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1 Introduction

1.1 The Startup Phase of HERA

On October 19, 1991, the two detectors H1 and ZEUS at the HERA collider were able to monitor
the first electron - proton interactions caused by one electron and one proton bunch. The energy of
the electrons was fixed to 26.6 GeV and for technical reasons the energy of the proton limited to 480
GeV. About 8 months later, at the end of June 92 the continuous experimental operation started with
two times ten bunches and the designed energies for the protons of 820 GeV and 26.6 GeV for the
leptons. The average luminosity for that setup was L = 2% 10*®¢m™?sec™" with peaks in the order of
three times that value. The design luminosity achievable with two times 210 bunches was calculated
to be Laesign = 103'cm~2sec™". From end of June until the shutdown at the beginning of August, the
effective usable time for the experiments accumulated to 20% of the total time, with an integrated
luminosity in the order of 30nbd™!.

1.2 The expected Event Classes

What kind of events can be expected to be found with the H1 microscope? The physics of inclusive
inelastic e-p scattering is completely determined by two variables :

¢ Q2 = —q> = —(€in — €our)? Which is the 4-vector transfer squared between the in and outgoing
leptons. This can be interpreted as the virtual mass of the exchanged gauge boson.

© Y= (Pin-q)/(Pin - €in) , the relative energy loss of the electron in a frame where the proton is in
rest.

If the electron could be positively identified, which means, the scattering angle 8. and its energy F./
is known, the calculation of @* and ’y’ reduces to

Q* = 4E.E. cos’(30.)
y = 1- (E./E.)sin®(:6.)

where 8, is defined to be zero for particles going into the initial proton direction. Theoretically the
experiment covers an energy transfer in the range from

S o, = mY x 5x107°GeV? upto
2 = s=4E,E, =~ 0.87%10° GeV?

That means, in one experimental setup, physics can be studied from photoproduction up to very deep
inelastic scattering.

Photoproduction is defined by the limit Q% — 0, whereas at high @ also the exchange of the other
gauge bosons, Zy ( neutral current ) and W#* ( charged currents ) has to be taken into account. The
photoproduction resembles the by far biggest cross section and therefore the majority of triggered
events. Even with the restricted acceptance of the e~ tagging system

0.2 < gy < 08 and
3x107% < Q% < 1072 GeV?

the visible cross section is 43.6 ub, i.e. 4 - 10° events per year for 100pb~".
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From the measured photoproduction[H1-1 93] of oy:(7p) = 159 £ 7(stat.) & 20(syst.)ub for an
average of the center of mass energy of the ¥ — p system of 195 GeV up to the cross section of the deep
inelastic scattering[H1-2 93], which amounts to oprs = 92 + 11(stat.) + 12(syst.)nb for Q* > 5GeV,
there is a difference in the order of a factor 2000. This rate is reduced by another factor if one
investigates jet production in DIS, because the radiation of an extra gluon charges the cross section

by roughly a factor a,.

DIS el ] l Final States I e [v]

€ e

’YZ[W] 'YZ[W]

p Proton Remnant Jet p Proton Remnant Jet

g

The weak cross section at HERA ( exchange of a Z; or W* ) are rather small ( ~ 0.02nb ).
Therefore for a charged current reaction only one candidate has been seen in the H1 detector(see
Figure 2). Extreme low event rates are expected for the detection of event classes, not ‘described in
the standard model, which is of course one of the most favoured aims of a new collider.

‘ Excited Electron I e

€

%"\

For HERA this could be the detection of Leptoquarks, Leptogluons and FEzcited Leptons. With
100pb—! and no events seen, one can exclude a production cross section of 3/ L ~ 3-1072pb at 95%
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C.L. Thus the physics at HERA covers 7 orders of magnitude in cross section.

For the different H1 trigger levels, that means a controlled reduction of the photoproduction
without touching the rare events classes. The question is, whether this can be achieved by simple
hardware devices or with more sophisticated algorithms running on online processors. The H1 solution,
described in the following, is a well tuned mixture of both.

