Kalibration eines elektromagnetischen Kalorimetermoduls für den H1-Detektor

von

Ralf Gräßler

Diplomarbeit in Physik
vorgelegt der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinisch-Westfälischen Technischen Hochschule Aachen

im Juni 1991

angefertigt im
III. Physikalischen Institut B, Prof. Dr. G. Flügge
Kalibration eines elektromagnetischen Kalorimetermoduls für den H1-Detektor

von

Ralf Gräßler

Diplomarbeit in Physik
vorgelegt der
Mathematisch–Naturwissenschaftlichen Fakultät der Rheinisch–Westfälischen Technischen Hochschule Aachen

im Juni 1991

angefertigt im
III. Physikalischen Institut B, Prof. Dr. G. Flügge
Inhaltsverzeichnis

Abbildungsverzeichnis 7

Tabellenverzeichnis 9

1 Einleitung 10

2 Funktionsweise von Kalorimetern 12
 2.1 Das Prinzip eines Schauerzählers 12
 2.2 Die beiden Nachweismethoden der Kalorimetrie 13
 2.2.1 Homogene Kalorimeter 13
 2.2.2 Sampling-Kalorimeter 14
 2.3 Das H1-Flüssig-Argon-Kalorimeter 15
 2.3.1 Das Prinzip der Flüssig-Argon-Ionisationskammer ... 17
 2.3.2 Vorteile von Flüssig-Argon 19
 2.3.3 Der Aufbau des H1-Kalorimeters 20
 2.4 Elektromagnetische Schauer 23
 2.4.1 Absorptionsmechanismen 23
 2.4.2 Charakteristik elektromagnetischer Schauer 23
 2.4.3 Modell eines elektromagnetischen Schauers 26
 2.5 Hadronische Schauer 29
 2.6 Die Energieauflösung elektromagnetischer Kalorimeter 30

3 Testexperimente am CERN 34
 3.1 Einführung .. 34
 3.2 Experimentelle Anordnung am H6-Strahl 35
 3.3 Der Trigger .. 37
 3.4 Der Flüssig-Argon-Kryostat 40
 3.5 Die Flüssig-Argon-Reinheit 43
3.6 Das elektromagnetische Kalorimeter 44
3.7 Das hadronische Kalorimeter 48
3.8 Die Ausleseelektronik 50

4 Datenanalyse 51
4.1 Elektronische Kalibration 53
4.2 Ereignis-Selektion und Datenkorrektur 55
 4.2.1 Crosstalk-Korrektur 57
 4.2.2 Rauschunterdrückung 58
 4.2.3 Hochspannungskorrektur 60
4.3 Hochspannungskurve in Flüssig-Argon 61
4.4 Energieauflösung 63
4.5 Energielinearität 68
4.6 Bestimmung von e/π 71
4.7 Longitudinale Schauerentwicklung 73

5 Zusammenfassung 79

Anhang 81

Literaturverzeichnis 83
Abbildungsverzeichnis

2.1 Schnitt durch den H1-Detektor bei HERA (DESY) 16
2.2 Aufteilung des H1-Kalorimeters in elektromagnetische (E) und hadronische (H) Ringe 20
2.3 Perspektivische Ansicht eines hadronischen CB-Rings 21
2.4 Materialtiefe des H1-Kalorimeters im Längsschnitt in Einheiten der Strahlungslänge X_0 und der Absorptionslänge λ_0 22
2.5 Segmentierung des H1-Kalorimeters im Längsschnitt 22
2.6 Wirkungsquerschnitt für Photonen in Blei [Fab85] 24
2.7 Longitudinale Schauerentwicklung für 10 GeV Elektronen in Aluminium, Eisen und Blei, simuliert mit EGS4 [Fab89] 26
2.8 Laterale Schauerentwicklung für 1 GeV Elektronen in Blei für verschiedene Tiefen [Yud69] 29

3.1 Kalorimeterpaarungen der CERN-Tests unter ihrem Einschusswinkel bezogen auf den Wechselwirkungspunkt des H1-Detektors. 35
3.2 Vertikale Ebene des H6-Strahls am CERN 36
3.3 Der Aufbau der CERN-Testexperimente 1989/90 38
3.4 Die Triggerlogik der CERN-Testexperimente 41
3.5 Anordnung der Testmodule FB1 und FB2 im Inneren des Kryostaten 42
3.6 Frontansicht eines FB-Kalorimeterringes mit einer Ausschnittvergrößerung des FB1E-Moduls [H1p86] 44
3.7 Aufbau einer Auslesezelle des FB1E-Kalorimetermoduls [Sah89] 45
3.8 Struktur der Ausleseplatten des FB1E-Kalorimeters unterteilt in drei Familien 47
3.9 Aufbau einer Auslesezelle der hadronischen Kalorimetermodule FB1H/FB2H [Bin89] 48
3.10 Segmentierung der Ausleseplatten des FB2H-Kalorimeters 49
4.1 Schematischer Aufbau des Kalibrationssystems [GRF90] 54
4.2 Der Verlauf der Ladungsabhängigkeit vom ADC-Wert für Kanal 501 55
4.3 Abweichung zwischen Kalibrations-Pedestal und Random-Pedestal für alle Kanäle 59
4.4 Random-Noise für jeden Kanal am Beispiel von 80 GeV Elektronen 60
4.5 Die Hochspannungskurve in FB1E für Elektronen mit einer Strahlenergie von 30 GeV 62
4.6 Entwicklung eines elektron-induzierten Schauers mit einer Energie von 30 GeV in FB1E 65
4.7 Ladungsverteilungen von Elektronen in FB1E für die Energien 10, 30, 80 und 166 GeV 66
4.8 Energieauflösung für Elektronen in FB1E 67
4.9 Energielinearität für FB1E bei einem 3σ-Schnitt 69
4.10 Abhängigkeit der Kalibrationskonstanten E/Q von der Höhe des σ-Cuts für alle Energien 70
4.11 Energielinearität für FB1E bei einem 2,5σ-Schnitt 70
4.12 Signalspektren in FB1E für Elektronen und Pionen mit einer Energie von 30 GeV 72
4.13 Verlauf der nominalen Strahlachse im FB1E-Modul 75
4.14 Longitudinale Schauерentwicklung in FB1E für Elektronen der Energien 10, 30, 80 und 166 GeV 77
Tabellenverzeichnis

2.1 Dichte, Strahlungslänge und Energieauflösung einiger ausgesuchter Materialien für homogene Kalorimeter [ENG85] ... 14
2.2 Konstruktionsparameter und Energieauflösung einiger ausgesuchter Kalorimeter [FAB89] ... 15
2.3 Strahlungslängen und Molièreradien verschiedener im H1-Experiment verwendeter Materialien [PAR88] ... 25

3.1 Strahlungslängen der vor dem Kalorimeter im H6-Strahl befindlichen Materialien, aufgeführt in Strahlrichtung [KUB88] ... 40
3.2 Aufteilung der z-Lagen nach Anzahl und Familie der Ausleseplatten ... 46
3.3 Anzahl der Ausleseplatten pro z-Lage für FB1H und FB2H ... 49

4.1 Einfluß der Auswahlkriterien auf die Ereigniszahl ... 56
4.2 Einfluß des Containment-Schnitts von 98 % auf die Ereigniszahl ... 63
4.3 Ergebnisse der Funktionsanpassung an die Ladungsverteilungen für alle Energien, sowie die berechnete Energieauflösung ... 67
4.4 Kalibrationskonstanten für Elektronen und Pionen für FB1E, sowie das effektive $\frac{e}{\pi}$-Verhältnis ... 72
4.5 Punkte der Ladungsdeposition pro Lage und deren Unsicherheit als halbe Länge in Einheiten der Strahlungslänge X_0 ... 75
4.6 Vergleich der berechneten Gesamtladung aus der Funktionsanpassung mit der aus der Summation errechneten ... 78
Kapitel 1

Einleitung

Um eventuelle Substrukturen der Partonen aufzudecken, ist es erforderlich, mit neuen Techniken immer höhere Wechselwirkungsennergien beim Streuprozess des Leptons mit dem Nukleon zu produzieren, denn zur Auflösung feinerer Strukturen ist eine zunehmend kleinere Wellenlänge notwendig.

1Deutsches Elektronen-Synchrotron
2Conseil Européen pour la Recherche Nucléaire
Kapitel 2

Funktionsweise von Kalorimetern

2.1 Das Prinzip eines Schauerzählers

In der Elementarteilchenphysik bezeichnet man Instrumente, mit denen die Energie von Teilchen durch ihre Absorption in einem Materieblock bestimmt wird, als Kalorimeter. Das Prinzip beruht auf der Tatsache, daß die zu messenden, teilweise sehr hochenergetischen Teilchen beim Durchgang durch Materie mit dieser wechselwirken und dabei ihre Energie ganz oder teilweise abgeben, welche in eine messbare Größe umgewandelt wird. Das Medium wird also angeregter oder "aufgeheizt" – daher der schon aus der Physik der Thermodynamik stammende Begriff der Kalorimetrie.

wobei im Falle des elektromagnetischen Kalorimeters eine Elektron-Photon-Lawine erzeugt wird, hingegen beim hadronischen Kalorimeter eine Hadron-Nukleon-Kaskade dominiert.

2.2 Die beiden Nachweismethoden der Kalorimetrie

2.2.1 Homogene Kalorimeter

Bleiglaszählern registrieren das von Elektronen und Positronen produzierte Čerenkovlicht, welches nur von Teilchen mit einer größeren Phasengeschwindigkeit als die Lichtgeschwindigkeit ausgesandt wird. Somit werden z.B. Elek-
tronen mit einer Energie von mehr als 0,7 MeV registriert, und die Energieauflösung von Čerenkovzählern wird durch die Photonenstatistik bestimmt. Tabelle 2.1 gibt einige charakteristische Werte für homogene Kalorimeter wieder.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dichte ρ $\left[\text{g/cm}^3 \right]$</th>
<th>Strahlungslänge X_0 $\left[\text{cm} \right]$</th>
<th>Energieauflösung $\left[% \sqrt{E(\text{GeV})} \right]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGO</td>
<td>7,1</td>
<td>1,1</td>
<td>0,4</td>
</tr>
<tr>
<td>NaJ</td>
<td>3,7</td>
<td>2,6</td>
<td>0,3</td>
</tr>
<tr>
<td>Bleiglas</td>
<td>-</td>
<td>2,4</td>
<td>3,6</td>
</tr>
<tr>
<td>Szintillationsglas</td>
<td>4,8</td>
<td>4,3</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Dichte, Strahlungslänge und Energieauflösung einiger ausgesuchter Materialien für homogene Kalorimeter [ENG85].

2.2.2 Sampling-Kalorimeter

Eine für Sampling-Kalorimeter charakteristische Größe ist das Verhältnis von sichtbarer, d.h. in den aktiven Schichten gemessener Energie zur gesamten im Detektor deponierten Energie. Dieses „Sampling-Verhältnis“ ist abhängig von der Teilchensorte und ist definiert als:

\[
(f_{\text{samp}})_i = \left(\frac{E_{\text{aktiv}}}{E_{\text{aktiv}} + E_{\text{passiv}}} \right)_i
\]
2.3 Das H1-Flüssig-Argon-Kalorimeter

\[(2.1) \]

\[
\left(\frac{dE_{aktiv}}{dx_{aktiv}} \right)_{i} = \frac{dE_{aktiv}}{dx_{aktiv}} \frac{dE_{aktiv}}{dx_{aktiv}} + dE_{passiv} \frac{dE_{passiv}}{dx_{passiv}}
\]

Dabei ist \(d \) die Dicke der aktiven bzw. passiven Detektorschicht und der Index \(i \) beschreibt die Teilchensorte (\(i = e, \pi, \mu, \ldots \)). Bei der Interkalibration verschiedener Kalorimeter verwendet man in der Regel Myonen, die sich wie minimalionisierende Teilchen verhalten.

Durch die unterschiedlichen Wechselwirkungen bzw. Absorptionsmechanismen breiten sich elektromagnetische Schauer in Materie anders aus als hadronische Schauer, so daß es in Abhängigkeit von der Teilchensorte unterschiedliche Anforderungen hinsichtlich Größe, Absorbermaterial und Granularität eines Kalorimeters gibt. Tabelle 2.2 zeigt die Konstruktionsparameter einiger ausgesuchter Kalorimeter.

<table>
<thead>
<tr>
<th>Experiment/ Ziele</th>
<th>Physikalische Ziele</th>
<th>Aktiver Bereich</th>
<th>Granularität</th>
<th>Energieauflösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA1/ CERN pp</td>
<td>QCD-Tests, Studien von (p \overline{p})-Kollisionsen</td>
<td>3 mm TMP (d)</td>
<td>Tämme, 25000 Kanäle</td>
<td>(\sigma_{em} = 19%/\sqrt{E}) (\sigma_{had} = 47%/\sqrt{E})</td>
</tr>
<tr>
<td>Helsi/ CERN SPS</td>
<td>pp → Leptonen von (p \overline{p})-Kollisionsen</td>
<td>2.5 mm LAr, (d)</td>
<td>Tämme, 700 Streifen</td>
<td>(\sigma_{em} = 19%/\sqrt{E}) (\sigma_{had} = 50%/\sqrt{E})</td>
</tr>
<tr>
<td>OPAL/ CERN LEP</td>
<td>Suche nach Top und Higgs Photoproduktionen</td>
<td>18 cm Fe</td>
<td>Tämme, 11700 (d)</td>
<td>(\sigma_{em} = 6%/\sqrt{E}) (\sigma_{had} = 12%/\sqrt{E})</td>
</tr>
<tr>
<td>H1/ HERA</td>
<td>Protonenstrukturfunktion, exotische Teilchen</td>
<td>2.4 mm LAr, (d)</td>
<td>Tämme, 14000 Kanäle</td>
<td>(\sigma_{em} = 10%/\sqrt{E}) (\sigma_{had} = 65%/\sqrt{E})</td>
</tr>
</tbody>
</table>

Tabelle 2.2: Konstruktionsparameter und Energieauflösung einiger ausgesuchter Kalorimeter [FAB89].

