wave. To predict the behaviour 
of scattering processes it is necessary to say something about the phase shifts which 
are introduced by the potential. To precisely determine the behaviour of the phase 
shifts, however, it is necessary to know the form of the potential since the Schrodinger 
equation needs to be solved in this region so that the term  corresponding to <$i(k) 
can be extracted from the expression when the radius is large. Although the exact 
form of the potential is not known, it is possible, however, to isolate certain aspects 
of the probable behaviour of the phase shifts for certain scattering phenomena. One 
such phenomenon for which this may be done is the process of resonance production 
in particle scattering.
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2.4 R esonances.

A resonance is formed when a number of particles combine to give a new 
short-lived particle state. They are normally identified by forming the invariant 
mass of a subset of the particles that remain after the interaction. If two particles 
exist in the initial state and two particles exist in the final state, a resonance is 
usually represented as shown in figure 2.2 a). The production of a resonance leads 
to a peak in the cross section since the scattering process prefers to use the state for 
scattering. Peaks occur at positions where the centre-of-mass energy of the incoming 
particles equals the mass of an allowed resonance.

Resonance peaks may be interpreted using the partial wave expansion as 
arising when one of the partial wave amplitudes dominates. As an example, consider 
the total cross section for 7r+-proton scattering which peaks at a pion kinetic energy 
of 190 MeV [8 ], The centre-of-mass energy of the initial state when the pion has this 
kinetic energy is 1232 MeV. This peak is interpreted as being due to the production 
of a resonance, referred to as the A ++-resonance, which then has a mass equal to 
this energy. The value of the maximum height of the cross section at this point is 
given by

87r 
=  — .

Since total angular momentum is equal to | ,  which is equal to the spin, or isopsin, 
of the A ++-resonance, the orbital angular momentum must be zero. The 1 =  0 
component therefore dominates. The phase shift then passes through 90 degrees at 
this point.

For any value of the phase shift, the exponential factor in the partial wave 
amplitude may be written as follows

e2*$j(k) =  ±_
> -tS l(k ) '

This may be w ritten as
e2.s, =  l  +  »tanft

1 — 2 tan  8\
The partial wave amplitude is then given by

-  l )  _  ! 1

22k 2 k (cot £1 — 2)
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a) b) Im(k2)

P P

Re(k2)

Resonance
Pole

Figure 2.2: A resonance occurs when the initial state particles combine to give a 

new, short lived state. A resonance may be viewed as a pole in the complex k2-plane 

lying just under the positive real axis.

Expanding cot Si about the position of the peak, where the energy is equal to Eo 
and the phase shift is 90 degrees, gives

d(cot 5i)
cot <$i =  0 +  (Eq — E)-

dE E=Eo

The first term  is equal to zero because cot f  =  0 . Setting the value of the differential 
to be

d(cot <$i) r 
dE =  2

gives the following expression for the partial wave amplitude

1 r
al(k) = 2

2k (E0 -  E)

This is the Breit-Wigner formula for the partial wave amplitude in the region of a 
resonance. The energy at which this occurs must take a real positive value, however, 
the resonance can be thought of as a pole in the complex energy plane at a position

E =  E0 — i —.

At this value the denominator becomes equal to zero. Since F describes the width 
of the resonance peak and is typically small the pole lies just below the positive real 
axis in the complex energy plane (Fig. 2 .2  b)).
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2.5 The M andelstam  R epresentation.

The expressions obtained previously for the to tal and differential cross sec
tions apply to non-relativistic scattering energies. Before these expressions can be 
compared to the results of the scattering experiments which were performed at rela- 
tivistic energies the system dependent variables must be replaced by relativistically 
invariant ones. It will then be possible to predict the behaviour of scattering at high 
centre-of-mass energies by considering the high centre-of-mass energy limit.

If four particles participate in a particular scattering process it is usual to 
re-express equations in terms of the Mandelstam variables s, t and u [9]. These are 
defined as follows

s =  (pi +  P2 ) 2
t =  (p! +  p3 ) 2

U =  (Pi +  p4 ) 2

where the Mandelstam four-vectors p1} p2, p3 and p4 are to be used to represent 
the four-vectors of the particles participating in the scattering process. Each of 
the Mandelstam four-vectors, however, are defined as being positive when entering 
the interaction region (Fig. 2.3). Depending on how many of the four particles 
participating in the interaction leave the interaction region a number of these particle 
four-vectors will need to be reversed, that is set equal to their antiparticle four- 
vectors, before they are inserted into the formulae for s, t and u. Consider a process 
in which two particles come together and two particles leave the interaction region. 
For simplicity the masses of each of the four participating particles may be taken 
to be equal. The description of this process in the Mandelstam representation is 
obtained by first reversing the directions of the two outgoing physical particle four- 
vectors. Clearly, there are then several different pairs of Mandelstam vectors which 
can be chosen to represent the reversed particle four-vectors. Consider choosing 
vectors 3 and 4 to represent the reversed four-vectors of the outgoing particles. 
The two incoming particles are then represented by vectors 1 and 2. If, for further 
simplicity, the process is viewed in the centre-of-mass frame, then the two incoming 
particles have equal energies (E) and momenta of equal magnitude (k). In addition 
they will approach each other head on so the directions of their momentum vectors
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Pi P3

Figure 2.3: If four particles participate in a scattering process the Mandelstam 

representation may be used to describe the particle vectors. Each of the vectors of 

the Mandelstam picture are defined as being positive when entering the interation 

region.

will be exactly opposite. Therefore, the Mandelstam variable s will be given by

s =  (pi +  p 2) 2 =  2 m 2 +  2 pa • p2.

Evaluating the scalar product gives

s =  2m2 +  2E2 +  2k2.

Using the relationship E2 =  k2 +  m 2 this gives

s =  4(k2 +  m2).

The value of s will always be positive.

In the centre-of-mass frame the two outgoing particles will also have equal 
energies and momenta of equal magnitude. The centre-of-mass energy is still shared
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between two objects of equal mass. The particles come out back-to-back so the mo
m enta also have exactly opposite directions. These three-momenta may be written 
as k/ and —k/. In addition the magnitude of k/ must also equal the magnitude of 
k, since the masses of all the particles are equal. If the Mandelstam four-vector 1 is 
set equal to

Pi =  (E,k)

so it defines the incoming particle with the positive momentum vector then, since 
Mandelstam vector 3 is given by the antiparticle four-vector of the physically out
going particle,

p3 =  ( - E , - k ') .

and the value of the Mandelstam variable t is then

t =  —(k — k')2

This simplifies to

t =  —(2 k2 — 2 k2 cos 0) =  —2 k2( l  — cos 9)

where 9 is the angle between incoming particle 1 and outgoing particle 3 in the 
centre-of-mass frame. This variable is always negative. The expression for u in the 
same way is given by

u =  — 2 k2(l -f cos 9).

This quantity is also always negative. When s is positive and both t and u are 
negative the process is said to be described in the s-channel. By conservation of 
energy and momentum,

Pi +  P2 =  -p s  -  P4-

The s-channel description would therefore also have been obtained if Mandelstam 
vectors 1 and 2  had been chosen to represent the particles leaving the interaction 
region.

If instead, however, vectors 2 and 4 are chosen to represent the reversed 
four-vectors of the particles leaving the interaction region then, using the previous 
descriptions of the physical particle four-vectors, the value of t will be given by

t =  (E1 + E 3)2 =  4(k2 +  m2)
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and will always be positive. Vectors 1 and 3 now represent the incoming particles. 
This is the same expression tha t was obtained for s in the s-channel description. If 
vector 1 is now taken to be represent the incoming particle of positive momentnm 
as before and vector 4 is chosen to be

p4 =  ( - E ,  -fc '),

the value of u is
u =  —2 k2(l — cos#).

Similarly s is given by
s =  —2 k2( l  -f cos #).

Since t is positive and s and u are always negative this is the description of the process 
in the t-channel. The formulae are the same as before but the Mandelstam variables 
to which they correspond have altered. Note that if vectors 2  and 3 are reversed a 
u-channel description of the process is obtained which produces a similar outcome. 
This symmetry is referred to as crossing symmetry. It arises from the equivalence 
of considering an antiparticle with positive momentum and energy to considering a 
particle with negative momentum and negative energy, which was first proposed by 
P. A. M. Dirac. The idea applies in any frame since the M andelstam variables are 
relativistically invariant, and also when the particles do not have equal masses. The 
expressions obtained are more complicated in this case however. There are therefore 
three ways of describing a single scattering process in which two particles enter and 
two particles leave the interaction region.

Consider then using the Mandelstam representation to describe the process

7T+  +  p  —> p  + 7 T + .

This may be described in either the s, t or u-channel. The scattering amplitude will 
be given by the same expression in each case, with the appropiate letter used to 
label the three quantities in tha t channel. Consider the s-channel description of this 
process such tha t the incoming proton is represented by vector 1 and the incoming 
7r̂ " is represented by vector 2. Which Mandelstam vectors represent which particles 
is also shown in fig. 2.3. If the different process,

p  +  p  —► 7T~ +  7T+ .
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is now taken, however, and described in the t-channel then vectors 1 and 3 represent 
the incoming particles. The four Mandelstam vectors may then be chosen in such a 
way tha t they correspond to the same particles as they did in the previous process. 
In addition the process

P  - f  7T~ —¥ 7T~ +  P -

will also lead to an equivalent Mandelstam representation if its u-channel description 
is chosen. Three apparently different processes will therefore be described by the 
same scattering amplitude. It will be required to make the necessary replacements 
for s, t and u as explained but their scattering amplitudes will have the same phys
ical behaviours. It is now possible to see why different scattering processes show 
similarities.

The Mandelstam representation may be used to relate more processes, 
however, when it is recalled tha t vectors 1 and 2  could have been initially chosen to 
represent the outgoing particles in the s-channel description of the reaction

7T+  +  p  —> p  +  7T+ .

Similarly there is a complementary way of obtaining the t-channel and u-channel 
descriptions. If these equivalent descriptions are also considered then the inverse- 
antiparticle reactions of those already considered are also obtained. These are the 
reverse interactions of the previous processes with each particle replaced by its an
tiparticle. They are given by

7T + P -+ P + 7T
P + 7T+ _-► 7r+ + P
7T" + 7T+ - P _j_ P-

In general there are six different reactions all linked to the same scattering amplitude 
by crossing symmetry. Note tha t if the first reaction had instead been initially 
represented in the t-channel the same six crossed reactions would still be obtained. 
The idea may be extended further by adding, for example, the inverse reactions of 
all those already obtained to the list. This is equivalent to also adding time reversal 
invariance. These extensions are not however considered here.

Consider finally then replacing the frame-dependent variables by Mandel
stam variables in the partial wave expansion. The s-channel is chosen here as the 
basis channel, however the labels may be swapped for scattering amplitudes in other
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channels. At high energies a particle’s mass is negligible in comparison to its mo
mentum and the approximation

E =  k

is good. Therefore, s simplifies to

s =  4k2.

Substituting s into the equation for t and rearranging gives

2 t
cos 0 = 1 H •

s

Since in general
s +  t +  u — m 2 +  m | +  m.3 m2.

where the masses m i, m2, m3 and m 4 correspond to masses of the four participating 
particles, only two of the Mandelstam variables are independent. It is therefore 
enough to express the scattering amplitude as a function of just two of the Man
delstam variables. For scattering processes described in the s-channel the scattering 
amplitude in terms of the Mandelstam variables is given by,

00 2 t
f(s,t) =  ^ ( 2 1 +  l)a i(s)P i(l -(----- ).

1= 0  s

Of interest for the purposes of this analysis is the differential cross section 
do-/dt. This may be easily related to the angular differential cross section. The 
angular differential cross section is given by

do* 1 do-
dft 27T d(cos 0)'

Using the expression for t in the s-channel

dt =  2 k2d(cos 0)

and the relationship between the angular differential cross section and do*/dt be
comes

do- k2 do-
d£2 7r dt

The differential cross section do-/dt therefore essentially behaves as

2do-
dt

f(k, cos 6) 
las
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Note tha t, in the s-channel, t  represents the momentum transfer squared between 
particles 1 and 3. If it is now attem pted to extract the high energy behaviour, by 
considering the limit (s —► oo), the partial wave amplitude is found to actually di
verge. This leads to an infinitely large scattering amplitude, and therefore infinitely 
large predictions for differential and total cross sections. This is, however, due to 
the fact tha t the series diverges and not necessarily because the scattering ampli
tude actually is infinite in this limit. Some work will need to be done to extract 
expressions for relativistic scattering.

2.6 E xtension  to  R elativ istic Scattering Theory.

Mandelstam was able to extend the idea of crossing symmetry further such 
tha t all the different descriptions of the scattering process could be extracted from 
a single expression for the scattering amplitude, w ritten for example in terms of 
the s-channel variables, without the need for swapping over labels. To do this he 
considered unphysical values of energy and momentum.

In general the four particles participating in the scattering process will 
all have different energies and momenta when viewed in some general frame of 
reference. The general process is shown in figure 2.4 where the labels correspond 
to the physical particle four-vectors. P x and P 2 are the physical four-vectors of the 
incoming particles in the s-channel. The expressions for the Mandelstam variables 
in the s-channel are therefore

s =  (Pi +  P 2) 2 

t =  (Px — P 3 ) 2 

u =  (Pi -  P 4 ) 2

since the outgoing physical particle four-vectors have to be reversed. Suppose now, 
however, tha t the incoming particle with four-vector P 2 enters with a momentum 
four-vector given by P 2 =  — P 4. The energy of this particle will then be negative and 
the direction of its momentum will be exactly opposite to tha t of the outgoing par
ticle described by P 4, Its four-vector is therefore given by P 2 =  (—E4 , —k4). Clearly 
this does not correspond to a physical situation since this particle cannot physically 
enter the interaction region with a negative energy. If the outgoing particle labelled
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P2 =  - p  4

P 4

Figure 2.4: If two of the four particles participating in the scattering process may be 

taken to  enter or leave with unphysical values of energy, their four-vectors given as

shown, then a single scattering amplitude may be used to extract all of the different

channel descriptions of the scattering process.

by P 3 is also considered to leave the interaction region with a negative energy, such 
tha t P 3 =  — P 2 , then the expressions for the Mandelstam variables in the s-channel 
become

s =  (Pi -  P3)2
t =  ( P l  +  P 2)2
>1 =  ( P 1 - P 4 ) 2

The value of t now corresponds to the centre of mass energy squared. This is exactly 
what would have been obtained if it had been decided to view the process in the 
t-channel. Therefore by considering particles entering the interaction region with 
unphysical negative energies, and also those particles leaving the interaction region, 
it is possible to retrive the expressions for the other channels from one expression 
for the scattering amplitude. A single expression for the scattering amplitude would 
then be used to describe each of the three equivalent ways of viewing a single scatter



C H APTER 2. REG G E T H E O R Y AN D  THE PO M ERO N . 44

ing process and also each of the six different processes related by crossing symmetry. 
In the example of the previous section the two incoming particles will no longer enter 
in equal and opposite directions when unphysical energies are considered. The act 
of crossing therefore alters the relativistic frame of reference.

To find out if it is possible to use unphysical particle vectors it is necessary 
to return to  the general solutions to the Schrodinger equation and ask if solutions 
may be found for unphysical values of energy. Of particular interest is the depen
dence of the wavefunction on the magnitude of the wavevector k. The dependence 
of the wavefunction on k arose from the solutions to the radial equation. Solutions 
to the radial equation, however, may also be found for negative values of k 2 and 
for complex values of k2. The partial wave expansion may therefore be considered 
valid for negative real values of k2 and for complex values of k2 even though only 
positive real values have a physical interpretation. This implies tha t k itself may 
be in general considered to be a complex number. The three Mandelstam variables 
may now be considered in general complex since they are each related to complex 
k2. To pull out an s-channel description of a scattering process from the scattering 
amplitude a region where the real part of s is positive and the real parts of t and 
u are negative must be considered. To extract the t-channel description a region 
where the real parts of s and u are negative and the real part of t is positive must 
be considered.

It should be noted tha t the expression for s now remains fixed. When the 
real part of k2 is equal to some negative value —k^, s becomes equal to

s =  s0 =  —4kg +  4m2

plus some imaginary term. If kj is large enough then the real part of s0 will be 
negative. The real part of s then corresponds to the value of the momentum transfer 
squared of a scattering process viewed in the t-channel such tha t for example

So =  —2 k i( l  — cos 0t)

Similarly the expression for t is fixed and it is necessary to consider this at some 
other value of k2 such tha t t independently equals

t =  to =  4k2 -f 4m2

and therefore corresponds to the centre-of-mass energy squared in the t-channel. At 
higher energies where the masses of the participating particles become negligible
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this corresponds to choosing the value of t such that

cos 6t = 1 H----
to

One therefore considers different regions in the complex k2-plane (or the complex 
s-plane, for example).

An alternative method of extending this idea to higher values of centre-of- 
mass energy now appears. To consider a large value of the centre-of-mass energy 
t in the related t-channel, a value of t corresponding to a large value of k2 in the 
t-channel needs to be extracted from the s-channel expression for t. This means that 
a large value of t 0 —> oo needs to be selected. The formula for t in the s-channel is 
given by

t — —2k2( l  — cos 9)

To make this large and positive it is possible to choose a value of k2 which has a 
large negative real part. The value of s would then independently have to be fixed at 
some smaller negative value so tha t a corresponding high centre-of-mass scattering 
process at some reasonably small value of momentum transfer were selected. This 
corresponds to independently selecting an alternative value of k2 which has a smaller 
negative real part.

This method of extracting the high energy limit was approached in the 
theory of dispersion relations [10]. In the theory of complex integration it is known 
that the value of the integral of a complex function is equal at all points within 
the contour around which the integration is performed. If the scattering amplitude 
could then be w ritten in the form

A(s0, t ) = / ^ 4 d s '
J So — s

it would then be possible to argue tha t the scattering amplitude is equal everywhere 
inside the contour. The low energy description of the scattering process would 
then be equivalent to the high energy description. The result just depends on the 
singularities chosen to lie inside the contour. The integrand has a singularity at 
s =  So to fix the value of s at some negative number. A simple example of a possible 
contour is shown in figure 2.5. When the contribution from the circular part of the 
contour tends to zero as the radius tends to infinity, the complex integral reduces 
tp just an integral from —oo to -j-oo along the real axis. This then equals a factor
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Im(s)

Fixed s singularity

Figure 2.5: In an ideal case a contour could be set up in the complex s-plane and 

integrated over to give a set of dispersion relations for the scattering amplitude. In 

practice many more singularities are present in the complex s-plane.

27a multiplied by the sum of the contributions, or residues, from each singularity 
inside the contour. W hen this integral is performed it reduces to a set of dispersion 
relations, a pair of expressions relating the real part and imaginary parts of the 
scattering amplitude. A great deal of work in the field of dispersion relations has 
been completed, however, dispersion relations in the field of particle physics are in 
practice very complicated objects. In general the partial wave expansion contains 
other singularities in the complex s-plane, related to those discussed in terms of the 
complex k2-plane. The positions of some of these singularities will depend upon 
which resonances occur in the scattering process. This depends on the potential 
which gives rise to the scattering force. Although the process of absorption has 
not been considered here other poles, which arise when the target and projectile 
combine to form a stable bound state, may also be present. In addition, it is not 
always possible to argue that the contribution from the circular part tends to zero as 
the radius is increased and the integration then leads to more complicated subtracted 
dispersion relations.



CHAPTER 2. REGGE TH E O R Y AN D  THE POM ERON . 47

2.7 R egge Poles and th e A sym ptotic  Lim it.

An alternative way of obtaining the high energy limit is required. Consider 
once again extracting a large positive value of t from the expression for t  in the s- 
channel. If the value of k2 is now fixed at some small negative value, the high energy 
region may be extracted by letting cos 9 tend to negative infinity, or equivalently 
| cos 0| —» oo. The value of s may still be independently fixed at some small, negative 
value as before. For cos# to take unphysical values the scattering angle must be 
allowed to become complex. The value of cos 9 itself then also becomes complex. 
Since solutions to the Schrodinger equation may also be obtained for complex values 
of cos 9 it is possible to argue that the partial wave expansion is valid for unphysical 
values of k2 and cos 9 even though only positive real values of energy and scattering 
angles in the range 0° <  9 < 180° have physical interpretations. To extract the 
behaviour of the scattering amplitude in a related channel the real parts of complex 
s and t are once again considered.

It is the convention in experimental particle physics to describe processes in 
the s-channel. To arrive at a result which is already written in terms of the s-channel 
variables a partial wave expansion w ritten in the t-channel is now considered, from 
which the description of a high energy s-channel process is extracted. The value of t 
is then always negative. This is because it labels a momentum transfer squared and 
not because t must always be negative. The procedure may be applied such that a 
t-channel scattering amplitude which refers to a high centre-of-mass energy process 
is obtained from an s-channel scattering amplitude (this is done, for example, in 
reference [11]). The measured value of t would then always be positive because it 
would label the centre-of-mass energy squared. In addition it should be noted that 
no statem ent needs to be made about what takes place in the interaction region. A 
process, for example, in which the two incoming particles combine together to form 
a resonance may be viewed in any channel. There is only a relationship between 
what occurs in the interaction region and the channel once it has been decided to 
view this process in a particular channel. If the t-channel is chosen to represent the 
resonance process then a particle exchange diagram represents the s-channel process.

The partial wave expansion in the t-channel is given by
CO

f(M ) =  £ (2 1  +  l)ai(t)Pi(cos #t ).
1=0
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If cos is now allowed to tend to infinity, however, in the expression as it stands, the 
series also diverges. This problem was however solved by Italian physicist T. Regge 
who returned to the general solutions to the free-particle Schrodinger equation and 
took the unusual step of considering complex values of angular momentum [1 2 ].

The phi-dependence of the eigenfunctions was removed in the derivation of 
the partial wave expansion because scattering experiments often show no dependence 
on the azimuthal angle phi. Since the phi-dependence is to be removed anyway 
Regge wrote the general solutions as a product of a function tha t depends only on 
the radius r and a function tha t depends only on theta. The same procedure for 
separating the problem into two equations, one tha t contains the radial dependence 
and one tha t contains the theta  dependence may be repeated. When the theta 
equation is solved, however, there is now no restriction on the constant, since this 
arose from the solution to the phi-equation. Solutions to the theta  equation may 
then be found for continuous and complex values of angular momenta 1. They are the 
hypergeometric functions H(l, cos0t)- The hypergeometric functions reproduce the 
Legendre polynomials for positive, negative integer and zero values of the angular 
momentum quantum number.

The partial wave expansion may therefore be considered valid for all 1, 
except where there are singularities in the complex 1-plane. The sum over discrete 
values of 1 is now be replaced by a contour integral over complex and continuous 
values of angular momentum and is given, for positive, negative integer and zero 
values of angular momentum, by

f ( s , t )  =  i  f dl(21 +  l ) 5 M p ( l , - c o S 0t)
2 J c sin 7rl

where
* * 2 s  COS Pt =  1 +  — .

u

The new partial wave expansion reproduces the previous expression when positive, 
negative integer or zero values of angular momentum are considered. This is ensured 
by a factor sinTrl in the integrand which has zeros at positive and negative integer 
values of 1 and zero 1. The contour of integration is chosen as shown in figure 
2.6. It then only selects positive integer and zero values of angular momentum. A 
contribution from each of the singularities is then produced when the integration is 
performed, giving a series in 1. It is assumed that no additional singularites arising
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Figure 2.6: If angular momentum 1 is allowed to become a free, continuous pa

rameter, which may be real or complex, the sum in the partial wave expansion is 

replaced by a complex integral which is performed over a contour surrounding a 

series of poles on the real axis. For physical reasons only the poles corresponding to 

positive angular momenta are surrounded.

from the partial wave amplitudes lie inside the contour. The integral has been 
divided by the additional factor

2i(—1)1+1

which is required since each of the poles which lie inside the contour on the real 
axis contribute this factor multiplied by the equivalent term  in the partial wave 
expansion. The factor ( —l) i is taken care of by noting that

Pl(-COS0) -  ■

The partial wave amplitudes are now also functions of complex and continuous 
angular momentum.

It is now possible, however, to change, or deform, the path of integration 
to a new contour without changing the result, provided the new contour does not
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Figure 2.7: It is possible to change, or deform, the contour of integration to any 

other contour provided no additional poles are contained inside the contour. The 

additional poles which must be avoided are referred to as Regge poles.

contain any additional poles or branch cuts. Consider deforming the contour of 
integration to a new contour C’ which lies along the line Re 1 =  — | .  The contour 
returns via a half-circle closed in the right-hand half plane which has an infinite 
radius. Singularities in the partial wave amplitudes, which may be interpreted as 
resonances in a similar way to which they were interpreted for the complex energy 
plane, now lie in this region and must be avoided. These poles in the partial wave 
amplitudes are referred to as Regge poles [13]. The new contour of integration will 
look something like tha t shown in fig. 2.7. The poles of the partial wave amplitudes 
are functions of t and occur at angular momentum values of 1 =  a ,(t)  for i = 
1 ,2 ,3 ,. . . .

Integrating around the new contour gives the following expression

f(s,t) =  i  r * +'°° di (21 + 1)a(1't )p (1. - cosg»)+ ^ - - (2 a ,( t )+ l) /3,(t)Pa‘(t)(1, ~  COS6t) 
2 J - i - t o o  sinTrl * 2  s i n7rat ( t )

Here the /3 factors are the residues of each Regge pole. This expression gives the
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same result as before since the contour only contains the poles along the real angular 
momentum axis. Changing the path of integration in this way was first considered 
by Watson in 1918 [14] and later by Sommerfeld in the theory of the propagation of 
radio waves [15] and is therefore referred to as a Sommerfeld-Watson transform.

The asymptotic limit cos$t —* — oo may be now taken. The Legendre 
polynomials have the following behaviour as cos 8t tends to negative infinity,

P l ( z  =  — COS # t )  — | zI1.

The argument z is infinite in the high energy limit. The Legendre polynomials are 
therefore given by (cos^t)1- When this is now inserted into the expression obtained 
by integrating around the new contour, since the integral is carried out along the 
line Re 1 =  the first term  will be suppressed by a factor (cos in comparison 
to those contributions from the Regge poles. The first term  of the expression is often 
referred to as the background integral. The dominant term  will arise from the Regge 
pole with the largest real angular momentum value. This is the pole furthest to the 
right in the complex plane and is referred to as the leading Regge pole.

The scattering amplitude is therefore given by

du S ill TTOl^t J

By noting tha t cos behaves essentially as

(cos 6t)a' V  ~  s“’(t)

in the high centre-of-mass energy (high s ) limit, the amplitude may be now written 
in the following form

f(s, t ) ~ | ( 2 a .( t)  +  l ) - ^ ) 5“-(t).
z sin7radt]

Here s represents the centre-of-mass energy of the related process which has been 
extracted from the scattering amplitude by crossing. The value of t is now negative 
and corresponds to some value of the momentum transfer squared. As the centre- 
of-mass energy is increased the position of the Regge poles move. They trace out 
a path in the complex angular momentum plane which is referred to as a Regge 
trajectory. The Regge poles may pass through several physical positive real angular 
momentum values as they trace out their trajectories.
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Figure 2.8: The force which gives rise to scattering may be viewed as being due to 

the exchange of a superposition of all the particles tha t can appear as resonances 

in the scattering process. The superposition of particle states is referred to as a 

Reggeon.

If the residue of the pole can now be written in the form

then it is possible to  interpret the scattering amplitude as describing the exchange 
of an object between the particles participating in the scattering process as shown in 
figure 2.8 [16]. This object is called a Reggeon and is given by some superposition 
of several particle resonance states. This is the explanation for the origin of the 
scattering force in Regge theory. Exactly which processes the resonances may appear 
in will be discussed later. The function T fa^ t)) equals zero at negative integer values 
of its argument.