An even more disturbing type of events, which superimposes the raw detection rate with more
than 95% is the so called beam gas class, the collision of beam electrons or protons with the residual
beamgas nucleus. The electron type simulates a normal e+p — e+ X reaction with a CMS energy of
/s ~ 8.2GeV and the proton type looks similar to photoproduction where the electron disappeared
in the beampipe and a CMS energy is in the order of \/s ~ 39 GeV. These events are background
in respect to all other event classes HERA actually was designed for, namely with a CMS energy of
295 GeV. Beam gas events are dominated by p-gas reactions. The products have a largeLorentz boost
in the forward direction and therefore the main energy flow is seen in that part of the detector( see
Figure 1). Again a mixture of fast hardware triggers followed by special online processing algorithms
lead to successful suppression of the background events.
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Figure 1: The Histograms show the energy deposits in the H1 detector for an arbitrary run ( 33846
). In the upper row, the data contains a large amount of beam gas background, which is suppressed
in the second row. For all pictures only the Liquid Argon Calorimeter had been taken into account.
From left to right, the diagrams show A : an energy weighted histogram of all cells hit during the
run, B : a histogram of the total p, of the event, and C : a histogram of the total energy per event.
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Figure 2: The picture shows the only Neutral Current Candidate up to the shutdown in winter ’92.
The neutrino is assumed to have left the detector in the top direction.
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2 The Data Source

2.1 An Overview

As we learned in the previous chapters, the choice of the colliding particles and the center of mass
energy exclusively determines the physics, we can expect in the interaction region of HERA. But the
detection device itself is of course sensitive against several other parameters of the colliding machine.

e To avoid too much energy losses caused by synchrotron radiation, the electron beam is only
accelerated to an energy of 26.6GeV , while for the protons this effect can be neglected, which
yields to a proton energy of 820GeV. As a result the detector has to be prepared for a strong
Lorentz boost of the produced particles in the proton direction, which means a higher granularity
in that detector region.

e Another point is the crossing rate of the colliding bunches. HERA is designed to produce such
an event every 96ns, which requires a very short decision time of the trigger logic, a fast readout
and a short relaxation time of all detector components.

The total detector is divided into so called subdetectors, which are optimized according to their
physical purposes and their position inside the assembly. The individual parts are briefly' described in
the next section, but the principles are quite uniform.

A sensitive part uses a physical effect to detect the produced particles, or better to measure an
interaction with a sensitive material. As a result, we have more than 270000 channels in total, for
the whole detector[TUT 92]. This bulk of data has to be reduced to a couple of 4-Vectors, which
sufficiently defines the observed event. A procedure which is similar to the compression of the data
of the 120 million sensitive cells in the retina, which mainly yields to informations like ’you can eat
it’, or 'it will eat you’. While the optical system in our brain makes use of neural nets to process the
data, the H1 detector handles it in a more or less straightforward manner. '

Most common to all subdetectors is the sampling of the analog signals with pulses synchronized
according to the HERA clock. The signals are then stored in pipelines. Events, which are decided to
be good, are digitized, zero suppressed and send to the central Event Builder.

2.2 The Subdetectors

The principle of particle detection is similar to all detector parts. A charged particle flying through
material ionizes molecules. With the help of a potential difference, the charges are separated and
measured. For the H1 detector gas, liquid and solid state materials are used as sensitive parts. The
gas type devices themselves can be mainly divided into : '

Drift Chamber They are designed in a way, that the drift velocity of the primary ionized particle
is constant in a wide range. Knowing this speed, and knowing the time of the actual bunch
crossing, it is possible to calculate the distance between the primary ionization point and the
sense wire, which allows to determine the fly through position of the detected particle vertical
to the wire. The position along the wire can be evaluated with the fraction of the two charge
portions at both ends of the wire. Drift chambers are in use in the CJC1&2, the z-chambers,
the planar and radial Forward Tracker, an the Forward Muon System.

Streamer Tubes Streamer Tubes are designed quit similar, except, that there is a high gas amplifi-
cation near the sense wire. This saves the electronic preamplification of the sense wire signals.

Multi Wire Proportional Chambers MWPC are small sized gas chambers. This geometry results
in a very short drift time. Consequently they are mainly used for trigger purposes.
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The Calorimeter is realized as condensers in a Liquid Argon bath. The advantage is a 10° times
larger density than in gases, which leads to an increase of dE /dz in the same order. As a result,
nearly the total expected energy can be detected inside the calorimeter, and the shower shapes are
small enough to distinguish nearby particle tracks.

The Backward Electromagnetic Calorimeter is realized as solid state detector. Escaping
particles build electromagnetic showers inside a small lead plate. A scintillator material converts
the produced electrons into low energetic light . This light is converted in wavelengthshifters to the
optimal detection wavelength of the 472 linked photodiodes.