2.3 Das H1-Flüssig-Argon-Kalorimeter

Abbildung 2.1 zeigt den schematischen Aufbau des gesamten H1-Detektors.

Der H1-Detektor besitzt eine Asymmetrie bezüglich des Wechselwirkungspunktes (WWP) und berücksichtigt damit die nichtisotrope Energie- und Teilchenverteilung, da bei HERA Elektronen mit einem Impuls von \(30 \text{ GeV}/c \)
Abbildung 2.1: Schnitt durch den H1-Detektor bei HERA (DESY).

Im Bereich des Wechselwirkungspunktes sowie im Vorwärtsbereich, d.h. in Richtung des einfallenden Protons schauend, befinden sich Spurkammern, die der Spurrekonstruktion geladener Teilchen dienen.

Die nächste Schicht bildet ein Sampling-Kalorimeter, bei welchem Flüssig-Argon als aktives Medium verwendet wird. Es besteht aus einem innenliegenden elektromagnetischen Teil und einem außenliegenden hadronischen Teil.

Eine supraleitende Spule umgibt Kalorimeter und Spurkammern und erzeugt ein Magnetfeld mit einer Stärke von 1,2 Tesla. Die dadurch bedingte Bahnrümmung geladener Teilchen ermöglicht eine Berechnung der Teilchenimpulse.

2.3.1 Das Prinzip der Flüssig-Argon-Ionisationskammer

Im H1-Kalorimeter wird das Prinzip eines Ionisationsdetektors verwendet. Eine Hochspannungsquelle erzeugt zwischen Kondensatorplatten ein homogenes elektrisches Feld. Der Zwischenraum wird mit flüssigem Argon (Liquid Argon) gefüllt. Beim H1-Kalorimeter werden die Plattenkondensatoren aus abwechselnd angeordneten Hochspannungsplatten und Ausleseplatten gebildet, wobei das passive Material in die jeweilige Struktur der Platten integriert ist. Durchquert ein Schauerteilchen ein solches „Gap“, so wird das Medium ionisiert und die dabei freierdenden elektrischen Ladungen driften zu den Kondensatorplatten. Bei einer Feldstärke von $1 \frac{kV}{mm}$ liegt die für Argon typische Driftgeschwindigkeit von Elektronen bei $5 \frac{mm}{\mu s}$, wohingegen die Ionen eine um vier Größenordnungen kleinere Driftgeschwindigkeit besitzen. Die Argonionen können demzufolge als stationär angesehen werden und liefern daher keinen meßbaren Signalbeitrag.
Im folgenden wird die im Argon beobachtbare Ladung abgeschätzt. Ein Elektron, das ein Gap der Breite d durchquert, benötigt hierzu die Driftzeit t_d. Der Strom im Kondensator ist durch $I = \frac{e}{t_d}$ gegeben. Die gemessene Ladung Q in Abhängigkeit vom Erzeugungsort x des Elektrons folgt mit $Q = I \cdot t$ und $t = \frac{d-x}{d} t_d$ als Driftzeit zu:

$$Q(x) = e \frac{d-x}{d}$$ \hspace{1cm} (2.2)

Geht man von einer gleichförmigen Ionisationsspur\(^1\) im Argon aus, so gilt für den gemessenen Strom:

$$I_d(t) = \frac{Ne}{t_d} \left(1 - \frac{t}{t_d}\right)$$ \hspace{1cm} (2.3)

Hierbei ist N die Zahl der freigewordenen Ladungsträger. Für die gesammelte Ladungsmenge der Ionisationsspur folgt:

$$Q(t) = \int_0^t I_d(t') dt' = Ne \left(\frac{t}{t_d} - \frac{1}{2} \left(\frac{t}{t_d}\right)^2\right)$$ \hspace{1cm} (2.4)

Die gesamte gemessene Ladung ergibt sich dann zu ($t = t_d$):

$$Q(t_d) = \frac{1}{2} Ne$$ \hspace{1cm} (2.5)

Demnach entspricht die an der Anode gemessene Ladung nur zur Hälfte der bei der Ionisation freigewordenen Ladung. Die andere Hälfte wird durch die Ionen transportiert und trägt nicht zum Gesamtsignal bei. Das mittlere Ionisationspotential von Flüssig-Argon beträgt $23,6 \text{ eV}$ [MIY74]. Berücksichtigt man ein Sampling-Verhältnis für Elektronen von $0,08$, so entspricht die kleinste meßbare Ladung ($1e$) einer Energie von 590 eV, was gleichzeitig die untere theoretisch meßbare Grenze des Energiespektrums darstellt. Somit ergibt sich im Hinblick auf eine Energieeichung ein theoretisch zu erwartender Umrechnungsfaktor von $E/Q = 3,68 \text{ GeV}/pC$.

\(^1\) Aufgrund der hohen Geschwindigkeit eines ionisierenden Schauerteilchens gegenüber der Driftgeschwindigkeit der erzeugten Elektronen kann eine gleichförmige Verteilung entlang der Trajektorie angenommen werden.
2.3.2 Vorteile von Flüssig-Arrgon

- **hohe Dichte** \(\rho_{\text{LAr}} = 1.4 \text{ g cm}^{-3} \)

- **kaum Anbindung von Elektronen**

- **hohe Elektronenbeweglichkeit** (~ \(5 \text{ mm} \ \mu s \) bei \(1 \text{ keV} \ mm \))

- **kaum Alterung durch Strahlung**

- **hohe Sicherheit, da LAr nicht brennbar ist**

- **LAr ist in hoher Reinheit erhältlich**

- **geringe Kosten**

Nachteilig für präzise Messungen von Jets wirkt sich das ungleiche Signalverhalten des Flüssig-Ar-Kalorimeters für Elektronen und Hadronen \((\frac{\sigma_e}{\sigma_\pi} > 1) \) aus, jedoch ist es möglich, unter Anwendung von \(\pi_0 \)-Wichtungsmethoden, ein \(\frac{\sigma_e}{\sigma_\pi} \)-Verhältnis von \(\approx 1 \) zu erreichen. Ein weiterer Nachteil ist die für die Kühlung des flüssigen Argons erforderliche sehr aufwendige Kryogenik.
2.3.3 Der Aufbau des H1-Kalorimeters

Abbildung 2.2: Aufteilung des H1-Kalorimeters in elektromagnetische (E) und hadronische (H) Ringe.
Abbildung 2.3: Perspektivische Ansicht eines hadronischen CB-Rings.

Die Asymmetrie des gesamten H1-Detektors zeigt sich auch in der Verteilung der Absorbermasse des Kalorimeters. Da die Teilchenenergie mit steigendem Winkel Θ relativ zur Protonenflugrichtung abnimmt, ist die im mittleren Bereich benötigte Menge an Absorbermaterial geringer als in Vorwärtsrichtung. Abbildung 2.4 zeigt die Materialtiefe des H1-Kalorimeters in Einheiten der Strahlungslänge X_0 und der Absorptionslänge λ_0 (siehe dazu Abschnitte 2.4.2 und 2.5).

Abbildung 2.4: Materialtiefe des H1-Kalorimeters im Längsschnitt in Einheiten der Strahlungslänge X_0 und der Absorptionslänge λ_0.

Abbildung 2.5: Segmentierung des H1-Kalorimeters im Längsschnitt.
Die folgenden Abschnitte beschäftigen sich mit den zugrundeliegenden physischen Eigenschaften elektromagnetischer und hadronischer Schauer.

2.4 Elektromagnetische Schauer

2.4.1 Absorptionsmechanismen

2.4.2 Charakteristik elektromagnetischer Schauer

Bei sehr hohen Energien dominiert bei den Energieverlustmechanismen geladener Teilchen die Bremsstrahlung. Durch die Coulomb-Wechselwirkung von Elektronen und Positronen mit dem elektrischen Feld des Kerns können Photonen emmittiert werden, wobei deren Energiespektrum mit \(1/E \) abfällt. Für Photonenergien größer als 5 – 10 \(MeV \) konvertieren diese in \(e^+ e^- \)-Paare,
Abbildung 2.6: Wirkungsquerschnitt für Photonen in Blei [FAB85].

deren Teilchen ihre Energie wiederum durch Strahlung abgeben. Eierdurch entsteht im Endeffekt ein aus vielen Elektronen, Positronen und Photonen gebildeter Schauer.

Da die Entwicklung elektromagnetischer Schauer primär durch die Elektronendichte des absorbierenden Mediums bestimmt wird, ist es naheliegend, die den Schauer charakterisierenden Größen universell zu wählen.

Die longitudinale Komponente wird in Einheiten der Strahlungslänge X_0 angegeben, welche definiert ist als die von einem hochenergetischen ($E > 1$ GeV) Elektron zurückgelegte Distanz, welches $63,2\%$ (das entspricht $1 - 1/e$) seiner Energie durch Bremsstrahlung abgegeben hat.

Die transversale Ausdehnung wird durch den Molière-Radius ρ_M beschrieben. Dieser wird aus dem Verhältnis von X_0 und E_e gebildet, wobei die kritische Energie E_e die Elektronenergie ist, bei der die Wirkungsquerschnitte von Bremsstrahlung und Ionisation gleich sind.

Näherungsweise gelten die Beziehungen [FAB89]:

$$X_0 \approx 180 \frac{A}{Z^2} \text{[gcm}^{-2}\text{]} \quad \rho_M \approx 7 \frac{A}{Z} \text{[gcm}^{-2}\text{]}$$

Hierbei bezeichnet A die Massenzahl und Z die Kernladungszahl. In Tabelle 2.3 sind Strahlungslängen und Molièreradien der für das H1-Kalorimeter
wichtigsten Materialien aufgeführt.

<table>
<thead>
<tr>
<th>Material</th>
<th>Z</th>
<th>$A\ [g]$</th>
<th>$\bar{\rho}\ [g/cm^2]$</th>
<th>$X_0\ [\text{cm}]$</th>
<th>$X_0\ \rho_M\ [\text{cm}]$</th>
<th>$\rho_M\ [\text{cm}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAr</td>
<td>18</td>
<td>39.95</td>
<td>1.40</td>
<td>19.55</td>
<td>14.00</td>
<td>11.73</td>
</tr>
<tr>
<td>Al</td>
<td>13</td>
<td>26.98</td>
<td>2.70</td>
<td>24.01</td>
<td>8.89</td>
<td>10.73</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>7.87</td>
<td>13.84</td>
<td>1.76</td>
<td>12.11</td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td>207.19</td>
<td>11.35</td>
<td>6.37</td>
<td>0.56</td>
<td>19.39</td>
</tr>
</tbody>
</table>

Tabelle 2.3: Strahlungslängen und Molièreradien verschiedener im H1-Experiment verwendeter Materialien [PAR88].

Für hochenergetische Photonen berechnet sich der Wirkungsquerschnitt für Paarbildung zu [KLE87]:

$$
\sigma_{\text{paar}} = r_e^2 4\alpha Z^2 \frac{7}{9} \ln \frac{183}{Z^{1/3}} \equiv \frac{7}{9} \frac{1}{X_0}
$$

(2.7)

mit r_e = Elektronenradius, α = Feinstrukturkonstante und Z = Kernladungszahl des Mediums. Der Intensitätsverlust ist demnach:

$$
\frac{dI}{dx_{\text{paar}}} = -\frac{7}{9} \frac{1}{X_0}
$$

(2.8)

Durch Integration erhält man:

$$
I = I_0 \exp \left(-\frac{7x}{9X_0} \right)
$$

(2.9)

Nach Gleichung 2.9 konvertiert also ein γ-Quant nach $\frac{7}{9}X_0$ mit einer Wahrscheinlichkeit von $1 - e^{-\frac{7}{9}} \approx 0.54$ in ein e^+e^--Paar.

Die Entwicklung des Schauers läßt sich also durch Verwendung obiger Größen nahezu materialunabhängig darstellen. Abbildung 2.7 zeigt die longitudinalen Entwicklung eines 10 GeV elektroninduzierten Schauers in Aluminium, Eisen und Blei. Die Ergebnisse stammen aus Monte-Carlo-Simulationen mit dem Programmpaket EGS4 [FAB89].
Abbildung 2.7: Longitudinale Schauerentwicklung für 10 GeV Elektronen in Aluminium, Eisen und Blei, simuliert mit EGS4 [FAB89].

Man erkennt, daß nach ungefähr $25X_0$ bereits 99% der Schauerenergie vom Medium absorbiert worden sind, wobei Schauer höherer Energie nur unwesentlich mehr Absorbermaterial benötigen, da ein Photon im Mittel nach $\frac{9}{7}X_0$ in ein e^+e^--Paar konvertiert, deren Teilchen jeweils die Hälfte der Energie forttragen. Es werden also nur 1,3 Strahlungslängen mehr benötigt, um die doppelte Schauerenergie zu absorbieren. Die unterschiedliche Entwicklung in den verschiedenen Materialien ist durch die Definition der Strahlungslänge begründet, welche nur für Teilchen im GeV-Bereich gültig ist und berücksichtigt somit nicht die bis in den MeV-Bereich fortgesetzte Lawinerbildung. Hierdurch ergibt sich die Verschiebung des Maximums zu größeren Tiefen für Materialien mit hohem Z.