2.8 T he Pom eron

The formula for the scattering amplitude in the asymptotic limit may now 
be used to predict the behaviour of the differential and to tal cross sections. The 
differential cross section is given by [1 1 ],
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The total cross section cr is then obtained by integrating this over all solid angles. 
Alternatively, using the optical theorem, it is given by

„  / ( 5 l  ̂ =  0 )  a , ( i = 0) - lcr — ------------------ 5 /
s

The behaviour of both the differential and total cross sections are therefore deter
mined by the leading Regge pole.

It may appear unusual at this stage tha t the different processes all related to 
the same scattering amplitude will scatter due to the exchange of the same Reggeon. 
This would imply tha t the resonances tha t may be formed in each scattering process 
would be the same. In section 2.5 the process

7T+  -f- p  —S- p  - f  7T+

was related to five other scattering processes. In section 2.4 a resonance that may 
be produced in this process was identified as the A ++-resonance. This resonance 
can clearly not appear, however, in the related t-channel process

p  +  p  —> 7T~ +  7T+ .

since it would violate conservation of charge. Charge conservation has not however 
been enforced anywhere in this derivation and the positions of the resonance poles 
only depends upon the mass of the resonance. The resonance in this process is the 
A0 -resonance which has essentially the same mass as the A ++-resonance. Similarly 
resonances in the other processes related by crossing symmetry are

7T“  +  p

7T_  d~ p

P  +  7T+

7r ~  -f- 7T+

The antiparticles of the A-resonances have the same mass as their particle partners. 
Each process therefore produces one charged version of the A-particles. The different 
charged versions of the A-resonance were also considered as different versions of the 
same particle in the later development of the quark model. Since the mass of the 
neutron is essentially equal to the mass of the proton it is expected that pion-neutron 
scattering will also have a similar description. The other two charged versions of 
the A-resonance were therefore also combined with the two already discussed.

A0
A++
A°
A0

p + 7T
p + 7T~
7T + + P
P + P-
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In the case of the strong interaction there is an additional complication 
which arises due to the fact tha t only odd or only even angular momentum states 
can be formed as resonances from any two initial state particles. This follows from 
the conservation of angular momentum, or more specifically isopin, which was intro
duced in the field of nuclear physics so tha t the proton and the neutron, which have 
essentially equal masses, could be treated as two charged versions of the same parti
cle. The A-resonances may also be interpreted in this way. The strong interaction is 
then independent of charge, and separate from the electromagnetic force. In scatter
ing due to the strong interaction it must therefore be ensured tha t only even isospin 
resonances or only odd isospin resonances, depending on the initial state particles, 
are involved. To incorporate conservation of isospin the partial wave amplitudes 
must be separated such that one contains poles for only odd angular momentum 
resonances and the other only poles for even angular momentum resonances.

These two functions are written as a77==+1(l, t) and aTFZ“1(l,t)  and are la
belled by their signature factor (7/), which is positive for even angular momenta [IT]. 
This slightly alters the expression for the asymptotic behaviour of the scattering 
amplitude as follows

f(S)t) _  i Z L t £ p % (t)s«(t).

The extra factor equals unity when the resonance may be produced and zero when 
the resonance would violate conservation of isospin.

To complete the predicted expressions for the to tal cross section it is nec
essary to insert the behaviour of the function o:(t). It might be expected tha t the 
behaviour of this function may be deduced by considering the angular momentum 
values of the allowed resonances of a particular scattering process. A plot of total 
angular momentum as a function of mass squared for all particles possessing the 
same quantum numbers as the A-resonances is shown in figure 2.9. Since the spin, 
or isospin, of the A-resonances is 3/2 the first state corresponds to an angular mo
mentum of zero. The states then step up in units of 2 as expected. The A-resonances 
are represented by the first point on the trajectory. Diagrams of this kind were first 
considered Chew and Frautschi and are referred to as Chew-Frautschi plots [18], A 
straight line relationship is in fact obtained for almost all particle groups plotted in 
this way.

In the process of extracting the high energy behaviour t initially labelled the
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ANGULAR
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Figure 2.9: Particles possessing the same quantum numbers may be represented 

on a Chew-Frautschi plot. States with Baryon number 1, strangeness 0, positive 

parity and isospin 3/2 give a similar straight line dependence as is observed for 

other particles grouped together by their properties.

centre-of-mass energy squared (see fig. 2.9) and was forced to become negative where 
it then labelled the momentum transfer squared. This straight line dependence 
may be used to give predictions for measured cross sections in momentum transfer 
squared provided the function a ( t)  extrapolates into the region of negative t. The 
continuation of the function into negative t has been experimentally verified for 
certain scattering processes [19]. Regge showed that as the value of t is varied, the 
position of a Regge pole will move in the complex angular momentum plane tracing 
out a Regge trajectory. In the region of positive t resonances may appear and t 
labels a centre-of-mass energy. As the pole passes from positive t to negative t, 
Regge showed that the pole continues to trace out a smooth trajectory. At negative 
values of t the pole may pass through several real negative integer values of angular 
momentum. No resonance can appear at negative t, however, since the mass of the 
resonance would have to be complex so that, when squared, it gives a negative result. 
To account for this the scattering amplitude is therefore forced to fall to zero, or
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decouple, at these angular momentum values. This is ensured by the r(a*(t)) factor 
in the expression for the residue of a Regge pole (and also the signature factor).

The t dependence of a Regge pole may therefore be described for positive 
and negative t as follows

a (t)  — c /(t)t +  o:(t =  0)

This means tha t the scattering amplitude is given by

f(S)t) -> s«i/(t)t+«i(t=o)t

Therefore the differential cross section is essentially given by

—  ~  s 2« | ( t ) t + 2a 1( t = 0)-2
dt

and the total cross section is

f (s ,t  =  0) _ . ai(t=01_1(J ------------- =r S ' 1
s

All observed Regge trajectories, formed by considering particles with identical inter
nal quantum numbers, intercept the angular momentum axis at angular momentum 
values below one. This means th a t all total cross sections are expected to be falling 
at some fixed value of the centre-of-mass energy squared s. The typical form of a 
total elastic cross section is shown for proton-proton and proton-antiproton scat
tering in figure 2.10 [20]. Here the x-axis corresponds to the centre-of-mass energy. 
The cross section falls initially as s increases. This suggest tha t the pole furthest 
to the right has an intercept of 0.5475. The cross section however begins to rise at 
higher centre-of-mass energies since the position of the Regge poles have moved in 
the complex angular momentum plane and a new trajectory now dominates. The 
leading Regge pole must now have changed to one with an intercept of 1.0808. No 
trajectory, however, formed from the list of known particle states has an intercept 
greater than unity. The good agreement at lower centre-of-mass energies however 
suggests that there may be a family of particles made up from states that have not 
been detected.

It is interesting to note that the same rise in the to tal cross section is 
often repeated in other experiments. This suggests that the same particle family 
often becomes responsible for the scattering force at high energies (above about 100 
GeV), regardless of the properties of the particles which participate in the scattering
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Figure 2.10: The to tal cross sections for proton-proton and proton-antiproton scat

tering as a function of centre-of-mass energy have similar behaviours to each other 

and to many other cross sections measured for different scattering processes.

experiment. Since one version of each particle member of this family must be formed 
as a resonance in the scattering process, at high energies the only properties that 
the particles belonging to this family may have are those of the vacuum. This was 
more rigourously proven by Russian physicist I. Y. Pomeranchuk in 1956 [21] and 
similarly by Foldy and Peierls [22]. Pomeranchuk was also able to demonstrate that 
the trajectory must be an even signature trajectory. The states would therefore step 
up in units of 1 =  2  on a Chew-Frautschi plot, starting with an angular momentum 
value of 2 . The new set of particle states, with Regge intercept greater than 1, is 
referred to as the pomeron. The gradient of the trajectory may be extracted from 
fits to differential cross sections and is about 0.25 GeV~2c~2.
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C hapter 3 

Perturbative QCD and th e  

Pom eron.

An analysis of the region outside of that which the potential influences 
yields a great deal of information concerning the behaviour of particle scattering. 
At higher centre-of-mass energies the member states of the pomeron often become 
responsible for the scattering force. At these energies it might be suspected that 
constituent-constituent interactions are occuring. If those particles which partici
pate in scattering processes which tend to the pomeron trajectory all have similar 
constituents, then an underlying constituent-constituent interaction would explain 
why these cross sections tend to the same gradient regardless of the external proper
ties of the participating particles (The De-Broglie wavelengths of the participating 
particles are also shorter at higher energies). To proceed further it is therefore 
necessary to say something of the likely structure and constituents of strongly in
teracting particles which might give rise to such a high energy scattering behaviour. 
It will then be possible to say something of the region close to the target which the 
potential influences.

It has already been mentioned that the four different charged versions 
of the A-resonances have very similar masses. This method of grouping different 
particles together in fact gives many such particle sub-groups and suggests that some 
states may have, for example, four different charged versions, others three, some
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two and sometimes only a single charged version appears. Since at high energies the 
strong interaction is expected to be independent of charge, which is a property of 
the electromagnetic interaction, it is tempting to argue tha t the different charged 
particles tha t make up a group are effectively identical particles as far as the strong 
interaction is concerned. Only one state with one mass is of significance.

The A-resonances form one such group and have a to tal isospin of 3/2. 
The third component of isospin may therefore take the values -3/2, -1/2, 1/2 and 
3/2. It is possible to identify each of these different isospin states with one of 
the four different charged versions of the A-resonance. Any constituents that the 
A-resonances may have would therefore have to be, at least partly, fermionic, so 
that the half-integer values of the third component of isospin are reproduced by 
the constituents. Fermionic particles are able to take spin up or spin down states, 
corresponding to third components of isospin of 1/2 and -1 / 2  respectively. During 
the 1960s, M. Gell-Mann developed a model in which three identical constituents 
form the strongly interacting particles of half-integral isospin, referred to as baryon 
states. In doing so he assumed that these particles do indeed have constituents. 
Since these constituents are fermionic, the Pauli exclusion principle prevents two 
of these three particles from occupying the same state at the same time unless one 
of them is in an isospin-up state and the other is in an isospin-down state. The 
third constituent then occupies a different quantum energy level. The A-resonances 
therefore have three identical constituents and different combinations of the isospin 
states that may be formed from these constituents are identified with the four dif
ferent versions of the A-resonances. Clearly the constituents must also reproduce 
the charge of the larger particle state. A fractional charge of |e  was later assigned 
to constituents in the up state and a charge of — |e  was assigned to constituents in 
the down state to preserve this.

Charge, however, has long been believed to be quantised in units of the 
electron charge e. The introduction of fractional constituent charges would represent 
a move away from this idea. In 1998 the Nobel prize in physics was awarded to R. 
Laughlin, H. Stormer and D. Tsui for discovering tha t electrons, which have integral 
charges, acting together in strong magnetic fields can form new types of ‘particles5, 
with charges tha t are fractions of electron charges [23]. Clearly the idea that integral 
charge constituents could somehow reproduce the net integral charges of the large 
particle states via their interactions with each other cannot be ruled out.
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The approach, with the same constituents, may be applied to many bary- 
onic sub-groups. A complication, however, arises when one attem pts to apply the 
idea to particles such as the A for which the main decay mode is

A —5- p  -f- 7T~.

This decay process occurs with a lifetime of the order of 10~ 10 seconds which is 
unusually long in comparison to typical decays via the strong interaction. It is more 
typical of decays via the weak interaction. Since there are many lighter particle 
states which the A could strongly decay to without appearing to violate any known 
conservation laws, something must be preventing the A from strongly decaying, per
haps a new conservation law. To account for this Gell-Mann allowed the constituents 
to exist in a third fermionic isospin state, essentially a second type of isospin down 
state, so that three fermions may then occupy the same energy level. Since this third 
fermionic isospin state would suggest a previously unobserved type of spin structure 
was operating at the level of the constituents it was referred to as the strange state. 
It may, however, then be argued tha t a strange state conservation law, related to 
the conservation of isospin, forces certain particles to decay primarily via the weak 
interaction, when they would normally be expected to decay primarily via the strong 
interaction. W ithin the framework of this model the isospin-wavefunction describing 
strong interaction processes possesses SU(3) symmetry.

Calculations approximating the masses of the constituents in the three 
states, however, suggest tha t, although the masses of the up and down states are 
very similar, the mass of the strange state may not be degenerate with the other two. 
It could be the case, therefore, tha t a second type of fermionic constituent exists, 
with a typically larger mass [24]. If more than one of the larger type constituents are 
present inside a larger net-particle state then these too are required to be able to exist 
in isospin-up and isospin-down states to prevent problems with the Pauli exclusion 
principle. The isospin-up and isospin-down states of the larger mass constituents 
are distinguished from the isospin-up and isospin-down states of the smaller mass 
constituents with the names charm (c) and strange (s) respectively. Charm or 
strange conservation may then still be used to explain why certain particles decay 
primarily via the weak interaction, when there would normally be no reason why 
they would not decay primarily via the strong interaction. In this case the number 
of larger type constituents is preserved in a strong interaction process.
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The masses of the charm and strange state, however, may also be too 
different to treat them as a degenerate particle pair and, although baryons which 
contain more than one larger constituent in the charm state are predicted within this 
model, only charmed baryons which, within this model, contain a single charmed 
state have been discovered. It is possible tha t particles corresponding to higher 
charmed states do not exist. A third type of constituent, of typically larger masses 
still, has also been included, once again to account for decay modes which proceed 
unusually slowly, but where charm and strange conservation would also not be vi
olated. Its isospin-up and isospin-down states are distinguished from the previous 
ones with the names top (t) and bottom (b) respectively, although tru th  and beauty 
are also common. At present, therefore, up to three different types of constituent 
may be used to make predictions concerning the behaviour of high energy scattering 
processes. Each may be able to exist in two different isospin states. This may be 
represented as follows

/

d V
Alternatively, for example, the up, down and strange states may be taken to be 
three different ’spin’ states of the same particle. The six different isospin states are 
referred to as quark states. Each different type of constituent is referred to as a 
quark generation. The procedure may be applied to the integral isospin, or meson, 
states using the same six constituent quark states. In this case the constituents are 
grouped together in fermion-antifermion pairs to prevent the net charge of the whole 
state becoming fractional.

3.1 Perturbation  Theory and the S-M atrix.

To obtain predictions for the behaviour arising from constituent-constituent 
interactions, it is first necessary to consider the region where the potential acts. In 
this region detailed knowledge of the potential will be required and its form within 
the model of the previous section may be used. Before this is done, however, the 
scattering problem may once again be considered in the wave picture as shown pre
viously in figure 2 .1  and general expressions for non-relativistic behaviour may once 
again be derived before extensions to relativistic scattering energies are considered.
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The solutions to the Schrodinger equation in the region where the potential operates 
are now expected to agree with those of the region outside of which the potential 
operates. A smooth continuation of the solutions from the inner region to the outer 
region across the boundary where the two regions meet is therefore required. This 
boundary occurs at a radius given approximately by the effective range of the po
tential. A steady state situation, however, is no longer the most appropriate if one 
wants to consider the region where the potential acts. A better method is to consider 
the time-dependent picture in which only the incoming wave of particles is present 
some long time before the interaction takes place.

The time-dependent Schrodinger equation in the region where the potential 
acts is given by

A M M  =  | L , (r it)  +  v ( l ) , (t> t).

The incoming wave will then enter this region for some short time duration r ,  before 
leaving as a scattered and unscattered wave as before. Once again processes such as 
absorption are not considered here and the process of diffraction will be discussed 
later. The potential is expected to induce transitions from the initial state to some 
final state. Of interest is the probability of such a transition occuring.

To agree with the solutions to the outer region of the scattering problem the 
spatial part of the wavefunction describing the incoming wave, a long time before the 
interaction takes place, must be taken to be a plane wave. Since the time dependent 
picture is now being considered some time dependence now needs to be attached 
to this. In time-dependent quantum theory the time dependence is described by a 
group of m atrix operators which are referred to as propagators. These describe how 
a general initial-state will change with time (t). In general, a propagator is given 
by following expression

U(t) =  exp

where E represents the energy of the initial state. A system which is in an energy 
eigenstate ^ ( r , t  =  0 ) at time t =  0  will then be in the state

# ( r , t )  =  exp =  °)

at some later time t. The incoming plane wave is therefore given by

^ ( r , t )  =  #(r)exp
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where the initial state ^ (r )  corresponds to the plane wave solutions of the free- 
particle Schrodinger equation discussed in the previous chapter. This is the wave- 
function describing the incoming wave before it enters the region of the potential. 
The wavefunction afterwards has the same form since the sum of the two outgoing 
waves is also a plane wave (The outgoing plane wave solution to the free-particle 
Schrodinger equation was w ritten in spherical polars and then separated to obtain 
the form of the scattered wave in the previous chapter). The probability that the 
system is in some final plane wave state m after time t is found by first operating 
from the left with < tpm(r ,t) | which gives

< $ m( r , t ) |$ ( r , t )  > =  Cm(t)exp ^ En- t j  ,

where the Cm(t) factor represents the normalisation of the time-dependent plane 
waves, and squaring, which leads to

| <  $ m( r , t ) |* ( i , t )  >  | 2 =  |Cm(t) |2.

The probability then tha t an outgoing wave, of momentum pm, arises from the 
interaction of the incoming wave, of momentum pn, with the potential is then given 
entirely by the coefficient Cm(t).

A general expression for the coefficient Cm(t) may be derived using per
turbation theory if the potential may be assumed to be a small perturbation from 
the steady state solutions of the previous chapter [25]. This is expected to be par
ticularly true of high energy interactions in which the incoming wave only exists 
in the prescence of the potential for a short time before leaving as a scattered and 
an unscattered wave. Time-dependent perturbation theory describes the coefficient 
by a series which gives a better approximation for the coefficient if more terms are 
included. The general expression is given as follows

s /exp(‘cm(t) =  6m„ -fi ~  I exp ( En\  ] V n m d t '  - f  Higher Orders

where the Vmn factor stands for the matrix element

Vmn = <  <M r)|V (t)|#n(r) >  .
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Only a single initial plane wave state of one particular momentum is consid
ered in the derivation of this expression. This corresponds, once again, to assuming 
tha t all the particles in the beam have the same energy. The first term  is simply 
the statement tha t the initial and final states are identical. This corresponds to the 
unscattered wave of the previous chapter. The second term  then contains part of 
the scattering behaviour which is of interest here.

To evaluate the integral in the second term  some detailed knowledge of the 
potential is required. At high energies, however, the incoming projectile would be 
expected to pass through the region affected by the potential on a time scale shorter 
than that on which the potential varies. The potential may therefore be assumed 
to be independent of time and the m atrix element Vmn may be brought outside the 
integral to give

„  ^  V m n  r  I  i ( E »  “  J . /

The integral can now be performed giving

G (t) =  Vmn (exp(WnmT) ~  1) 
h t<w

Since the time dependence of the potential is not known exactly the energy at which 
this approximation becomes reasonable is not easy to determine. The probability of 
a transition (Pt), given by the square of this coefficient, is therefore

| V m i | 2 ( e x p ^ u w )  -  l ) 2
P t  =

■rru

If the length of the perturbation were now to be increased the probability of a 
transition tends to infinity. This is because if the perturbation exists for an infinite 
length of time eventually a transition will occur. It is more usual, therefore, to 
consider the probability of a transition per unit time (I1). This is given by

r  =  Pt =  IV™!2 (e x p ( ia w )  -  I )2
T f i 2 CO2 Tm n '

and is referred to as the transition rate. In the limit tha t r  tends to infinity a delta 
function may be extracted to give

„  IVr 12mn
h 2

This is referred to as Fermi’s Golden Rule [26].

5(Em -  En).
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An alternative way of obtaining Fermi’s Golden Rule is to use the following 
expression for the coefficient Cm(t)

C x n ( t )  = <  * m « | S | * ( r )  >  

where an element of the m atrix operator S is given by

Smn =  £nm +  (̂27t)4£4 Pn “  S  P™)
\ n m /

This expression relates an element of the operator S to the more familiar amplitude 
element (Amn) which is written down from a Feynman diagram [27]. When evalu
ated this then gives Fermi’s Golden Rule directly. The operator S, referred to as 
the S-matrix [28], was introduced by German physicist W. Heisenberg to describe 
scattering experiments, although the method was not new. The S-matrix method 
will be used here since it is simple to extend this to relativistic scattering energies.

This expression may now be converted into an expression for the angular 
differential cross section in a similar way to tha t discussed in section 2 .2 . The main
difference before this can be divided by the incoming flux of the beam, however,
is tha t the sum of all probabilities for scattering to all final states which lie inside 
a cone of opening angle dfi must be found. This is done by performing a phase 
space integral to incorporate the density of final states available inside the cone. 
The angular differential cross section is then given by a Fourier transform in mo
mentum transfer. An alternative expression for the scattering amplitude may then 
be extracted.

3.2 T he Cutkosky U nitarity  C ondition.

The S-matrix may be shown to be a unitary m atrix, th a t is tha t it fulfils 
the condition SSt =  I, where I represents the identity m atrix and the dagger refers 
to the adjoint, the transpose and complex conjugate, of S. The unitarity of the S- 
m atrix reflects the need for probability to be conserved, the sum of the probabilities 
for all individual transitions occuring summing to unity. This is because unitary 
operators preserve the value of scalar products which in quantum  theory are used 
to calculate probabilities.
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The formula for the S-matrix may be written as follows

S =  I +  tT

where an element of the T-m atrix is,

T ^ ^ W ^ P n - E P
\  n  m

Substituting this into the condition of unitarity gives

(I +  iT ) ( I - * T t )  =  1

which implies that
I +  iT  —»Tt + T T t  = 1

The identity m atrix appears on both sides and may be cancelled leaving

T -  T t =  tT T t

The m atrix element equation now looks like

< m |T |n  > — < m |T |n  >*= i < m |T T ^|n  >

where the * denotes complex conjugation. Since the S-matrix may also be shown to 
be symmetrical the left hand side can be written as just

2 % Im < m |T |n  > .

Inserting the completeness relationship on the right hand side and summing over all 
allowed intermediate states (i) gives

2 Im < m |T |n  > =  ]T  < i|T |m  > t <  i|T |n  > .
i

Finally, returning to the original definition of the T-m atrix element

2 ImTnm = (2tt) V  f e p n  -  E pJ  E  AniA*m
\  n  m  /  i

Unitarity thus leads to an expression which relates the imaginary part of the scatter
ing amplitude to a sum over all allowed intermediate states (all possible processes 
which may occur in the interaction region). This is the Cutkosky unitarity con
dition [29]. A special case of the Cutkosky formula is the optical theorem. This 
occurs when the initial and final states are identical (the elastic scattering condi
tion). The agreement with Regge theory therefore is still good. To proceed further 
it is necessary to know what the intermediate states of a scattering process are.
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3.3 E xtension  to  R elativ istic  Scattering (Quan

tu m  Field  T heory).

During the 1970s quantum field theory, following its successful description 
of electromagnetic interactions, was applied to the strong interaction, leading to the 
development of quantum chromodynamics, or QCD. W ithin this new framework 
relativistic quantum equations were re-interpreted as field equations to avoid the 
introduction of negative energy states and a non-positive definite probability density 
in the continuity equation. The description of a single particle in terms of its position 
at a specific time was then replaced by a field which adopted a particular value 
depending on the particle’s four-vector. Relativistic particle interactions could then 
be described if these scalar fields were subjected to the constraint tha t they possessed 
the symmetry of a particular interaction. This constraint is applyed by Noether’s 
theorem [30], which restricts particle interactions to be locally symmetric, charge, 
for example, being conserved within a single particle interaction and not just in 
the universe as a whole. The strong interaction was then taken to possess SU(3) 
symmetry and when this restriction was placed upon the particle scalar fields it 
became necessary, mathematically, to introduce an associated gauge field, a field 
which was invariant under a gauge transformation. In analogy to the electromagnetic 
case where the associated gauge field became a solution to a special case of Maxwell’s 
equations (called the Proca equations) and could be identified with the photon, the 
gauge field of the strong interaction could also be identified with a massless object of 
unit spin. This object is referred to as the gluon and is expected to be the propagator 
of the strong interaction.

The idea may also be applied to the force propagators themselves. This 
is done using gauge field theory, in which the symmetry of the force is applied to 
gauge fields. In the case of the strong interaction, this leads to the consideration 
of triple gluon vertices, interactions in which three gluons may interact together. 
These are particularly important when considering the behaviour of the pomeron in 
QCD. Triple photon vertices do not arise from the symmetry of the electromagenetic 
force. Free individual quarks and free gluons, however, have never been observed. 
One possible explanation of this is tha t quarks and gluons possess an additional 
quantum number, similar to electric charge, and tha t non net-zero values of this
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quantum number are forbidden in the free state. This quantum  number is referred 
to as colour and to account for the observed list of strongly interacting particles it 
must possess three degrees of freedom. That is to say, there must be three types 
of strong charge. These are usually labelled red, blue and green. Quark-antiquark 
or three quark configurations are then required to have net-zero colour values, since 
these may appear as free-states. A theory of colour confinement would explain each 
of these missing observations, at present, however, no satisfactory theory of colour 
confinement exists. The SU(3) symmetry of the strong force arises here from the 
SU(3) symmetry of the colour wavefunction.

3.4 A Pom eron Exchange P rocess in QCD.

In QCD it is possible to write down the amplitude for a process directly 
from the Feynman diagram describing that particular interaction. This is done 
using Feynman rules. A derivation of the Feynman rules in QCD is not given here. 
They are stated, however, in Appendix A. Since none of the fundamental particles 
in QCD possess the quantum numbers of the vacuum, pomeron exchange has to be 
simulated using combinations of quarks and gluons whose net effect is to exchange 
the quantum numbers of the vacuum. An extension of QCD to include bound-gluon, 
or glueball, states, which may also possess the quantum numbers of the vacuum, is 
not considered here.

To identify the pomeron in QCD the total amplitude calculated from all 
possible diagrams that exchange these quantum numbers must be considered in 
the correct kinematic region. This is the high energy, or Regge, limit, in which the 
centre-of-mass energy squared s is much larger than the momentum transfer squared 
t. To agree with Regge theory the amplitude in this limit must behave as follows

lim A ~  sa(t).
s » t

If this is the case the property which is exchanged is said to Reggeize. The diagrams 
which dominate in this limit contain a ln (s/t) factor in their calculated amplitudes. 
Only the diagrams which are important in this limit are considered here. An expla
nation as to why other exchange diagrams may be neglected may be found in [31]. 
The expression obtained is a perturbation series in the strong coupling constant a s.
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Figure 3.1: The simplest process in which the quantum numbers of the vacuum may 

be exchanged, in QCD corresponds to two gluons exchanged between two incoming 

quarks. The first gluon alters the colours of the incoming quarks. A second gluon 

is therefore required to revert the quark colours back to their initial states. No net 

colour is then exchanged.

The calculation of the first non-zero term  in the perturbation expansion (the term 
proportional to ctg) is described here. The extensions to the method required to 
calculate the higher-order terms in the series are then discussed. Since only those 
diagrams which contain a ln(s) factor are considered this method for calculating the 
scattering amplitude is often referred to as the leading log expansion.