Some facts of the most important detector parts. ( see also Figure 3)

Central Tracker CT The Central Tracker is divided into an inner and an outer part. Both containing
MWPCs for trigger purposes, chambers for the x-y-detection (CJC) and chambers for the z-
direction. From inside to outside the components are :

Inner MWPC — Inner Z — CJC1 — Outer Z — Outer MWPC - CJC2

In total, it covers an angle of about 25° < § < 155°.

inner and outer Multi Wire Proportional Chambers CIP,COP

e provide fast ray trigger and vertex trigger.
e 3936 Channels.

inner and outer z - drift Chambers CIZ,COZ

e G0 wires for inner an 96 wires for the outer z-chamber.

e z - measurement accuracy in the order of 350um for single and 3mm for double track
resolution. '

e r — ¢ resolution is about 25 mm for the inner and 58 mm for the outer z-chamber
inner MWPC and z - Chamber CIP,CIZ and COZ

e allows quick calculation of the vertex position along the beam.
e is a part of the first level trigger.

inner and outer Jet Chambers CJC1 and 2

e 2640 sense wires.
e provide good measurement of the 7 — ¢ coordinates in the order of 210um.

e readout at both ends for charge division and dE / dr measurement, which leads to a
z-resolution of about 23.5 mm.

The Forward Tracker FT

e Accurate measurement of charged particle tracks in forward direction.

e e/ separation to supplement the information of the calorimeter.

o fast ray trigger by means of MWPCs.

e 3 supermodules & one Transition Radiator, one radial and one planar Drift Chamber.

e radial chambers divided into 48 cells in ¢ & 12 sense wires in z, which means 1728 in total.
e planar chambers has 1152 sense wires in total.

e planar chamber resolution # < lmrad

e 2048 channels in total for Forward Tracker.

The Forward Muon Detector FM
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high precision drift chambers.

e covers an azimuth angle of 3° < 6 < 17°

e O — ¢ track resolution of about 0.5 mrad. :

e Momentum precision in the order of 30 % in the energy range between 1.5GeV and 150GeV,

The Liquid Argon Calorimeter LAr

e 45,000 readout channels are multiplexed onto 55,000 channels to increase the dynamic range
of a quarter of them.

e covers an azimuth angle of 4° < 0 < 155°
e divided into an electromagnetic and hadronic part.

The Backward Electromagnetic Calorimeter BEMC

e BEMC closes calorimeter angle 150° < 6 < 176° for electromagnetic energy flow

o lead/scintillator sampling calorimeter with 472 photodiodes.

o e 0 10%
e Energy resolution is £~ = 7=

The Forward Plug Calorimeter PLUG

e Hadronic Calorimeter for the extreme forward direction 12.5mr <= 8 <= 60mr.

e uses small silicon wafers where the pn-structure is realized by metal semiconductor surface
barrier.

The Instrumented Iron Calorimeter IRON and the Central Moun Detector

e plastic tube gas counters operating in limited streamer mode for the central and endcap
detector.

e 160,000 output channels in total
o used for the measurement of the energy leaking not covered by the inner calorimeters,
e and for the muon tracking.

The electron tagger and the luminosity counter ET

e TICI/TIBr cristal calorimeter with an energy resolution of o(E)/E = 0.1/ VE and a space
resolution of o(z,y) = 0.2¢m. .

o The electron tagger is sensitive in the energy range between 0.2E% ., and 0.8E%%, 1von
and an angle below 5 mrad.

e The luminosity counter consists of one e~ and one y detector near the beam pipe, to catch
the e~ and the ¥ of the bremsstrahlung reaction e~ p — e~ p -y for luminosity monitoring.

All the subdetector data is condensed to 11 so called branches, the normalized interface to the Central
DAC. '
Central Trigger

Calorimeter Trigger

Calorimeter Analog Digital Converter

Central Tracker

Forward Tracker

Forward Muon

MWPC

Luminosity

Forward Muon Trigger

DC r — ¢ Trigger

A Test Branch

= O W00 O Ol N

Pt e
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2.3 The Trigger Scenario

The HERA collider is designed to store 210 electron and 210 proton bunches. With a total ringlength
of 6.4 Km , this results in the already mentioned 96ns time interval between the bunch crossings.
Together with the other parameters of HERA, like total current and the density of the bunches , one
can expect a luminosity of about

L=n,%n, * f/A ~10¥cem™%s™}

which leads to a nominal luminosity of some [ L d¢ = 100 pb~! per year.