2.4.3 Modell eines elektromagnetischen Schauers

Im folgenden Abschnitt wird ein einfaches Modell der longitudinalen Entwicklung eines elektron- bzw. positroninduzierten Schauers vorgestellt. Ausgehend davon, daß jedes Elektron2 der Energie $E > E_c$ innerhalb einer Strahlungslänge ein Bremsquant emittiert, gilt:

\footnote{Es wird angenommen, daß die Wirkungsquerschnitte der verschiedenen Prozesse für Elektronen und Positronen gleich sind. Die folgenden Überlegungen für Elektronen gelten daher analog für Positronen.}
e → e' + γ mit \(E_{e'} = E_e / 2 = E_\gamma \) (2.10)

Ebenso konvertiert jedes Photon innerhalb einer Strahlungslänge in ein \(e^+ e^- \)-Paar:

\[\gamma \rightarrow e^+ + e^- \quad \text{mit} \quad E_{e^-} = E_{e^+} = E_\gamma / 2 \] (2.11)

Dies bedeutet, daß nach \(n \) Strahlungslängen ein elektron- oder photoninduzierter Schauer aus \(2^n \) Teilchen mit einer mittleren Energie von \(E = \frac{E_0}{2^n} \) besteht. Ausgehend davon, daß die Energieabgabe für Teilchen mit \(E > E_e \) nur mittels Bremsstrahlung sowie Paarerzeugung und für die mit einer Energie \(< E_e \) durch Ionisation erfolgt, ist die maximale Ausbreitung \(n_{\text{max}} \) des Schauers durch den Punkt festgelegt, an dem \(E(n_{\text{max}}) = E_e \) ist. Somit ergibt sich für die Tiefe des Schauermaximums [PER87, KLE87]

\[n_{\text{max}} = \frac{\ln\left(\frac{E_0}{E_e}\right)}{\ln 2} \] (2.12)

und für die Anzahl der Teilchen im Schauermaximum:

\[N_{e,\gamma}(n) = 2^n = \frac{E_0}{E_e} \] (2.13)

Die mittlere Länge des Schauers ergibt sich aus dem Wegintegral aller Schauer-Teilchen:

\[< L > = \frac{2}{3} \int_0^{n_{\text{max}}} N_{e,\gamma}(n) dn \approx \frac{2}{3 \ln 2} \frac{E_0}{E_e} \approx \frac{E_0}{E_e} \] (2.14)

Genauere Untersuchungen der Entwicklung elektromagnetischer Schauer führen zu einer gebräuchlichen analytischen Beschreibung der Verteilung [LON75]:

\[\frac{dE}{dn} = E_0 \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)n^\alpha e^{-\beta n}} \] (2.15)

\(n = \) Tiefe in Strahlungslängen; \(\alpha = \beta n_{\text{max}} \), wobei \(\beta \approx 0,5 \)
Die Materialabhängigkeit (Z-Abhängigkeit) der longitudinalen Schauerentwicklung kann für die differentielle Zahl der Schauerteilchen dN/dn in einer Tiefe n folgendermaßen parametrisiert werden [PAR88]:

$$\frac{dN}{dn} = N_0 \frac{\beta^{\alpha+1}}{\Gamma(\alpha + 1)} n^\alpha e^{-\beta n} \quad (2.16)$$

Dabei ist

$$N_0 = 5,51 \cdot \sqrt{Z} \cdot E_0$$

$$\beta = 0,634 - 0,0021 \cdot Z$$

$$\alpha = 2,0 - \frac{Z}{340} + \left(0,664 - \frac{Z}{340}\right) \ln E_0 \quad \text{für} \quad Z \geq 26$$

Hierauf ergeben sich die wesentlichen Merkmale des elektromagnetischen Schauers:

- **Die Länge des Schauers sowie die Anzahl der Teilchen im Schauermimum sind proportional zu E_0.**
- **Die Lage des Schauermimums steigt logarithmisch mit E_0 an.**

Die laterale Ausbreitung des Schauers wird im wesentlichen durch zwei Aspekte bestimmt:

- **Im frühen, hochenergetischen Energiebereich des Schauers wird die laterale Aufweitung durch den typischen Emissionswinkel für Bremsstrahlung $\theta_{\text{brems}} \sim \frac{E_0}{m_e}$ bestimmt.**
- **Mit abnehmender Energie bewegen sich die Elektronen aufgrund von immer häufiger auftretender Vielfachstreuung von der Schauerachse weg.**

In Abbildung 2.8 ist die laterale Abhängigkeit des Energieverlustes in Blei für einen elektromagnetischen Schauer mit einer Energie von 1 GeV in verschiedenen Tiefen aufgezeigt. Es läßt sich die geringe laterale Ausdehnung $(2 - 3 \rho_M)$ eines elektromagnetischen Schauers gut erkennen.
Abbildung 2.8: Laterale Schauerentwicklung für 1 GeV Elektronen in Blei für verschiedene Tiefen [YUD69].

2.5 Hadronische Schauer

Die Absorption von Teilchen, die der starken Wechselwirkung unterliegen (Hadronen), ist in mehrfacher Hinsicht vergleichbar mit der von elektro- schwach wechselwirkenden Teilchen. Hinzukommende Produktionsprozesse komplizieren jedoch die Beschreibung und Analyse von hadroninduzierten Schauern.

Trifft ein hochenergetisches Hadron auf einen Materieblock, so entstehen durch Wechselwirkung mit den Atomkernen des Absorbermaterials zunächst Mesonen (π, K, etc.). Ein Teil der Anfangsenergie E_0 geht über auf den Kern und versetzt diesen in einen angeregten metastablen Zustand. Diese Energie wird durch Emission von Nukleonen² und niederenergetischen Photonen wieder abgegeben. Die bis dahin entstandenen Teilchen können nun das Medium ionisieren oder die Bildung einer Teilchenlawine verursachen, wobei ein Teil von ihnen (z.B. π, η) überwiegend elektromagnetisch³ wechselwirkt. Somit enthält eine Hadron-Nukleon Kaskade immer eine elektromagnetische

² Überwiegend Neutronen, da die Aussendung geladener Elemente durch die Coulombbarriere weitestgehend unterdrückt wird.
³ Ein π zerfällt in zwei γ-Quanten, welche dann mittels Paarbildung Elektronen und Positronen erzeugen.
Komponente, die jedoch durch Fluktuationen – beispielsweise bei der Meson-
produktion – von Ereignis zu Ereignis variiert.

Es ist üblich, analog zur Beschreibung elektromagnetischer Schauer, die
longitudinale und laterale Entwicklung hadronischer Schauer materialunab-
hängig darzustellen. Die Schauerdimensionen werden hierzu durch die nu-
kleare Absorptionslänge λ_0 ausgedrückt. Diese ist definiert als [PAR88]:

$$\lambda_0 = \frac{A}{N_A \sigma_i} [gcm^{-2}]$$ \hspace{1cm} (2.17)

A = Massenzahl in $[g]$

N_A = Avogadrozahl

σ_i = unelastischer Wirkungsquerschnitt in $[cm^2]$ im Bereich $60 – 375 GeV$

2.6 Die Energieauflösung elektromagnetischer Kalorimeter

Die Energieauflösung eines Kalorimeters wird primär durch statistische Pro-
zesse bestimmt. Im idealen Fall eines vollständig absorbierten elektromagne-
tischen Schauers sind dies Fluktuationen der Anzahl n von nichtkorrelierten
Prozessen bei der Entstehung einer Teilchenlawine. Die Halbwertsbreite σ_Q
der gemessenen Ladungsverteilung für monoenergetische Teilchen der Energie E
verhält sich zu n wie:

$$\frac{\sigma_Q}{Q} \sim \frac{\sqrt{n}}{n}$$ \hspace{1cm} (2.18)

Bei linearen Kalorimetern führt dies mit $n \sim E$ zu:

$$\frac{\sigma_E}{E} = \frac{c}{\sqrt{E}}$$ \hspace{1cm} (2.19)

Gebräuchlich ist die Angabe eines Wertes für c als Ausdruck für die Ener-
gieauflösung eines Kalorimeters. Wesentlich ist, daß $\frac{\sigma_E}{E}$ mit zunehmender
Energie besser wird. Es gibt jedoch insbesonders für Sampling-Kalorimeter
Beiträge, die zu einer weiteren Verschlechterung der Energieauflösung führen
und zum Teil nicht mehr proportional zu $\frac{1}{\sqrt{E}}$ sind.
Durch die stichprobenartige Messung bei Sampling-Kalorimetern kommt es zu Signalschwankungen (Sampling-Fluktuationen), da die Anzahl der Teilchen, welche aktive Schichten durchqueren, statistischen Fluktuationen unterliegt. Der zur Energieauflösung gelieferte Beitrag läßt sich unter der Annahme, daß keine Energieverluste (Leakage) auftreten, abschätzen. Die Absorberplatten teilen die gesamte sichtbare Energie in N unabhängige Energieanteile ΔE auf. Hierbei beschreibt ΔE die Energie, welche ein minimallionisierendes Teilchen in einer Zelle deponiert. Von der Poisson-Statistik ausgehend, erwartet man für die Energieauflösung [AMA81]:

$$\frac{\sigma_{\text{samp}}}{E} = \frac{1}{\sqrt{N}} \sim \sqrt{\frac{\Delta E}{E}} = c \cdot \sqrt{\frac{E \cdot t}{E}}$$

(2.20)

Dabei beschreibt t dieDicke der Absorberplatten in Strahlungslängen und E_c die kritische Energie. Letztere ist umgekehrt proportional zur Kernladungszahl Z, so daß Blei ein bevorzugtes Absorbermaterial bildet, da der Teilechenschauer in sehr viele unabhängige Energieanteile zerlegt wird.

Bei Detektoren, deren aktive Teile aus Gas bzw. dünnen Schichten von Flüssig-Argon bestehen, treten weitere Effekte auf, die zu einer Verbreiterung der Auflösungsfunktion führen.

Die bisher beschriebenen Vorgänge berücksichtigen nicht die in Realität vorhandenen Einflüsse instrumentaler Effekte, welche sehr detektorspezifisch sind und daher hier nicht im Detail behandelt werden. Allgemein läßt sich für die Energieauflösung eines Sampling-Kalorimeters folgender Ansatz aufstellen [ENG85]:

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{A_0}{\sqrt{E}}\right)^2 + \left(\frac{A_1}{\sqrt{E}}\right)^2 + (A_2 \ln E)^2 + \left(\frac{A_3 \sqrt{N_{\text{sum}}}}{E}\right)^2 + A_4^2$$

(2.21)
Der erste Term A_0 beschreibt die statistischen Schwankungen, bei Sampling-Kalorimetern also den Sampling-Anteil.

Die statistische Unsicherheit in der Anzahl der im Schauerzähler registrierten Photoelektronen drückt sich im zweiten Term A_1 aus. Dessen Anteil ist jedoch vernachlässigbar klein.

Für hohe Teilchenenergien ist oftmals die Absorbermasse nicht ausreichend, um den Schauer vollständig aufzunehmen, so daß Beiträge durch laterales und longitudinales Leakage auftreten. Wie Experimente gezeigt haben, sind longitudinale Verluste normalerweise kritischer als laterale Verluste. Das Leakage entlang der Schauerachse wächst logarithmisch mit der primären Energie und wird durch den dritten Term in Gleichung 2.21 repräsentiert.

Unter Vernachlässigung der Einflüsse von Leakage erhält man die bei der Parametrisierung der Energieauflösung gebräuchliche Beziehung [ENG84]:

$$\frac{\sigma}{E} = \sqrt{\frac{A^2}{E} + \frac{B^2}{E^2} + C^2} \quad (2.22)$$
Typische Werte liegen für die Sampling-Fluktuationen A bei $7 - 10\% \sqrt{GeV}$, für den Anteil B des Rauschens bei $10 - 20\% GeV$ und für die Interkalibrationsfehler bei $C \approx 1 - 2\%$. Die Energie wird in Einheiten von GeV angegeben.
Kapitel 3

Testexperimente am CERN

3.1 Einführung

Es fanden die folgenden Testperioden statt:

\(^1\)Super Proton Synchrotron
F31/FB2 (Juli/August 1989)
CB3/FB1 (September 1989)
CB2/CB3 (Oktober 1989)
IF (November/Dezember 1989 und März 1990)
BBE/CB1 (April/Mai 1990)
F32/OF/BBE² (Juli 1990)

Abbildung 3.1: Kalorimeterpaarungen der CERN-Tests unter ihrem Einschubwinkel bezogen auf den Wechselwirkungspunkt des H1-Detektors.

Der im folgenden beschriebene Testaufbau wurde bei allen Testperioden bis auf die Positionierung der Kalorimeter bezüglich des Teststrahls beibehalten. Da sich die Datenanalyse dieser Arbeit ausschließlich auf den Test von FB1 und FB2 bezieht, mit dem Ziel der Kalibrierung des elektromagnetischen Kalorimeters FB1E, werden nur diese Komponenten im Detail beschrieben.