The basic, underlying interaction is taken to be quark-quark elastic scat
tering (This must then later be fitted into a hadron-hadron interaction). To avoid 
contributions from diagrams in which quarks are exchanged, the incoming quarks 
are taken to have different colours. The two quarks may also be assumed to approach 
in opposite directions along the z-axis. If the masses of the two quarks are assumed 
to be both equal to zero then the centre of mass energy squared (s) is shared equally 
between them and the components of their four vectors, pi and P2 , are

Pi  — (a/ s / 2 , a/ s / 2 , 0 ,0)
P 2 =  ( v / s / 2 , -V s /2 ,0 ,0 )

If an object with the quantum numbers of the vacuum, a colour singlet object, is 
exchanged between the quarks then they will have the same colours in the out-state 
as they did before the exchange took place. The simplest process then in which this 
can be achieved is shown in figure 3.1. The first gluon alters the colours of the two 
quarks in the intermediate state and a second gluon is then required to alter them 
back again, so tha t no net colour is exchanged.
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The full amplitude for this process may be calculated from this diagram. A 
method which is more easily extended to include all the possible diagrams, however, 
is to begin by calculating the imaginary part of the scattering amplitude using the 
Cutkosky formula,

1
ImA =  — J  d(phasespace)Ao(k)Ao(k — q)

of section 3.3. The amplitude for just the left-hand side of this diagram is then 
calculated, inserted together with its hermitian conjugate into the formula and in
tegrated over the phase space of the intermediate quark lines which are cut when 
the diagram is divided into two halves. The left hand side of this diagram is that 
of quark-quark elastic scattering via the exchange of a single gluon. The amplitude 
for this process is given by

A0 =  8'iras-8 \1\ii S\2\>2 Gq8 .̂

and is calculated using the Feynman rules given in Appendix A. Here the colour 
factor Gq8̂  is obtained from the colour generators for the upper and lower quark 
lines according to

q ( 8) _  r a a 
^ 0  — r i j Tkl-

The expression has be simplified using a s — g2/ 47r. The A-factors represent the 
quark helicities, the components of the spin of the quarks along their momentum 
directions. The elements of the delta matrices are equal to unity when the quark 
helicities are equal and equal to zero otherwise.

To simplify the expression the condition that s is much larger than t has 
also already been imposed. In the diagram of figure 3.1, the net momentum-transfer 
squared is given by |t| =  |q2| and, in the Regge limit, all of the components of 
the four vector q may be approximated as being equal to zero. This arises since 
the outgoing quarks of the single gluon exchange process, the intermediate quarks 
of the complete diagram, are taken to be on-shell in the calculation, their four- 
vectors squared equalling zero. This simplifies the expression and makes it possible 
to replace factors such as u(A i,p i)7 Atu(A1 ,p i)  by the following

^(A1>Pi ) 7 M ^ i >Pi ) =  2pi

since multiplying out the left-hand side gives a four-vector. The factor 2 arises from 
the choice of normalisation of the spinors u. This approximation is referred to as
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the eikonal approximation and applies whenever the exchanged particle is of a low 
momentum. It can be applied to a gluon exchanged between particles of any spin. 
Importantly, the approximation can still be used if the quark lines are replaced by 
gluons.

The hermitian conjugate of Ao is obtained by taking its complex conjugate 
and reversing the signs of all the momenta. It is given by

Aj =  S'iras~Sx1x'1Sx2xi2 G ^ .

This gives directly the right hand side of the complete two-gluon exchange diagram. 
On the right-hand side the momentum transfer squared is given by t — (k — q)2. 
The imaginary part of the amplitude for the two gluon exchange process is therefore 
given by

ImA =  327r2a 2 J  d(phasespace)^ ^  Ga

The integral must be performed over the phase space of the two cut quark 
lines which have momenta 1 and 1’. This integral is given by

J  d(phasespace) =  J  ^ 36(l2)g(l'2)(27r)4d4(pi +  p2 - 1  -  1')

and may be simplified by combining together the factors of 2ir and absorbing the 
delta function £4(pi -f P2 — 1 — F) into the integral over d4F, giving

J  d(phasespace) =  —L -  J  d4k£[(pi -  k)2]£[(p2 +  k)2].

Absorbing the delta function fixes

F =  pi +  P2 — 1 =  P2 +  k
1 =  pi -  k.

Here the integration has also been converted from an integral over the four-vector 
1 to an integral over the four vector k. This is because it is more convenient to 
integrate over the momentum of the exchanged gluon. No extra factor is picked up 
when making this conversion. This is because, since pi is fixed, the differential of 
each component of 1 is given by dl^ =  —dkM and, since there a four such components, 
the minus signs cancel giving d4l =  d4k.
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The momentum of the exchanged gluon may now written in terms of the 
incoming quark momenta as follows

=  pvZ +  Ap£ +  k£

where p and A are parameters and k^ describes the momentum transverse to pj and 
P2 • The four-vector k^ therefore only has two non-zero components

kj. =  (0,0, k)

described by the two-dimensional vector k, which has an x and a y-component 
only. In terms of the earlier definitions of the quark momenta the four vector of the 
exchanged gluon becomes

k =  ((/’ +  A ) ^ , ( ? - A ) ^ , k ) .

This is referred to as a Sudakov parameterisation. In terms of the Sudakov variables 
the quantities which appear inside the delta functions may be written as

( p i  -  k ) 2 =  —sA(l -  p )  -  k2 
( p 2 +  k ) 2 =  s(l +  A)p ~  k2.

and it is possible to convert the integrals over two of the four components of the 
exchanged gluon momentum to integrals over the Sudakov parameters as follows

J  d(phasespace) =  — - J  dpdAd2k£( —s(l — p)A — k 2 )5(s(l +  A)p — k 2).

In the Regge limit both p and A are much smaller than one. It is then 
becomes possible to approximate

k2 =  k2

and similarly

(k — q ) 2 =  —(k — q)2.

Absorbing the delta functions to perform two of the integrals gives the 
following result for the imaginary part of the amplitude,

ImA =  (3.1)
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The amplitude also, however, has a real part. This may be easily obtained 
from the imaginary part since it is known that the sum of the real and imaginary 
parts of the amplitude is given by some expression F multiplied by ln (s/t). As 
explained on page 6 8  the exact details as to which diagrams contain the important 
log factor in their total amplitude is not considered here. Since t is negative the 
total amplitude may be expanded as follows

F l n ( - )  =  F in =  F ln  ITT — F ln (—1).. t /  \ — l  X |t|

Since minus one can be written as a complex exponential this may be simplified to

so therefore

F1“ ( ? )  =  F ln  ( l i l )  _  F ln (exP(w ))

F in  1 ^ 1 =  F in  - « F tt.

The imaginary part of the amplitude has been calculated and the factor F can be 
extracted and used to write down an expression for the real part directly. The real 
part of this amplitude is then given by

ReA =  f tr o j iln  ( D )  G . £  /

The sum of the real and imaginary parts gives the one-loop scattering amplitude for 
colour-singlet exchange in QCD, once the appropiate colour factor Ga is inserted. 
The expression is of order a 2s . There are no lower order amplitudes since a minimum 
of two gluons is needed to exchange the quantum numbers of the vacuum in QCD. 
There are no extra corrections to the one-loop diagram.

To obtain the entire first term  of the perturbative expansion all other dia
grams which contribute expressions of order a j  in the Regge limit must be calculated. 
These are then summed with the expression already obtained to give the first term. 
The only additional graph to consider is shown in figure 3.2. The real part of this 
amplitude can be obtained directly from the real part of the previously calculated 
process using crossing symmetry. Since crossing symmetry has the effect of revers
ing p 2 and p '2 it has the effect of twisting the lower quark line of figure 3 .1  around 
so tha t the diagram matches tha t of figure 3.2. The real part of the crossed gluon 
graph is therefore calculated by replacing s by -u. The crossed gluon graph turns 
out to not have an imaginary part.
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Pi

P2

Figure 3.2: At leading order a second colour-singlet exchange diagram is also of 

significance in the Regge limit. The calculated amplitude for this process is summed 

with the one-loop amplitude to give the leading-order term  of the perturbation series.

The to tal amplitude at leading order is now given by the sum of these 
two contributing amplitudes. Since, for colour singlet exchange, the real parts of 
the two amplitudes are equal and opposite, due to the fact tha t both amplitudes 
have the same colour factors, the real part of the to tal when the two results are 
added together disappears, leaving a purely imaginary result. The first term  of the 
expansion was therefore already obtained in Equation 3.1. It is purely imaginary 
and is given by

A l  =

3.5 The BFK L Equation.

The process may essentially be continued to higher and higher orders, only 
keeping the diagrams which would be of importance at high s (those with the im
portant log factor). The full calculation is complicated due to the larger number of 
diagrams tha t must be considered at each higher order. A number of simplifications, 
however, may be borrowed from the calculation which demonstrated that the gluon 
Reggeizes in QCD. This was performed by, among others, Tyburski [32], Frankfurt 
and Shermann [33], Lipatov [34] and Cheng and Lo [35] during 1976 and 1977. This 
work showed that the amplitude for colour-octet exchange has the Regge theory 
dependence in the Regge limit. An expression for behaviour of the gluon trajec
tory was extracted. In the calculation of the amplitude for colour octet exchange 
it was found tha t the diagrams which contribute to each higher term  in the series,
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Pi

Interm ediate State 
Gluons.

P2

Figure 3.3: Left-hand diagrams at higher orders are combined together to give a 

single, effective, left-hand diagram to demonstrate the Reggeization of the gluon in 

QCD. The same process may be applied to Pomeron exchange. The amplitude for 

the combined left-hand diagrams is then written down directly using Feynman rules 

for effective vertices (1?) and effective, or Reggeized, gluons, for the vertical sections 

of the ladder. An extra rung in the effective diagram appears at each higher order.

except those obtained by ‘twisting’ another diagram, could all be combined into 
an effective diagram as shown in figure 3.3. The contributions from the ‘twisted’ 
diagrams were calculated afterwards using crossing symmetry. W hen this effective 
diagram is paired up with its right-hand diagram it forms a ladder diagram. An 
extra rung in the ladder appears at each order. The amplitude for all of the con
tributing processes could then be written down directly from one effective left-hand 
diagram. The Feynman rules for the factors which arise from the vertices are no 
longer the normal triple gluon vertices, however, but effective particle vertices T 
which incorporate the effect of combining many left-hand diagrams together. In 
addition the gluon propagator terms for the vertical sections of the ladder are no 
longer normal gluon propagators but effective gluon propagators which contain the
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effect of all the corrections to  the loop diagrams. These are often referred to as 
Reggeized glnons. To calculate a particular term  in the series the expression for the 
effective left-hand amplitude calculated from the diagram with the correct number 
of rungs for that particular order, may then be inserted, together with its hermitian 
conjugate, into the Cutkosky formula as before. The phase space integral will now 
be performed over several cut lines. It may once again be simplified using a Sndakov 
parameterisation. Each of the vertical sections of the ladder, however, must now 
be individually parameterised. It is also necessary to ensure th a t all of the possible 
polarisation states of the intermediate gluons are summed over.

The leading log behaviour arises from a region of phase space where the p- 
parameters are ordered such tha t pi >> p2 pz and so on. This strong ordering has 
the effect of making the four-vectors of the vertical sections of the ladder more trans
verse as lower and lower sections of the ladder are considered. The ladder diagram, 
therefore, is sometimes drawn so tha t it is wider at the top than at the bottom. 
The result includes additional integrals over the p factors, one of which arises from 
each of the vertical sections which are parameterised. Since the integration limits 
also contain p factors, these integrals are nested inside one another. These integrals 
may be performed, however at higher orders the number of integrals nested inside 
each other becomes larger. Since there are an infinite number of terms in the series, 
the number of nested integrals in fact tends to infinity. It was therefore found to be 
more convenient to take an integral transform of the expressions for the amplitude 
converting it into a new integral transformed space. The particular integral trans
form which was chosen was a Mellin transform since this has the effect of decoupling 
the nested integrals in each of the terms of the series. The Mellin transform F(o>) 
of a functions f(s) is given by

and maps f(s) into the complex o;-plane. The function f(s) is the expression for 
a term  in the series which contains the nested integrals and the Mellin transform 
converts this into a simple product. W ith the nested integrals decoupled the problem 
of finding the sum of all the terms in the series, which is now w ritten as a series of 
Mellin transforms, may now be considered. The expression for the sum would then 
need to be converted back into the original space using an inverse Mellin transform.
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The inverse Mellin transform of the function F(a>) is defined as follows

f(s) =  2^ / c  F (" )  ( £ ) " * - •

Here the contour C is taken to the right of all singularities in F(o>). At this stage the 
‘tw isted’ diagrams may be added to this. The contribution from all of the twisted 
diagrams together may be calculated by crossing symmetry.

The expression for the sum of the Mellin transform series, however, is 
not so simple to obtain. It is not possible to easily identify it with a geometric 
progression, or as the Taylor expansion of some well-known mathematical function. 
Therefore, to obtain the sum, an integral equation, an equation which contains the 
same information as the series, is derived [36]. Integral equations have the form

A J  K(x, y)f(y)dy +  g(x) =  f(x),

and may be solved, to find the function f(x), by iteration. As a first approximation 
the function f(x) is taken to be equal to the function g(x). To obtain a better 
approximation this may be inserted into the left-hand side of the integral equation 
giving

f(x) =  g(x) +  A J  K(x,y)g(y)dy.

This better approximation may then be re-inserted into the left-hand side of the 
intergral equation to give a third order approximation,

f(x) =  g(x) + \  j  IC(x, y) g(y) +  A j  K (y,y ')g(y ')dy ' dy,

and so on. The solution f to the integral equation is then an infinite series. An 
integral equation may be written which generates the terms in the Mellin transform 
series. This equation will contain the same information as the series and essentially 
describes the complicated pattern  tha t emerges with each successive term. It is 
given as follows,

„2

f(u>,k',k2,q) -

L(k' -  q)2k2 

k2f(o>,ki,k2,q)

- ---- 2f(a>,k;,k 2,q )

1 (k' -  k j)2 r  k'2 +  (ki -  k ')V

1 / (ki — q )2k'2f(u>,k', k2, q) (ki -  q )2f(w, k i, k2, q)
(k' -  k t )2 V (k' -  q )2k? (k' -  q )2 +  -  k')2 .
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This equation is referred to as the BFKL equation after Boritsky, Fadin, Kuraev 
and Lipatov, although several different approaches in fact led to this result [37]. The 
param eter dfs is given by as =  N as/ 7r. The BFKL equation is the integral equation 
in Mellin transform space which describes a large amount of the behaviour of the 
pomeron in QCD. The BFKL equation can now be solved to obtain an expression 
for the function f(a>, k i, k 2 , q) and this may then be inverted using the inverse Mellin 
transform.

3.6 Solving the BFKL Equation.

The general procedure for solving the BFKL equation is to first manipulate 
it so tha t it is written in the form of a Green’s function equation. For zero momentum 
transfer writing the BFKL equation in the form of a Green’s function equation is 
simply a m atter of setting q2 =  0 and rearranging. The BFKL equation then takes 
the form

w f(u>,ki,k2 , 0 ) =  52(ki — k 2) +  it - f(aj,ka, k 2 , 0 ).

The operator k of a Green’s function equation is called the kernel and is an integral 
operator which acts on the function f(u>, k i, k 2 , 0). The solution for zero momentum 
transfer corresponds to the intercept of the pomeron trajectory and was actually 
the first obtained, by Balitsky and Lipatov in 1978 [38]. The solution for non-zero 
momentum transfer, which gives information on the behaviour of the gradient of 
the pomeron trajectory, is much more complicated, and was in fact published eight 
years later by Lipatov in 1986 [39]. Before the BFKL equation could be rearranged 
here into the form of a Green’s function equation it was first necessary to take a 
two-dimensional Fourier transform of the whole BFKL equation. A two dimensional 
Fourier transform was needed because, in terms of the Sudakov parameterisation, 
transverse four-vectors are written in terms of a two-dimensional transverse wavevec- 
tor. The Fourier transform then re-expresses the BFKL equation in terms of impact 
parameters. An impact parameter is the distance from the centre of the target 
particle to the centre of the incoming particle’s fine of flight. Thus the problem 
is converted into impact parameter space and needs to be inverted back to Mellin 
space before an inverse Mellin transform can be taken (The problem is now two 
spaces away from where it was started).
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In both kinematic regions the expression for f(u>,ki,k2 ,q ) which is the 
solution of the Green’s function equation is given in terms of the eigenfunctions 
</>i(k) and eigenvalues Aj of the integral operator k . The expression which needs to 
be considered is therefore

k • <&(k) =  Ai^i(k).

The eigenvalues turn  out to be identical in the non-zero momentum transfer calcu
lation as they do in the zero momentum transfer calculation. Once the solutions to 
this equation have been found the function f(o>, k1} k 2, q) may be formed. For zero 
momentum transfer

/(«,, k1,k„o)=E— -i jy 2)'* u) — Av,i 1
This is the solution to the BFKL equation (for zero momentum transfer) and is equal 
to the sum of the series in Mellin transformed space (The series is often referred to 
as the BFKL series).

In the process of solving the eigenvalue equation to find the eigenfunctions
<£i(k) and the eigenvalues Ai, the eigenfunctions are each written as a series

CO zn#
<Ai(k) =  £  # ( * ) - = = .

n = 0  y  u K

Since the eigenfunctions of the kernel are required to fulfill a completeness relation
ship it is necessary to restrict the coefficients </>f(k) to the following behaviour

# ( k )  ~  (k2)"1/2+w.

The imaginary part of the argument, described by the param eter v , may lie anywhere 
along the line Re(arg) =  —1/2. The parameter v is therefore a continuous parameter 
which may take values ranging from — oo to -foo. In both kinematic regions the final 
expression for the function f(u>, k1? k 2 , q) therefore turns out to include an integral 
over v. Since this is a continuous variable a cut is obtained in the complex w-plane. 
This is the first indication that the QCD hypothesis of quark constituents interacting 
via gluon exchange does not agree with the more general Regge theory description of 
scattering processes. The differences between the QCD and Regge theory pomerons 
will be discussed in more detail at the end of this chapter. To complete the discussion 
of the QCD approach however, the method of deriving cross section predictions in 
QCD is now considered.
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3.7 C alculating Cross Sections in Q CD.

To obtain hadron-hadron cross sections the function f(o;, k1}k 2 , q), which 
refers to pomeron exchange between quarks, must first be adapted so that it de
scribes pomeron exchange between hadrons. The four external particles (the top 
and bottom  of each leg of the Reggeized gluon ladder) therefore no longer couple 
to a single constituent quark inside a hadron but may be joined in various different 
ways to several quark constituents. This coupling is incorporated by calculating an 
impact factor for each pomeron-hadron vertex (fig. 3.4). The inverted expression 
will then related to the scattering amplitude. In the high energy limit the inverse 
transform may be simplified by noting tha t the n =  0 coefficients of the power 
series expansions of the eigenfunctions dominate and tha t the eigenvalues may be 
described by the first two terms of a power series expansion in v . This is referred 
to as the n =  0 azimuthally symmetric approximation. As in Regge theory, the 
singularity with the largest real part then dominates.

Impact Factor

Pi

Universal 
Four Point 
Function

P2

Impact Factor

Figure 3.4: To calculate expressions for hadron-hadron interactions, impact factors, 

represented here by ovals at the upper and lower vertices, must be calculated to 

describe the coupling of the universal four point function to the quark constituents 

of each participating hadron. The universal four point function describes pomeron 

exchange between quarks.
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3.8 Com parison o f th e R egge T heory and QCD  

Pom erons.

As explained previously the pomeron derived using perturbative QCD is 
described by a cut in the complex a>-plane instead of a pole. This leads to a number 
of im portant distinctions between the QCD pomeron and the Regge theory pomeron.

The amplitude for pomeron exchange in QCD does Reggeize. The func
tion which corresponds to the trajectory may therefore be extracted and has the 
dependence

a (t)  =  1-1- 4asln 2.

The trajectory, however, now has no dependence on t. The singularities for zero 
momentum transfer were the same as those for non-zero momentum transfer and 
therefore do not move in the complex-plane as t varies. On a Chew-Frautschi plot 
the trajectory therefore appears as a constant straight line at some non-physical 
value of angular momentum. Since QCD did not incorporate the existence of bound 
particle states with the quantum  numbers of the vacuum, this result could have 
been w ritten down directly since this is the only trajectory which agrees with the 
initial hypothesis. A trajectory with even the slightest gradient will eventually pass 
through a physical angular momentum value and a particle state would then exist. 
The strong coupling constant a s, however, might be considered to vary, or to run, 
with t. This would then change the shape of the trajectory such that it does pass 
through physical particle states. These physical particle states would then be formed 
using combinations of quarks and gluons.

The intercept of the QCD pomeron trajectory, however, is larger than the 
value of 1.08 which was extracted from fits to experimentally measured cross sections 
using Regge theory during the 1960s, even if the coupling constant is allowed to run. 
If the coupling constant is allowed to run then the QCD intercept corresponds to 
the value of a ( t)  when a s is set to its value at t= 0 . This means that, according 
to QCD, the total cross section is expected to rise faster than  it actually does. In 
particular, the total cross section rises too quickly with increasing centre-of-mass 
energy squared s. It leads to the violation of a certain unitarity bound and therefore 
probabilities no longer sum to unity. Unitarity bounds were discussed in section 2.3.
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Once the coupling constant is allowed to run with t the pomeron trajectory 
is no longer independent of the properties of the scattering particles. It in fact 
becomes dependent upon the size of the participating particles. Many measured 
cross sections, however, tend to the same pomeron trajectory regardless of the size of 
the participating particles. The pomeron should couple in the same way to quarks as 
to antiquarks, since it possesses the quantum numbers of the vacuum. The coupling 
of the pomeron to a hadron should therefore only be proportional to the number of 
quarks it contains and not related to the size of the larger net hadronic state. This 
is described by the quark counting rule [40]. For certain processes, however, this 
rule is violated and the coupling of the pomeron to a hadron suggests that some 
baryon states do not contain three quarks and some meson states do not contain 
two, even though this was one the the basic assumptions of the model.

Many attem pts have been made to smooth out the differences between the 
two pomeron behaviours. One possible solution is that the full BFKL series, which 
was derived for high centre-of-mass energies, may not apply the low centre-of-mass 
energy region where the pomeron intercept of 1.08 was extracted. The behaviour 
of the pomeron could therefore vary with centre-of-mass energy tending to the full 
QCD behaviour as s increases. The behaviour might also, however, vary with t. The 
perturbative QCD approach, as will be seen in the next chapter, is only expected 
to be valid when |t| is greater than about 1 GeV2. Regge theory is valid for all t 
but the extracted intercept may vary as t is increased. The QCD pomeron may 
then represent a high energy , high momentum transfer behaviour which reproduces 
the behaviour extracted using Regge theory at lower values of s and t. The QCD 
pomeron is then referred to as the hard BFKL pomeron and the lower t behaviour 
is referred to as soft-pomeron behaviour. A single pomeron description which gives 
the correct behaviours in both the low and high t limits was proposed by E. M. 
Levin and C. Tan in 1992 and is referred to as the heterotic pomeron [41].

It has become necessary to reconsider the validity of all the many assump
tions in the QCD derivation of the pomeron. Some considerable progress has been 
made in obtaining ‘sub-leading’ corrections to the approximation tha t the leading 
log expansion is reasonable for deriving the pomeron’s behaviour. The problem 
of unitarity violation has also been addressed using a colour dipole model. The 
best way, however, to decide if the behaviour of the pomeron varies with t is to 
experimentally investigate the high jtj region.
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C hapter 4 

D iffractive V ector M eson  

P roduction  at high- |t |.

When scattering processes are treated in the quantum  mechanical wave 
picture it automatically becomes possible to identify certain scattering processes 
with effects first observed in optics experiments. One such effect, which is referred to 
as diffraction, arises when an obstacle is placed in the path  of an incoming light wave 
and the components of the light wave which are not absorbed by the obstacle then 
interfere with each other creating a pattern on a screen placed some distance behind 
the obstacle. This process may occur in a scattering experiment when part of the 
wavefront of the incoming wave is absorbed by the target and the resulting pattern  
observed in the detectors (the screen) arises from the interference of the components 
of the incoming wavefront which were not absorbed by the target. It may also occur 
in colliding beam experiments where it is always possible to work in the rest frame 
of the target particle. In the quantum mechanical wave treatm ent of the scattering 
process discussed in chapter 2 the total flux which left the interaction region equalled 
the total flux of the incoming wave. There was therefore no absorption of any part 
of the incoming wavefront by the target. This would be as if there were no obstacle 
placed in the path of the incoming wave. Diffractive processes are therefore those in 
which the flux which leaves the interaction region is less than  tha t which entered. 
The remaining flux is absorbed by the target.
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Diffracted 
State X

TARGET

Figure 4.1: A diffractive process arises when the target absorbs part of the wave- 

front of the incoming wave. This absorption may cause the projectile to dissociate, 

producing a new, many-particle state X. The produced state, however, may also be 

comprised of a single new particle. The absorption may also cause the target to 

dissociate or to be excited into a new single particle state.

All processes in which there is some absorption of the incoming wave by 
the target are inelastic. All inelastic processes are therefore diffractive. This is true 
regardless of which family is considered responsible for the scattering force within 
the framework of Regge theory. In an inelastic scattering process the target particle 
may change its state and the projectile particle may also leave the interaction region 
in a different state. A diffraction process in which the projectile is ‘diffracted’ into a 
new state X, comprised of several particles, is shown in figure 4.1. It should be noted 
that a process is defined as being diffractive when there is absorption of the incoming 
wave by the target. This may occur in a process in which the same particles leave 
the interaction region as those that entered (in this case the process is often referred 
to as an elastic diffraction process). Likewise the target may dissociate or be excited 
into a new, single particle state, but it may also remain intact.

To incorporate absorption in the quantum mechanical treatm ent of the 
scattering process the phase shifts in the partial wave expansion, which were previ
ously considered to be real, are now replaced by complex phase shifts



C H APTER 4. DIFF . VE C TO R M ESON PRODUCTION A T  HIGH-\t 85

The expression for the partial wave amplitudes now alter and become

771 sin 2 î , l - T / i  cos 28\
ai«  =  + -*-------2 k------

where 7/1 =  exp—2/?i* The expression for the total cross section arising from the 
scattered wave now becomes

, , , , 1 +  J/? -  2 -tti cos 2<5!
<Tscat =  4tT 2 , ( 2 1  +  1 ) ---------------- — 2------------------.

The to tal cross section, however, obtained using the optical theorem is now

ototai =  XX 21 +  1 ) [ 2  -  2771 cos 2<5i]

and this is not equal to the cross section arising from the scattered wave. The 
difference is the cross section for absorption which does not appear in the final 
state. It is given by

o-.bs =  E (2 1  +  1 )I1 “  %2]-

There is no absorption when the imaginary part of the phase shift is zero, as ex
pected. Absorption is at its maximum when 7/1 =  0. This occurs as the imaginary 
part of the phase shift tends to infinity. When absorption is at its maximum the 
cross section arising from the scattered wave does not equal zero. There is still 
some scattering even if the target absorbs all of the part of the incoming wavefront 
incident upon it.

If one now takes the target to be a disc of radius a and considers the simple 
case in which there is maximum absorption of the wavefront in the region of target, 
but no absorption outside of this region, then the scattered differential cross section 
dcr/dfi may be shown to tend to a diffraction pattern, as the energy of the incoming 
beam k is increased. As in diffraction off a black disc in optics the first minimum 
occurs at & — 1/ka. The produced diffraction pattern may therefore be used to 
extract information on the typical size of the target. The extension of quantum 
theory to relativistic energies was developed within the framework of Regge theory 
in chapter 2 . Here the phase shifts become contained in the residues A (t) of a Regge 
pole. Apart from a constant factor the residues have the following behaviour

A (t) ~  a i ( t ) ( l -  ai).

The residue of a Regge pole will therefore also tend to a diffraction pattern through 
its dependence on the partial wave amplitude.
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Universal 
Four Point 
Function

Proton Remnant

Figure 4.2: The Feynman diagram of the pomeron mechanism of interest in high 

t vector meson production at HERA. This picture is valid for any vector meson 

polarisation state A and for subsequent vector meson decay process, described here 

by the m atrix M. The ovals represent impact factors.

It has already been discussed in chapter 3 tha t pomeron behaviour in QCD 
differs from tha t of Regge theory. The derivation of cross sections in QCD is much 
more complicated than in Regge theory however some derivations have been com
pleted. It has recently been shown that the QCD differential cross section for the 
diffractive production of vector mesons is not expected to be restrictively small at 
those energies accessible to the HERA collider [42].