Number of electrons per bunch n, = 3.5x10'°
Number of protons per bunch n, = 10
Effective Area of the bunches A = 0.3mmx0.017mm
Bunch Collisions per timeinterval f = 1/96ns

On the one hand this is a great opportunity for the physicists to obtain a good statistics for various
branches of interest. On the other hand this short bunch crossing interval means a challenge for the
decision logic and the readout electronics. The interaction between these two parts is described in the
following.

2.3.1 The different Trigger Levels.

One important aim of the trigger logic is to avoid deadtimes as much as possible[ELS 87]. To obtain
this, at least for the first trigger level, the idea of frontend pipelines was introduced. These pipelines
sample the frontend analog signals with the HERA clock. The next table gives an overview of the
different types of pipelining. '

Subdetector [ Sensor type | Pipetype ] Sample frequency
LAr Calorimeter liquid Argon analog capacitor pipeline HERA clock
jet-chambers,z-chambers 4

planar and radial drift chambers flash ADC sampling 10 * HERA clock

forward tracker
forward muon

MWPCs, VETO, TOF | proportional chambers | shift registers HERA clock
instrumented IRON limited streamer tubes | shift registers HERA clock

In addition to these sampled quantities the subdetectors provide fast signals with each HERA clock
pulse. The main sources are :

Big Towers : Energy sums of the liquid Argon Calorimeter.
Big Rays : Mask of the central proportional chambers.
z-vertex : combination of z-chambers and MWPC.

Muon : hit pattern in the muon chambers.

and much more. These informations are compared with given thresholds, and the boolean results
build the about 200 Trigger Elements. A progammable logic combines them to 64 Subtriggers.
These subtriggers can be downscaled or totally disabled, and the result is ORed to build the Level
1 Trigger Signal. This game has two time constraints to avoid deadtimes :

e The time interval between a bunchcrossing and the corresponding level 1 trigger signal must
not exceed the storage capacity time of the shortest frontend pipeline, which is about two
microseconds, and
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o the trigger must accept new input informations every 96 nsec, which means, that this trigger
step has also to be a pipelinelike device.

Picture 4 gives an impression of the total trigger scenario up to level 3, as it will hopefully be in action
from summer ’93.

On the receipt of the level 1 signal, all subdetector pipelines are stopped, or proceed at most until
the corresponding pipeline entry reaches the end of the pipe. In addition, the L2 trigger elements
start to be calculated. As long, as there is no L1 Keep, the events drop out of the data pipe after
the 2 pusec.

Starting with a L1 Keep the detector deadtime begins, and the subdetectors a,waat the decision
of the level 2 trigger. This level makes use of more sophisticated informations and algorithms and
needs approximately 20 usec. If the positive level 1 decision can be confirmed, a L2keep together
with a unique number is sent to the subdetector components. The readout electronics now starts to
assemble the event data, assigns it with the L2keep number and copies it into a buffer (MEB') which
is accessible by the central data aquisition. After some 800usec the readout should be finished and
the pipelines can be enabled again. To any time during this interval a planed level 3 trigger will be
able to stop the readout and to reset the whole electronics. ~

2.3.2 Bottlenecks and Deadtimes

It is evident, that any type of detection device has a maximum rate, with which it can detect and
store data. That is also true for our detector, and this rate is by no means 10 MHz, which would be
necessary to store the detector informations of each bunch crossing. That means, that whenever the
informationstream reaches a bottleneck, we have to decide which of the data is of interest and which
can be thrown away. For us, this can only be decided on the event level.

The very first rate reductlon appeared with the 800usec of the readout. Without tngger this would
yield to an event rate of 1.2 KHz and a deadtime of 100 percent. If we look forward in the aquisition
chain, we will see, that the next bottleneck is the assembling rate of the eventbuilder. It can only
build about 50 events per second, assuming an average eventsize of 120Kbytes. Because of buffering,
the peakrates can be nearly 1 KHz until all buffers a filled. Let us again assume no triggering. That
would mean we would fill the buffer with maximum speed and 100 percent deadtime. After that, they
would be read out by the eventbuilder. During this time, the detector also appears dead, because there
is no memory available to store new data. As a result, the detector would of course produce events
again with 50Hz, but the total deadtime would be in the order of 100 percent. As a large deadtime
always indicates, that we didn’t have the chance to see the good events inbetween, we have to tune
the level 1 to level 3 trigger in-a way which reduces the average deadtime to a minimum, but gives
the optimal event rate of 50Hz. The result would be a deadtime of about 5 percent. Unfortunately it
is not true, that we made the optimal trigger choices, if the central DAQ display shows 5 % deadtime,
because possibly we cut into tails of distributions or throw away special exotic processes. So, detailed
simulations are necessary to be on the safe side.