3.2 Experimentelle Anordnung am H6-Strahl

²Anstelle eines halben IP-Moduls wurde hier ersetztweise ein BBE-Modul verwendet.
benutzt werden. Durch eine Anordnung von Ablenkmagneten, Quadrupolen und Kollimatoren (siehe Abb.3.2) werden die Teilchen entlang der optischen Achse geführt und auf ein sekundäres Target fokussiert.

Abbildung 3.2: Vertikale Ebene des H6-Strahls am CERN.

Es wurden zwei Betriebsmodi verwendet:

- **Für Impulse $\geq 100 \text{GeV}$**: Das zweite Target wurde herausgenommen; die Separation der Elektronen erfolgte unter Ausnutzung der Synchrotronstrahlung\(^3\) mittels Ausblendung der unerwünschten Teilchen durch den Kollimator C3. Der Energieverlust für Elektronen betrug etwa 2,3\% bei 170 GeV; die Impulsunschärfe lag bei $\frac{\Delta p}{p} = 0,3\%$.

- **Für Impulse $< 100 \text{GeV}$**: Als sekundäres Target wurde hinter dem Kollimator C3 ein 1 m langer Polyethylenzylinder verwendet. Der erste Teil des Strahls (vor dem zweiten Target) wurde auf die maximal mögliche Energie\(^4\) ($150 - 250 \text{ GeV}$) eingestellt und der zweite Teil des Strahls (hinter dem sekundären Target) auf die benötigte niedrigere Teilchenenergie justiert. Die Impulsauflösung betrug etwa $\frac{\Delta p}{p} = 0,7\%$.

Für die Teilchenidentifikation unterhalb von 100 GeV standen zwei Čerenkov-Differential-Zähler (CEDAR\(^5\)) zur Verfügung, welche sich etwa 100 m vor dem eigentlichen Kalorimeter-Testaufbau befanden. Sie bestanden aus einer

\(^3\)Bedingt durch die kleinere Masse strahlen Elektronen wesentlich stärker bei der Krümmung im Magnetfeld als Pionen und besitzen nach dem Ablenkmagneten BM3 einen anderen Impuls und Winkel.

\(^4\)Abhängig von der dem H6-Strahl zugewiesenen Energie

\(^5\)Čerenkov Differential Counter with Achromatic Ring focus
3.3. Der Trigger

mit Helium gefüllten zylinderförmigen Röhre, an der ringsförmig 8 Photomultiplier angebracht waren. Die zu identifizierenden Teilchen flogen entlang der Zylinderachse.

Für den Winkel ϑ, unter dem das Čerenkov-Licht eines mit der Geschwindigkeit \(v \) fliegenden geladenen Teilchens abgestrahlt wird, gilt die Beziehung:

\[
\cos \vartheta = \frac{1}{n\beta}
\]

Hierbei ist \(n \) der Brechungsindex des durchquerten Mediums. Ferner gilt:

\[
\frac{1}{n} \leq \beta = \frac{v}{c} \leq 1
\]

Da der Teilchenimpuls durch die Strahloptik vorgegeben ist und somit \(\beta \) von der Teilchenmasse abhängt, läßt sich ein Teilchen entweder über den Winkel \(\vartheta \) oder über den Brechungsindex \(n \) identifizieren. Bei den im CERN verwendeten CEDAR’s [BOV82] wurde der Druck des Gases und somit der Brechungsindex \(n \) soweit variiert, bis die ausgesandte Čerenkovstrahlung auf die umliegenden 8 Photomultiplier fokussiert war. Durch eine 6, 7 oder 8-fache Koinzidenz ließ sich die Effizienz der Zähler zwischen 50% (6 von 8) und 90% (8 von 8) einstellen. Allerdings hat eine zwar wünschenswerte hohe Effizienz eine sehr geringe Teilchenzählrate zur Folge.

3.3 Der Trigger

In Abb.3.3 ist der eigentliche Testaufbau mit dem Teilchentrigger dargestellt. Der verwendete Trigger hatte die Aufgabe, nur für singuläre Teilchen, die zeitlich weiter als die Erholungszeit der Kalorimeter auseinanderlagen, ein Signal zu liefern. Ein solcher Trigger wird als Single-Event-Trigger bezeichnet.
Eine grobe Definition der Achse des Teilchenstrahls und ihrer Querschnittsfläche erfolgte durch zwei Fingerszintillationszähler B_1 und B_2 mit einer jeweiligen Fläche von $3 \times 3 \text{ cm}^2$, die einen Abstand von 22,335 m hatten. Der in Strahlrichtung betrachtete hintere Zähler befand sich auf einem in vertikaler Richtung um ± 20 cm beweglichen Tisch, so daß eine vertikale Änderung der Einschlußposition im Kalorimeter mit Hilfe des unmittelbar vor dem ersten Fingerzähler befindlichen Ablenkmagneten B9 sehr einfach nachgesteuert werden konnte.

Desweiteren benutzte man zur genaueren Strahlachsendefinition einen mit einem Loch6 versehenen Szintillationszähler, der nur außerhalb des Strahlquerschnitts aktiv war. Dieser „Holecounter“ (HC) befand sich ebenfalls auf dem fahrbaren Tisch. Damit teilten, die weiter vom eigentlichen Strahl entfernt mitflogen (Beam Halo), erkannt werden konnten, wurde der Lochzähler hinter dem Tisch durch eine Vetowand (VM) erweitert. Sie bestand aus 10 vertikal angeordneten Flächenszintillatoren7, die sich jeweils um 5 mm überlappen. Eine vor dem Lochzähler und der Vetowand befindliche Bleiplatte mit $2 X_0$ diente der Unterdrückung des γ-Untergrundes, wobei die in e^+e^--Paare konvertierten γ's ein Vetsignal in den Szintillatoren erzeugten. Ferner wurde die Hinterseite der Vetowand durch eine 40 cm dicke Eisenwand gegen vom Kalorimeter zurückgestreute Teilchen abgeschirmt.

Zusammen mit den für die Teilchenidentifikation verwendeten CEDAR's wurde der Trigger für Elektronen und Pionen aus einer Koinzidenz der Fingerzähler B_1, B_2, einem Nichtansprechen der Vetowand VM und einem Sig-

6Der Durchmesser betrug 3 cm.

7Die aktive Fläche pro Zähler betrug $20 \times 120 \text{ cm}^2$.
nal der beiden CEDAR’s\(^8\) \(\bar{C}_1, \bar{C}_2\) gebildet:
\[
e, \pi \equiv B_1 \land B_2 \land VM \land \bar{C}_1, \bar{C}_2
\]

Außer der Vetowand \(VM\) gab es noch eine zweite Wand \((M1)\) hinten: dem Kryostaten und eine dritte \((M2)\), die sich hinter dem 1,6 m langen Beam
dump aus Eisen befand. \(M1\) und \(M2\) dienten einerseits dazu, den von Myonen verursachten Untergrund durch ein Vetosignal herauszufiltern. Da im unter
suchten Impulsbereich der Energieverlust von Myonen durch Bremsstrahlung zu vernachlässigten ist, produzierten sie im Kalorimeter keinen Schauer. Die Myonen geben ihre Energie durch schwache Ionisation ab und haben des
halb eine sehr große Reichweite, so daß sie die einzigen Strahlteilchen waren, die den hinteren Eisenabsorber durchdringen konnten und ein Signal in \(M2\)
erzeugten. Andererseits waren Myonendaten notwendig, da sie z.B. zur In
terkalibrierung der elektromagnetischen und hadronischen Kalorimeterkompo
nenten verwendet wurden. Der Myonentrigger wird durch das gleichzeitige Auftreten von Signalen in den drei Szintillatorwänden \(VM, M1\) und \(M2\)
erzeugt:
\[
\mu \equiv VM \land M1 \land M2
\]

Eine Ortsinformation der Teilchen innerhalb des Strahls wurde durch zwei unmittelbar hinter den Zählern \(B1\) und \(B2\) positionierte Vieldrahtproportio
nalkammern (MWPC\(^9\)) mit jeweils zwei Drahtebenen gegeben, die eine aktive Fläche von \(25,4 \times 25,4\) cm\(^2\) hatten. Die erreichte Ortsauflösung in x- und y-Richtung betrug 2 mm. Die Kammern wurden durch einen eigenen Trigger, der aus zwei Flächenzählern \(W1\) und \(W2\) aufgebaut war, gesteuert. Beide Zähler hatten eine Querschnittsfläche von \(18 \times 18\) cm\(^2\) und waren im Abstand von 10 cm zueinander vor der ersten Kammer aufgestellt. Die Kammern wur
 denen zunächst zur Darstellung des Strahlprofils während der Strahljustierung benutzt. In der Datenanalyse konnten dann durch diese Kammern sowohl Doppelteilchen als auch solche Teilchen weggefiltert werden, die bereits vor
her durch im Strahl befindliches Material (siehe Tab. \(3.1\)) einen Schauer ausgelöst hatten.

Eine Information über das Grundrauschen der einzelnen Auslesekanäle des Kalorimeters lieferten Daten, die durch einen Random-Trigger gesteuert

\(^8\)Verlangsmt wurde eine 6, 7 oder 8-fache Koinzidenz der Photomulitplier
\(^9\)Multi Wire Proportional Chamber
<table>
<thead>
<tr>
<th>Material</th>
<th>Länge [cm]</th>
<th>Länge ([X_0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>296,0</td>
<td>0,9 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>CEDAR's</td>
<td>2 (\times) 620,0</td>
<td>3,9 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Szint.zähler (2)</td>
<td>1,0</td>
<td>2,1 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Luft</td>
<td>1027,0</td>
<td>3,3 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Szint.zähler (3)</td>
<td>2,25</td>
<td>4,8 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>MWPC</td>
<td>4,5</td>
<td>0,3 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Luft</td>
<td>1962,0</td>
<td>6,5 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Szint.zähler (1)</td>
<td>1,25</td>
<td>2,7 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>MWPC</td>
<td>4,5</td>
<td>0,3 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Kryostatfenster</td>
<td>0,55</td>
<td>31,3 (\cdot 10^{-2})</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>56,1 (\cdot 10^{-2})</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Strahlungslängen der vor dem Kalorimeter im H6-Strahl befindlichen Materialien, aufgeführt in Strahlrichtung [KUB88].

wurden. Dieser gab – 10 ms nachdem ein Teilchen die vorderen Szintillatoren passierte – ein Signal, so daß nur Daten, die innerhalb eines Teilchenpakets\(^{10}\), jedoch nach dem Abklingen der Reaktion des Kalorimeters auf einen Teilchendurchgang, genommen wurden.

Schließlich bestand die Möglichkeit, jederzeit die Kanäle des Kalorimeters durch ein vom Online-Rechner extern vorgegebenes Signal\(^{11}\) auszulesen. Der ebenfalls teilchennunabhängige Kalibrationstrigger (siehe Abschnitt 4.1) wurde in regelmässigen Zeitabständen von der Software des Online-Rechners gesteuert.

Die Triggerlogik der CERN-Testexperimente ist in Abbildung 3.4 dargestellt. Weitere Details finden sich in [RIE89].

3.4 Der Flüssig-Argon-Kryostat

Die zu testenden Kalorimetermodule wurden in einem Stahl-Kryostaten mit oben liegender verschliessbarer Öffnung untergebracht. Abbildung 3.5 zeigt

\(^{10}\) Das SPS lieferte alle 15 s Teilchenpakete mit einer Zeitdauer von 2,4 s, sogenannte „Bursts“.

\(^{11}\) Artificial-Trigger
Abbildung 3.4: Die Triggerlogik der CERN-Testexperimente.
Kapitel 3. Testexperimente am CERN

Eine Aufsicht des Kryostaten mit den darin befindlichen Modulen FB1E/FB2E und FB1H/FB2H. Ferner ist die für diesen Test nominale Strahlrichtung mit einem Winkel von $\Theta = 34,3^\circ$ bezogen auf die Protonenflugrichtung (z-Richtung) bei HERA eingezeichnet.

Abbildung 3.5: Anordnung der Testmodule FB1 und FB2 im Inneren des Kryostaten.

Der Kryostat hatte zwei dünne aufeinanderfolgende kreisförmige Strahleneintrittsfenster ($\varnothing 60$ cm) aus Stahl mit einer Dicke von 2,5 mm (äußerer) und 3 mm (innerer). Zwischen dem Strahleneintrittsfenster und den Kalorimeterkomponenten befand sich ein Argonverdünner aus Rohacell. Der Kryostat war fahrbare auf einer Schiene montiert, so daß eine horizontale Änderung der Strahleneinschußposition möglich war, indem der Kryostat in transversaler Richtung zum Strahl verschoben wurde. Die Kühlung des im Tank befindlichen Flüssig-Argons geschah durch einen Flüssig-Stickstoff-Kreislauf. Die Oberseite des Kryostaten war über eine Plattform zugänglich. Spezielle Durchführungen für Signalkabel, Hochspannungsversorgung, Kryogenik und Verbindungen zu Sensoren für Druck- und Temperaturmessung sorgten dafür, daß kein Temperatursausgleich stattfand sowie keine atmosphärischen Sauер-
stoffverunreinigungen in das flüssige Argon gelangen konnten.