To derive an expression in QCD for the differential cross section dcr/dt at 
HERA the impact factors for the coupling of the pomeron to the incoming photon 
and to the incoming proton are needed. At the upper vertex the universal four 
point function can only be joined to the photon if the photon contains quarks. 
The photon, however, does not have any quark constituents in the quark model. 
The photon, however, a somewhat unusual object which sometimes behaves as a 
point-like particle and sometimes displays hadronic properties. This is accounted 
for by assuming tha t the photon is able to fluctuate into vector meson states, quark- 
antiquark combinations which have the same properties as the photon, in a vector 
meson dominance model [43]. It is assumed therfore that the photon fluctuates into 
a vector meson some long time before it interacts with the proton (Fig. 4.2).
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A second problem, however, is then tha t the light-cone wave function of the 
vector meson is needed to calculate the impact factor. This is the wavefunction of 
the vector meson w ritten in light-cone coordinates. The form of this wavefunction, 
however, is not known in any coordinate system (a measurement of the shape of 
the cross section, however, would give equal insight into this function). In terms of 
the light-cone coordinate system the p° and p3 components of a four-vector p^ are 
replaced by p+ and p~, the diagonal axes in the p°p3-plane, to give

=  (P+)P ^ ,P 1JP2)-

The new coordinates are given by

p* =  (p° ±  p3 ) / \ / 2 .

The light-cone coordinate system is particularly useful since, because the covariant 
square is then

(PM) 2 =  2 p+p“ - P t ,

for a particle on mass shell
± p |  +  m 2

p

Therefore p_ and p+ must both be positive and it becomes a simple m atter to 
extract the on-shell behaviour of particles from the wavefunction. The wavefunction 
is assumed to be a particular delta function (one which partitions the light-cone 
momenta and the transverse momenta of the quark-antiquark pair from the photon 
equally) which is expected to be only valid for heavier vector mesons, such as the 
J/\P  and the T [44]. W ith these assumptions in place it is then possible to calculate 
an impact factor at the upper photon vertex.

The perturbative QCD expansion for the pomeron discussed in the previ
ous chapter is only valid when it is possible to guarantee the dominance of short 
range physics (so tha t constituent-constituent interactions may be considered). This 
becomes true when the legs of the pomeron ladder become close together. The 
pomeron then only couples to a single quark inside the proton. It may be shown 
that the occurs when t becomes larger than about t =  — 1 GeV2c~2. At high |t| 
no further changes are needed at the pomeron-proton vertex. The impact factor is 
unity since the universal four point function already describes pomeron exchange 
between quarks.
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The impact factors may now be used to derive the differential cross section 
for vector meson production. The expression will only be valid at h igh-|t|. At high-11 1 
the proton will receive a large ‘kick’ and this is expected to smash the proton apart. 
The proton dissociative process is therefore expected to dominate over the proton 
intact process. If the proton changes its state the process is diffractive. The leading 
log expansion of the previous chapter, however, applies to very high centre-of-mass 
energies of the photon-proton system (W7P). At the HERA collider, however, these 
centre-of-mass energies take lower values and the cross section calculated using the 
full BFKL series is therefore not expected to describe HERA scattering processes. 
Which terms are of importance at HERA energies can be obtained by writing the 
perturbation series in terms of the rapidity gap (y) between the outgoing struck 
quark and the outgoing vector meson.

The rapidity gap between the outgoing struck quark and the outgoing 
vector meson is related to the separation in the polar angles of these two produced 
particles. The absolute rapidity 77 of a particle is related to its polar angle 0 as 
follows

Rapidity is a particularly useful quantity for hadron-hadron collisions since it sim
plifies relativistic calculations involving boosts. Since

p +  —  e T?( p 2 +  M 2 ) 2  / a/ 2  

p“ =  +  M2 )2  / \ / 2

when, for example, a boost along the positive z-axis is considered in the centre-of- 
mass frame the first and second components of a particle’s four vector become

p+ - > ewp+ 
p" -► e~wp“

since 77 77 +  w. The transverse component remains unchanged. Rapidities can
therefore be simply added to consider other relativistic frames of reference. In the 
high energy limit, in which the particle’s mass becomes negligible, the formula for 
rapidity reduces to
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In this limit rapidity is referred to as pseudorapidity. Since the energies of the 
outgoing particles participating in the diffractive process at HERA are expected 
to be high, their masses may be neglected. The separation in rapidity, or theta, 
however, between the outgoing struck quark and the outgoing vector meson, is 
unlikely to be equivalent to the separation of the proton remnant and the vector 
meson which would be measured in the final state since the struck quark and the 
unstruck quarks must somehow develop into a broad proton remnant je t and no 
satisfactory model of how this occurs exists.

Once the BFKL series is expressed in terms of the rapidity gap between 
the outgoing struck quark and the outgoing vector meson it becomes clear tha t it 
is actually a series in a sy. Since the typical size of the rapidity gap increases with 
photon-proton centre-of-mass energy W, the higher W is, the more the higher terms 
in the series will become im portant. At lower values of W only the first few terms 
are expected to apply. In addition the typical size of the rapidity gap need not be 
particularly large at these energies. The rapidity gap also depends on the fraction 
of the target’s momentum carried by the parton struck inside the target. If a low 
momentum object is struck then the rapidity gap is expected to be small, regardless 
of the value of W. To obtain more realistic approximations for the cross section 
at HERA the one-loop diagram is taken and iterated using the BFKL equation to 
generate the first few terms. The diagrams which were neglected in the derivation of 
the BFKL series may now become im portant at these lower centre-of-mass energies 
and so these are once again examined. It appears, however, tha t they do not need 
to be included at HERA energies.

In the course of the calculation it becomes useful to define two extra vari
ables. The first variable r  is given by

- t
r (Q2 +  My)

and is referred to as the scaling variable. The second, z, is given by

3  q:s /  xgW 2 \
- -  -log ' 1

2tt ° V - t  +  Q2 +  Mv /

and is referred to as the energy variable. Here Q2 is the photon virtuality, My 
is the mass of the produced vector meson and xg is the fraction of the proton’s 
momentum carried by the struck constituent. The QCD predictions for the photon- 
proton differential cross section d a /d i  multiplied by t 4 are plotted as a function of
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the scaling variable for different values of the energy variable and for photons which 
are transversely polarised in figure 4.3. The predictions for longitudinally polarized 
photons may be obtained from the cross section for transversly polarised photons 
according to

( Q V
The extra factor arises from the difference between the calculated flux of transversely 
polarised photons and longitudinally polarised photons arising from the incoming 
lepton at HERA. The cross section for longitudinally polarised photons may be 
neglected for low photon virtualities. The dotted line corresponds to the two-gluon 
exchange diagram, the dashed line is the result up to the first iteration of the BFKL 
equation, the solid line represents the result up to the second iteration and the 
diamonds represent the result up to the third.

The QCD predictions for HERA energies are lower than those of the full 
BFKL series. They apply to all virtualities of the incoming photon. The dominant 
contribution to the total lepton-proton cross section at HERA, however, comes from 
events in which an almost-real photon is radiated from the electron before interacting 
with the proton. These collisions, in which the virtuality of the photon is small (Q2 

less than about 4 GeV2c“4), are referred to as photoproduction events. Since a higher 
cross section would be expected to be measured in this kinematic region it is selected 
here for analysis. An almost-real photon and a proton then enter the interaction 
region. Any vector meson may be produced at the photon vertex, however the 
calculation is expected to be particularly valid for the heavier vector mesons. The 
J/4f vector meson, which has a mass of about 3.1 GeVc~2, is chosen here and the 
region which is then accessible to this analysis lies in the region 0 . 1  <  r  < 1 .0 .

The J/4* vector meson is a particularly good choice. This is because the 
mass of the J/4f introduces an additional hard-scale providing a second reason to 
expect the validity of the perturbative approach. The 3/^f resonance was discovered 
in November 1974 in total electron-positron differential cross sections measured at 
the Stanford Linear Accelerator Centre (SLAC), just outside San Francisco. In the 
same year the same resonance was observed at Brookhaven National Laboratory 
(BNL) by forming the invariant mass of final state electron-positron pairs produced 
when an electron, a proton and Boron come together and interact. Of particular 
interest was tha t the resonance peak had a very narrow width.
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Figure 4.3: Predictions for the differential cross section for diffractive vector meson 

production divided by t 4 as a function of the scaling variable r  for different values 

of the energy variable z. The incoming photon is transversely polarised. The dotted 

line corresponds to the two-gluon exchange diagram, the dashed line is the result up 

to the first iteration of the BFKL equation, the solid line represents the result up 

to the second iteration and the diamonds represent the result up to the third. The 

region accessible to this analysis lies in the range 0 . 1  <  r  < 1 .0 .
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The width of a resonance peak is determined from its decay modes. Heavier 
particles are therefore expected to have larger decay widths than lighter particles 
because there are a larger number of smaller mass particle states to which they can 
decay. This general rule, however, is not true of all particle states. Consider, for 
example, the to and the (J) states, both of which are vector mesons states with similar 
properties and similar decay modes. The to has a larger decay width than the (f>, 
despite the fact tha t the <j> has a larger mass. In addition, if just the decays of 
the to and the <f> to three pions are investigated, the to has a partial decay width of 
more than an order of magnitude larger than that of the <j>. There must therefore 
be something in the underlying dynamics which inhibits the decay of the (f> to three 
pions. The exact process which inhibits the decays of certain particle states is not 
fully understood but it may characterised by a rule, which is referred to as the Zweig 
suppression rule [23]. The Zweig suppression rule states that if thefeynm an diagram 
for a decay process includes disconnected quark lines then the process is inhibited. 
A diagram contains disconnected quark lines if one or more hadrons can be isolated 
by a line which does not cut any quark lines. This is the case for the strong decay 
modes of the J / $ ,  The main decay modes of the J a r e  then to an electron- 
positron pair and to unlike sign muon pairs. The branching ratios of the electron 
and muon channels are expected to be the same due to lepton universality. The 
decay of the J / $  to the D° states is already forbidden due to energy conservation.

4.1 Com parison o f  th e  R egge T heory and QCD  

P redictions.

The QCD prediction for the behaviour of the differential cross section dcr/dt 
as a function of t for diffractive J/W photoproduction may be extracted from figure 
4.3. In the region up to  r  fy 1.0 the plotted function is essentially linear with an 
intercept of zero. This function is therefore essentially proportional r ,  and therefore 
to t, regardless of the value of z. The differential cross section, obtained by dividing 
this function by t 4, then has a t - 3  dependence. The cross section will never equal 
zero. The form of the cross section does not depend on a s, however the absolute 
height of the cross section does through the energy variable z. The coupling constant 
has not been allowed to run in the derivation of this result.
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At the beginning of this chapter it was explained that the phase shifts 
must be replaced by imaginary phase shifts to consider absorption (diffraction) in 
the quantum mechanical description of the scattering process. In the simple case 
of diffraction off a black disc it was stated tha t the differential cross section at 
high energies is expected to be a diffraction pattern. In the course of extracting 
the quantum behaviour at relativistic energies using Regge theory, as discussed in 
chapter 2 , the phase shifts become contained in the residues of the Regge poles. A 
diffraction pattern , becoming clearer as s is increased, multiplied by the asymptotic 
s-dependence is then expected in Regge theory.

The first major difference between the Regge and QCD approaches is there
fore tha t the diffraction pattern has disappeared in the course of the QCD derivation. 
A second major difference is tha t the differential cross section in Regge theory is 
expected to drop to zero. This occurs firstly at values of t which correspond to 
integer values of angular momentum. As explained in chapter 2 the residues must 
equal zero at these values of t so tha t the amplitude decouples. This was because 
no physical particles are expected to exist in the region of negative t (since the mass 
would have to be imaginary so that when squared it gives a negative result). Sec
ondly, there are zeros corresponding to minima in a difraction pattern, which may 
be extracted by considering scattering at high energies.

Perhaps the most significant difference is tha t Regge theory bases its pre
dictions on a family of bound-state particles with the quantum  numbers of the 
vacuum. No bound-state particles were included, however, in the extraction of the 
behaviour of the pomeron in QCD. Should these bound-state particles exist however 
they would be expected to participate in the diffractive process at HERA energies.

4.2 Selection at th e P hoton  V ertex.

A useful variable which enables events in which only a single particle is 
produced at the photon vertex to be selected is the elasticity variable z. At HERA 
this is defined as follows

PM .
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Here P M represents the four-vector of the incoming proton, qM the four-vector of 
the incoming photon and vM the four-vector of the state produced at the photon 
vertex. The elasticity variable may take values ranging between zero and one. In 
the rest frame of the incoming proton and for those photoproduction processes in 
which the outgoing particle is produced almost collinearly with the incoming photon 
the photon elasticity represents the fraction of the photon’s energy which is carried 
by the produced particle. If z is equal to  one in this case then all of the photon’s 
energy is passed to the outgoing colinearly produced particle.

The elasticity variable is a relativistic invariant. This is because it is defined 
in terms of scalar products of particle four-vectors. Since every such scalar product is 
a relativistic invariant, the elasticity variable must also be invariant. An expression 
relating t to the photon elasticity in the lab frame at H I is required here. At HI 
the four vector of the incoming proton is written as

P*1 =  (Ep,0 ,p )

since the photon approaches along the positive z-direction. The second component 
represents the transverse momentum of the proton and the third the longitudinal 
momentum. In photoproduction the photon may be assumed to approach the proton 
head on since the lepton suffers only a small deflection. The four-vector of the 
incoming photon may therefore be w ritten as

qf‘ =  (Eq,0 ,q ).

The longitudinal momentum component q is negative since the photon approaches 
in the negative z direction. Since the outgoing particle may be produced in any 
general direction its four-vector is written as

vM =  (Ev,v t ,vi).

The Mandelstam variable t is given by

t =  (vM — q^ ) 2 

and this may be expanded as follows

t =  v 2 -f q2 -  2 vM • qM
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The third term  may be w ritten as

2v m • qM = (Ev + Vi)(Eq -  q) + (Ev -  vi)(Eq + q).

By noting tha t at high energies the proton’s mass will be negligible in comparison 
to its momentum the factors (Eq — q) and (Ev — p) may be written as

q M . p M
(Eq - q )  =  ^ —

and
. yM

(Ev -  p) =   ------- •
P

The third term  therefore simplifies to

H  . p M  p M  . V M
2 vM • qM =  (Ev +  Vi) H----------- (Eq +  q).

P P

Both terms may now be multiplied by unity giving the following expression

' +  - 0 (E v _ Vi) p +  —  + <!)•

It is now possible to perform some cancellation giving

n M . p m  p m  . V M
2vM ■ qM =  (E2 -  v?) ----—  +   ------- (E 2 -  q2).V v 1 7 p M p M p ^  ^  V q  H  J

If the produced particle is a vector meson state of mass Mv then

K  ~  Vl2 =  M v -  v j .

Similarly the square of the photon four vector is

Eq — q2 — — Q2

where Q2 is the magnitude squared of the photon four-vector squared. The third 
term  therefore becomes

2 vM • qM =  (M2 -  v ? )- -  zQ2.
z

The Mandelstam variable t is therefore

t  =  — I P ? - ( 1 - z ) Q 2 +  ( 1 - ! ) M ? .z Z
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In photoproduction Q ~  0 so

z z

It is clear tha t when the elasticity variable is close to unity, t is given by

t -  - P 2.

The photon elasticity may be w ritten for high energies of the incoming proton as

_ (E -  Pg)v
(E pz)^

Since energy and momentum are conserved this must be equivalent to

(E -  P 8)j\*
E ( E i - p f )  1 ’

where the sum runs over all particles found, including the J/W , but excluding the 
scattered positron [45]. Thus, at HERA, the photon elasticity of a collision may be 
reconstructed from the four-vector of the detected vector meson and the (E — pz) of 
the event.

4.3 Selection  at th e  Proton  V ertex.

A similar expression for t may be derived at the proton vertex. Here t is
given by

t =  (P? -  P M) 2

where P^ represents the four-vector of the proton remnant. This may be expanded 
as follows

t =  (PJ1) 2 -  2W  • P^

where the mass of the proton has again been negected. If the proton dissociates then 
the square of the proton remnant four vector is given by the square of the effective 
proton remnant mass M p r . (obtained by summing all the energies of the particles 
produced in the jet and subtracting the sum of their momentum components). The 
elasticity variable z may be rewritten using

+  P^ =  q^ +  P^
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giving
(qM • P") ~  (Pf • FM)

Z (qM • P#*)

The expression for t in terms of z is therefore

t =  MpR — 2(q'i • Pf‘) ( l  — z).

Since at high energies Ep =  P£ and since, in photoproduction, the photon is em itted 
essentially colinearly with the negative z-axis, the final expression for t at the proton 
vertex is

t — MpR -  4E7 Ep( l  -  z).

At values of z close to unity the expression for t reduces to the proton remnant mass 
squared.

It has already been stated tha t the reason this process is known to be 
diffractive is because the proton changes its state in the interaction. It has also 
been made clear that the size of the rapidity gap between the proton remnant and 
the produced vector meson cannot be predicted, since no satisfactory model of how 
the proton breaks up exists, and since the rapidity gap between the struck quark 
and the outgoing vector meson cannot be predicted unless the momentum fraction 
of the struck constituent is known. A selection based on a restriction on the size 
of the rapidity gap, therefore, would simply select events with a large gap in the 
final state (the central maximum of the diffraction pattern). The contribution from 
diffractive events with smaller or moderate rapidity gaps will then be lost. Large 
rapidity gaps may also occur in other processes in which there is no absorption 
of the incoming wave but in which a J / f  vector meson is also produced at the 
photon vertex. These non-diffractive events would pass such a selection procedure 
and contaminate the result. No restriction is made on how wide the rapidity gap 
in this analysis. Proton-elastic and proton-inelastic final states must therefore be 
carefully separated after the selection has been made. Since at high- |t | the proton 
is expected to predominantly dissociate it is expected that the behaviour of the 
diffractive cross section will be well represented by the cross section measured using 
only proton-dissociative events.
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C hapter 5

The H I D etector at H E R A .

The HERA lepton-proton collider was designed to perform a deeper in
vestigation of the substructure of the proton. It is located in Hamburg at DESY 
(Deutsches Electronen Synchrotron), the German National Laboratory for Elemen
tary Particle Physics, which was founded in Hamburg on the 18th December 1959. 
The collider was built at DESY between 1984 and 1989 in a 6.3 kilometre tunnel 
under part of the city of Hamburg and began operating in 1990-1991. It remains the 
only lepton-proton colliding beam experiment worldwide. In July 1994 the lepton 
beam was swapped from an electron to a positron beam. The experiment operated 
as a positron-proton collider during 1997 during which time it collided beams of 
27.6 GeV positrons with beams of 820 GeV protons. The different beam energies 
are required because positrons radiate more energy than protons, via synchrotron 
radiation, when confined to a circular orbit.

To reach their required beam energy, positrons are accelerated to 500 MeV 
in a linear collider. They are then collected in a small storage ring before being 
injected into a second ring, referred to as the DESY II ring. Here they are accelerated 
further to 7 GeV before being passed, in bunches, to the PETRA II ring. Here the 
bunches are accelerated to 14 GeV before being injected into the HERA ring where 
they are accelerated further to their final energy of 27.6 GeV. To obtain the required 
210 bunches in the HERA positron ring the entire process has to be repeated three 
times. A magnetic field of 0.165 T holds the positrons in their circular orbits. This 
magnetic field is provided by dipole magnets.
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To generate the proton beam, protons are first obtained from Hydrogen 
atoms. To remove the single electron of the Hydrogen atom  a charged foil is used. 
Protons are initially accelerated to 50 MeV in a linear accelerator. They are then 
injected into the storage ring DESY III where they are accelerated to 7.5 GeV. 
From there they are passed in bunches into the PETRA II ring and accelerated 
further to 14 GeV before being finally passed to the HERA ring itself where they 
are finally accelerated to 820 GeV. To acheive 210 proton bunches this process 
also has to be repeated three times. Because of the higher mass of the protons a 
higher magnetic field of 4.68 T is required to hold them  in their circular orbit. This 
magnetic field is provided by superconducting magnets. A new positron beam has 
to be generated several times during the time tha t the proton beam is present in 
the HERA beam pipe since the positrons in the positron beam eventually lose their 
energy via synchrotron radiation.

The particles are accelerated to their respective energies in two separate 
beam pipes within the same tunnel at HERA. The beams circle the tunnel in op
posite directions and are brought together into a single beam pipe at four different 
points. A detector is located at each of these points. The H I detector observes the 
product of collisions which then occur at one of these four locations. The positron 
and proton bunches pass through each other once every 96 nanoseconds. When two 
bunches pass through each other interactions may, but do not always, occur. A 
positron-proton collision takes place about once every 1 0 5 bunch crossings.

5.1 The H i D etector.

The layout of the HI detector is shown in figure 5.1. The asymmetry of 
the detector arrangement is required due to the much larger energy of the proton 
beam. The axes are defined such that the proton beam is incident in the positive 
z, or forward, direction. In spherical polar coordinates the ta  is then zero in the 
forward direction. The HI detector is a general purpose detector and the subdetec
tors and their arrangement are therefore chosen to cover many different final states 
which may arise from a scattering process. The HI detector was especially designed 
to provide good lepton identification, especially electrons, high granularity for jet 
reconstruction and good hermicity for the recognition of events with missing trans-
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Figure 5.1: An overview of the HI detector at HERA. Tracking detectors are placed 

closest to the interaction point surrounded by calorimeter sections. These are both 

contained inside a superconducting magnet. Muon detectors are placed outside of 

this magnetic field.

verse energy. A good multipurpose trigger system and good hadron calorimeters 
are also installed. A superconducting coil of radius 3m provides a magnetic field of 
1.15 T at the centre. W ithin the coil are drift chambers, proportional chambers, 
electromagnetic and hadronic calorimeters and scintillation counters. The positron 
beam may be used as a source of photons to investigate photon-proton collisions. 
At HERA the virtuality of the photon may reach values of up to about two orders 
of magnitude higher than was previously available. The parts of the HI detector 
underwent extensive upgrade during 1994. In particular a new calorimeter was 
located in the backward region. The HI collaboration which built and operates 
the detector is comprised of about 400 scientists from 39 institutes of 12 countries 
throughout the world.
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This chapter describes the general operation and construction of the com
ponents of the H I detector which were used in the analysis presented in this thesis. 
A more detailed description of these components and the entire HI detector may be 
found elsewhere [46].

5.2 E lectron and Positron Identification using H I  

C alorim eters.

A calorimeter is a form of particle detector which is used to measure the 
energy of a particle entering it. By inducing, in some way, a particle shower, a 
calorimeter then periodically monitors the development of tha t shower. The en
ergy of the particle which entered the detector may then be reconstructed from the 
quantity which was periodically measured. The material which is used to initiate the 
shower, and the method of monitoring the shower’s development, may vary, however 
the principle is the same in all different types of calorimeter.

In general a particle shower is initiated in a calorimeter by some active ma
terial. The characteristics of the shower which then develops depends upon whether 
the incident particle was leptonic or hadronic. If a leptonic particle, such as an elec
tron or a positron, with an energy above about 100 MeV enters such a material it 
will then lose energy predominantly via the brehmstrahlung process, since the cross 
section for this process dominates in this energy range. The electron or positron then 
emits a photon which carries off some of the energy of the initial particle. If the 
photon, however, is em itted with an energy also above 100 MeV then it is expected 
to eventually produce an electron-positron pair. As long as the produced electrons, 
positrons and photons have energies above 100 MeV these processes are expected to 
continue and the number of leptons in the material will increase. A particle shower 
therefore develops. Eventually, however, the energies of the individual particles pro
duced in the shower will begin to fall below about 100 MeV. These will then start 
to dissipate energy, predominantly through ionization and excitation processes, via 
interactions with the atoms of the active material. Eventually all of the energy will 
be lost through these ionisation processes. A measurement of the total ionisation in 
the material is then equivalent to the incident particle’s energy.
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m

Figure 5.2: The sectioning of the HI liquid Argon calorimeter. The hadronic sec

tions lie further away from the interaction point (W W P) than the electromagnetic 

sections. The electromagnetic and hadronic sections are both thicker in the forward 

region due to the higher energies of the particles expected to be produced in this 

region.

A hadronic particle entering the active material, however, is expected to 
form showers predominantly through inelastic nuclear collisions. The particles in 
the shower then continue to take part in further such collisions until their energies 
fall once again below a certain threshold. Showers formed by hadronic particles 
typically take longer to develop and are typically wider than showers formed by 
leptonic particles (hadronic showers typically contain electromagnetic showers within 
them). Information as to whether the incident particle was hadronic or leptonic may 
therefore be obtained from the characteristics of the shower which developed in the 
active material.

5.2.1 T he Liquid A rgon  C alorim eter.

The main calorimeter at HI is the liquid argon calorimeter. This covers 
the polar angular range 4° <  $ < 154°. Its active medium is argon cooled to a 
tem perature of -183 degrees celsius. The volume of liquid argon used is about 40m3.
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Steel and lead plates are used to induce showers and charge is collected and read 
out from rectangular cathode pads. The calorimeter is divided into a number of 
sections to enhance the speed at which the collected signals can be read out and 
to enable positional information to be obtained. The sectioning of the liquid-argon 
calorimeter is shown in figure 5.2. The cathode pads vary in size depending on 
the expected number of particles tha t will be produced in a particular region. The 
electromagnetic part of the calorimeter is also thicker in the forward direction since 
the particles produced in this region are expected to have higher energies [47].

5.2 .2  T h e L ead-Scin tillating  Fibre C alorim eter (SPA C A L ).

During the shutdown over the winter of 1994-95 the H I detector underwent 
an extensive upgrade programme. As part of this upgrade a new calorimeter was 
installed in the backward region. It was installed due to the interest in low-Q2, deep 
inelastic scattering events, in which the scattered positron ends up in the backward 
region of the main part of the detector. An investigation of these events was at 
that time restricted by the energy and angular resolution of the so-called BEMC 
calorimeter covering this region. To improve the accuracy with which low-Q2) deep 
inelastic scattering events could be analysed, an energy resolution of at least 2 % for 
electrons with energies greater than 30 GeV and an angular resolution of between 
1 and 2 milliradians was required. The lead-scintillating fibre technique was chosen 
because the calorimeter would be operating in a high magnetic field and had to be 
fitted into the limited space occupied by the existing calorimeter. A lead-fluoride 
crystal technique was also considered, but was rejected because of the high cost of 
lead-fluoride crystals and because of their poorer hadronic energy resolution.

The design of the calorimeter pays particular attention to the region near 
the beam pipe where the scattered electron appears in the transition region from 
low-Q2, deep inelastic scattering events to photoproduction events. A plug section 
covers the low emission angle region. The detector was designed to have a high 
granularity in anticipation of the increase in HERA luminosity. When a particle 
enters the calorimeter a shower is initiated by the lead. Scintillation light is read 
out along fibre optic cables. The position of the SPACAL calorimeter is shown, 
together with the tracking detectors which will be discussed in the next section, in 
figure 5.3.
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Figure 5.3: The positions of the components of the HI tracking system and of 

the SPACAL calorimeter. The tracking detectors are divided into a central and a 

forward region.

5.3 E lectron and Positron Identification using H I  

D rift Cham bers.

As is typical of many large collision experiments the HI detector at HERA 
makes use of a magnetic spectrometer set up. A magnetic spectrometer system is 
one which contains a series of detectors that measure the position of a particle as it 
is deflected by a magnetic field. The deflection of the particle as it passes through 
this region may be used to determine the charge of the particle. In addition, the 
curvature of the path, or track, that the particle follows may be used to determine 
the particle’s momentum. Position measurements may be made using a segmented 
calorimeter, however an improved accuracy is obtained when drift chambers are 
used. In a typical drift chamber a uniform electric field is applied to a region which 
contains a gas. When a particle traverses the chamber it ionizes gas atoms, freeing 
electrons which then drift towards the anode and give a signal.