The same problem will appear again, when we discuss the next bottleneck, the IBM link.

1Multi Event Buffer
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3 What to do with all this data

Until now, we followed the data stream from the production through the frontend pipeline and via
the digitization to the Multi Event Buffers, MEBs. The central data aquisition is responsible for the
collection of the MEBs, the merging and the transport to the central IBM via a set of Full Event
Tasks.

3.1 The Central Data Aquisition, CDAQ

The H1 data aquisition system supports a general concept for the connection of the various subde-
tectors with the event builder( see Figure 5 on page 15 ). Each of the 11 branches ends up in an

11 Frontend Branches

frontend VME -
dual o
ported VME \
memory -
MEB

\"\/\/JVSB

/

Fibre optical ring
Event Builder VME

Hural dual Full Event Tasks :
ported poited Data logging unit
SRR HCOLY validity check
cartridge recorder
: HI event display

Event Server
Filter Farm
Histograming Unit

Full Event Task Full Event Task
|l processor L processor

Figure 5: Event Builder Layout

p-processor embedded in a VME? environment together with a 2 Mbyte dual ported memory and
a so called VMFEtazi board, an interface to a fibre optical ring, which connects all branches with

2VME[VME 14] and VSB[VSB 96] are heavily used bus systems in the H1 environment
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the central data aquisition VMEcrate. In addition, the VMEtaxi® has a VSB connection to the dual
ported memory[DPM 89], which enables the simultaneous access of u-processor and VMEtaxi to the
memory board, without time delay caused by VME bus interferences. The subbranch p-processors
assemble their eventdata and copy it into the dual ported memory. To achieve an asynchronous oper-
ation, more than one event can be handled within one buffer (MEB). The eventbuilder is now able to
collect these Multi Event Buffers via the optical ring and the additional VSB connection. With the
help of the L2keep identification number, the full events can be built. The maximum transfer rate of
the ring together with the recently used VMEtaxi boards is about 12.5 Mbytes/sec. Mainly caused
by protocol overheads, the effective event transfer speed amounts to 6 Mbytes/sec, which leads to an
event rate of 50 Hz assuming an event size of about 120 Kbytes.

The second part of the event builder task is responsible for the distribution and collection of events
to and from the Full Event Tasks. For this purpose the event builder crate also contains dual ported
memory boards, which hold the full event buffers(FEBs). The memory is connected with the different
full event processors via a VSB buslink.

Full event tasks can be Consumers, which requests events from the eventbullder or Feedback units,
which in addition return the processed events back to it.

Consumers can logically be divided into monitor units, which not necessarily take all events, and
units which have to process them all. The latter one will obviously slow down the total system, if
they don’t consume fast enough. The monitor Consumers are

¢ The event display, whlch on request takes the newest event, to display it near the main H1
controlpanel.

e The network event server, which distributes the current event to network clients. This is mainly
the H1 Event Display on Macintosh Computers at the DESY site or at the outer Institutes,
connected via TCP/IP. This service is part of the farm event distribution concept and will be
described later in more detail.

Both tasks are applications running on Macintosh Computers. All events have to be consumed by
e The validity check unit, which provides a fast formal data check.
e The IBM logging unit, the event path to the central IBM. ( see below).
e The local Cartridge device, which records the events in the case of transfer problems to the IBM.

¢ The histograming unit, which fills the online relevant histograms.

3.2 The Data Logging Unit

The data logging unit is the last link in the chain of the full event units. The processor requests all
events and sends them to an IBM task via the so called F58-Link. Besides other functions, this IBM
process copies the events to disk. The F58-link is a fibre optical connection between the CDAQ and
a channel of the central DESY IBM. The protocol was defined and realized by the DESY F58 group.
The connection is able to shuffle about 0.5 Mbytes/sec of data. It is obvious, that this transfer rate
is the next bottleneck in the dataflow chain, because the eventbuilder could produce 10 times the
amount of data. This conflict was the technical argument for the introduction of the level 4 filter
farm.