3.5 Die Flüssig-Argon-Reinheit

Elektronegative Verunreinigungen im Flüssig-Argon, insbesonders Halogene (z.B. Freon) und Sauerstoff, können schon bei Konzentrationen im Bereich von ppm eine Reduktion des Kalorimetersignals verursachen. Die häufigsten Ursachen für Verunreinigungen sind:

- *Transportverunreinigungen: Das in den Kryostaten gefüllte Flüssig-Argon ist bereits vor Testbeginn infolge undichter Leitungen oder Lecks in den Transporttanks verunreinigt.*

- *Verschmutzungen im Innern des Kryostaten: Bei der Montage der Kalorimetermodule im Kryostaten verursachte Verunreinigungen, sowie Verschmutzungen der Module an sich.*

- *Undichte Drucksicherheitsventile am Kryostaten.*

- *Ausgasungen im Flüssig-Argon: Rückstände von Reinigungsmitteln in den Kalorimetermodulen, die mit der Zeit ausgasen.*

Beim Testläufen im CERN wurden vier Proben in drei unterschiedlichen Höhen innerhalb des Kryostaten positioniert. Die zwei α-Strahler (\(^{241}\)Am) Alpha 1 und Alpha 2 sowie die Elektron-Konversions-Strahler (\(^{207}\)Bi) Beta 1

\(^{12}\) Die Faktoren hängen von der Geometrie sowie von der Stärke des angelegten elektrischen Feldes ab.
und Beta 2. Die unabhängige Messung des Sauerstoffgehalts erfolgte mittels eines konventionellen O_2-Monitors, der sich oberhalb des Flüssigkeitsspiegels im Dampf des Flüssig-Argon befand.

3.6 Das elektromagnetische Kalorimeter

![Diagramm von Kalorimeter](image)

Abbildung 3.6: Frontansicht eines FB-Kalorimetteringes mit einer Ausschnittvergrößerung des FB1E-Moduls [H1P86].

Die abwechselnd angeordneten Hochspannungsplatten und Ausleseplatten sind senkrecht zur Protonenflugrichtung bei HERA angeordnet. Insgesamt befinden sich 120 Platten in einem Stahlkasten, der eine 6 mm starke Vorder-, Mittel- und Rückwand besitzt und werden von neun durch das gesamte Modul reichende teflonbeschichteten Stahlstangen gehalten. Die jeweilige Gapbreite
von 2,4 mm wird durch ringförmige Abstandshalter aus G1013 definiert, welche auf die Stahlstangen geschoben sind. Seitenwände aus Stahl versteifen die Konstruktion.

Eine normale14 Auslesezelle besteht aus einer Hochspannungs- und einer Ausleseplatte. Beide besitzen einen 2,4 mm dicken Bleikern, welcher mit verschiedenen Lagen von Prepreg15, Kupfer, G10 und bei den Hochspannungsplatten noch mit Kaptón16 und High- Resistive-Coating (HRC)17 beschichtet ist. Die Ausleseplatten sind auf Vorder- und Rückseite mit Kupferplatinen, die in verschiedene Segmente (Pads) unterteilt sind, versehen. Die Leiterbahnen führen auf der jeweiligen Innenseite eines Pads zu einer Kontaktleiste. Pads, die sich auf Vorder- und Rückseite einer Ausleseplatte gegenüberliegen, sind miteinander verbunden, so daß es zwar pro Ausleseplatte 96 Ausleseflächen gibt, aber nur 48 Signalkabel abgeführt werden. Abbildung 3.7 zeigt den Aufbau einer Auslesezelle.

Abbildung 3.7: Aufbau einer Auslesezelle des FB1E-Kalorimetermoduls [SAH89].

Die Struktur der Pad-Aufteilung ergibt sich aus der Projizierbarkeit in ϕ-Richtung, also auf die Strahlachse bei H1. Daher wählte man eine trapezförmige Segmentierung von in radialer Richtung größer werdenden Aus-

<table>
<thead>
<tr>
<th>z-Lage</th>
<th>Platten-</th>
<th>Anzahl der</th>
<th>Pad</th>
<th>Padhöhen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Familie</td>
<td>Ausleseplatten</td>
<td></td>
<td>[mm]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3+(1 x Spezialplatte)</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>B</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>C</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>A</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>B</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
<td>C</td>
<td>125</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>6</td>
<td>B</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>6</td>
<td>C</td>
<td>130</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.2: Aufteilung der z-Lagen nach Anzahl und Familie der Ausleseplatten.

Das FB2E-Modul unterscheidet sich vom FB1E-Modul durch eine andere Pad-Segmentierung und eine abweichende Anzahl von Lagen. So sind die Ausleseplatten des FB2E-Kalorimeters in 4 Reihen à 16 Pads unterteilt. Es gibt jedoch keine unterschiedlichen Familien. Die Zahl der z-Lagen beträgt 8, wobei die ersten vier aus jeweils 7 Ausleseplatten bestehen und die letzten vier
Abbildung 3.8: Struktur der Ausleseplatten des FB1E-Kalorimeters unterteilt in drei Familien.
mit jeweils 8 Platten aufgebaut sind. Somit ergeben sich für das FB2E-Modul
\(8 \times 4 \times 16 = 512\) Auslesekanäle.

3.7 Das hadronische Kalorimeter

Abbildung 3.9: Aufbau einer Auslesezelle der hadronischen Kalorimetermodule FB1H/FB2H [BIN89].
3.7. Das hadronische Kalorimeter

<table>
<thead>
<tr>
<th>z-Lage</th>
<th>Anzahl der Ausleseplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FB1H</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>FB2H</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 3.3: Anzahl der Ausleseplatten pro z-Lage für FB1H und FB2H.

Die Zusammenfassung der Ausleseplatten zu z-Lagen ist für beide Module der Tabelle 3.3 zu entnehmen.
Somit beträgt die Gesamtzahl der auszulesenden Kanäle für das FB1H-Modul $6 \times 5 \times 8 = 240$ und für das FB2H-Modul $4 \times 6 \times 8 = 192$.

3.8 Die Ausleseelektronik

Die Signale der im Test insgesamt 1520 Kanäle durchliefen eine Vielzahl elektronischer Stufen bevor sie digitalisiert, vom Rechner ausgelesen und anschließend auf Magnetband geschrieben wurden. Der Signalverlauf sah dabei wie folgt aus:

Das an der Anode entstandene Signal wurde durch die Durchführungen aus dem Kryostaten herausgeführt und in eine der 16 auf der Plattform des Kryostaten befindlichen Analog-Boxen (ANBX) eingespeist. Eine solche Einheit besitzt 8 Analogkarten, welche die Signale in Gruppen à 16 durch einen Vorverstärker leitet, somit also 128 Signale verarbeiten konnte. Anschließend wurden die unipolaren Pulse mit einem Former (Shaper) in bipolare Pulse umgewandelt. Eine Sample & Hold-Einheit speicherte die Signale zwischen. Damit die von einer Karte parallel kommenden Signale nacheinander in eine Übertragungsleitung gelangten, verwendete man pro ANBX insgesamt 8 Multiplexer.

Die Signale wurden dann über eine Distanz von 50 m in die Meßhütte geleitet, in welcher sie erneut durch einen Multiplexer liefen. Insgesamt 4 Analog-Receiving-Units (ANRU) empfingen die Signale und leiteten sie durch ein oder zwei Verstärker. Damit sowohl die schwachen Signale eines minimalisierenden Teilchens als auch starke Signale gemessen werden könnten, besaßen die Verstärker unterschiedliche Verstärkungsfaktoren (Gain 1, 2 oder 4). Die Signale wurden nach diesen Faktoren sortiert und auf die 4 Analog-Digital-Wandlerkarten (ADC18) gegeben. Jede dieser ADC-Karten digitalisierte 512 Kanäle, so daß pro Ereignis 2048 Informationen an das Data-Aquisitions-System (DAQ) übergeben und auf Band geschrieben wurden. Es gab 2032 physikalische Informationen, da von den 1520 Kanälen 51219 durch jeweils zwei Verstärker ausgelesen wurden.

18 Analog-Digital-Converter

19128 Kanäle in FB1E und 384 Kanäle in FB2E.
Kapitel 4

Datenanalyse

Das primäre Ziel der Tests im CERN war, eine genaue Kalibration der Kalorimeterkomponenten zu erhalten. Kalibration bedeutet hier, daß die in einem Modul deponierte Ladung mittels einer multiplikativen Konstante in die äquivalente deponierte Energie umgerechnet werden kann, da hier ein linearer Zusammenhang zwischen Ladung Q und Energie E besteht. Um diese Kalibrationskonstanten zu ermitteln, schießt man Teilchen bekannter Energie auf die Kalorimetermodule, welche die gesamte Energie aufnehmen. Die im Detektor gesehene Ladung ist dann der bekannten Strahlenergie proportional:

$$< E >_{\text{Strahl}} = \sum_i C_i Q_i$$ \hspace{1cm} (4.1)

Der Index i bezeichnet die einzelnen Kalorimetermodule (elektromagnetisch, hadronisch, Tail-Catcher). Bei elektron-induzierten Ereignissen – welche für die Kalibration des FB1E-Moduls verwendet wurden – beschränkt sich obige Gleichung auf

$$< E >_{\text{Strahl}} = C_{FB1E} \sum_j Q_{j,FB1E},$$ \hspace{1cm} (4.2)

wobei Q_j die pro Kanal deponierte Ladung bezeichnet. Diese Vereinfachung ist erlaubt, weil die elektromagnetischen Schauer im untersuchten Energiebereich vollständig in FB1E absorbiert wurden.

Bei hadronischen Schauern hingegen müssen mehrere Kalibrationskonstanten ermittelt werden. Dies geschieht durch eine χ^2-Minimalisierung von Gleichung 4.1:
\[\chi^2 = \sum_j \left(<E>_{Strahl} - \sum_i C_i Q_i \right)^2 \] \hspace{1cm} (4.3)

Für \(i = EC, HC, TC \) ergibt sich somit die Bedingung

\[\frac{\partial \chi^2}{\partial C_i} = \sum_j \frac{\partial}{\partial C_i} \left(<E>_{Strahl} - \sum_i C_i Q_i \right)^2 = 0 \] \hspace{1cm} (4.4)

die sich in Form einer Matrixgleichung schreiben läßt:

\[AX = B \] \hspace{1cm} (4.5)

Hierbei ist

\[
A = \begin{pmatrix}
\sum_j Q_{EC}^2 & \sum_j Q_{EC} Q_{HC} & \sum_j Q_{EC} Q_{TC} \\
\sum_j Q_{HC} Q_{EC} & \sum_j Q_{HC}^2 & \sum_j Q_{HC} Q_{TC} \\
\sum_j Q_{TC} Q_{EC} & \sum_j Q_{TC} Q_{HC} & \sum_j Q_{TC}^2
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
C_{EC} \\
C_{HC} \\
C_{TC}
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
\sum_j Q_{EC} \\
\sum_j Q_{HC} \\
\sum_j Q_{TC}
\end{pmatrix} \cdot <E>_{Strahl}.
\]

Durch eine Matrixinversion lassen sich dann die Kalibrationskonstanten für Pionen bestimmen:

\[X = A^{-1} B \]

Die so für verschiedene Strahlenergien bestimmten Faktoren sollten innerhalb eines Schwankungsbereichs von ± 1% für Elektronen und ± 2% für Hadronen energieunabhängig sein (siehe Abschnitt 4.5).

Die Antwort des Kalorimeters auf ein Ereignis wurde in Form von geordneten ganzen Zahlen (ADC-Werte) für jeden Kanal auf ein Magnetband geschrieben (siehe Abschnitt 3.8). Benötigt wurde deshalb ein Verfahren, welches den jeweiligen ADC-Inhalt der entsprechenden Ladung \(Q \) zuordnete:
\[ADC_j \rightarrow Q_j \]

Diese Ladungseichung geschah durch die elektronische Kalibration, deren Prinzip im folgenden erläutert wird.

4.1 Elektronische Kalibration

Ziel der elektronischen Kalibration war es, eine Funktion der Form \(Q_j = f_j(ADC\text{-Wert}) \) zu finden, und dieses für jeden Kanal \(j \) des Kalorimeters. Zu diesem Zweck wurde eine mit \(Q = U \cdot C \) bekannte Ladung auf die Signalleitung des jeweiligen Vorverstärkers gegeben, und die Antwort des Systems mit der Eingabe verglichen. Den definierten Ladungspuls \(Q \) erzeugte man durch die Entladung eines Koppelkondensators mit der Kapazität \(C \), der mit einer im Bereich 0.01 V \(\leq \) 1,0 V regelbaren Spannungsquelle \(U \) aufgeladen wurde.