137402
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The position at which a particle passed through the drift chamber may 
be better determined if a series of anodes, for example a series of anode wires, 
are used. W hen a signal occurs in one of the anode wires the position at which 
the particle passed through the drift chamber is then known to within the spacing 
of the wires. To obtain the distance from the wire at which the particle passed 
through the detector it is necessary to know the drift velocity and the length of 
time tha t elapsed before the ionisation electrons reached the anode. For this reason 
drift chambers are often used together with scintillation counters which provide 
a much faster signal when a particle passes through and gives a good initial time 
measurement. By measuring the difference between the initial scintillation pulse and 
the time at which the drift chamber pulse occurred it is then possible to calculate 
the length of time in which the ionisation electrons were drifting.

The drift velocity depends upon the particular gas mixture used. Which 
particular gas mixture is most appropiate depends strongly on its intended appli
cation. Gases with high drift velocities are used in high particle rate environments. 
Gases with a low specific ionisation would be used to minimise multiple scattering. 
The minimum requirement of the readout electronics is to be able to distinguish 
which anode wire gave a signal. It is also often possible however to read the sig
nal from both ends of the wire. If the charge is collected closer to one end of the 
wire than the other then, since the signal will take longer to reach one end of the 
wire than the other, the position of the signed along the wire’s length may also be 
measured.

There are essentially three major designs of drift chamber. These are planar 
chambers, cylindrical chambers and proportional drift tubes. Cylindrical chambers 
are frequently used in colliding beam experiments since they may be positioned such 
that they almost completely surround the interaction point. Planar drift chambers 
are then used to cover any gaps left by the cylindrical chamber. Due to asymmetry 
of the beam energies at HERA a large number of particles tend to be produced 
in the forward, or positive z, direction. To improve the accuracy and speed of the 
triggering system it was therefore decided to divide the tracking detectors into two 
regions, the central and forward regions, as shown in figure 5.3.



C H APTER 5. THE HI D ETEC TO R A T  H E R A . 106

5.3 .1  T h e C entral Tracking C ham ber.

The main components of the central tracking system are two separate cylin
drical drift chambers refered to as central je t chamber 1 (CJC1) and central jet 
chamber 2 (CJC 2 ). In both these detectors anode wires are strung parallel to the 
beam axis (the z-axis). By measuring the specific energy loss the particle identifica
tion is improved. Both these detectors have independent gas volumes. To measure 
the z-coordinate with a better accuracy two further drift chambers, the central inner 
z-chamber (CIZ) and the central outer z-chamber (COZ) are included. These have 
wires strung perpendicular to the z-axis, and the drift direction is parallel to the 
z-axis.

5.3 .2  T he Forward Tracking D etecto r .

The forward track detector was designed to identify charged tracks in the 
region 7° < 9 < 25°. It consists of three identical supermodules each of which 
contains a planar wire drift chamber, a multiwire proportional chamber, a transition 
radiation volume and a radial drift chamber. The planar drift chambers contain 
three modules which measure the position at which a particle passes through the 
detector using four wires each. The multiwire proportional chamber is used for 
triggering purposes. Transition radiation X-rays are produced in the transistion 
radiation volume which are then detected by the radial drift chamber. This is 
determined from the ionisation charge above the normal energy loss value. This 
region of the HI detector is particularly hostile for track reconstruction due to the 
high track multiplicities in this region. The problem is increased by the prescence of 
a synchrotron radiation collimator in the beam pipe which produces a large number 
of secondary particles in the first of the supermodules,

5.4 The Lum inosity System  of the H I D etector.

The luminosity system of the HI detector is used for online determination 
of the instantaneous luminosity, for measuring the total integrated luminosity of a 
particular data-taking period and also for identifying photoproduction events.
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Luminosity measurements at H I are made by determining either the rate 
or the number of events arising from the Bethe-Heitler process

e+ +  p — ► 7  +  e+ +  p.

A description of how this is done is contained in the section on the determination 
of the total integrated luminosity for 1997 running conditions in section 6.11. The 
methods used involve either the simultaneous detection of the final state electron 
and photon, or the detection of the photon alone. The luminosity system is there
fore made up of two main parts, one for detecting positrons (or electrons) and one 
for detecting photons. The angular distributions of the scattered positron and the 
outgoing photon for incoming positron energies of about 30 GeV are strongly peaked 
at angles of approximately 17 /zrad with respect to the incoming positron direction, 
so the detectors have to be placed as close to the beam pipe as possible, in the neg
ative z direction, and far away from the interaction point. The luminosity detectors 
are permanently calibrated during data taking. One of the main contributions to 
the systematic error in the absolute luminosity measurement comes from the depen
dence of the system acceptance on possible variations in the electron beam angle in 
the interaction region. This beam tilt is typically of order 100 //-rad and is controlled 
by the position of the beam profile at the photon detector with a high precision of 
the order of 1 0  /irad.

At HERA the total positron-proton cross section is dominated by the pro
duction of photoproduction events. In photoproduction the incoming positron emits 
an almost-real photon and scatters through a small angle. The definition of almost- 
real is somewhat arbitrary, however, at HERA any event in which the virtuality of 
the photon is less than about 4 GeV2 is usually referred to as a photoproduction 
event. The electron-positron detectors of the luminosity system may be used to 
tag photoproduction events in the region Q2 < 0.01 GeV2. Only photoproduction 
events corresponding to certain scattering angles of the scattered lepton may be 
tagged, however, by the electron-positron detectors of the luminosity system. To 
avoid Bethe-Heitler events it must also be ensured that no photon is simultaneously 
detected by the photon detector.
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5.4.1 T h e E lectron  Tagger at z  =  — 3 3 . 4  M etres.

The electron tagger located at z =  —33.4 metres may be used to tag pho
toproduction events in the region 165 < W 7P < 233 GeV. The scattered positrons 
are deflected by bending magnets and a set of low-/? quadrupoles which are located 
in the region —5.8 <  z <  —23.8 metres so that they pass through a window in the 
beam pipe at z =  —27.3 metres and enter the tagger. The electron-tagger is a 7 by 
7 array of crystal Cerenkov detectors covering an area of 154 mm by 154 mm. The 
hodoscope of crystal Cerenkov counters was chosen for its high radiation resistance, 
good timing, energy and position resolutions and for its compactness.

5.4 .2  T he E lectron  Tagger at z  =  — 4 4 . 0  M etres.

This electron tagger was installed during the winter shutdown of 1994/95. 
It may be used to tag photoproduction events in the range 65 < W7P < 163 GeV. 
The scattered positrons once again leave the beam pipe through an exit window. 
The angle between the exit window and the positron beam direction is thirty degrees. 
Six Cerenkov crystals of the same type and size as used for e-tagger33 are used here. 
These are housed inside an anti-magnetic box. The crystal Cerenkov counters were 
chosen for the same reasons as for the e-tagger at z =  —33.4 metres [48].

5.4 .3  T he P h o to n  D etector .

The photons of the Bethe-Heitler process leave the beam-pipe through a 
window where the proton beam pipe bends upwards at z =  —92.3 metres. They then 
enter the photon detector which is positioned at z =  —102.9 metres. A lead filter is 
used to protect the photon detector from the high flux of synchrotron radiation in 
this region. This is followed by a Cerenkov detector which acts as a veto counter to 
eliminate events in which the photon interacts with the filter. The photon detector 
is a 5 by 5 array of crystal Cerenkov detectors covering an area of 100mm by 100mm. 
An iron wall 2m thick protects the photon detector from the proton beam. The veto 
counter is viewed by two phototubes, one for photon detection and the other for 
charged particle detection.
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5.5 D etectors in th e  Forward R egion.

5.5 .1  T h e P L U G  C alorim eter.

The PLUG Calorimeter closes the gap between the forward part of the 
liquid argon calorimeter and the beam pipe at 0 ~  0.6 degrees. The main reasons 
for closing this gap were to improve energy flow measurements and improve mea
surements of the missing transverse momentum of an event, im portant for events in 
which neutrinos were produced. In addition, however, this detector may be used to 
investigate if a narrow proton remnant jet occurred and to veto background arising 
from interactions between the beam and gas and the beam with the wall of the beam 
pipe. Since only a small space was available only a very compact calorimeter would 
fit. A calorimeter with nine copper plates interweaved with eight silicon detectors 
was chosen. The energy resolution of the PLUG calorimeter is restricted by the large 
amount of dead material in front of it through which particles must pass before they 
enter the calorimeter and through energy leakage. The resolution is nevertheless 
sufficient for the purposes for which it was installed. A cross sectional view of the 
PLUG is shown in figure 5.4.

e o p p e '  p : * t < s s

Expiocfeo v iew  of £ se a le d  
d e l e c i o f  m o c J u l t

Figure 5.4: A cross section of the PLUG calorimeter together with an exploded view 

of a calorimeter module.
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5.5 .2  T h e Forward M uon  D etec to r .

An additional detector was introduced in the forward region to improve 
investigations of processes which are identified partly due to  the decay of a heavy 
particle to muons. The distribution of these decay processes are often strongly 
peaked in the forward region at HERA. Since the proton may dissociate and leave a 
large number of particle tracks in the forward tracking detectors it is very difficult 
to isolate which track corresponded to any produced muons. The forward muon 
detector is a spectrometer tha t may be used independently of the forward tracker. 
However, it is usually used to identify which tracks in the forward detectors corre
sponded to muons. A better measurement of the tracks momenta is made using the 
forward tracking detectors.

The forward muon detector is positioned outside the instrumented iron 
return yoke in the forward proton direction. Since it is located in the region outside 
the magnetic field provided by the H I superconducting magnet it has a toroidal 
magnet of its own. Three layers of drift chambers on each side of the toroid obtain 
the incoming and outgoing directions of the muon and the difference between these 
directions is used to calculate the muon momentum. The forward muon toroid 
bends muons in polar angle 0. The orientations of the wires in the drift chambers 
are rotated with respect to one another to obtain good position measurements. A <f> 
layer is sandwiched between two 6 layers. A gas mixture of 92.5% argon, 5% carbon 
dioxide and 2.5% methane is used. The position along a wire is determined from 
the difference in pulse shapes readout at either end of the wire. The layout of the 
forward muon spectrometer is shown in figure 5.5.

5.5 .3  T he P ro ton  R em nant Tagger.

The proton remnant tagger is positioned at z=26 metres. It completely 
surrounds the beam pipe. It consists of two layers of scintillating material which are 
sandwiched inside lead shielding.
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Figure 5.5: The layout of the forward muon spectrometer at HI. Since the forward 

muon chamber is located outside of the region covered by the HI superconducting 

magnet it has a toroidal magnet of its own.

5.6 The H I Trigger System .

The proton and positron bunches at HERA pass through each other once 
every 96 nanoseconds. This is much quicker than the typical readout time of the 
various subdetector elements. In addition, it is not possible to store information 
from every single collision, some of which will arise from background interactions of 
the beam with the wall of the beam pipe or the gas in the beam pipe anyway, so 
some selection as to which collisions are likely to be of interest has to be made.

Each of the various sub detectors of the HI detector typically provide a 
trigger element, essentially a logical signal which is ON if something of interest 
has occured, which is sent to the central trigger. The central trigger then decides 
whether an event is to be kept. All parts of the detector are synchronised so that 
the information arrives at the central trigger at the same time. It takes a length 
of time corresponding to approximately twenty bunch crossings for this information



CH APTER 5. THE HI D ETE C TO R  A T  H E R A . 112

to arrive at the central trigger. Since the central trigger also needs time to decide 
all information is stored in a queue, or pipeline, for the length of time it takes for 
approximately 24 bunch crossings.

To decide if information concerning an event is to be stored the central trig
ger considers subtrigger elements which are usually comprised of some combination 
of a few detector trigger elements. If the subtrigger condition is satisfied the event 
is usually stored. One exception to this general rule occurs when the process which 
fires the subtrigger occurs fairly frequently. In this case the subtrigger is prescaled 
with a value P, which varies depending on the frequency of the process, and then in 
only one of every P firings of the subtrigger is the information stored.

If any subtrigger condition is satisfied, i.e. if an event is recognised which 
level 1 of the central trigger thinks could be a real event, it sends out a signal which 
has the effect of freezing all the information stored in the pipeline. This “L1KEEP” 
signal appears approximately 24 beam crossings after an interesting event actually 
occured. At this point the second level trigger immediately starts to analyse the 
subtrigger which caused the “LIK EEP” signal. W ithin twenty microseconds it de
cides whether the event should really be stored or not. If the event is then rejected 
the time lost is only twenty microseconds. Otherwise, the data concerning the inter
action is sent from the queue to the central event builder. This takes approximately 
2 ms and during this time, since no further information can be stored in the pipeline, 
collisions are missed.

The central event builder, having collected together all the information 
concerning the event, makes topological studies of the event after which, if the 
event is not rejected, passes all the information to the level 4 filter farm which may 
remove further background processes. Should an event remain after level 4 the event 
is stored. A four level trigger system is therefore used to select real positron-proton 
physics events and filter out those events which do not arise from such collisions. A 
fifth level also exists which may be used once the data has been stored to reduce 
the data sample further.
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C hapter 6

A nalysis o f th e  Scattering Force.

Diffractive events which produce a J / $  vector meson at the photon vertex 
are to be selected in the kinematic region of photoproduction. In a photoproduction 
event the incoming lepton scatters through a small angle, emitting an almost-real 
photon. At HERA, any event in which the virtuality of the photon is less than about 
4 GeV2c~2 is usually referred to as a photoproduction event. There are two methods 
for identifying photoproduction events using the HI detector. The first is to demand 
tha t a scattered lepton candidate is identified in one of the electron taggers placed 
far down the beam pipe in the negative z direction. A second method demands that 
no scattered lepton candidate is identified in the main part of the detector, where it 
is expected to appear for higher photon virtualities, and to assume that the scattered 
lepton must have therefore scattered through a smaller angle. The first method is 
selected here. Photoproduction events are identified by demanding either a scattered 
lepton candidate in the electron tagger at z=-33.4 metres or the electron tagger at 
z—-44.0 metres. Since each of these taggers covers a different range of photon-proton 
centre-of-mass energies, two photon-proton centre-of-mass energy samples are easily 
identified by sorting the events according to which tagger the scattered lepton hit 
originated in. A third e-tagger, placed at z=-8.0 metres, is not used here since, 
because it was installed during 1997, the number of diffractive events it would have 
selected will be lower than that of the older e-taggers which were present for the 
entire year. Events with photon virtualities below about 0.01 GeV2c“2 are selected 
by this method.
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Scattered lepton candidates in the e-tagger33 centre-of-mass energy range 
are defined as being those in which the energy deposited in the tagger was greater 
than 6 GeV. To remove Bethe-Heitler processes, a maximum energy deposit of 2 
GeV is allowed in the photon tagger. These same two valnes are used to define 
scattered lepton candidates in the e-tagger44 centre-of-mass range, although the 
energy resolntion of this tagger is poorer. The behaviours in the two centre-of- 
mass energy ranges, however, are then obtained using essentially identical selection 
methods and may be compared. If the electron and photon tagger restrictions are 
met in either centre-of-mass range, but not in both ranges simultaneously, then it 
is assumed tha t the scattered lepton did indeed scatter through a small angle and 
the event is therefore a photoproduction event. Roughly 1.5% of those events which 
were selected had a hit in both e-taggers and were discarded.

6.1 Selection  o f D iffractive Events.

Each selected photoproduction event is then analysed to see if it could be 
a diffractive event and to see if it may contain a J / $  vector meson. Before this 
is done the true interaction point of the event, which is measured by the trigger 
system by linking tracks to the region close to the nominal interaction point, is 
considered. If the true interaction point lies near to the nominal interaction point, 
which corresponds to the origin in the HI coordinate system, then measurements of 
track momenta and calorimeter cluster energies will be more reliable. This is because 
the subdetectors of the HI detector are orientated in such a way as to cover the region 
surrounding the nominal interaction point. Only those candidate photoproduction 
events with a true interaction point which lies within z =  ±40cm are analysed for 
diffractive J/tP  characteristics. The number of background interactions of the beam 
with the beam-gas and of the beam with the walls of the beam pipe, is also expected 
to be reduced by this restriction since these may occur with interaction points lying 
outside this range.

If a candidate photoproduction event has a good interaction point the event 
is then scanned for electron and positron candidates. Electrons and positrons are 
both expected to deposit almost their entire energy in the electromagnetic part of a 
calorimeter. In the angular region covered by the SPACAL calorimeter, therefore, a
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search is made for isolated electromagnetic clusters. No tracking information is used 
in this region. In the angular region covered by the liquid-argon calorimeter and the 
main tracking detectors each track linked to the true interaction point is required 
to have an electromagnetic cluster associated with it. Since neutral particles do not 
leave tracks in the tracking detectors, only charged particles will be selected by this 
procedure. The energy of the electromagnetic cluster is then required to be greater 
than 70% of the momentum of its associated track.

To determine which two electron-positron candidates most likely originated 
from the decay of the J / ^  the following algorithm was chosen. Since in a proton- 
elastic, diffractive event the final-state proton is lost down the beam pipe, only the 
two decay products of the J / ^  should be detected. If the proton dissociates, however, 
a proton remnant jet will be produced in the forward direction. If this is narrow 
then the two decay products of the J /\£  will most likely be the two electron-positron 
candidates with the largest the ta  values in the detector. As the proton remnant jet 
becomes wider then events in which one, or both, of the decay products are produced 
at angles tha t place them amongst the particles of the proton remnant are expected 
to become more im portant. In many of these events, however the two identified 
electron-positron candidates with the largest theta  values will still originate from 
the decay of the J/W. The decay products may start to be mis-identified, however, 
for wider proton remnants if high energy particles arising from the dissociation of 
the proton are also identified as electrons or positrons. Many of these, however, will 
produce hadronic clusters. The two lepton candidates with the largest theta  values 
are therefore essentially isolated and assumed to be those tha t originated from the 
decay of the J / 1̂ . If both of these objects were identified in the SPACAL region 
then, since no tracking information is available, the charges of the two objects are 
not known and it is therefore assumed that one cluster was caused by the decay 
positron and the other was caused by the decay electron. If one of the two largest 
theta  objects was a SPACAL cluster and the other was identified in the tracking 
region then the charge of one of the objects is measured. It is then assumed that 
the SPACAL cluster originated from the decay product with the opposite charge 
of tha t which caused the track. If there are no SPACAL candidates then the two 
largest-theta objects will both lie in the tracking region. The negative track with 
the largest theta  value and the positive track with the largest theta  value are then 
taken to be the two decay products. More tracks will appear in events with wider
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No of track candidates No.of spacal candidates J /  $  kinematics based on
0 0 No J /  candidate

1 No J /  $  candidate
2 Two spacal candidates
> 2 Two spacal candidates with 

the largest theta
1 0 No J /  W candidate

1 Spacal candidate and track 
candidate

2 Two spacal candidates
> 2 Two spacal candidates with 

the largest theta
2 0 Two track candidates provided 

one is positive, one is negative
1 Spacal candidate and track 

candidate with the largest theta
2 Two spacal candidates
> 2 Two spacal candidates with 

the largest theta
> 2 0 The negative track with the 

largest the ta  and the positive 
track with the largest theta

1 The spacal candidate and the 
track with the largest theta

2 The two spacal candidates
> 2 The two spacal candidates with 

the largest theta

Table 6.1: The two lepton candidates selected from those reconstructed in each

event which are to be used to calculate the kinematics of the J / $ .

proton remnants. These events have no J / $  candidate if only positive or only 
negative tracks appear. A minimum of two electron-positron candidates must be 
found. The selection procedure for identifying the decay products from the list of 
electron-positron candidates is shown in Table 6.1.

The two most-likely decay products are used to calculate the invariant mass 
of the parent particle. To do this the four-vectors of the two decay products are 
constructed first. For decay products in the SPACAL region the measured cluster
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energy (E) is converted into a to tal momentum measurement (P) according to

P 2 =  E 2 -  M2. (6.1)

The mass of the electron Me actually only has a small effect since the cluster en
ergies are typically large. The position of the centre-of-gravity of the cluster is
then obtained in the H I coordinate system and converted to give a theta and phi
angle describing the position of the centre-of-gravity with respect to the true inter
action point. The P x, P y and P z components of the four vector are then calculated 
according to

P x =  P sin 9 cos <f>
P y — P sin 9 sin (f>
P z =  P cos 9.

The P x, P y and Pz components of decay products identified in the tracking region 
are those measured via the deflection of the particle by the H I magnetic field. These 
are combined to give a to tal momentum value (P) according to

p = \/((p*)2 + (p, ) 2 + (p,)2)-
The total momentum is then converted into an energy measurement (E) using Equa
tion 6.1. The energy value obtained from tracking information is expected to be more 
accurate than the energy of the liquid-argon cluster behind the track since the en
ergy resolution of the calorimeter is poorer than that of the tracking detectors. The 
invariant mass of the parent particle is then obtained according to

Mj/* =  V/(2M | +  2(E“Eb -  P“Pt -  P°P£ -  P»P£))

where the superscripts a and b are used to distinguish the first and second decay 
products.

The transverse momentum squared t of the event is to be approximated 
using the P 2 of the vector meson, as explained in section 4.2. The P 2 of the J /ty  is 
calculated using the already constructed four-vectors of the decay products according 
to

p 2t =  (p^ +  p j)2 +  (p; +  p£)2.

In addition the (E — PB) of the J/4* is also formed, since it is needed in the con
struction of photon elasticity z.
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To ensure tha t t, the momentum transfer squared, can be approximated 
using the of the vector meson, the photon elasticity z must be large. The (E —P z) 
value of everything tha t was produced in the final state, excluding the scattered 
lepton, is calculated by looping over all the objects which appeared in the detectors. 
The scattered lepton is automatically excluded because the electron taggers are not 
considered in this loop. Care is taken to combine tracks and clusters which may 
have originated from a single produced object in a sensible way, so as not to double 
count energy and momentum values. The elasticity of the photon vertex (z) is then 
calculated using Equation 4.1 and required to be greater than z =  0.8.

If one of the electron taggers identifies a scattered lepton candidate, a good 
interaction vertex was found, two likely decay products may be isolated and used 
to calculate the quantities described and the photon elasticity is high such that 
the value of t may be constructed, event information is stored. Additional stored 
information, needed in later stages of the analysis, will be introduced as required in 
later sections of this chapter.

6.2 D ata  and Trigger Selection

The selection procedure described in the previous section is designed to 
select proton-elastic and proton dissociative diffractive events which may include 
a vector meson. It was run over data taken during 1997 by the H I detector. 
HERA collided beams of 27.6 GeV positrons with beams of 820 GeV protons during 
this period. The total luminosity for data taken during this year was higher than for 
previous years so the number of events which were diffractive is expected, therefore, 
to have been higher during this data-taking period. It is expected tha t this will help 
reduce the statistical errors on the measurement of the differential cross section.

Only those data runs which were classified, for various reasons, as being of 
’good’ or ’medium’ quality were considered. All ’bad’ runs are excluded from the 
analysis which follows. A run may be classified as being ’bad’ if, for example, certain 
sub-detectors were not on during the run, or not functioning as expected. All of the 
subdetectors which are used in this analysis have been described in chapter 5  and 
are required to have been under their expected high-voltage operating conditions 
when an event occured, before tha t event is stored.
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Two subtriggers were chosen which would be expected to  select, amongst 
other processes, diffractive J / $  events. The two subtriggers selected are expected 
to cover the range of possible placements within the detector of the decay products 
discussed earlier. The first is a track subtrigger (subtrigger s85) which demands a 
hit in any e-tagger and at least one negative track in the event for it to fire. The 
second is a SPACAL subtrigger (subtrigger s81). The subtriggers have the following 
definitions at H I,

s81: etag„all && (SPC LeJET > 1 || SPCLeJET_CEN_2)
s85: etag_all &;& DCRPh_TNeg.

The notation, SPC LeJET, stands for the SPACAL Inclusive Electron Tagger. The 
subtrigger element SPC L eJET  considers energy deposits in the SPACAL calorime
ter. The SPACAL is divided into three separate regions, an inner region close to the 
beam axis, a region of medium separation from the beam axis and a region of large 
separation from the beam axis. Different energy thresholds, which must be exceeded 
for the subtrigger to fire, are defined for each region. Each region has a low energy 
threshold, a medium energy threshold and a higher energy threshold. The notation 
SPCLeJET > 1 requires tha t at least one hit in the electromagnetic part of the 
calorimeter was greater than the medium energy thresholds corresponding to tha t 
region of the detector where the hit occurred. This was set at 2 GeV for the inner 
medium, and outer regions during 1997 running conditions. The trigger element 
SPCLeJETJDEN_2 demands a hit of greater than 2 GeV in the central region of 
the calorimeter (—16 < x < 8  cm and — 8  < y < 16 cm). The regions are shown in 
more detail in figure 6 .1 .

The efficiency of each of these subtriggers for selecting diffractive events 
will need to be calculated so that the number of events which were actually produced 
before the subtriggers selected them may be estimated. Each of the chosen triggers 
includes the electron-tagger trigger element. The expected efficiency of the electron- 
tagger trigger element will be included later with the acceptance functions of these 
detectors. For this reason only the efficiencies of the track and SPACAL parts of 
each subtrigger will need to be investigated later. So tha t this may be done events 
which fired subtrigger s80 are also stored. Subtrigger s80 has the definition

s80: etag_all.

and therefore fires if hits are obtained in any e-tagger.
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Figure 6.1: The SPACAL calorimeter is divided into several different regions with 

different trigger settings. The hashed region in the centre represents the region 

covered by the central card. The square shaded regions are covered by IET > 1 , 2. 

The red lines represents the card limits. Cluster bits are represented by open circles.

During 1997 approximately 37 million events were collected. Some of these 
were collected by a minimum-bias run for which the trigger settings were altered. 
This run makes up only a small fraction of the year’s data. It is neglected since 
alternative triggers would then have to be chosen for a small part of the sample, 
leading to a result which arises partly from one choice of triggers and partly from 
another. To reduce the number of events which the selection must consider, and 
to reduce the size of the output files to a manageable size, only those events which 
are stored in the J/\l! event class were considered. An event stored in this class has 
already been identified as having either

1 . greater than or equal to two ’electrons’,
2 . greater than or equal to one ’electron’ and less than or equal to five tracks,
3. or greater than or equal to one ’electron’ with a tranverse momentum greater
than 1 GeV,

or some combination of these.
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In the central region an electron is defined as having at least ten hits 
in the CJC and a track start radins within 30cm of the vertex. In the forward 
region an electron tracks are identified as having a track fit with a chi-squared 
value less than 1 0 , a chi-squared vertex fit less than 2 0 , a to tal track momentum 
greater than 1 GeV, and an R 0 fit less than 5 which fired greater than one module. 
The process of classifying an event occurs at the fourth level of the trigger system. 
To reach the fourth level trigger elements must have fired at the first level. The 
triggers applicable to this event class include the track and SPACAL trigger elements 
described previously.

6.3 Subtraction o f DIS and Beam -Background In

teractions

The selected events were first investigated to verify tha t the various mea
sured quantities were behaving as expected. One region where this appeared not 
to be the case was in the measured (E — P K) of the final state, where the scattered 
positron is also included. The (E — P z) of the final state is expected to equal the 
(E —P z) of the initial state due to energy and momentum conservation. Since its ini
tial value is twice the incoming positron energy, the to tal (E — P K) of the final state, 
including the scattered positron, is expected to equal 55.2 GeV. The experimentally 
measured distributions for events selected by the e-tagger at z=-33.4 metres and by 
the e-tagger at z=-44.0 metres are shown separately in figure 6 .2 . The e-tagger33 
selected events show a good peak centred at about (E —P z) =  55.2 GeV as expected. 
The e-tagger44 selected events, however, do not show this expected form.