The IBM part of the data logging system uses two different disks to achieve a maximum recording
speed. While one disk is filled with the incoming data, the other is copied to the cartridge system.

A more serious argument for a filter was the fact, that s1mu1at10ns showed, that 95% of the data,
reaching the Event Builder are beamgas and beamwall events, which means background And there
is no sense in copying them'all to disk, wasting cartridge space and CPU power.

3The VMEtaxi is an Intelligent interface between the VME bus and an optical fibre ring



3 WHAT TO DO WITH ALL THIS DATA 17

3.3 The Reconstruction

The files which are produced by the datalogging job only contains raw detector data, like hits in the
track chambers or energy deposits in the LAr calorimeter. The overall aim of the analysis chain was
to get the observable 4-Vectors of the detected event. The next step in this direction is to combine
the subdetector specific data to more physical oriented objects. The type of object depends on the
different subdetectors. For the tracking devices, tracks of maximum length are produced, and for
the calorimeters, cells are merged to clusters. Then an attempt is made to combine these objects
to calculate the real interactionpoint, to trace the particle through the whole detector and to obtain
energy and momentum of the detected particles or jets. With all these informations some soft cuts
are applied to make a first classification of the events. In H1 notation all these things are done
in the Reconstruction Program. This program runs in several identical copies on silicon graphics
machines. A master job requests the raw data from the IBM, distributes the events to the different
reconstruction jobs, assembles the events after they have been processeds, and writes the result back
to IBM cartridges. The different steps are shown in picture 6. It is obvious, that the current solution
is not the most suitable one. So it is planned to store the raw and the reconstructed data on fast Video
Tapes, direct connected to the SGI. An Ampex DST800 robot system is currently under test. The
new configuration would make it unnecessary to send the data via the IBM. One possibly ( Picture 7)
would be, to use the already tested UltraNet* connection from the Farm Sparc Sun to the SGI.

Because of the complexity of the reconstruction program, it doesn’t only need additional run
informations, like cracks in the detector, HV data from the tracking devices and more, but it also needs
a lot of experience with the detector and the interpretation of its output. This makes it necessary to
rerun the reconstruction even more than once, at least in the beginning.

3.4 The Analysis

With the production of the reconstructed eventfiles the official part of the datachain ends. From now
on each physicist uses his own analysis programs to investigate the different parts of interest. For
this purpose, a group of the H1 collaboration provided a nice tool[SCH 91], which tries to relieve the
individual physicist the trouble of inventing the wheel. It is the first step in the direction of object
oriented handling of data in the offline section, unfortunately using a language which doesn’t support
this feature at all. 4

* UltraNet is a fast Network device from the Ultra Company. It handles the TCP/IP protocol on an intelligent
interface, reducing the protocol load of the CPU



3 WHAT TO DO WITH ALL THIS DATA v 18

The L4 Filter Farm
Central DAQ :
Full Event Unit o Input FI _
Full Event Unit < | \ R 3000
Data Logging Unit

F58 Link

IBM ES 9000/720 VF

Data Loggihg Job

Online ReCW

Input Stream

Output Stream

Ultra Net

Distributer Assembler
|
N N |
N N
N\ N\ |
AN \ 1
Reconstruction Jobs

Silicon Grafic 4D/460
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4 The Problem and the L4 Filter Farm

The previous sections briefly described the main data flow from the sensitive parts, up to the top secret
private components of the analysis, which should end in the presentation of an H1 paper. During this
overview, it was already mentioned, that a datarate discrepancy of a factor 10 occured between the
eventbuilder and the F58-IBM-Link, where the L4 filter farm should be the way out. But this is not the
only motivation of the introduction of an additional filter step. Even if we could shuffle enough data
to disk, without having a glance at it, simulations showed, that this data would contain beamgas and
beamwall events in the order of 95 %. This would waste luminosity and disk space in an irresponsible
way. After having decided to build such a filter device, we have to find out which requirements have
to be fulfilled. -