Für die Ladungseichung eines einzelnen Kanals konnte ein Bereich von 0 bis 47 pC in 35 Schritten erfaßt werden. Gepulst wurde in Einheiten von DAC\(^1\)-Levels. Die eingespeiste Ladung berechnet sich dann unter Berücksichtigung der mittleren Kapazität des Koppelkondensators von 47 pF zu [JAC89]:

\(^1\)Digital-Analog-Converter
Abbildung 4.1: Schematischer Aufbau des Kalibrationssystems [GRF90].

\[Q = \frac{(DAC-\text{Level}) + 98}{2^{16} - 1} \cdot 47pF \cdot 1,037V \] \hspace{1cm} (4.6)

Für jeden Meßpunkt wurde die Antwort des Kanals 1000 Mal ermittelt, was einen statistischen Fehler von 0,3% ergibt. Die Funktion \(Q_j = f_j(\text{ADC-Wert}) \) folgt aus der Anpassung eines Polynoms dritter Ordnung an die Meßpunkte \(M_{i,j} \), wobei die Anpassung durch eine Minimalisierung von \(\chi^2 \) erfolgte:

\[\chi^2 = \sum_{i=1}^{1000} \left(\frac{M_{i,j} - f_j(\text{ADC-Wert})}{\Delta i} \right)^2 \] \hspace{1cm} (4.7)

Die so ermittelte Funktion

\[Q_j = P_{0,j} + P_{1,j} \cdot \text{ADC} + P_{2,j} \cdot (P_{0,j} + P_{1,j} \cdot \text{ADC})^2 + P_{3,j} \cdot (P_{0,j} + P_{1,j} \cdot \text{ADC})^3 \] \hspace{1cm} (4.8)

lieferlte auch den ADC-Wert eines Kanals für die Ladung \(Q = 0 \). Dieser „Pedestalwert“ wurde bei der späteren Analyse jedoch durch den aus Random-Ereignissen bestimmten Pedestal (siehe Abschnitt 4.2) ersetzt. Die Halbwertsbreite \(\sigma_{\text{Noise}} \) der Pedestalverteilung pro Kanal ist ein Maß für das elektronische Rauschen – den „Noise“. Abbildung 4.2 zeigt den Verlauf der Funktion \(Q = f(\text{ADC-Wert}) \) am Beispiel des Kanals 501.
Abbildung 4.2: Der Funktionsverlauf von $Q = f(\text{ADC-Wert})$ für Kanal 501.

Damit Veränderungen der Elektronik (Verschiebungen vom Nullpunkt, ausgefallene Kanäle) bei der Analyse berücksichtigt werden konnten, wurde die gesamte Kalibration in regelmäßigen Zeitabständen (24 h) wiederholt.

4.2 Ereignis-Selektion und Datenkorrektur

Tabelle 4.1: Einfluß der Auswahlkriterien auf die Ereigniszahl. Gezeigt wird der prozentuale Anteil f_i von Ereignissen, die das entsprechende Kriterium erfüllen, am Beispiel von 30 und 80 GeV Elektronen. Das jeweilige vorangegangene Kriterium bildet die 100 %-Marke. Der prozentuale Anteil der Ereignisse, die alle Kriterien erfüllen, ist durch f_{gesamt} gegeben.

<table>
<thead>
<tr>
<th>Auswahlkriterium</th>
<th>$e^{-} : 30 \text{GeV}$</th>
<th>$e^{-} : 80 \text{GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Artificial$</td>
<td>98,5</td>
<td>98,7</td>
</tr>
<tr>
<td>$Kalibration$</td>
<td>98,6</td>
<td>98,7</td>
</tr>
<tr>
<td>$Random$</td>
<td>97,3</td>
<td>99,2</td>
</tr>
<tr>
<td>$Myon$</td>
<td>98,6</td>
<td>85,1</td>
</tr>
<tr>
<td>$B1 \land B2$</td>
<td>96,2</td>
<td>92,6</td>
</tr>
<tr>
<td>$M1$</td>
<td>99,5</td>
<td>78,6</td>
</tr>
<tr>
<td>$M2$</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>$Veto$</td>
<td>89,4</td>
<td>89,3</td>
</tr>
<tr>
<td>$Early$</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>$Late$</td>
<td>99,0</td>
<td>94,4</td>
</tr>
<tr>
<td>$Holecounter$</td>
<td>73,7</td>
<td>78,5</td>
</tr>
<tr>
<td>$singleClüsterMWPC$</td>
<td>98,3</td>
<td>97,9</td>
</tr>
<tr>
<td>$\bar{C}1 \land \bar{C}2$</td>
<td>98,9 56,5</td>
<td>63,2 24,5</td>
</tr>
</tbody>
</table>
4.2. Ereignis-Selektion und Datenkorrektur

schließen läßt.

4.2.1 Crosstalk-Korrektur

Durch elektronisches Übersprechen (Crosstalk) benachbarter Kabel oder Pads wurden Signale verfälscht, was zu Fehlern bei der Berechnung der deponierten Ladung führte. Typischerweise wird ein Crosstalk-Signal durch die kapazitive Kopplung zwischen zwei parallel laufenden Signalleitungen, welche von den Pads zu den Vorverstärkern führen, verursacht. Dieses „derivative“ Crosstalk-Signal ist wie die Zeitableitung eines normalen Signals geformt.

Elektronisches Übersprechen wird auch zwischen benachbarten Kalibrationsleitungen beobachtet. In diesem Fall kann eine zusätzliche Ladung bei der Kalibration erzeugt werden. Diese zusätzliche Kapazität arbeitet parallel zum Kalibrationskondensator eines gepulsten Kanals und erhöht die Kalibrationsladung. Dieser „direkte“ Crosstalk führte zu Fehlern bei der Bestimmung der Funktion \(Q_j = f_j(\text{ADC-Wert}) \) (siehe Gl. 4.8) der Art, daß die Parameter \(P_{i,j} \) \((i = 0, \ldots, 3)\) zu klein waren, so daß bei einem einzelnen getroffenen Kanal die Ladung zu klein bestimmt wurde. Es war daher notwendig, das elektronische Übersprechen mit dem Kalibrationssystem zu überprüfen und zu korrigieren.

Beim Test der FB1/FB2-Module stellte sich ein sehr hoher direkter Crosstalk heraus, der einen Einfluß von 18 – 20% auf die Gesamtladung hatte. Demgegenüber konnte der derivative Crosstalk vernachlässigt werden. Die Ursache des hohen Crosstalk-Signals waren fehlende Masseleitungen zwischen den Kalibrationsleitungen, die in den Kryostaten führten. Zur Untersuchung des Übersprechens der Elektronik wurde gezielt ein Kanal von sechzehn auf einer Analogkarte befindlichen Kanäle gepulst und das Ergebnis dieser Kalibration mit der verglichen, bei der alle sechzehn gleichzeitig gepulst wurden. Man erhielt somit zwei Sätze von Parametern \(P_{i,j}, \tilde{P}_{i,j} \), wobei beide über einen Faktor \((1 + \delta_{i,j})^{-1}\) miteinander verknüpft sind:

\[
\tilde{P}_{i,j} = \frac{P_{i,j}}{1 + \delta_{i,j}} \quad (4.9)
\]

Nun wurden die jeweiligen Ladungen berechnet:
\[Q_j^{16/16} = P_{0,j} + P_{1,j} \cdot ADC + P_{2,j} \cdot (P_{0,j} + P_{1,j} \cdot ADC)^2 + \\
+P_{3,j} \cdot (P_{0,j} + P_{1,j} \cdot ADC)^3 \\
Q_j^{1/16} = \tilde{P}_{0,j} + \tilde{P}_{1,j} \cdot ADC + \tilde{P}_{2,j} \cdot (\tilde{P}_{0,j} + \tilde{P}_{1,j} \cdot ADC)^2 + \\
+\tilde{P}_{3,j} \cdot (\tilde{P}_{0,j} + \tilde{P}_{1,j} \cdot ADC)^3 \]

Trägt man nun das Verhältnis \(R_j = Q_j^{1/16} / Q_j^{16/16} \) über den gesamten ADC-Wertebereich (\(0 \leq ADC \leq 4095 \)) auf, so läßt sich für jeden Kanal \(j \) eine Korrekturfunktion der Form

\[F_j(ADC) = C_{0,j} + C_{1,j} \cdot ADC + C_{2,j} \cdot ADC^2 + C_{3,j} \cdot ADC^3 \]
(4.10)

finden. Mit dieser Funktion wird die Ladung eines einzelnen Kanals dann korrigiert:

\[Q_{korrigierte,j} = F_j(ADC) \cdot Q_j \]
(4.11)

4.2.2 Rauschunterdrückung

Ein wichtiger Punkt bei der Bestimmung der deponierten Ladung eines jeden Kanals ist die Unterdrückung von elektronischem Rauschen. Zu Beginn der Analyse wurde deshalb für jeden Kanal \(j \) vom „rohen“ ADC-Wert der aus der elektronischen Kalibrierung erhaltene Pedestalwert \(Ped_{Kal,j} \) subtrahiert:

\[(ADC-Wert)_{roh,j} - Ped_{Kal,j} = (ADC-Wert)_{korrigierte,j} \]

Das \(\sigma \) der Pedestalverteilung für jeden Kanal ist ein Maß für das elektronische Rauschen. Es wurden daher zunächst nur solche Signale in der Analyse berücksichtigt, deren Signal größer als \(3 \cdot \sigma_{Kal,j} \) war:

\[(ADC-Wert)_{korrigierte,j} > 3 \cdot \sigma_{Kal,j} \]

Abbildung 4.3: Abweichung zwischen Kalibrations-Pedestal und Random-Pedestal für alle Kanäle am Beispiel von 30 GeV Elektronen. In (a) ist die Differenz dargestellt und in (b) der jeweilige ADC-Wert.

Damit diese durch Driften der Elektronik verursachten Abweichungen berücksichtigt werden, wurden deshalb bei der Analyse die Werte aus der elektronischen Kalibration durch die für jede Energie1 bestimmten Werte aus den zeitlich näher an den Ereignissen liegenden Random-Ereignissen ersetzt:

\[
(\text{ADC-Wert})_{\text{roh, j}} - P_{\text{ed}, Random, j} = (\text{ADC-Wert})_{\text{korr. j}}
\]
(4.12)

\[
(\text{ADC-Wert})_{\text{korr. j}} > 3 \cdot \sigma_{\text{Random, j}}
\]
(4.13)

1Bei der Analyse der 186 GeV Elektronenstahl stellte sich heraus, daß durch einen Fehler bei der Datennahme keine Random-Ereignisse genommen worden sind. Hier wurden für die Korrektur die Random-Werte des zeitlich darauffolgenden 80 GeV Laufs verwendet.
Abbildung 4.4 zeigt die Verteilung des Random-Noise σ_{Random} für jeden Kanal am Beispiel des 80 GeV Laufs.

Da die Ermittlung der Parameter $P_{i,j}$ ($i = 0, \ldots, 3$) der Funktion $Q_j = f_j(\text{ADC-Wert})$ (siehe Gl. 4.8) von den Pedestalwerten abhängt, müssen bei der Random-Korrektur die Parameter $P_{i,j}$ ebenfalls korrigiert werden (siehe Anhang).

4.2.3 Hochspannungskorrektur

Einzelne tote Kanäle sowie Defekte bei der Hochspannungsversorgung haben einen großen Einfluß auf die Ladungssammlung in den Flüssig-Argon-Gaps. Alle Module wurden zwar vor Beginn der Testläufe daraufhin überprüft, aber es hätten während der Montage der Module im Kryostaten bzw. beim Herunterkühlen auf die Temperatur des Flüssig-Argons Beschädigungen oder Verunreinigungen auftreten können, die während der Tests nicht mehr zu beseitigen gewesen wären.

In der Regel lassen sich jedoch tote Kanäle bei der elektronischen Kalibrierung ebenso lokalisieren, wie dies bei Hochspannungsproblemen möglich ist. Von den 24 Hochspannungsversorgungsleitungen des FB1E-Moduls war eine defekt, welche einen Teil der 11. und 12. z-Lage versorgte. Es wurde
bei der Datenanalyse eine direkte Korrektur auf die in diesen Lagen beobachtete Ladung derart vorgenommen, daß der anteilig ausgefallene Teil als Multiplikationsfaktor genommen wurde:

\[Q_{\text{korrigiert},z} = f_{z,HV} \cdot Q_z \]

Da die Hochspannungsversorgung der 12. Lage zur Hälfte von der defekten Leitung abhängig, ergab sich hier ein Korrekturfaktor von 2,0. Die 11. Lage wurde zu einem Drittel mit dieser Leitung versorgt, so daß sich ein Korrekturfaktor von 1,33 ergibt. Aus der elektronischen Kalibrierung ergaben sich für FB1E vier tote Kanäle, die jedoch außerhalb des von elektromagnetischen Schauern tangierten Bereichs lagen und daher keinen Einfluß auf die Bestimmung der Gesamtladung hatten.

4.3 Hochspannungskurve in Flüssig-Argon

\[
Q = 2 \cdot Q_0 \cdot \lambda \frac{d}{d} \left[1 - \frac{\lambda}{d} \left(1 - \exp \left(\frac{-d}{\lambda} \right) \right) \right]
\]

(4.14)

Hierbei ist \(Q_0 = e \frac{dE}{ds} \frac{d}{W} \) die Sättigungs Ladung, wobei \(\frac{dE}{ds} \) den mittleren differentiellen Energieverlust geladener Teilchen in Flüssig-Argon darstellt, und \(W \) das mittlere Ionisierungs mögliches von Flüssig-Argon beschreibt. Die Größe \(d \) bezeichnet den Plattenabstand. Die mittlere freie Weglänge \(\lambda \) für Elektronen in Flüssig-Argon hängt von der angelegten Feldstärke \(E \) sowie von der Verunreinigung \(p \) – hier hauptsächlich \(O_2 \) – ab:

\[
\lambda = \alpha \frac{|E|}{p}
\]

(4.15)
Die Proportionalitätskonstante α beträgt $\alpha = 0,15 \frac{cm^3}{ppm} \frac{e^{-}}{kV}$ [HOF76].

Abbildung 4.5: Die Hochspannungskurve in FB1E für Elektronen mit einer Strahlenergie von 30 GeV.