To see if the poorer resolution of this electron-tagger was responsible the 
expected values of Bjorken y for these events were considered. Bjorken y may 
be reconstructed from the final state of the event, where the scattered positron is 
excluded, according to the method of Jacquet-Blondel;

(1  ̂ PzjFinal Statey  —  ' - ----------------------

* 2Ee

The (E — Pz) of the final state is obtained by the selection code since it is used in 
the determination of the photon elasticity z. Since the e-tagger at z=-44.0 metres
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Figure 6.2: The (E — P z) of the final state, including the scattered positron, for 

events selected by a) e~tagger33 and b) e-tagger44.

covers the range 0.04 < y < 0.24, the (E — P z) of the event, excluding the scattered 
positron, is expected to lie in the range 2.208 < (E — Pz) < 13.248 GeV. The 
(E — P z) distribution of these events is shown in figure 6.3. A second peak appears 
at values above the expected range of this variable.

The second peak is positioned at (E — P z) ~  55.2 GeV and suggests that the entire 
final state, including the scattered positron, was produced in the main part of the 
detectors. This is expected if the virtuality of the photon was large, placing the 
scattered positron in the main part of the detector. To see if this was indeed the 
case the energy distributions of the ‘decay’ electrons were investigated. The energy 
distribution of the first ‘decay’ products found in the SPACAL region in each event 
is shown in figure 6.4. The peak at high energies does indeed suggest tha t the high 
energy scattered positron has entered the main part of the detector.
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Figure 6.3: The (E — P K) of the final state, excluding the scattered positron, for 

events selected by e-tagger44.

It is most probable that a beam-gas interaction or an interaction of the 
beam with the walls of the beam pipe placed an unrelated object in the e-tagger 
such tha t the event entered the selected sample. The energy distribution of the 
‘scattered positrons’ which entered e-tagger44 is also shown in figure 6.4. The ex
pected scattered positron energy is about 2 2  GeV. This follows because Bjorken y 
may also be calculated from the energy deposit (E ’) in the tagger according to

The range in y covered by e-tagger44 gives a typical energy deposit of this value. A 
peak appears as this energy, however, it sits on top of a background which falls as



No
. 

of 
E

ve
nt

s
C H APTER 6. A N A L Y SIS  OF THE SCATTERING  FORCE. 124

°)

225

200

175

150

125

100

75

50

25

0

Lepton Energy (GeV)

b)
W 120

LiJ
100

80

60

40

20

0

Positron Energy in e —tagger44 (GeV)

Figure 6.4: The energy distribution of a) the largest the ta  decay lepton identified 

in the SPACAL region and b) the energy of the scattered positron in e-tagger44.

energy increases. The cutoff at 6  GeV arises from the restriction in the selection 
code. This background probably arises from predominantly low-energy objects 
entering the tagger from background interactions.

The unwanted contributions to these graphs are removed by restricting the 
measured value of Bjorken y to be essentially within its expected range. Only those 
events selected by e-tagger44 which lead to y values in the range 0.0395 < y < 0.245 
are kept. The reason for allowing events with values of y slightly lower and slightly 
higher than the nominal range of the e-tagger is to allow for the resolution in this 
variable. This will be discussed later. The value of y measured using the method of 
Jacquet-Blondel is used when making this restriction.
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6.4 Separation o f E lastic and Inelastic Events.

The differential cross section in Mandelstam t is to be measured for proton 
dissociative diffraction. Events in which the proton remained intact must therefore 
be identified and removed from the selected sample. To do this information on the 
number of tracks and clusters th a t were produced in each event was also obtained 
by the selection code.

It has already been mentioned tha t in a proton-elastic event only the two 
decay products of the J/\P  are expected to appear in the main part of the detector. 
Events in which only two electron-positron candidates were found are therefore now 
identified in the selected sample and investigated to see if only tracks corresponding 
to decay products were produced. If this is the case then the only charged particles 
which were produced in the tracking region are expected to  be decay products and, 
since the total number of decay products is now equal to two, this places a restriction 
on the number of electromagnetic clusters which appeared in the SPACAL region. 
The to tal number of clusters which were used in the calculation of the (E — P^) of 
the final state is required to be less than three. In the calculation of the (E — P z) 
of the final state care is taken to m atch clusters and tracks produced by the same 
object in a careful way. Sometimes the cluster will not be used in the calculation of 
(E — P E), and the track will be used instead. This occurs if it is felt that a better 
energy or momentum measurement will be obtained by the track. For this reason 
the number of clusters used may be zero, but is not expected to be greater than two 
in a proton elastic event. Clusters which most likely arose from random noise in the 
calorimeters are not included in this list.

This essentially isolates events in which the proton probably remained in
tact. Inelastic events, however, in which the produced proton remnant je t is narrow 
enough to be contained inside the beam pipe still remain in this sample. Some 
of these events may be removed, since secondary scattering caused by interactions 
between the proton remnant and the wall of the beam pipe, or with the material of 
the collimators, sometimes appears in the forward detectors. Proton elastic events 
are therefore also required to show ‘no activity’ in the forward region. The selection 
code flags an event as having ‘no forward activity’ if the energy in the first six layers 
of the PLUG calorimeter is less than 3.0 GeV, there are no forward muon pairs in 
the first three layers of the forward muon detector and there are no hits in the first
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three scintillators of the proton remnant tagger. Events which meet the track and 
cluster conditions and have been flagged are then assumed to be elastic and every 
other event is assumed to then be inelastic. Inelastic events with proton remnants 
of mass greater than about 1.6 GeVc- 2  are selected by this method.

6.5 T he M onte Carlo Event G enerator H IT V M .

Two Monte Carlo generators HITVM and RHODI have been written to de
scribe the diffractive production of vector mesons at large t. Both of these generators 
describe proton dissociative interactions and are based on the QCD description of 
the pomeron. The main difference between the two is the way in which they model 
the proton remnant. In HITVM, the parton which is struck inside the proton can 
be either a valence quark, gluon or sea quark and the proton remnant is then either 
a di-quark, quark or quark-baryon combination respectively. This is based on the 
method used by the PYTHIA event generator and in each case the resulting parti
cles are passed to the JETSET package to hadronize. The modelling of the proton 
remnant in RHODI is based on results from the UA5 experiment [49].

The monte carlo event generator HITVM is used here. It incorporates 
the calculations discussed in chapter 4 with a input value of o:s =  0.2. The angular 
decay distribution of the J/4* decay products is taken according to s-channel helicity 
conservation. The produced vector meson then has the same helicity, or polarisation, 
as the photon. Since the decay products of the J /\£  are also expected to be able 
to radiate photons before reaching the detectors the brehmstrahlung process is also 
included in the event generation.

Each event produced by the event generator was subjected to a simulation 
of the HI detector response. The behaviour of the electron taggers, however, was 
not included in this detector simulation. The electron taggers will not detect the 
scattered lepton every time tha t it enters them. The number of scattered leptons 
that are detected by the taggers may be described by acceptance functions. The 
acceptance functions for the electron tagger at z=-44.0 metres and the electron 
tagger at z=-33,4 metres are shown in figure 6.5. The ability of the taggers to 
detect the scattered lepton varies as a function of Bjorken y. Each of the events 
generated are therefore weighted so tha t the number of events reconstructed by the
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Figure 6.5: The acceptance functions, as a function of Bjorken y, for a) e-tagger44 

and b) e-tagger33.

detectors is corrected for the number of scattered leptons th a t are expected to be 
reconstructed by the electron taggers.

For the purposes of this analysis the electron taggers are only used to 
identify photoproduction events. The energy deposits in the taggers are not used 
in the reconstruction of any quantity. The energy resolution of e-tagger44 does not 
allow a measurement of the energy deposited there in any case. For this reason the 
energy deposits are not smeared to account for the resolution of these detectors. The 
energy deposit would be smeared after it had been decided if the scattered lepton 
would be reconstructed or not, and becomes necessary if the energy deposits are 
then used in some way.

6.5.1 R eso lu tion  in B jorken y

As discussed previously the resolution in Bjorken y was used to determine 
the range in which events selected by the e-tagger at z=-44.0 metres would be
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restricted, to avoid a contribution from a DIS and beam-gas background. The 
value of Bjorken y in such an event is reconstructed according to the method of 
Jacquet-Blondel, and compared to the true generated value in figure 6 .6 . The full 
width at half maximum is 0.01. The resolution in Bjorken y represents the typical 
separation of the true and reconstructed values and may be calculated by dividing 
the full width at half maximum by 2.35. The resolution is good. Events in which a 
scattered lepton candidate appeared in e-tagger44 were restricted to have a y value 
in the range 0.0395 <  y <  0  .245. This is because events produced at the edges of 
the nominal y-range of this tagger may be measured at values which are separated 
by typically about 0.005 above or below the nominal values. The wider y range is 
used to account for this effect. Events which have measured y values lying outside 
of this range are most probably not photoproduction events.
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Figure 6 .6 : The separation of the reconstructed and generated values of Bjorken y 

for events selected by e-tagger44. The reconstructed values are obtained according 

to the method of Jacquet-Blondel.
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6 .5 ,2  R eso lu tion  in M andelstam  t.

In the selected kinematic region the momentum transfer squared t may be 
approximated by the transverse momentum squared of the J / # .  The reconstructed 
values of t are compared to their generated values in figure 6.7. The full width 
at half maximum for events selected by e-tagger44 is 0.36 GeV2c-2 . Similarly the 
full width at half maximum for events selected by e-tagger33 is 0.6 GeV2c-2 . The 
resolutions in t for e-tagger33 and e-tagger44 selected events may be obtained by 
dividing the full widths at half height by 2.35.

The range |t| =  1 — 10 GeV2c- 2  in which the differential cross section d<r/dt 
is to be investigated is now divided into nine equally spaced bins, each 1 GeV2c“ 2 

wide. These bin widths must be at least as wide as the full widths at half maximum 
to ensure tha t the m ajority of events produced at the central value in each t-bin are 
captured in that bin. To make it easy to compare the two final differential cross 
sections the same bin widths are chosen in both centre-of-mass energy ranges.

a) b)

C  ' 00

20

(R econstructed t — Generated t)

125

100

50

(R econstructed t — Generated t)

Figure 6.7: The separation of the reconstructed and generated values of t in GeV2c 2 

for events selected by a) e-tagger44 and b) e-tagger33.
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Figure 6 .8 : The purities of the chosen t-bins for events selected by a) e-tagger44 and

b) e-tagger33 as a function of |t|.

To see if the t-resolution varies with t the purity of each bin is calculated. 
The purity (p) of a bin is obtained according to

_  N qr 
P ~  N r

where N q r is the number of events reconstructed in a bin tha t were also generated 
with t values in tha t bin, and N r is the total number of events reconstructed in that 
bin, regardless of whether they were generated there or not. The bin purities for 
events selected in both centre-of-mass energy ranges are shown in figure 6 .8 .

It is now clear tha t the resolution in t, not only becomes worse with in
creasing values of the photon-proton centre of mass energy, but also worsens with 
increasing t. This follows because the bin purities fall as t is increased, the num
ber of events reconstructed with larger separations from their generated values than 
the typical separation, becoming more significant. As the centre-of-mass energy is 
increased it is expected tha t the decay products will become more likely to emit 
photons in the final state. Since the photon is expected to be emitted predomi
nantly co-linear with the decay product, the clusters created by the decay products
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should also include the energies of the em itted photons. In the tracking region the 
four-vectors of the decay products are calculated using tracking information. Neu
tral photons will not be included in the measurements of the P x and Py components 
of the four-vector. The four-vectors of decay products identified in the SPAOAL 
region are calculated using the SPACAL cluster and should include the photon. If 
one, or both, of the decay products appear in the tracking region and photons are 
emitted it will lead to an underestimate of the value of t. This is clear from the 
higher tail on the left-hand side of the resolution plot in figure 6.7. The smearing 
effect in the t-distribution will be considered in section 6 .1 0 .

6.5 .3  M ass D istrib u tion  as a F unction  o f  t

To remove those sources of background tha t remain in the proton disso
ciative diffraction sample, and to obtain the number of diffractive events produced 
in each bin of t , the J/4f mass peak is to be identified above a distribution which 
arises from background processes. The reconstructed mass distributions in each bin 
of t for events selected by the electron tagger at z=-44.0 metres are shown in figure 
6.9. The mass distribution has a similar form in each bin of t. The position of 
the maximum appears at about 3.1 GeVc- 2  and a radiative tail, which arises when 
events in which decay products which have radiated photons and are identified in 
the tracking region are used to calculate the invariant mass, appears on the left-hand 
side. A function tha t describes the shape well is

f Aexp (— m < m
f  in) =  I ^  a _ {

|  Aexp ( - ■m2of ) ) m > m

where m  is the position of the peak of the mass distribution. The constant which 
pre-multiplies the function in each region is chosen to be equal to A in both regions, 
so tha t the function joins smoothly at the intersection of the two different regions. 
It is fitted to the first four bins in this centre-of-mass energy range.
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Figure 6.9: The reconstructed mass distributions for events generated in the e-

tagger44 centre-of-mass energy range. Bin a) covers the range 1.0 < |t| <

2.0 GeV2c~2, b) the range 2 .0  <  |t| <  3.0 GeV2c~ 2 and so on. The results of

the functional fit to the first four bins are shown.
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The area under the function, found by integrating the function from minus 
infinity to plus infinity (the functions only tend to zero but never actually reach 
zero), is equal to the number of events in the peak (N) multiplied by the bin width 
(w) used to plot the distribution

Nw =  A ( a + y |o - )  .

The result does not depend on the mean mass, therefore it is possible to vary this to 
achieve the best fit. This is because both of the functions fitted are even functions 
about m =  m. The to tal statistical error is then given by the summing the errors 
in the parameters A, a and <r in quadrature according to

Parameters a and cr, and their errors, may be fixed by the fits to the reconstructed 
mass distributions. The values of these parameters together with their associated 
uncertainties are presented in Table 6.2. The reconstructed mass distributions in 
each bin of t for events selected by e-tagger33 are shown in figure 6.10. Once again 
the shape of the mass peak is similar in each bin of t. The same function is chosen 
to describe the shape of the mass plot. It is fitted to the mass distributions of the 
first four t-bins. The best values of the parameters a and cr, together with their 
associated uncertainties, are also presented in Table 6.2.

Events Selected By Bin Number cr Constant a
E-tagger44 1 0.052 i 0.005 0 .1 1  ±  0 .0 1

2 0.044 ± 0.006 0 . 1 2  ±  0 .0 1

3 0.023 ± 0.003 0.08 db 0 .0 1

4 0.067 ± 0.006 0.06 ±  0 .0 1

E-tagger33 1 0.050 i 0.004 0 .1 1  ±  0 .0 1

2 0.072 ± 0.008 0.14 ±  0.02
3 0.067 ± 0.009 0.15 ±  0.02
4 0.050 i 0 . 0 0 2 0.109 ±  0.003

Table 6.2: The values of the a and cr parameters, together with their associated 

uncertainties, obtained from a least squares fit to the reconstructed mass peak in 

the first four bins of each centre-of-mass energy range.
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Figure 6.10: The reconstructed mass distributions for events generated in the 

e-tagger33 centre-of-mass energy range. Bin a) covers the range 1.0 < 1*1 <

2.0 GeV2c-2 , b) the range 2.0 < |t| < 3.0 GeV2c“ 2 and so on. The results of 

the functional fit to the first four bins are shown.
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Figure 6.11: The result of the normalised functional fit to the 1.0 <  1*1 <

2.0 GeV2c- 2  bin for events selected by e-tagger44.

Correlations between the a and sigma parameters have been neglected in 
performing these functional fits. This is justified since if one normalises the function 
and performs the fit with the normalised function no difference appears in the result. 
The fit of the normalised function to the first bin in the e-tagger44 centre-of-mass 
energy range is shown in fig. 6.11. Here the function has been normalised such that 
the area under the function fitted above the position of the peak m and the area 
under the function below the position of the peak both equal a half. The number of 
events reconstructed above and below the peak are now given entirely by the factors 
which premultiply the functions in the two regions. Since the number of events 
reconstructed above the peak may not be equaivalent to the number reconstructed 
below different factors are chosen in the two regions. The best estimate of the a 
parameter is 0 .1  ± 0 . 0 2  and the best estimate of the sigma parameter is 0.068 ±0.007.
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6.6 Sources o f Background.

6.6 .1  P rod u ction  o f  H igher M ass C harm onium  S tates

It has already been mentioned that any vector meson may be produced 
at the photon vertex of the diffractive process, although the calculation is expected 
to be most valid for heavier vector mesons. The reconstructed mass distribution 
in Monte Carlo shows sensible properties and peaks at the expected J/^P mass. 
When the selection code was run over data, however, it is possible that it may have 
also selected diffractive events in which other vector meson states were produced. Of 
particular concern is the production of other states which belong to the charmonium 
system, since these have masses close to the J/*P mass. Many of these states are 
also able to decay down to the J/*P state and the code may sometimes therefore 
select the correct vector meson when it was not the object produced at the photon 
vertex. Some events in which this occured will not be selected if the (E — P z) of the 
identified J/*P leads to a photon elasticity value below 0 .8 .

The states of concern are the *P(2S), or fP', state and the x-states. The 4P, 
which has a mass of about 3.7 GeVc-2, may decay directly into an electron-positron 
pair or alternatively to give a J / f  and electron-positron pair. The direct process 
has a branching ratio of (8.5 ±  0.7) x 10- 3  and the second has a higher branching 
ratio of (10.0 ±  3.3) x 10 3. The ^-states decay directly to the J/^P according to

There are three x~sfafes each with masses of approximately 3.42, 3.51 and 3.56 
GeVc“ 2. Peaks corresponding to higher mass charmonium states may therefore 
appear close to the J/\P  peak.

6.6 .2  E lectrom agn etic  P rod u ction  o f  L eptonic Pairs.

The incoming positron and the incoming proton may both emit photons 
which then interact leading to an electron-positron pair in the final state. The 
Feynman diagram representing this process is shown in figure 6 .1 2 . The proton may 
dissociate or remain intact. The essential feature of the cross section for this process
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e

P

Figure 6.12: The Feynman diagram for the electromagnetic production of lepton 

pairs via two photons. The electron may also he produced at the lower vertex. The 

proton may also dissociate.

is that it is peaked at low values of momentum transfer squared. Nevertheless, at 
values of t in the range considered here the selection code may locate electrons and 
positrons in the final state which arose from this process, and form an invariant 
mass from these particles. The background arising from this process is expected to 
decrease for higher values of t .

To investigate how events which arose from two-photon processes will be 
reconstructed the event generator LPAIR was used [50]. Its generated differential 
cross section behaves essentially as t^ H ^ 1 where t a represents the squared four-vector 
of photon 1 and t 2 represents the squared four-vector of photon 2. The reconstructed 
t distributions for events selected by e-tagger44 and by e-tagger33 are shown in figure 
6.13. The reconstructed t-distributions do indeed peak at low t, and fall-off as t is 
increased. Fewer events are expected in the higher centre-of-mass energy range and 
the fall-off is also slightly sharper here. The reconstructed mass distributions for 
both centre-of-mass energy ranges are shown in figure 6.14. These both rise to a 
peak at a mass of about 2 .2  GeVc~ 2 then fall-off as the mass is increased above this 
value. The fall-off is again sharper in the e-tagger33 centre-of-mass energy range.



No
. 

of 
Ev

en
ts

 
o 

No
. 

of 
E

ve
nt

s
C H APTER 6. A N A L Y SIS  OF THE SCATTERING  FORCE . 138

<0 b)

50

40

30

20

10

0

35
C0

W  30

W-M

o
o

20

15

10

5

0

itKGeW2) I tl (GeV^T2)

Figure 6.13: The reconstructed |t ̂ distributions for lepton pair production in a) the 

e-tagger44 and b) the e-tagger33 centre-of-mass energy ranges.
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Figure 6.14: The reconstructed mass distributions for lepton pair production in a) 

the e-tagger44 and b) the e-tagger33 centre-of-mass energy ranges.
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6.7 Background Subtraction in D ata.

The reconstructed mass distributions in each bin of t for events selected 
from data by e-tagger44 are shown in figure 6.15. These were selected using the track 
subtrigger s85. As expected from the cross section predictions the statistics are low, 
particularly in the higher t-bins. In the first t-bin a peak at the expected J / ^  mass 
appears which sits on a background which appears to be high at a mass of about 2 .2  

GeVc-2 . The background appears to originate from the production of lepton pairs 
via the two-photon process. Two smaller peaks appear above the J/*? mass, which 
may well correspond to the production of higher mass charmonium states. The 
number of events in the J /ty  peak is identified using the function chosen in section
6.5.3. A falling straight-line dependence is chosen to describe the background in the 
mass region greater than 2.2 GeVc-2 . The parameters of the peak function a and cr 
were fixed using the higher statistics of the monte carlo event generator. The value 
of the param eter A that was obtained, together with its associated uncertainty, 
is shown in Table 6.3. The number of events may be calculated, together with 
the total statistical error which includes the additional uncertainty in fitting the 
function, according to the method described. The results are also shown in Table
6.3.

Bin Number Constant A chi-squared No. of Events (N)
1 18 db 4 0.5528 26 ±  6

2 10 ±  3 0.7182 14 ±  4
3 12 ±  4 3.580 11 ±  4
4 8  ±  3 4.258 10 ±  3
5 - - 7 dh 3
6 - - 6  ±  2

7 - - 4 ±  2
8 - - 2  ±  1

9 - - 2  ±  1

Table 6.3: The number of events selected in each bin of |tj for the e-tagger44 centre- 

of-mass energy range .
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Figure 6.15: The reconstructed mass distributions in bins of t for events selected 

in the e-tagger44 centre-of-mass energy range. Bin a) covers the range 1.0 <  hi <

2.0 GeV2c-2 , b) the range 2.0 <  |t| < 3.0 GeV2c- 2  and so on. The results of the 

functional fit to the first four bins are shown.
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In the second t-bin the background arising from lepton pair production 
has fallen off as expected. The height of a second peak, above the J/4* peak, most 
probably arising from ^/'-production, is now comparable to the height of the J/4 / 
peak. It was chosen once again to fit the leptonic pair background with a straight 
line dependence. The mass region where the higher mass peak appears is avoided, 
however, so as not to  overestimate the height of the leptonic pair background. The 
a and <r parameters are once again fixed using the higher monte carlo statistics. The 
number of events obtained, together with the associated statistical error, are also 
shown in Table 6.3.

In bins three and four the background from lepton-pair production appears 
to have almost disappeared. Sporadic events might be expected however in these 
bins, sometimes perhaps appearing under the J/4 / peak. The peak is therefore, once 
again, identified using the function of section 6.5.3, and the a and <r parameters are 
once again fixed using the higher monte carlo statistics. A function is not used to 
describe leptonic pair background in these two bins. For the remaining t-bins it 
becomes more sensible to count the events. This is done using a mass window of 
2.44 < m < 3.16 GeVc-2 .

The reconstructed mass distributions in each bin of t for events selected 
from data by e-tagger33 are shown in figure 6.16. These were selected by both the 
track subtrigger s85 and the SPACAL subtrigger s81. These may be interpreted in 
a similar way to those distributions in the e-tagger44 centre-of-mass energy range. 
In the first bin a straight line dependence is chosen once again to describe the back
ground at masses above 2 .2  GeVc-2 . The t-distribution of leptonic pair events is 
expected to fall-off more rapidly in this centre-of-mass energy range. This back
ground appears to have already reduced to the production of sporadic lepton-pair 
events by the second bin. A background function is therefore not used in this bin. 
The a and cr parameters are once again fixed using the higher monte carlo statistics 
in bins 1 and 2. The result of the fit and the number of events obtained, together 
with their associated uncertainties are shown in Table 6.4. A peak is identified in 
bins three and four, also in case sporadic events appear in the peak region.
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Figure 6.16: The reconstructed mass distributions in bins of t for events selected 

in the e-tagger33 centre-of-mass energy range. Bin a) covers the range 1.0 < | t | <

2 .0  GeV2c-2 j b) the range 2.0 < |t| < 3.0 GeV2c“ 2 and so on. The results of the 

functional fit to the first four bins are shown.
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Bin Number Constant A Chi-Squared No. of Events(N)
1 13 i  4 0.6727 19 ±  6

2 6  ±  2 2.398 12 ±  4
3 7 ±  2 1.792 13 ±  4
4 4 ±  2 7.369 6  ±  3
5 - - 5 rh 2
6 - - 7 ±  3
7 - - 2  ±  1

8 - - 2  ±  1

9 - - 2  ±  1

Table 6.4: The number of events selected in each bin of |t| for the e-tagger33 centre- 

of-mass energy range.

In the highest five bins, however, the events are counted. This is again 
done using a mass window of 2.44 <  m < 3.16 GeVc-2 . The number of events 
obtained in each bin are listed in Table 6.4.

6.8 C alculation of th e Trigger Efficiencies.

The efficiencies of the subtriggers used to select diffractive events from data 
collected in 1997 are needed to map the number of events obtained in each bin of 
t back to the number of events that were actually reconstructed by the detection 
system. Not every event produced will fire the triggers used. The efficiency of each 
subtrigger for selecting J /T  events is calculated using the number of data events 
found in the mass region 1.6 <  m < 4.6 GeVc-2, which surrounds the J / $  peak. 
To do this a subtrigger s80 is chosen to act as a ‘reference’ trigger. A record of 
the number of events found in the same mass range, in each bin of t, by subtrigger 
s80 was also obtained by the selection code. Subtrigger s80 fires if an event causes 
a hit in one of the e-taggers. In the e-tagger44 centre-of-mass energy range the 
track subtrigger s81 was used to select events. The fraction of events which fired 
subtrigger s80 which also fire subtrigger s85 gives a measurement of the track trigger 
element’s efficiency for identifying events from the sample collected by subtrigger 
s80. Subtrigger s85 also requires a hit in the e-taggers, however, since it also requires
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Figure 6.17: The efficiency of the track trigger element as a function of |t| in the 

e-tagger44 centre-of-mass energy range.

a negative track in an event, a smaller number of events is expected to fire s85. 
The efficiency of the e-tagger trigger element is already included in the e-tagger 
acceptance functions.

The subtriggers s80 and s85 have different prescale factors, however, and 
these need to also be incorporated into the calculation of the luminosity. The def
inition of a trigger prescale factor was given in section 5.6. The prescale factors 
of both subtriggers may vary from one data run to the next. An average prescale 
factor was calculated by finding a weighted average, the prescale factors weighted 
according to the luminosity of each run. The general expression for best estimate of 
the weighted mean is given by
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Figure 6.18: The efficiencies of a) the SPACAL and b) the track trigger elements as 

a function of |t| in the e-tagger33 centre-of-mass energy range.

where
1

W; :
<T;2

and w is just the sum of the wj terms. The average prescale factor of subtrigger s80 
was 332.61 and the average prescale factor of subtrigger s85 was 189.84. The trigger 
efficiency is independent of the trigger prescales and is calculated according to

/N s0+85\
V Nao }

The binomial uncertainties in the trigger efficiencies are obtained in each t-bin acord- 
ing to

cr. ( 1 - e )
e N80
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Figure 6.19: The combined efficiency of the track and SPAGAL trigger elements as 

a function of |t| in the e-tagger3 3  centre-of-mass energy range.

The uncertainities in the prescale factors are given by and are neglected 
in the calculation of the luminosity. The efficiency of the track trigger element as a 
function of t is shown in figure 6.17. The efficiency of the track trigger element in 
the range |t| =  0 — 1 GeV2c- 2  was 0.88 db 0 .0 2 .

The same procedure is then applied to find the efficiencies of the track 
and the SPACAL trigger elements in the higher centre-of-mass energy range. The 
average prescale factor of the SPAGAL subtrigger s81 was 109.52. The efficiencies 
of the track and the SPACAL trigger elements are both shown in figure 6.18. The 
efficiency of the track trigger element in the |t| =  0 — 1 GeV2c~2-range was 0.56=L0.03 
and the efficiency of the SPACAL trigger element was 0.56 ±  0.03 in this range. The 
trigger efficiencies are then combined, in each bin, to give a single trigger efficiency
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according to

ec = 1 — (1 — e8s)(l ~  8̂1)

The combined uncertainty is obtained from the uncertainties on the individual sub- 
triggers by summing in quadrature according to

The combined trigger efficiency is shown in figure 6.19. The combined trigger effi
ciency in the range |t| =  0 — 1 GeV2c“ 2 was 0.81 dr 0 .0 2 .

Inspection of figure 6.17 suggests that the trigger efficiency of the track 
trigger element does not vary with t in the e-tagger44 centre-of-mass energy range 
above |t| ~  4.0GeV2. The slight fluctuations at larger values of t are introduced 
since the available statistics decrease at larger t. A single value for the trigger 
efficiency is therefore used across the range |t| > 4.0GeV2. It is obtained by taking 
a weighted average of the trigger efficiencies obtained in each bin and is given by 
0.9999 dr 0.0004. The individual trigger efficiencies of the first three bins are used, 
together with their individual uncertainties, in the calculation of the cross section 
later.

In the higher centre-of-mass energy range the efficiency of the track trigger 
element also shows no t-dependence. The efficiency of the SPACAL trigger element, 
however, shows a dip at low values of t. When the two trigger efficiencies are 
combined this is removed by the track trigger efficiency. A single value for the 
combined trigger efficiency is taken over the entire t-range. It is once again formed 
by taking a weighted average, and is given by 0.9999 dr 0.0002.

6.9 Sm earing Effect in the t-D istribution .

6.9 .1  Sm eared A ccep tan ces.

It has already been mentioned when examining the purities of the chosen 
t-bins tha t events which are produced in a particular t-bin may be reconstructed 
at a value which places them in a different t-bin to the one in which the event
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Figure 6 .2 0 : The smeared acceptances as a function of ]t| for events selected in a) 

the e-tagger44 and b) e-tagger33 centre-of-mass energy ranges.

was actually produced. At this stage, therefore, the number of events which have 
been reconstructed in each bin of t will include events which were actually produced 
elsewhere. To account for this smearing effect it is possible to either adjust the error 
in the height of the cross section in each bin, or alternatively correct the number of 
events reconstructed. The second method is used here. The ‘smeared’ acceptances 
of the selection code for reconstructing diffractive J/\P  events in each bin of t are 
however also presented for events selected in both centre-of-mass energy ranges in 
figure 6.20 (HITVM with an input value of a s = 0 .2  is used here). The acceptances 
are calculated according to

where N r  is the number of events reconstructed in a particular t-bin, regardless of 
where they were generated, and Nq, as before, is the number of events generated in 
the bin. The errors are calculated from the expression for the acceptance written in 
terms of independent quantities. This method is described later.
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6.9 .2  Sm earing Effect C orrections in  t.

The number of events that smear into a particular bin depends upon the 
form of the t-distribution. In any particular bin a certain percentage of events in 
neighbouring bins will be reconstructed there. If the number of events produced 
in a neighbouring bin is larger than described by the monte carlo then the number 
of events which smear into other bins will be also be larger. There is no reason to 
assume that the generated t-distribution, based on the QCD calculation, is correct. 
The distribution by which events generated in each t-bin are reconstructed by the 
selection code may, however, be described by a matrix. Each element of the m atrix 
represents the fraction of events produced in one particular bin that are expected to 
be reconstructed in a particular bin. The diagonal elements of the matrix describe 
the fraction of events tha t are expected to be reconstructed in the same bin. The off- 
diagonal elements therefore describe the smearing effect. Each off-diagonal element 
Ay then describes the fraction of events generated in bin j tha t are expected to be 
reconstructed in bin i.

When the m atrix operates on the column vector n_G constructed from the 
number of events generated in each bin it produces a column vector Sr, of the number 
of events reconstructed in each bin as follows

Aug =  hR

Writing out the first row in full, for example, gives

An nQ +  Ai 2Uq +  . . .  =

The number nR that are reconstructed in this bin is obtained by summing the 
number that were generated and reconstructed in this bin with the extra numbers 
of events that enter from other bins.

The matrices describing how the generated events will be reconstructed are 
shown in figures 6.21 and 6.22. The matrices include the smearing of events from 
t-values in the range 0  — 1 GeV2c- 2  into the region in which the differential cross 
section is to be measured. The matrices are therefore 10 x 10 matrices. Expanding 
the first row of the m atrix gives an expression for the number of events reconstructed 
in the 0 — 1 GeV2c- 2  t-range. The second row then corresponds to the 1 — 2 GeV2c~ 2 

t-range and so on. The distribution of events generated in the first column are cal-
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.16763 . 0 1 0 0 2 .00460 .00006 0 0 0 0 0  0

.00316 .14883 .01868 .00177 0 0 0 0 0  0

0 .00769 .12919 .01670 .00136 .00027 0 0 0  0

0 .00023 .00684 .13173 .02361 .00080 0 0 0  0

0 0 0 . 0 1 2 2 2 .13305 .02214 .00017 .00083 0  0

0 .00077 0 .00104 .00875 .12266 .05136 .00735 .0 0 1 0 0  0

0 0 0 0 0 .0 1 2 0 2 .11753 .03715 .00797 .00093

0 0 0 0 0 .00013 .01823 .07728 .02886 .00914

0 0 0 0 0 0 .00072 .01341 .10604 .03160

0 0 0 0 0 .00007 0 .00164 .01518 .09665

Figure 6.21: The acceptance m atrix describing the smearing effect in the t-

distribution in the e-tagger 44 centre-of-mass energy range.

.18200 .02905 0 0 0 0 0 0 0 0

.00432 .23174 .05802 .00262 .00097 .00328 .00255 0 0 0

0 .02687 .23137 .05809 .00488 0 0 0 0 0

0 .0013 .02381 .19074 .06779 .02175 .00662 .00195 0 0

0 0  0 .02896 .22137 .09398 .01416 0 .00405 0

0 0  0 0 .02667 .15701 .08894 .02603 .00560 .00672

0 0  0 0 0 .02362 .14333 .08603 .01966 .00341

0 0  0 0 0 .00337 .02755 .17696 .13286 .02767

0 0  0 0 0 0 . 0 0 2 2 2 .04981 .12629 .09659

0 0  0 0 0 0 0 0 .02600 .13508

Figure 6 .2 2 : The acceptance m atrix describing the smearing effect in the t-

distribution in the e-tagger 33 centre-of-mass energy range.
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culated using the monte carlo event generator DIFFVM. This is based on the 
Regge theory pomeron. A proton dissociative version of DIFFVM for J / ^  
production is chosen.

The number of events reconstructed in each bin of t was determined in 
section 6.7. The m atrix equation now needs to be inverted so that the number 
of events produced before smearing can be calculated from the number of events 
reconstructed. The inverse of the m atrix A needs to be obtained. An iterative 
procedure was used to approximate the inverse acceptance matrices. The matrices 
are both close to being diagonal matrices. The acceptance m atrix is therefore written 
as follows

A =  T +  A

where the T-m atrix contains only the diagonal entries and the m atrix A contains 
all the off-diagonal elements. The m atrix equation may therefore be written as

TnG — h r  “  A nG (6 .2 )

As a first approximation one may take the number of reconstructed events 
to be dominated by the diagonal elements. The column vector of generated events 
is then given by the inverse of T operated on the column vector of reconstructed 
events

Rg =  T _1hR

The diagonal m atrix T is easy to invert. The inverse m atrix is also diagonal and 
contains the reciprocal of each diagonal entry in T as its diagonal components. If
this first approximation is then substituted into the right hand side of Equation 6.2
a better approximation for uq is obtained. This is given by

nG =  (T " 1 -  T - 1A T _1)nR

The process may be repeated, substituting this into the right hand side of equation 
6 .2  to give a third approximation as follows

nG =  (T - 1  -  T ” 1 A T ” 1 +  T - 1  A T ^ A T - 1) ^ .
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cr a N A X2

e-tagger44 0.061 ±  0 .0 1 0.127 ±  0.003 1 2 2  ± 1 2 72 ±  7 1.28
e-tagger33 0.055 ±  0.04 0.138 ±  0.007 191 ±  19 84 ±  8 2.61

Table 6.5: The results of the fit, together with the number (N) of reconstructed 

events obtained, in the e-tagger44 and e-tagger33 centre-of-mass energy ranges.

To use this procedure the number of events reconstructed in the range 
|t| =  0 — 1 GeV2c~ 2 needs to be found. This is possible since the selection code 
makes no restriction on the value of t. The same function is used to fix the a and a 
parameters as was used in the other bins. The function is then fitted to the data, 
including a straight-line dependence to describe the lepton-pair background, which 
peaks at a mass of 2 .2  GeVc“2. The results of the fits to the monte carlo and 
data distributions, are shown in figures 6.23 and 6.24, for e-tagger44 and e-tagger33 
selected events respectively. The values of the parameters and the number of events 
obtained, together with their associated uncertainties, are listed in Table 6.5.

The results of the iteration procedure are shown in Tables 6 .6  and 6.7. 
The procedure is stopped after five iterations since the size of the changes in the 
components of the column vector uq with each iteraction start to become smaller 
than the size of the statistical errors on the components in the first approximation. 
The column vector fig is clearly converging on a particular value with each iteration. 
The off-diagonal components of the acceptance matrices must therefore be small in 
comparison to the diagonal components.

The errors on the elements of the acceptance matrices are calculated using 
the normal binomial expression. These, together with the statistical errors on the 
first approximation are propagated through the iteration procedure to obtain a sta
tistical error on the fifth iteration values, together with a systematic error arising 
from the uncertainties in the m atrix elements. This is done by first propagating the 
errors on each m atrix element through the series expansion to fifth order to give a 
single fifth order inverse m atrix with errors on each component. W hen two compo
nents are multiplied along the way their percentage errors are added in quadrature. 
If two values added, for example when a row and a column are expanded, the ac
tual errors are added in quadrature. This operation was performed by a computer 
subroutine which was checked to third order by hand.
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Figure 6.23: The result of the functional lit to the e-tagger44 mass distributions for 

a) monte carlo events and b) events selected from data m the 0 .0  ^  < 1 .0  GeV2c 2

bin.
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Figure 6.24: The result of the functional fit to the e-tagger33 mass distributions for 

a) monte carlo events and b) events selected from data in the 0.0 <  |t| < 1.0 GeV2c“ 2 

bin.
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Rec. Events 1 st Approx 2 nd Approx 3rd Approx 4th Approx 5th Approx
121.97 727.67 714.49 715.35 716.43 716.33
26.23 176.24 163.05 148.54 149.52 149.31
13.60 105.28 92.73 85.18 86.57 86.37
11.49 87.22 74.74 71.01 71.87 71.36
9.71 72.98 60.50 58.40 60.75 60.30
7.00 57.07 44.59 32.54 34.87 34.47
6 .0 0 51.05 38.57 33.57 34.41 34.99
4.00 51.76 39.28 39.23 37.36 38.43
2 .0 0 18.86 6.38 11.18 8 .0 1 8.46
2 .0 0 20.69 8 .2 1 18.99 18.25 18.78

Table 6 .6 : The results of the acceptance m atrix iteration procedure for the e-tagger44 

sample. A better approximation for the number of events actually produced is

obtained with each iteration.

Rec. Events 1 st Approx 2nd Approx 3rd Approx 4th Approx 5th Approx
191.23 1050.81 1037.27 1039.43 1042.26 1041.76
19.66 84.83 71.29 53.57 56.67 55.84
12.34 53.33 41.95 30.09 33.05 31.23
13.31 69.78 58.40 55.43 60.83 59.17
5.63 25.43 14.05 6.63 11.71 12.80
5.00 31.85 20.46 7.95 4.09 5.07
7.00 48.84 37.46 44.82 44.75 51.81
2 .0 0 11.30 -0.78 1 ,2 0 -7.46 -0.61
2 .0 0 15.84 4.46 12.59 3.91 8.52
2 .0 0 14.81 3.43 13.94 12.38 14.05

Table 6.7: The results of the acceptance matrix iteration procedure for the e-tagger33 

sample. A better approximation for the number of events actually produced is

obtained with each iteration.
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Finally the errors on each element nQ of the column vector of events actu
ally produced before smearing is obtained according to

^(“g) = Y  [(Aa)j£rJ(”JR) + (ak)3°'3(Aa)] •
j

The first term  describes the statistical error and the second describes the additional 
systematic error arising from the uncertainty in the m atrix elements.

6.10 Sm earing o f Inelastic and E lastic Events

To see if inelastic events are sometimes thrown out by the method of sep
arating elastic and inelastic events the total energy of the event, excluding the scat
tered positron energy, is compared to the energy of the J/\&. In elastic events the 
total energy of the final state, where the scattered positron is excluded, is expected 
to approximately equal the energy of the J / ^ .  The two quantities are therefore 
subtracted from each other. A peak is then expected at zero for elastic and low 
mass inelastic events.

The difference in these two quantities, for events which were selected as 
being elastic, of events generated by HITVM is shown in figure 6.25. All the events 
generated by this monte carlo were inelastic. It can be seen tha t the number of 
inelastic events tha t are defined as being elastic is small. The same distribution for 
those events tha t were considered as being inelastic is also shown in figure 6.25. The 
long tail towards higher values contains a much larger number of events. Inelastic 
diffractive events are therefore not expected to be mis-identified as being elastic in 
a very large number of cases.

The same distributions are essentially then plotted using elastic events 
generated by DIFFVM. Those events which were considered to be elastic, over the 
whole generated t-range starting at a t-value of zero, are shown in figure 6.26. 
Those events which were considered to be inelastic, in the range of t greater than 
|t| =  1.0 GeV2c-2 , are also shown in this figure. Approximately 9% of the generated 
elastic events are therefore expected to smear into the inelastic distribution.
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Figure 6.25: The energy of the final state (excluding the scattered positron) minus 

the energy of the J / ^  (GeV) for a) elastic and b) inelastic selected HITVM events.
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Figure 6.26: The energy of the final state (excluding the scattered positron) minus 

the energy of the J/ty  (GeV) for a) elastic and b) inelastic selected DIFFVM events.
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6.11 Lum inosity M easurem ent

The total luminosity for 1997 data is measured by the luminosity system 
of the HI detector. The components of the luminosity system were described in 
section 5.4. This is done by selecting Bethe-Heitler events. The cross section of the 
Bethe-Heitler process

e+ -f p — ► 7  +  e+ +  p

is well understood. The instantaneous luminosity (L ) is calculated from the rate 
(R) of Bethe-Heitler events as follows

z  =  *
<T

The integrated luminosity (L) of a data run is calculated at the end of a run from 
the to tal number (N) of Bethe-Heitler events which occured according to

L = *
<J

In both cases a describes the cross section of the Bethe-Heitler process. 
There are several different methods for determining the rate and the number of 
Bethe-Heitler events. The coincidence method requires the simultaneous detection 
of the outgoing scattered positron and the photon. The single photon method counts 
the rate or the total number of photons above a certain energy threshold in the 
photon detector. The coincidence method is used for the online determination of 
the luminosity whereas the single-photon method is used to obtain the final value 
of the integrated luminosity. The integrated luminosity for the 1997 data-taking 
period was determined according to the single-photon method. The value obtained 
includes only those runs which were classified as ’good’ or ’medium’, since these 
were the only runs considered in the analysis. It is also corrected for the prescale 
of subtrigger s80 to which the other subtriggers were normalised when calculating 
the trigger efficiencies. It is also corrected for the acceptance of the e-taggers. The 
value obtained for the integrated luminosity was 21.5 inverse picobarns.
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6.12 D ifferential Cross Sections in t.

The measured quantities of the previous sections are now all brought to
gether to calculate the cross section in each bin of t. The cross section in each t-bin 
is calculated according to

N g  

a  ebL
where Nq represents the number of events produced in the bin and found by the 
m atrix iteration procedure, e represents the trigger efficiency for that bin, L is 
the to tal integrated luminosity for 1997 data, corrected for the effects described 
in the previous section and b is the branching ratio for the J /f?  to decay into an 
electron-positron pair. The branching ratio is included since the cross section for J /t?  
production is required for all decay modes, not just the contribution from the e+e" 
decay mode. The branching ratio for the decay of the J/W to an electron-positron 
pair is 6 .0 2 %. The bin widths are all 1 GeV2c- 2  wide and so there is no need for an 
additional correction for the bin width. The differential cross sections for electron- 
proton scattering are shown in figure 6.27. Both centre-of-mass energy ranges are 
shown on the same plot. The cross sections in the range |t[ =  0  — 1 GeV2c~2, not 
shown on this plot, are given by 0.611 ±  0.061 |st&t ±  0.064jsys nb GeV- 2c4 in the 
e-tagger44 centre-of-mass energy range and 1.01 ±  0.11 |5tat dz 0.10|sys nb GeV_2c4 in 
the e-tagger33 centre-of-mass energy range. The bin centres in the higher centre- 
of-mass energy range have been slightly offset in figure 6.27 so tha t the errors may 
more easily be distinguished from those in the lower centre-of-mass energy range.

An additional error in the height arises from the quantities which take the 
same value in each bin. It is calculated according to

The error in the luminosity is 1.5 percent, the error in the trigger efficiency, cal
culated according to a weighted average is stated previously, and the error in the 
measured branching ratio is 0.03%. Combining all of these together gives an addi
tional error of 1.5% in the height of the e-tagger44 centre-of-mass energy distribution 
from bin number 4 upwards. The errors in the trigger efficiencies in the first three 
bins, where the bin efficiencies were used, are shown together with the errors on 
these points in the plot. An additional error of 1.5% in the height of the e-tagger33 
centre-of-mass energy distribution is obtained.
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Figure 6.27: The differential cross section d<r/dt as a function of the |t| for e+p —> 

J/4> Y. The centre-of-mass energy range 60 GeV < W^p < 147 GeV is shown in 

black and the centre-of-mass energy range 165 GeV < W7P < 233 GeV is shown in 

red. The outer error bars represent the systematic uncertainties.

The Regge theory and QCD calculations are performed for two particles 
entering and two particles leaving the interaction region. These measurements there
fore need to be converted into photon-proton differential cross sections. This may 
be done by dividing by the incoming flux of transversely polarised photons. The 
flux is calculated by integrating

r  _  a«n(l -  y +  V)

over the y-range to which the measurements apply. The fluxes are 0.01 in the e- 
tagger33 range and 0.03 in the e-tagger44 range. The photon-proton differential 
cross sections in both centre-of-mass energy ranges are shown in figure 6.28. The 
cross sections at low |t| are 20.3 ±  2.0|stat ±  2.11sys nb GeV- 2c2 for e-tagger44 events 
and 101.3 ±  10.9|stat ±  10.3|sys nb GeV_2c2 for e-tagger33 events.
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Figure 6.28: The differential cross section dcr/dt as a function of the |t| for 7 p —► 

J/\P Y. The centre-of-mass energy range 60 GeV < W7P < 147 GeV is shown in 

black and the centre-of-mass energy range 165 GeV < W ,p < 233 GeV is shown in 

red. The outer error bars represent the systematic uncertainties.

The centre-of-mass energy of the photon-proton system squared (W 2p) to 
which these measurements correspond may be calculated from the Bjorken y range of 
the e-taggers. In photoproduction the photon-proton centre-of-mass energy squared 
is calculated at a particular value of Bjorken y according to

where s is the centre-of-mass energy squared of the positron-proton system. This 
is approximately equal to 90530 GeV2 at HERA. The energy range covered by e- 
tagger44 is then given approximately by 60 < W7P < 147 GeV and the energy range 
covered by e-tagger33 is given approximately by 165 <  233 GeV.
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C hapter 7 

A nalysis o f  th e C entre-of-M ass 

Energy D ependence.

It was explained in chapter 2  that at low centre-of-mass energies net particle 
states scatter via the exchange of Reggeons with intercepts less than unity. Scatter
ing processes which proceed via the exchange of the same Reggeon may be related 
by crossing symmetry. The five processes related to ?r+-proton elastic scattering, 
which all proceed via the exchange of the Delta trajectory, were then identified. It 
was explained tha t one charged version of the Delta resonance, the first point on 
the Delta trajectory, is produced as a resonance in each of these related processes. 
At slightly higher centre-of-mass energies each of these processes then produce one 
charged version of the A(1950)-resonance, the second point on this trajectory, and 
so on. The Regge trajectory which begins with the Delta resonance was shown in fig
ure 2.9. At higher centre-of-mass energies the pomeron trajectory dominates many 
scattering processes. This is interpreted as being due to the similar constituents 
inside the larger hadronic states interacting with each other at these energies. At 
higher centre-of-mass energies six crossed constituent interactions could describe the 
many related scattering processes. At these energies, if a trajectory of bound states 
exist, then one version of the first state on pomeron trajectory is expected to be 
produced as a resonance in each process which tends to the pomeron trajectory. 
As the centre-of-mass energy is increased one version of the second particle on the 
pomeron trajectory should then be produced, and so on.
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In this chapter the differential cross section dcr/dW^p is investigated as a 
function of s — W^p for processes in which a J / $  vector meson was once again 
produced at the photon vertex but in which the proton remained intact at the other 
vertex. No pomeron states are incorporated in the QCD calculation for pomeron 
exchange, however since a pomeron trajectory could exist with a non-zero gradient, 
it is necessary to use bin widths in WjJp which are as small as possible (as the 
gradient of the pomeron trajectory is allowed to become steeper the pomeron states 
become closer together in mass). This represents the first time tha t the differential 
cross section d<r/dW^p has been investigated in this way.

The procedure for selecting events in which a single 3/^f  vector meson was 
produced at the photon vertex was described in the previous chapter. Here a proton 
dissociative sample was of interest and so events elastic at the proton vertex were 
removed in section 6.3. Those events which were defined as being proton dissociative 
in the previous chapter are now ignored and the events which were defined as being 
elastic are selected. The procedure for then extracting the differential cross section 
in W^p is essentially identical to tha t used to extract d<x/dt with the exception 
tha t, since the scattered lepton was tagged, no matrix correction method is used 
to correct for any potential smearing effect in W^p. Events produced outside of 
the ranges covered by the e-taggers would also be needed to do this. The analysis 
therefore particularly relies upon a correct modelling of the smearing effect in the 
monte carlo. This simplication is justified because the analysis aims to determine 
whether the method could be used to experimentally identify the pomeron states.

7.1 The M onte Carlo Event G enerator D IFFV M .

The monte carlo event generator DIFFVM is chosen to describe proton 
elastic diffractive production of the J/W vector meson. This generator is based on the 
non-perturbative calculations of Chapter 2 . Proton intact and proton dissociative 
versions of this event generator have been written. The generated differential cross 
section d u /d t for photon-proton collisions in which the proton remains intact is 
given by
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For processes in which the proton dissociates the form is

^ -d M y  ~  W £ e b'*M£.

The parameters e, b, b/ and (3 are determined from fits to J /4 j diffractive events 
at t  values less than 1 GeV2c~2. The parameters of the proton dissociative event 
generator used in the analysis of the previous chapter were equal to e — 0.225, 
b' =  1.6 GeV2c“ 2 and (3 =  0.0808. The parameters of the proton elastic event gen
erator used here are equal to e =  0.225 and b =  4 GeV2c~2. Once again the decay 
distribution of the J /4 / to an electron-positron pair is taken according to s-channel 
helicity conservation, as described for the event generator HITVM. A proton-intact 
version of DIFFVM, which covers the range in Bjorken y of y <  0.4, was selected. 
Each event was then subjected to a simulation of the HI detector response. The ac
ceptances of the electron taggers were added afterwards as described in the previous 
chapter.

7.1.1 R eso lu tion  in Bjorken y

The centre-of-mass energy squared (W 2p) of the photon-proton system may 
be reconstructed from a measurement of the Bjorken scaling variable y. In the 
kinematic region of photoproduction the relationship is given by

W ’p =  ys

where s is the centre-of-mass energy squared of the positron-proton system, equal to 
about 90530 GeV2 at HERA. The energy resolution of the e-tagger at z—-44.0 metres 
is poor, so Bjorken y was constructed from a measurement of the (E —P z) of the final 
state, excluding the scattered positron, according to the method of Jacquet-Blondel 
in both e-tagger centre-of-mass energy ranges. The generated and reconstructed 
values of y for events in which the proton remained intact are compared in figure 
7.1. Here events selected by e-tagger33 and e-tagger44 are presesented on the same 
plot. The full width at half height is about 0.0035. Bin widths in y must be at least 
as wide as the full width at half maximum. The width is chosen to be equivalent to 
y =  0.0050. Each y-bin therefore corresponds to a W 2 -bin of about 450 GeV2.
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Figure 7.1: The separation of the reconstructed and generated values of Bjorken 

y for events selected by e-tagger33 and e-tagger44. Bjorken y was reconstructed 

according to the method of Jacquet Blondel.

7.1 .2  Sm eared A ccep tan ces and B in  P u rities .

The expression for the smeared acceptance (A) in each bin of t was pre
sented in section 6.9.1. It was given by

A = ^
Ng

where N r  is the number of events reconstructed in a particular bin, regardless of 
whether they were actually generated there, in which Nq events were actually gener
ated. The smeared acceptances in each bin of W^p for events selected by e-tagger44 
are shown in figure 7.2. The distribution follows closely the acceptance function of 
e-tagger44. This is expected since the acceptance function selects events from the
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Figure 7.2: The smeared acceptances as a function of W 2p for events selected in the 

e-tagger44 centre-of-mass energy range.

smooth W 2p-distribution generated by the monte carlo. Small deviations from the 
acceptance distribution are introduced by the selection code. The smeared 
acceptances in each bin of W 2p for events selected by e-tagger33 are shown in 
figure 7.3. The y-range covered by the monte carlo ends below the region where 
the acceptance of this e-tagger becomes high. The smeared acceptances are used to 
calculate the cross section d<r/dW2p in each bin of W 2p. The errors in the smeared 
acceptances are therefore to be incorporated in the to tal systematic error on the 
cross section. The number of events reconstructed in a particular bin, however, 
includes the number of events that smear in from other bins. The method of 
calculating errors by summing in quadrature can therefore not be used until the 
expression for the smeared acceptance has been expanded in terms of independent 
quantities.
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Figure 7.3: The smeared acceptance as a function of W^p for events selected in the 

e-tagger33 centre-of-mass energy range.

The number of events reconstructed in a particular bin may be written as 
the sum of the number of events which were generated and reconstructed in that 
bin ( N s t a y )  and the extra amount ( N e n t e r )  that were reconstructed there but were 
generated in other bins, as follows

N r  =  N s t a y  +  N e n t e r *

Since N s t a y  is given by the number of events generated minus all those events 
which were generated but not reconstructed there ( N l e a v e )  the expression for the 
acceptance may be written as

l  _  1 N l e a v e  N e n t e r  

N g  N g  '
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Using the original expression for the acceptance to replace Ng in the second 
term  and rearranging gives

_  (1 -  Ae ) 
( 1  +  a l )

where Ae =  ( N e n t e r / N q )  and A l =  ( N l e a v e / N r ) .  These fractions are independent 
of each other. The number tha t enter a bin is independent of the number tha t were 
generated in tha t bin. The number tha t enter depends on the number tha t were 
generated in other bins. The number tha t leave a particular bin is also independent 
of the number tha t were reconstructed there. The fractional error in the acceptance 
may therefore be obtained by combining the errors on Ae and A l in quadrature. 
The expression for doing this is given by

\AJ (1 — A e )2 (1 +  A l ) 2 

The uncertainty in Ae is given by

rr2 N 22   Nen ter  i ENTER 2

Ab “  ( N g ) 2 N ^ j N g '

Similarly the uncertainty in Al is given by

_ 2  _  ^ N leave , ^L E A V E  _ 2

A l_  (Nr)* +  N |

The uncertainty squared in the number of events generated is taken to be Nq since 
the monte carlo makes a decision as to what will happen to each generated event 
in turn. The squared uncertainties in the other quantities are obtained by summing 
the weights squared of each event. The events were weighted according to the 
acceptances of the e-taggers.