... gemessenen Werte erhält man die Sättigungsladung Q_0 und die Sauerstoffverunreinigung p zu

$$Q_0 = (8,61 \pm 0,01) \ pC$$

und

$$p = (1,10 \pm 0,13) \ ppm$$
4.4 Energieauflösung

Der Wert der Verunreinigung des Flüssig-Argon mit Sauerstoff stimmt mit dem im Kryostaten gemessenen Wert von $0,9 \pm 0,15$ ppm überein. Aus dem Sättigungswert der Ladung und dem Ladungswert bei einer Hochspannung von 2,5 kV, welche der Betriebsspannung des Kalorimeters entspricht, läßt sich ein Korrekturfaktor $k = \frac{Q_2}{Q_{2,5kV}}$ ermitteln, mit dem die Kalibrationskonstante auf die Sättigungsladung normiert wird. Dieser ergibt sich zu $k = 1,056 \pm 0,002$.

4.4 Energieauflösung

<table>
<thead>
<tr>
<th>Energie [GeV]</th>
<th>Alle Ereignisse</th>
<th>Contained Ereignisse</th>
<th>Reduktionsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4769</td>
<td>583</td>
<td>0,12</td>
</tr>
<tr>
<td>30</td>
<td>6487</td>
<td>3859</td>
<td>0,60</td>
</tr>
<tr>
<td>80</td>
<td>3364</td>
<td>3156</td>
<td>0,94</td>
</tr>
<tr>
<td>166</td>
<td>5293</td>
<td>5148</td>
<td>0,97</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Einfluß des Containment-Schnitts von 98% auf die Ereigniszahl.

Da sich die Zahl der Ereignisse bei hohen Energien kaum reduziert, kann man longitudinales Leakage in die hadronischen Module vernachlässigen. Bei niedrigen Strahlenergien wird das Verhältnis des physikalischen Signals in FB1E zum Untergrundsignal in den übrigen Modulen deutlich kleiner, so daß ein größerer Anteil der Ereignisse bei der Selektion herausfällt.

Eine Untersuchung der räumlichen Ausbreitung elektromagnetischer Schauer in FB1E zeigte, daß einzelne Kanäle Signale lieferten, die nicht mit dem eigentlichen Ereignis korreliert waren. Diese wären jedoch bei der Berechnung der deponierten Ladung eingegangen und hätten die Signalspektren

$$< Q > - 2.5 \cdot RMS \leq Q_i \leq 3 \cdot RMS + < Q >$$

bestimmt, wobei die mittlere quadratische Abweichung RMS definiert ist als:

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} (Q_i - < Q >)^2}{n}} \quad \text{mit} \quad n = \text{Zahl der Ereignisse}$$

Tabelle 4.3 zeigt die aus der Anpassung erhaltenen Parameter sowie die daraus berechnete Energieauflösung für jede Energie.

Die Werte der Energieauflösung für Elektronen für das FB1E-Modul sind in Abbildung 4.8 dargestellt. Die Parametrisierung erfolgte mit

$$\frac{\sigma}{E} = \sqrt{\frac{A^2}{E} + B^2}$$

In dieser aus Abschnitt 2.6 bekannten Funktion beschreibt A überwiegend die
Abbildung 4.6: Entwicklung eines elektron-induzierten Schauers mit einer Energie von 30 GeV in FB1E.
Abbildung 4.7: Ladungsverteilungen von Elektronen in FB1E für die Energien 10, 30, 80 und 166 GeV.
4.4. Energieauflösung

<table>
<thead>
<tr>
<th>Energie [GeV]</th>
<th>(< Q > [pC])</th>
<th>(\sigma [pC])</th>
<th>(\frac{\sigma}{E} [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2,615 ± 0,005</td>
<td>0,103 ± 0,003</td>
<td>3,94 ± 0,11</td>
</tr>
<tr>
<td>30</td>
<td>7,956 ± 0,002</td>
<td>0,172 ± 0,002</td>
<td>2,16 ± 0,03</td>
</tr>
<tr>
<td>80</td>
<td>21,442 ± 0,006</td>
<td>0,325 ± 0,005</td>
<td>1,52 ± 0,02</td>
</tr>
<tr>
<td>166</td>
<td>44,858 ± 0,007</td>
<td>0,506 ± 0,006</td>
<td>1,128 ± 0,001</td>
</tr>
</tbody>
</table>

Tabelle 4.3: Ergebnisse der Funktionsanpassung an die Ladungsverteilungen für alle Energien, sowie die berechnete Energieauflösung \(\frac{\sigma}{E}\).

Abbildung 4.8: Energieauflösung für Elektronen in FB1E.

\(A=(11,9±0,3)\%\sqrt{GeV}\)
\(B=(0,65±0,05)\%\)
intrinsischen Samplingfluktuationen, da bei Flüssig-Argon-Samplingkalorimetern die Beiträge durch Landau- und Spurlängenfluktuationen vernachlässigbar klein sind. Der Parameter \(B \) spiegelt größtenteils die Impulsscharfe des Teststrahls wieder, beinhaltet jedoch auch Dickenschwankungen im aktiven und passiven Medium. Aus der Anpassung erhält man folgende Werte:

\[
A = (11,9 \pm 0,3) \% \sqrt{GeV}
\]

und

\[
B = (0,65 \pm 0,05) \%
\]

Der Wert für \(A \) liegt in der Größenordnung der Ergebnisse früherer Simulationsrechnungen mit dem Programmpaket \(EGS4 \) [SAH89], welche unter der Annahme eines Plattenabstands von 2,4 mm einen Wert von \(11,5 \% \sqrt{GeV} \) ergaben. Die Differenz ergibt sich aus dem real im Mittel um 0,06 mm größeren Plattenabstand, sowie der Tatsache, daß bei der Simulation die durch elektronisches Rauschen bedingten Effekte nicht berücksichtigt wurden. Der Wert für \(B \) liegt im Bereich der Impulsscharfe des \(\delta \)-Strahls von \(\frac{\delta p}{p} \approx 0,3 \text{ bis } 0,7\% \) (siehe auch Abschnitt 3.2) und begrenzt für hohe Energien die Energieauflösung.

4.5 Energielinearität

Der kinematische Bereich zur Messung von Strukturfunktionen bei H1 ist abhängig von der Energieauflösung und der Genauigkeit der absoluten Energiekalibrierung des H1-Kalorimeters. Damit die Strukturfunktion \(F_2 \) auf 10\% genau bestimmt werden kann, muß der systematische Fehler \(\delta E \) der absoluten Kalibrierung für Elektronen \(\leq 1\% \) und für Hadronen \(\leq 2\% \) sein [H1P86]. Daher sollte die Analyse der CERN-Testdaten für FB1E eine Kalibrationskonstante für Elektronen ergeben, die im Energiebereich von 30 \(GeV \) bis 166 \(GeV \) bis auf \(\pm 1\% \) genau ist.

Abbildung 4.9 zeigt die relative Abweichung der für jede Energie ermittelten Kalibrationskonstanten vom Mittelwert in Abhängigkeit von der Energie.

Deutlich zu sehen ist ein Anstieg der Kalibrationskonstanten mit geringer werdender Energie. Bei 10 \(GeV \) beträgt die Abweichung bereits mehr als 1\%. Diese Tendenz ist gleichbedeutend mit einer zu geringen mittleren Ladung bei kleinen Energien. Als Grund ist hier der, aufgrund des bei kleinen
4.5. Energielinearität

\[C - \frac{<C>}{<C>} \% \]

Abbildung 4.9: Energielinearität für FB1E bei einem 3σ-Schnitt.

Daraus ergab sich die Möglichkeit, die Energielinearität durch eine Optimierung des σ-Schnitts zu verbessern. Eine minimale Abweichung der Kalibrationkonstanten vom Mittelwert zeigt sich bei einem Schnitt von 2,5. Trägt man nun erneut die relative Abweichung jeder Konstante vom Mittelwert über alle Energien für diesen Schnitt auf (siehe Abbildung 4.11), so ergibt sich eine Linearität, deren Schwankung innerhalb von ±0,5 % liegt.

Somit ergibt sich für das FB1E-Modul des H1-Detektors eine Kalibrationskonstante von

\[C_{FB1E} = 3,677 \text{ GeV/pC} \]
Abbildung 4.10: Abhängigkeit der Kalibrationskonstanten E/Q von der Höhe des σ-Cuts für alle Energien.

$C = \frac{<C>}{<C>} [%]$
in guter Übereinstimmung mit dem theoretisch erwarteten Wert von 3,68 GeV/fC (siehe Abschnitt 2.3.1).

Um diese Konstante mit den für die übrigen elektromagnetischen Komponenten aus anderen Tests ermittelten Kalibrationskonstanten vergleichen zu können, wird sie auf die Sättigungsadlade normiert. Mit Hilfe des aus der Analyse der Hochspannungskurve erhaltenen Korrekturfaktors von $k = 1,056 \pm 0,002$ berechnet sich der endgültige Wert der Kalibrationskonstanten zu:

$$C_{FB1E,norm.} = 3,482 \text{ GeV/pC}$$

4.6 Bestimmung von e/π

Das e/π-Verhältnis drückt das unterschiedliche Signalverhalten von elektromagnetischen und hadronischen Schauern bei gleicher Strahlenergie aus. Für das H1-Flüssig-Argon-Kalorimeter ist $e/\pi > 1$, d.h. es ist "nicht-kompensierend" im Gegensatz zu Kalorimetern mit $e/\pi = 1$, welche man als "kompensierend" bezeichnet. Bei einem nicht-kompensierenden Kalorimeter führen materiellabhängige Energieverluste hadronischer Teilchenlawinen zu einem kleineren effektiven Signal im Kalorimeter als dies für elektron-induzierte Kaskaden der Fall ist. Abbildung 4.12 zeigt dieses unterschiedliche Signalverhalten für das FB1E-Modul anhand von 30 GeV Daten.

Betrachtet man das FB1E-Modul, so muß die Kalibrationskonstante für Pionen für den elektromagnetischen Teil bei gleicher Energie größer sein als die für Elektronen, weil das hadronische Signal kleiner ist. Da Elektronen im FB1E-Modul vollständig absorbiert werden, läßt sich das e/π-Verhältnis aus den Kalibrationskonstanten im elektromagnetischen Teil errechnen:

$$\frac{e}{\pi} = \frac{C_{FB1E}^h}{<C>_{FB1E}}$$

(4.19)

Dabei ist C_{FB1E}^h die für Pionen nach Gleichung 4.5 für die jeweilige Energie bestimmte Kalibrationskonstante für FB1E. $<C>_{FB1E}$ stellt die für Elektronen bestimmte mittlere Kalibrationskonstante, jedoch nicht auf die Sättigungsadlade normiert, dar. Tabelle 4.4 gibt das für alle Energien bestimmte e/π-Verhältnis wieder.

<table>
<thead>
<tr>
<th>Energie [GeV]</th>
<th>$C_{FB1E}^h [\text{GeV}]$</th>
<th>$< C >_{FB1E}^h [\text{GeV}]$</th>
<th>$\frac{\sigma}{\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4,66</td>
<td>4,62</td>
<td>3,677</td>
</tr>
<tr>
<td>30</td>
<td>4,62</td>
<td>4,18</td>
<td>1,27</td>
</tr>
<tr>
<td>80</td>
<td>4,18</td>
<td></td>
<td>1,23</td>
</tr>
<tr>
<td>166</td>
<td>4,25</td>
<td></td>
<td>1,14</td>
</tr>
</tbody>
</table>

Tabelle 4.4: Kalibrationskonstanten für Elektronen und Pionen für FB1E, sowie das effektive $\frac{\sigma}{\pi}$-Verhältnis.
Die ermittelten Werte für $\frac{n}{\pi}$ beziehen sich nur auf das FB1E-Modul, was etwa einer Absorptionslänge für Hadronen entspricht.

4.7 Longitudinale Schauerentwicklung

In diesem Abschnitt wird untersucht, inwieweit sich die Daten durch eine Parametrisierung der longitudinalen Schauerprofile beschreiben lassen. In Kapitel 2.4.3 wurde gezeigt, daß die Entwicklung eines elektromagnetischen Schauers durch Gl. 2.16 beschrieben wird:

$$\frac{dN}{dn} = N_0 \frac{\beta^{n+1}}{\Gamma(\alpha + 1)} n^\alpha e^{-\beta n}$$ \hspace{1cm} (4.20)

mit

\[N_0 = 5,51 \cdot \sqrt{Z} \cdot E_0 \]
\[\beta = 0,634 - 0,0021 \cdot Z \]
\[\alpha = 2,0 - \frac{Z}{340} + \left(0,664 - \frac{Z}{340} \right) \ln E_0 \quad \text{für} \quad Z \geq 26 \]

n beschreibt hier die Schichtdicke in Einheiten der Strahlungslänge X_0. Zur Berechnung der mittleren Ordnungszahl Z für das FB1E-Modul wurde eine mittlere Dicke der Bleischicht von 2,4 mm und eine mittlere Argonschichtdicke von 2,4 mm angenommen. Die übrigen Materialien wurden vernachlässigt, da ihre Dicken in Verbindung mit den entsprechenden Ordnungszahlen nur einen geringen Einfluß auf die gesamte mittlere Ordnungszahl haben. Somit errechnet sich die mittlere Ordnungszahl aus der Summe der Ordnungszahlen von Blei und Flüssig-Argon, gewichtet mit der jeweiligen Länge in Strahlungslängen:

$$Z_{FB1E} = \frac{Z_{LAr} \cdot X_{LAr} + Z_{Pb} \cdot X_{Pb}}{X_{LAr} + X_{Pb}} = 79,7$$ \hspace{1cm} (4.21)

Die bei der longitudinalen Schauerentwicklung zu untersuchende Größe ist die jeweils pro Strahlungslänge n deponierte mittlere Ladung Q, wobei die pro z-Lage deponierte Ladung als Information vorhanden war. Daher wurde
Gl. 4.20 um einen Normierungsfaktor a erweitert. Als zusätzlicher freier Parameter wurde der Schauerstartpunkt n_0 in Einheiten der Strahlungslänge eingeführt. Damit ergibt sich die Anpassungsfunktion zu:

\[
\frac{dQ}{dn} = \tilde{N}_0 \cdot a \cdot \frac{\beta^{\alpha+1}}{\Gamma(\alpha + 1)}(n - n_0)^{\alpha}e^{-\beta(n-n_0)} \tag{4.22}
\]

mit

\[
\tilde{N}_0 = \frac{N_0}{E} = 49,190
\]

\[
\beta = 0,4666
\]

\[
\alpha_{10\text{GeV}} = 2,7575 \quad \alpha_{30\text{GeV}} = 3,2267
\]

\[
\alpha_{50\text{GeV}} = 3,6480 \quad \alpha_{166\text{GeV}} = 3,9616
\]

Zur Berechnung von dQ/dn wurde das FB1E-Modul in Einheiten der Strahlungslänge beschrieben. Da der Teilchenstrahl das Kalorimeter unter einem Winkel von $34,3^\circ$ durchquerte, mußte die Länge einer z-Lage noch mit einem Faktor $(\cos 34,3^\circ)^{-1}$ multipliziert werden.