The bin purities, calculated in the same way as for the t-distribution in 
section 6.5.2, for events selected by e-tagger44 are shown in figure 7.4. The bin 
purities for events selected in the e-tagger33 centre-of-mass energy range are shown 
in figure 7.5. To calculate the errors in the bin purities a similar method was used 
as tha t described for the smeared acceptances. Some of the chosen bins in the e- 
tagger33 range have zero purities. The events which are obtained in these bins (the 
acceptances are not zero in these bins) were therefore all generated in other bins.
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Figure 7.4: The purities in each bin of W 2 for events selected by e-tagger44.
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Figure 7.5: The purities in each bin of WL, for events selected by e-tagger33.
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7.2 C alculation of the Trigger Efficiencies

The trigger efficiencies will once again be needed for a calculation of the 
cross section in each bin of W^p. They are constructed using the same method 
described in section 6 .8 . Once again subtrigger s85 is used to select events in the 
e-tagger44 centre-of-mass energy region and this subtrigger together with subtrigger 
s81 are used to select events in the higher centre-of-mass energy region. The tagger 
subtrigger s80 is once again used as a reference. The efficiency of the track trigger 
element of subtrigger s85 is shown, for events selected in the e-tagger44 centre-of- 
mass energy range, in figure 7.6. The efficiency of the track trigger element appears 
to show no variation with W^p. The small variations are once again most likely due 
to the small numbers of events obtained. No events were reconstructed at the edge 
of this centre-of-mass energy range.

1
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Figure 7.6: The efficiency of the track trigger element as a function of W^p for events 

selected by e~tagger44.
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Figure 7.7: The efficiency of a) the SPACAL and b) the track trigger elements as a 

function of W^p for events selected in the e-tagger33 centre-of-mass energy range.

The efficiency of the track trigger element is taken to be flat across the 
whole W^p range. A single estimate is obtained by taking a weighted average. It 
is given, together with its associated uncertainty, by e =  0.9997 ±  0.0004. The 
efficiency of track trigger element of s85 for events selected in the e-tagger33 centre- 
of-mass energy range is shown in figure 7.7b). The efficiency of the SPACAL trigger 
element of s81 is shown in figure 7.7a). The two trigger elements are combined 
together in the same way as for the t-analysis. The result is shown in figure 7.8. 
The combined trigger efficiency (ec) in this region is also taken to have no W^p- 
dependence. The best estimate of the combined trigger efficiency, together with its 
associated uncertainty, is ec =  0.98 ±  0.02.
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Figure 7.8: The combined efficiency of the SPACAL and track trigger elements as 

a function of W 2p in the e-tagger33 centre-of-mass energy range.

7.3 Background Subtraction in D ata

The subtraction of background processes in each bin of W 2p is approached 
in a similar way to tha t undertaken in section 6.7. The sources of background 
discussed in section 6 .6  are also expected to occur in the sample of proton-elastic 
events (The proton may remain intact in both the lepton pair-production process and 
when a higher mass charmonium state is produced at the photon vertex). Since the 
number of events obtained in each bin never rise to a height where a full functional 
fit would be justified, the number of events reconstructed within a mass window of 
2.08 <  m < 3.16 GeVc- 2  are counted. The same mass window is used in each centre- 
of-mass energy range. The number of events reconstructed are listed, together with 
their statistical errors (\/N)} in Table 7.1. The reconstructed mass distributions in 
each bin of W 2 are to be found in Appendix B of this thesis.
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e-tagger44 e-tagger33

Bin No. of Events Bin No. of Events Bin No. of Events
1 0  ±  0 18 0  ±  0 1 3 ±  2
2 1 ±  1 19 4 ±  2 2 1 ±  1

3 0  ±  0 2 0 3 d= 2 3 1 ±  1

4 1 ±  1 2 1 3 ±  2 4 3 ±  2
5 3 ±  2 2 2 5 ±  2 5 1 rb 1

6 2  i  1 23 2  ±  1 6 1 rb 1

7 2  ±  1 24 1 ±  1 7 1 ±  1

8 6 ± 2 25 1 ±  1 8 2  ±  1

9 6  ±  2 26 1 ±  1 9 4 ±  2
1 0 5 ± 2 27 0  ±  0 1 0 2  ±  1

1 1 5 ±  2 28 1 dh 1 1 1 2  ±  1

1 2 14 ±  4 29 1 ±  1 1 2 3 ± 2
13 6  ±  2 30 0  ± 0

14 6  ±  2 31 0  ± 0

15 9 ±  3 32 0  ± 0

16 10 ±  3 33 0  ± 0

17 4 ±  2 34 0  ± 0

Table 7.1: The number of events reconstructed in each bin in the e-tagger44 and 

e-tagger33 centre-of-mass energy ranges together with their associated statistical 

uncertainties.

7.4 D ifferential Cross Section in W?.

The results of the previous sections are now all combined to give a mea
surement of the cross section in each bin of W^p. The positron-proton cross section 
(7 in each bin is obtained according to the following expression

N
17 ~  AebLW

where the bin has a width W, an acceptance A, N events were reconstructed there 
and e refers to the trigger efficiency appropriate for that bin. The luminosity (L) is 
equivalent to the value calculated previously as described in section 6.11. Likewise 
the branching ratio (b) is unchanged. Of interest here is the photon-proton cross
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e-tagger44 e-tagger33

Bin Photon Flux Bin Photon Flux Bin Photon Flux
1 0.002312 18 0.000729 1 0.000262
2 0.002068 19 0.000699 2 0.000256
3 0.001868 20 0.000670 3 0.000251
4 0.001702 21 0.000644 4 0.000246
5 0.001562 22 0.000619 5 0.000241
6 0.001443 23 0.000596 6 0.000236

0.001339 24 0.000575 7 0.000232
8 0.001248 25 0.000555 8 0.000227
9 0.001169 26 0.000536 9 0.000223
10 0.001098 27 0.000518 10 0.000219
11 0.001035 28 0.000501 11 0.000215
12 0.000978 29 0.000485 12 0.000211
13 0.000926 30 0.000470
14 0.000880 31 0.000455
15 0.000837 32 0.000442
16 0.000798 33 0.000429
17 0.000762 34 0.000417

Table 7.2: The calculated photon flux in each centre-of-mass energy bin for both 

the e-tagger44 and e-tagger33 ranges.

section. To convert the positron-proton cross section into a photon-proton cross 
section it is necessary to divide by the flux of transverse photons as before. The 
values of the integrated photon flux obtained in each bin of the e-tagger44 range are 
listed in Table 7.2. The values for the bins in the e-tagger33 range are also listed. 
The differential cross section dcr/dW^p as a function of W^p for events selected in 
the e-tagger44 centre-of-mass energy range is shown in figures 7.9, 7.10 and 7.11. 
The additional uncertainty in the height of the cross section, arising from the un
certainties in the luminosity, branching ratio and trigger efficiencies, is 1.5%. The 
differential cross section d<r/dW^p is shown, for events selected in the e-tagger33 
centre-of-mass energy range, as a function of W^p in figure 7.12. The additional 
error in the height of the distribution is 1.6%.
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Figure 7.9: The differential cross section d<r/dW^p as a function of the W^p for the 

process 7 p —» J/iP  p. The outer error bars represent the systematic uncertainties.
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Figure 7.10: The differential cross section dcr/dW^p as a function of the W^p for the 

process 7 p —» J / $  p. The outer error bars represent the systematic uncertainties.
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Figure 7.11: The differential cross section d<r/dW^p as a function of the W^p for the 

process 7 p —> J / ^  p. The outer error bars represent the systematic uncertainties.
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Figure 7.12: The differential cross section d<7/dW^p as a function of the W ^, for the 

process 7 p —*• J/\P  p. The outer error bars represent the systematic uncertainties.
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C hapter 8 

D iscussion .

The measured photon-proton differential cross section der/dt was presented 
as a function of |t] in two different W7P centre-of-mass energy ranges at the end of 
chapter 6. Consider first the differential cross section in the lower centre-of-mass 
energy range. This is most probably described by a smoothly varying function in 
|t| (there are some very slight variations away from this dependence in the plotted 
points, however the error bars are still too large to be certain of any real variations). 
A smooth variation in the differential cross section is predicted in both theories. 
The Regge theory prediction for the behaviour of the differential cross section was 
derived in chapter 2. It was given as

—  ~  s (2a/fc+2«o-2)
dt

This, however, may also be written as follows

^  ~  exp (ln s (2«'‘+2«o-2))

which simplifies to give the following dependence

do- . . .
—  ~ e x p (a |t | +  b)

where a =  —2a!In s  and b =  (2o:o — 2 )In s. The result of a least squares fit of the 
Regge theory prediction to the low-W7P differential cross section is shown in figure 

8 .1.
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Figure 8.1: The result of a least-squares fit of the Regge theory prediction to the 

photon-proton differential cross section d<r/dt in the e-tagger44 centre-of-mass en

ergy region (60 < W7P < 147 GeV).

The best estimates of parameter a may be used to extract an estimate for 
the gradient of the pomeron trajectory at these energies according to the Regge the
ory prediction. The best values obtained for the a and b parameters, together with 
their associated uncertainties, are a =  —0.3±0.1 and b — 8.4±2.4 . The chi-squared 
of the fit is 0.114. The best estimate of the gradient of the pomeron trajectory is 
then given by a ' =  0.016 ±  0.005 GeV-2c-2 . A value of s =  (103.5)2, corresponding 
to the central value of the W7P range to which this distribution applies, is used. 
No error in the centre-of-mass energy is included in this estimate. The intercept of 
the pomeron trajectory may not be estimated since the value of the factor which 
pre-multiplies the exponential dependence is required. The pre-factor multiplied by 
eb gives the height of the cross section at t= 0 . Clearly it is possible to fit any value 
for the intercept by making a corresponding change to the fitted pre-factor (the 
Regge intercept is extracted from fits to the total cross section). The errors here are
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obtained in the usual way of summing in quadrature.

The best estimate of the gradient in this centre-of-mass energy range is 
much smaller than the value of 0.25 GeV-2c-2 which was extracted from fits to low 
t differential cross sections, as described in chapter 2. Regge theory, however, does 
not predict the gradient and intercept of particle trajectories. These have to be 
extracted either using the mass states or, if the states are not identified, from fits 
to total and differential cross sections. The measurement suggests tha t a pomeron 
trajectory with a small, positive gradient is responsible for the scattering force in 
diffractive, high t J /\£  production, and that this is a different Regge pomeron to that 
responsible for the scattering force in, for example, low-t proton-proton scattering.

It will be recalled tha t the pomeron was required to account for the results 
of scattering experiments performed at high centre-of-mass energies. The typical 
behaviour of total cross sections which tend to the pomeron trajectory was shown in 
figure 2.10 for proton-proton and proton-antiproton scattering. Here the two curves 
join at a centre-of-mass energy of about y/s ph 160 GeV. The differential cross 
section here was measured for centre-of-mass energies of about W7P ~  103.5 GeV. It 
is im portant, therefore, to consider whether the extracted behaviour of the pomeron 
alters as the centre-of-mass energy is increased. Depending on whether the total 
cross section, for example, converges upon the pomeron dependence from above or 
below, the extracted intercept in this centre-of-mass energy range would lie either 
above or below the true value respectively. A better estimate of the parameters 
of the pomeron trajectory is expected to be extracted in the higher centre-of-mass 
energy range.

Consider now the differential cross section in the centre-of mass energy 
range 165 < W7P < 233 GeV. The Regge theory prediction is fitted to the dif
ferential cross section in figure 8.2a). The exponential dependence will only just 
pass through, within errors, all the points, since the distribution has moved away 
slightly from the smoother dependence observed in the lower centre-of-mass energy 
range. The best estimate of the a parameter obtained here is a =  —0.15 ±  0.23. The 
chi-squared of the fit is 0.283. The best estimate for the gradient of the pomeron 
trajectory extracted from this parameter is then a! =  0.016 ±  0.010 GeV”2c"2. A 
value of s — (199)2 is used to extract this value.
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Figure 8.2: a) The photon-proton differential cross section d<r/dt in the e-tagger33 

centre-of-mass energy region (165 < W^p < 233 GeV) and b) the result of a least- 

squares fit of the Regge theory prediction.

The extracted value of the gradient of the pomeron trajectory in the higher 
centre-of-mass energy range is consistent with that extracted in the lower centre- 
of mass energy range. The same Regge trajectory therefore describes the high t 
differential cross section in both centre-of mass energy ranges. The fall-off of the 
differential cross section has, however, become more steeper in the higher centre- 
of-mass energy range. This is expected in Regge theory due to the behaviour of 
parameter a, which was extracted previously on page 176. Since the expression for 
the a-parameter is given by

a = —2a'In  s,

for a fixed value of the gradient (a ')  the magnitude of ’a ’ is expected to increase 
with increasing centre-of mass energy squared s. This property is referred to as 
shrinkage, and is a prediction of Regge theory.
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A  deviation away from the smoother dependence observed at lower centre- 
of-mass energies is observed at higher s. These deviations might be introduced by the 
separation of elastic and proton-dissociative events using the forward detectors, but 
also by a poorer lepton identification at higher W7P. No tracking information was 
used at higher W 7P. It was also explained, however, in chapter 4 tha t Regge theory 
predicts a diffraction pattern  to appear at ’high enough’ centre-of-mass energies. 
At HERA, since the energy of the proton is ’fixed’ higher centre-of-mass energies 
correspond to higher photon energies and therefore smaller photon wavelengths. 
As in optics experiments, the wavelength of the incoming light wave must become 
comparable with the size of the target for a diffraction pattern  to appear. This 
could also, therefore, account for deviations away from a smooth dependence as the 
centre-of-mass energy increases.

To test the diffraction pattern  hypothesis a fit may be performed to the 
differential cross section in the higher centre-of-mass energy range. Since the central 
maximum is expected to appear at |t| =  0 GeV2c-2 the |t| =  0 — 1 GeV2c~2 bin must 
be included in this fit. The positions of the secondary maxima depend upon the 
size of the proton target and how they are separated depends upon the shape of the 
proton, which is not known. In Regge theory the series of maxima and minima are 
enveloped by the exponential dependence extracted on page 176. This prediction 
is fitted to the measured differential cross section under the assumption that the 
maxima are evenly separated by |tj ~  3 GeV2c~2 (corresponding to where upward 
deviations might be appearing) in figure 8.2b). Only the bins |t| =  0 — 1 GeV2c“2, 
|t| =  3 — 4 GeV2c-2 , |t| =  6 — 7 GeV2c-2 and |t| =  9 — 10 GeV2c-2 are therefore 
considered. The differential cross section, however, might continue to rise as |t| is 
increased beyond the highest |t|-bin and one could also argue tha t the differential 
cross section is consistent with zero for jt| > 7 GeV2c-2 . Since the differential cross 
section is large at low t the log of the differential cross section is plotted. A straight 
line dependence is expected with a gradient given by —2a:' log s. The best estimate of 
the gradient is — 0,14±0.06 (the best estimate of the intercept is 1.4±0.5). The chi- 
squared of the fit is 0.378. Using a central value of s =  (199)2 GeV2 the best estimate 
of the gradient of the pomeron trajectory is therefore of =  0.016 ±0.010 GeV-2c-2 
and is consistent with the values extracted previously. It is therefore not possible 
to rule out that a diffraction pattern is starting to appear at these centre-of-mass 
energies. Also the same extracted trajectory might also describe the low t region.



C H APTER 8. DISCUSSION. 181

Consider now comparing this result to the results of other analyses. Previ
ous differential cross sections obtained from a consideration of just low |t| scattering 
and just high |t| scattering are both shown in figure 8.3. The low |t| result has been 
published [51], whereas the high |t| distribution represents a preliminary result [52]. 
Both of the differential cross sections are presented for positron-proton scattering 
at HERA. The method of anti-tagging the scattered lepton was used, so the results 
cover a slightly different kinematic range. The J / #  was selected via its decay to 
muons [52]. It is first of all apparent tha t there is a very sharp change in the fall-off 
of the differential cross section at jt| =  1.0 GeV2c“ 2. This could be interpreted 
as being due to a second, different pomeron giving rise to the scattering force at 
high t. If just low |t| events are considered, however, the fall off of the differential 
cross section is typically very steep (corresponding to just the central maximum). 
In the high centre-of-mass energy range considered here a pomeron trajectory with 
a gradient of about a' ~  0.14 GeV-2c-2 would be needed to account for the fall-off 
between the first and second |t| bins. This gradient is much more consistent with 
the value of a! =  0.25 GeV~2c-2 , previously extracted using Regge theory. If, on 
the other hand, one ignores the low |tj events and attem pts to fit a dependence 
through all the high |t| points, a much smaller gradient will be obtained. It may 
be necessary therefore to examine the diffraction pattern  hypothesis in more detail. 
The sudden change at |t| =  1.0 GeV2c“2 also occurs exactly where the low t region 
where DIFFVM is used and the high t region where HITVM is used meet.

The data points show a rise at about |t| — 3.5 GeV2c~2 and again at about 
|t| =  6.5 GeV2c~2 as in the higher centre-of-mass measurement of this analysis. The 
results of these analyses suggest the production of a similar deviation away from a 
smooth dependence in the muon channel, although the centre-of-mass energy range 
considered in the muon analysis only corresponds to the lower centre-of-mass energy 
range considered here . It is hard to believe, however, tha t identical statistical 
deviations arose in both analyses (1994 and 1995 data were considered in the muon 
analysis). The Regge dependence for one particular choice of the pomeron gradient 
and intercept is also plotted. The detection of events at high |t| only, however, rules 
out this particular choice of trajectory, not the prediction in general.

The differential cross sections measured here are well described by a Regge 
trajectory with a gradient ex! — 0.016 ±  0.005 GeV”2c~2. As the centre-of-mass 
energy is increased the cross section becomes narrower and starts to collect at low t
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Figure 8.3: The published low-t data for diffractive J/^ f (open points) and the 

results of a high-t analysis in which the J/\£  was selected via its decay to muons 

(closed points).

(in the range 165 < W7P < 233 GeV the first |t|-bin contains about 83% of the 
observed cross section, compared to only about 50% in the lower centre-of-mass 
energy range). The behaviour of the differential cross sections agree well with the 
predicted shrinkage of the diffraction peak in Regge theory. The appearance of 
a shrinkage effect is not predicted in perturbative QCD. These and other high t
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measurements are perhaps indicating a shift away from a smooth dependence for 
increasing W*yP and increasing Q2. These deviations can be consistently described 
by a diffraction pattern  here using the same pomeron gradient extracted from the 
exponential fits. There is then no change in the fall-off of the differential cross sec
tion at |t| =  1.0 GeV2c~2. At still higher values of s, however, shrinkage predicts 
tha t the cross section will tend to a very narrow central maximum (this is also ex
pected through the optical theorem) which contains all of the cross section, therefore 
justifying the approximation tha t the pomeron gradient may be extracted from low 
t measurements.

Consider now the behaviour of the intercept of the pomeron trajectory. 
Over the kinematic region considered here the total cross section may still be con
verging upon the pomeron. For a fixed value of the factor which pre-multiplies the 
expression for the differential cross section in Regge theory, the value of the intercept 
required to reproduce the height of the differential cross section at t =  0 may differ 
in the lower and higher centre-of mass energy ranges. The ratio of the heights of 
the differential cross sections at t =  0 is given, according to Regge theory, by

As?*"8" 1’

1 “

where ckq and a o refer to the effective intercepts in the lower centre-of-mass energy 
range (s =  Si) and the higher centre-of-mass energy range (s =  S2) respectively. 
Taking the log of this equation gives

log r =  2(aJ log sx -  o£ log ss) -  2(log si -  log s2).

Using, once again, values of s which correspond to the central values of the ranges 
considered one may approximate the ratio using the heights of the differential cross 
section in the |t| =  0 — 1 GeV2c~2 bin giving

a* «  1.14o£ -  0.217.

The ratio is given by r =  0.25 ±  0.04. There is a linear relationship between the 
intercept required in the lower centre-of-mass energy range and the intercept required 
in the higher centre-of-mass energy range. The line intersects the line okq =  «o 
about 1.55. If one were to fit the variation in the cross section with one fixed value 
of the pomeron intercept this is the value that would be obtained. Below this value
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however ckq is always smaller than ckq, therefore, in the range where the intercept is 
expected in both theories the cross section is expected to converge on the pomeron 
trajectory from below (if the intercept is actually higher than  about 1.55 then the 
trajectory is expected to converge from above). The to tal cross section is therefore 
expected to be rising quicker with centre-of-mass energy in this region as it converges 
to the pomeron trajectory. If it were now attem pted to describe this variation with 
a single pomeron intercept, the intercept would be overestimated.

The measured photon-proton differential cross section dcr/dW^p was pre
sented as a function of W^p, in two W^p ranges, at the end of chapter 7 for events 
in which the proton remained intact. The gradient of the to tal cross section plotted 
as a function of s is therefore sampled here in small bins of s. In Regge theory the 
total cross section is predicted to behave as

(7 ~  S*0" 1

where cko is the intercept of the leading Regge pole. Differentiating this with respect 
to s gives

— 2<7 ~  S

The differential cross section d<7/dW^p multiplied in each bin by s therefore gives, 
apart from a pre-multiplying constant, a measurement of the to tal cross section. The 
differential cross section is converted into a total cross section and plotted, for the 
e-tagger44 centre-of-mass energy range, in fig. 8.4a), and across both centre-of-mass 
energy ranges in fig. 8.4b).

Consider first the to tal cross section for events selected by e-tagger44. The 
total cross section is rising over this centre-of-mass energy range. As previously 
explained, however, the total cross section may still be converging upon the pomeron 
trajectory in this region. One must therefore be careful not to fit a functional 
dependence prematurely. A smoothly varying function would describe this rise well. 
As s becomes larger, however, the total cross section starts to deviate away from 
a smooth dependence. This effect could, however, be simply due to the smaller 
statistics obtained in these bins. Consider now the total cross section viewed across 
both the investigated regions. In the e-tagger33 s-range a better approximation to 
pomeron behaviour is expected. Here, however, the total cross section has moved 
still further away from a smooth dependence. This behaviour does not appear to 
have been introduced by the bin acceptances.
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Figure 8.4: a) The measured to tal cross section for 7 p — J/^P p in the s-range cov

ered e-tagger44 and b) the same measurement together with the total cross section 

measured in the s-range covered by e-tagger33.

It was explained at the beginning of chapter 7 that, if a trajectory of bound 
states exist, one version of each of the pomeron states are expected to be produced 
as resonances in this scattering process. The differential cross sections der/dt appear 
to be more consistent with the Regge theory approach. The deviation away from 
a smooth dependence in the total cross section as s is increased might indicate 
a resonant production of pomeron states, as suggested by Regge theory. Higher 
statistics, however, will be needed.
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C hapter 9

C onclusion.

The lepton-proton and photon-proton differential cross sections dtr/d t have 
been measured as a function of t for diffractive J p r o d u c t i o n  in the photon-proton 
centre-of-mass energy ranges 60 < W7P < 147 GeV and 165 <  W7P < 233 GeV, 
using data taken during 1997 by the HI detector at HERA. A photon elasticity 
cut of z >  0.8 was used to select J/41 vector mesons produced elastically at the 
photon vertex. Photon virtualities Q2 < 0.01 GeV2c-2 were selected by tagging the 
scattered lepton and proton-dissociative events were selected by demanding a proton 
remnant mass greater than about 1.6 GeVc-2 at the proton vertex. The differential 
cross sections were measured in the range |t | — 0 — 10 GeV2c~2.

The differential cross sections in both the lower and higher W7P ranges 
were well described by a falling exponential dependence. The fall-off in the higher 
centre-of-mass energy range was sharper, however, than the fall-off in the lower 
centre-of-mass energy range, a greater percentage of the observed cross section col
lecting in the |t| =  0 — 1 GeV2c~2 range at higher s than at lower s. The gradient 
of the pomeron trajectory obtained by performing an exponential fit in the lower 
centre-of-mass energy range was a f = 0.016 ±0.005 GeV-2c-2 . In the higher centre- 
of-mass energy range the extracted value was a * — 0.016 ±0.010 GeV-2c-2 . These 
gradients were found to be consistent with each other and therefore with the pre
diction for a shrinkage of the diffraction peak in Regge theory. No shrinkage is 
expected within the framework of perturbative QCD. The measured gradient of this 
trajectory, however, suggests that a different pomeron is responsible for the scatter
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ing force in high t, diffractive J / ^  production than tha t responsible for the force 
in the low t processes used to extract the soft pomeron behaviour. Shrinkage, how
ever, predicts th a t the cross section will shift towards low |t| with increasing s, and 
this justifies the use of low t measurements to approximate the behaviour of the 
pomeron. A pomeron gradient extracted using just the low |t| data was found to be 
much larger than tha t obtained by a fit to the entire t-range. This also suggested 
that as s is increased the gradient of the pomeron trajectory will tend towards the 
soft pomeron value and further away from the QGD prediction.

The measurements are consistent with the results of low |t| and high |t| 
muon channel analyses. Possible deviations away from a smooth exponential depen
dence in this and the muon channel analyses were discussed. It was not possible 
to rule out th a t a diffraction pattern  starts to appear at higher W7P and higher 
Q2. Diffraction patterns are predicted in Regge theory at ’high enough’ s. It was 
possible to describe the behaviour of the differential cross section over the whole 
t-range at high W 7P in terms of the same, single pomeron trajectory extracted from 
the exponential fits using this prediction.

The lepton-proton and photon-proton differential cross sections dcr/dW2p 
have been measured as a function of s =  W 2p in the same kinematic region for 
diffractive J /\?  production in which the proton remains intact (proton remnant 
masses less than about 1.6 GeVc-2). The differential cross section der/dW2p can be 
converted into a measurement of the total proton-intact cross section as a function 
of s. The to tal cross section is rising over this kinematic range. A deviation away 
from a smooth dependence is observed in the total cross section with increasing s. 
These deviations might be interpreted as being due to the resonant production of 
pomeron states, as predicted by Regge theory.

It is concluded that the Regge theory gives a much more plausible descrip
tion of relativistic scattering. A higher luminosity has since been collected by the 
HI detector during 1999 and this provides an opportunity to decrease the statistical 
uncertainties in these measurements. A more detailed approach to decoupling the 
parameters of the pomeron trajectory from convergence effects is however needed. 
Of particular interest would be a measurement of the to tal cross section across the 
entire s-range visible at HERA. This may be done at HERA by anti-tagging the 
scattered lepton, which in itself would lead to an increase in available statistics. In
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addition, an investigation of the differential cross section der/dt in the muon channel 
with increasing centre-of-mass energy should confirm the shrinkage effect observed 
here. Investigations of the diffractive process which make use of both of the leptonic 
decay modes of the J/W should also be considered.
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A ppendix  A

Feynm an R ules for QCD

The following Feynman Rules are required for the amplitudes considered 
when deriving the BFKL pomeron in QCD:

Gluon propagator

(k2 +  it)

Massless fermion propagator

^ij(7  • k)a/3 
(k2 +  is)

Fermion-gluon interaction

-z g ( ra)ij(7M)a/3

Gluon self interaction

i g C r V I g ^ q  -  p f  + gw (2p +  q f  -  g ^ (p  +  2q)']
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A ppend ix  B  

R econstructed  M ass D istributions  

in B ins o f W?,„

B .l  E-tagger44 M ass D istributions,

The reconstructed mass distributions in the e-tagger44 range. The first 
row, from left to right, contains bins 1, 2 and 3, the second row bins 4, 5 and 6 and 
so on.
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Figure B .l: The data mass distributions in bins of s in the e-tagger44 centre-of-mass 

energy range.

B .2 E-tagger33 M ass D istributions.
The reconstructed mass distributions in the e-tagger33 range. The first 

row, from left to right, contains bins 1, 2 and 3, the second row bins 4, 5 and 6 and



A PPEND IX B. W L  M A SS DISTRIBUTIONS. 196

VMSuftfl Msm Mttsurtd Uatt

u««4 bhHK̂Ugn

o 1

o.s

0
Mtthn4 Hm ytchiftf M«t*

Figure B.2: The data mass distributions in bins of s in the e-tagger33 centre-of-mass 

energy range.
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