Der genaue Ort der Ladungsdeposition innerhalb der Auslesezellen einer Lage war nicht bekannt, daher wurde die jeweilige Ladung auf den Mittelpunkt einer Lage projiziert. Die Unsicherheit des Ortes der Ladungsdeposition wurde als Fehler in Form der Länge der pro Lage durchlaufenen Wegstrecke berücksichtigt.

Tabelle 4.5 gibt die Punkte wieder, auf welche die jeweilige Ladung pro

<table>
<thead>
<tr>
<th>z-Lage</th>
<th>Mittelpunkt ([X_0])</th>
<th>halbe Länge ([X_0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0,745</td>
<td>0,745</td>
</tr>
<tr>
<td>7</td>
<td>4,313</td>
<td>2,824</td>
</tr>
<tr>
<td>8</td>
<td>10,034</td>
<td>2,898</td>
</tr>
<tr>
<td>9</td>
<td>16,409</td>
<td>3,477</td>
</tr>
<tr>
<td>10</td>
<td>23,363</td>
<td>3,477</td>
</tr>
</tbody>
</table>

Tabelle 4.5: Punkte der Ladungsdeposition pro Lage und deren Unsicherheit als halbe Länge in Einheiten der Strahlungslänge \(X_0\).
Lage projiziert wurde, sowie deren Unsicherheit als halbe Länge der durchlaufenen Wegstrecke.

Abbildung 4.14 zeigt die nach der beschriebenen Methode ermittelten Werte \(dQ/dn \) in Abhängigkeit des Ortes \(n \) für die Energien 10, 30, 80 und 166 GeV. Der Fehler in y-Richtung ist statistisch bedingt und sehr klein. Der Fehler in x-Richtung gibt die Unsicherheit bei der Ladungsdeposition für jede Lage an. An die Verteilungen wurde die Funktion nach Gl. 4.22 angepaßt. Die daraus erhaltenen Parameter für die Normierung \(a \) und den Schauerstartpunkt \(n_0 \) sind in die Diagramme eingetragen.

Die gemessenen Werte entsprechen der erwarteten Verteilung. Sehr gut läßt sich die nur geringe Verschiebung des Schauermaximums bei höher werdender Energie zu größeren Tiefen erkennen.

Es wird nun überprüft, inwieweit die Flächen unter den Kurven der nach dem üblichen Verfahren berechneten Gesamtladung als Summe der Einzella- dungen entsprechen. Die Integration von Gl. 4.22 von \(n_0 \) bis unendlich liefert [PAR88]:

\[
<Q>_{F_{it}} = \int_{n_0}^{\infty} \frac{dQ}{dn} dn
= \int_{n_0}^{\infty} \bar{N} \cdot a \cdot \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)}(n-n_0)^{\alpha}e^{-\beta(n-n_0)} dn
= 5.51 \cdot a \cdot \sqrt{Z} \tag{4.23}
\]

Die Gesamtladung \(<Q>_{F_{it}} \) hängt somit nur von der Normierung \(a \) und der mittleren Ordnungszahl \(Z \) ab.

Tabelle 4.6 zeigt die so für alle Energien erhaltenen Ladungen und zum Vergleich die aus der Summe der Einzella- dungen erhaltenen Werte.

Der Vergleich zeigt, daß die Werte aus der Anpassung an die longitudina- len Schauerprofile die Größenordnung sehr gut beschreiben, jedoch mit einem relativ hohen Fehler behaftet sind. Dies liegt einerseits an der Unsicherheit der genauen Strahlereinschlußposition, da diese das Verhältnis von Ladungsdeposition zu Strahlungslänge \(dQ/dn \) in der Lage stark beeinflußt und eine Veränderung dieses Werts sich auf die Gesamtladung \(<Q>_{F_{it}} \) auswirkt. Zum Anderen wirken sich Abweichungen von der bei der Berechnung des Parameters \(\alpha, \beta \) und \(\bar{N} \) in Gl. 4.22 angenommenen Platten- und Gapdicke,
Abbildung 4.14: Longitudinale Schauerentwicklung in FB1E für Elektronen der Energien 10, 30, 80 und 166 GeV.
<table>
<thead>
<tr>
<th>Energie $[\text{GeV}]$</th>
<th>$< Q >_{\text{Fit}} \ [pC]$</th>
<th>$< Q >_{\text{Sum}} \ [pC]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2,66 ± 0,05</td>
<td>2,615 ± 0,005</td>
</tr>
<tr>
<td>30</td>
<td>7,87 ± 0,08</td>
<td>7,956 ± 0,002</td>
</tr>
<tr>
<td>80</td>
<td>20,66 ± 0,50</td>
<td>21,442 ± 0,006</td>
</tr>
<tr>
<td>166</td>
<td>41,82 ± 0,90</td>
<td>44,858 ± 0,007</td>
</tr>
</tbody>
</table>

Tabelle 4.6: Vergleich der berechneten Gesamtladung aus der Funktionsanpassung mit der aus der Summation errechneten.

sowie Unsicherheiten bei der Berechnung von Z_{FB1E} auf die Anpassung und somit auf die Gesamtladung aus.
Kapitel 5

Zusammenfassung

Im Rahmen dieser Arbeit wurden die Tests elektromagnetischer und hadronischer Kalorimeterkomponenten für den H1-Detektor beschrieben. Dazu wurde insbesonders das Funktionsprinzip elektromagnetischer Kalorimeter anhand der zugrundeliegenden physikalischen Prozesse erläutert.

Bei der Analyse der Testdaten für das FB1E-Modul wurde eine sorgfältige Datenselektion und -korrektur vorgenommen. Die so experimentell erhaltene Energieauflösung von $\frac{E}{E} = 11.0\%$ stimmt sehr gut mit der anhand von Simulationsrechnungen erwarteten Auflösung von $\frac{E}{E} = 11.5\%$ überein.

Die Energieeichung ergab nach Anwendung eines Optimierungsverfahrens eine Linearität für Elektronen im Bereich $< \pm 0.5\%$. Damit genügt die Genauigkeit der absoluten Energiekalibration in hohem Maße den Anforderungen des H1-Experiments, bei welchem der systematische Fehler $\leq 1\%$ sein soll.

Zusätzlich wurde untersucht, inwieweit die Ergebnisse mit Hilfe der longitudinalen Schauerprofile beschrieben werden können. Dabei wurde eine gute Übereinstimmung festgestellt.

Die Untersuchungen des FB1E-Moduls haben die Erwartungen, sowohl in Bezug auf die prinzipielle Funktion als auch auf die erreichte Genauig-
keit, erfüllt. Die erreichte Kalibration entspricht den Anforderungen des H1-Experimentes, welches in Zukunft zeigen wird, ob die Testergebnisse unter den Experimentierbedingungen bei HERA bestätigt werden.
Anhang

Random-Korrektur der Ladungskonversionsparameter

Die Random-Korrektur (siehe Kapitel 4.2.2) erforderte eine Neuberechnung der Parameter $P_{i,j}$ ($i = 0, \ldots, 3$) der Funktion

$$q_j = P_{0,j} + P_{1,j} \cdot ADC$$ \hspace{1cm} (A.1)

$$Q_j = q_j + P_{2,j} \cdot q_j^2 + P_{3,j} \cdot q_j^3$$ \hspace{1cm} (A.2)

für jeden Kanal j. Die Anpassung bei der elektronischen Kalibration erfolgte so, daß die zum Pedestalwert korrespondierende Ladung den Wert 0 hatte. Während der eigentlichen Datennahme ergab sich jedoch eine "Offset"-Ladung:

$$Q_{j, \text{offset}} = P_{3,j} \cdot (\text{Ped}_{Kalg,j} - \text{Ped}_{\text{Random},j})$$ \hspace{1cm} (A.3)

Die Pedestalverschiebung kann als Konstante in der Ladungsänderung angesehen werden ($\hat{Q}_j = Q_j + \text{Konst.}$), so daß gilt:

$$q_{j, \text{korr}} = q_j - Q_{j, \text{offset}}$$ \hspace{1cm} (A.4)

Damit die Offset-Ladung den Wert 0 annimmt, muß gelten:

$$\text{Ped}_{\text{Random},j} = -\frac{\hat{P}_{0,j}}{\hat{P}_{1,j}}$$ \hspace{1cm} (A.5)
Für die Differenz der Pedestalwerte findet sich:

\[(\text{Ped}_{\text{Kal},j} - \text{Ped}_{\text{Random},j}) = \frac{\hat{P}_{0,j} + \hat{P}_{1,j} \cdot \text{Ped}_{\text{Kal},j}}{\hat{P}_{1,j}} = \frac{\hat{P}_{0,j}}{\hat{P}_{1,j}} + \text{Ped}_{\text{Kal},j} \]
\hspace{1cm} (A.6)

Die Beziehung zwischen \(q_j \) und \(\hat{q}_j \) ergibt sich somit zu:

\[q_j = q_{j,\text{korr}} + \frac{P_{1,j}}{\hat{P}_{1,j}} \hat{q}_j = q_{j,\text{korr}} + g \hat{q}_j \]
\hspace{1cm} (A.7)

Eine Entwicklung von \(q_j \) nach höheren Ordnungen gemäß Gleichung A.2 ergibt für die korrigierte Ladung:

\[\hat{Q}_j = Q_j + \text{Konst.} \]
\[= q_{j,\text{korr}} + g \hat{q}_j + P_{2,j} \cdot (q_{j,\text{korr}} + g \hat{q}_j)^2 + P_{3,j} \cdot (q_{j,\text{korr}} + g \hat{q}_j)^3 + \text{Konst.} \]
\hspace{1cm} (A.8)

Die neue und korrigierte Parametrisierung muß die gleiche Ladung \(\hat{Q}_j \) ergeben:

\[\hat{Q}_j = \hat{q}_j + \hat{P}_{2,j} \cdot \hat{q}_j^2 + P_{3,j} \cdot \hat{q}_j^3 \]
\hspace{1cm} (A.9)

Der Vergleich von Gl. A.8 mit Gl. A.9 ergibt für die neuen Parameter \(\hat{P}_{i,j} \):

\[\hat{P}_{3,j} = P_{3,j} \cdot g^3 = P_{3,j} \cdot \left(\frac{P_{1,j}}{\hat{P}_{3,j}} \right)^3 \]
\[\hat{P}_{2,j} = (3P_{3,j}q_{j,\text{korr}} + P_{2,j}) \cdot \left(\frac{P_{1,j}}{\hat{P}_{1,j}} \right)^2 \]
\[\hat{P}_{1,j} = P_{1,j} \cdot (1 + 2P_{2,j}q_{j,\text{korr}} + 3P_{3,j}q_{j,\text{korr}}^2) \]
\[\hat{P}_{0,j} = -\hat{P}_{1,j} \cdot \text{Ped}_{j,\text{Random}} \]

Diese korrigierten Parameter wurden schließlich für die Ladungsberechnung verwendet.
Literaturverzeichnis

Danksagungen

Herrn Prof. Dr. G. Flügge danke ich die Möglichkeit zur Anfertigung dieser Arbeit an seinem Institut. Für seine Betreuung möchte ich mich recht herzlich bedanken.

Herrn Dr. W. Schmitz danke ich besonders für viele kreative Diskussionen, die in einer harmonischen und angenehmen Arbeitsatmosphäre stattfanden.

Herrn P. Loch danke ich für seine ständige Diskussionsbereitschaft während der Tests im CERN, sowie für seine Hilfe im Umgang mit dem Analyseprogramm.

Allen Institutsangehörigen danke ich für die angenehme Zusammenarbeit.

Besonderer Dank gilt meinen Eltern, die mir das Physikstudium und somit die Anfertigung dieser Arbeit ermöglichten.

Darüber hinaus bedanke ich mich herzlichst bei meiner Freundin Anja Krüger für Ihre Unterstützung und das mir entgegengebrachte Verständnis während der Anfertigung dieser Arbeit.