4.1 The Requirements

One constraint, which of course always affects those decisions, is the total price of the system. So
the first question is How much MIPS do we need ? We started with the idea, that fast decisions
- and rejection could be done with the knowledge about the tracks in the central and forward regions.
Assuming the optimistic time approximation for a fast track finding algorithm of 150 msec (IBM 3090)
in total, and remembering, that the event builder produces events in the order of 50Hz , we obtain 50
Hz * 150 msec = 7.5 IBM 8090 . Because of the uncertainty of the actual requirements it should also
be possible to increase the performance in small steps even beyond numbers which' possibly
are needed after several upgrades of the frontend and trigger electronics. All these considerations
presuppose, that the configuration will run flexible, that mainly means easy changeable code. In
addition, it would be desirable to take parts of the already existing reconstruction software. So it is
no question, that an Operatingsystem with a well proven Fortran compiler is necessary, at least
for the code development step.

From the CDAQ side of view, the system must fit into the CDAQ concept, which means VME
access is a must, and a support from the hardware designer wouldn’t be bad. It is clear that all
these arguments point to a multiprocessor environment with single board p-processors for standard
VME crates. The decision for the R3000 p-processor was taken because of the fast development in
the RISC technology, and the hope, that the R3000 successors can easily replace the recent ones.

In multiprocessor systems saturation effects often come into account. They are mainly caused by
the increasing coordination overhead and access conflicts on the common data busses. So a setup
had to be found, which shows an almost linear response with the number of processors. There are.
several additional requirements concerning the utilization of the L4 trigger. :

e So it shouldn’t be necessary to recompile the software, if triggercriteria have to be changed.
¢ These changes have to be possible in the short time inbetween runs,
o and non experts should also be able to learn this procedure in an acceptable time.

e During the runs, all relevant quantities have to be available, to change selection parameters in -
the case of strange behaviours. - :

¢ A full simulation of the filter program, with real and simulated data, should be possible during
a real run is active.

e And the filter decisions must be offline reproducible

4.2 The Solution

The realization of the Filter Farm turned out to become a rather complex exercise, because a lot of
informations had to be make available to the farm processors from outside and vice versa. In addition,
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a set of features had to be provided, which not directly touch the main datastream, but were essential
for the steering and monitoring of the system. In this section I would like to briefly summarize the
components of the L4 filter farm, concerning soft and hardware. The following chapter then will go
into detail.

4,2.1 The Hardware

The kernel part of the solution is the decision for the RISC R3000 and successors as farm processor. It
provides about half the CPU power of one IBM 3090 element, which means, that in the beginning of
the experiment 15 of them should be sufficient to prove the functionality of the farm concept. Using
this chip, the company CES® offered a single VME board u-computer, the RAID 8235 ( see Figure 8
on page 21 ), which exactly fulfills the specifications we needed. The most important points are
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Figure 8: The RAID 8235 Block Diagram

R3000/R3010 processor with 25 MHz
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5Creative Electronic Systems,Geneva
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¢ large EPROM for the monitor program
e and of course Serial I/O ports

For the use with an Operatingsystem a SCSI Controller and an Ethernet Controller are also on board.
The decision was to run these boards without Operating System. This became possible because an
other fully equiped p~computer was available with the R2000 processor, an predecessor of the R3000.
This Computer, a MIPS/120, is running an Unix Operating System with an optimizing Fortran
Compiler, and a standalone library with enables the execution of programs compiled and linked under
M/120 Unix to be run on the CES RAID 8235 processor boards. The executable code is loaded into
the RAID boards with a Macintosh Computer, which on the one hand can read the disk of the M /120
and on the other hand is able to access the main memory of the different RAID boards. This Mac also
monitores the operation of all involved tasks and in addition distributes events to other computers on
request. A second Macintosh displays events, directly taken out of the data stream and histograms
accumulated by the RAID boards.

The connection of the total system to the CDAQ is realized with the help of an other microcom-
puter, the Fast Interface Controller board (FIC) using an MOTOROLLA 68020 processor chip ( see
Figure 9 on page 23 ). This board was chosen, because the CDAQ provides a library for that model
which totally covered the communication of a Full Event Unit with the Event Builder. To provide the
full speed, we are using two of them. One as Consumer and one as Feedback Unit.

For simulation reasons, a SPARC SUN also resides in one of the Farm VME crates. It can feed a
simulation RAID board with events directly out of the datastream or from IBM or SGI disks.

Because the amount of processors exceeds the capacity of one VME crate, Vertical Interface Con-
trollers, VICs between the crates are in use. The VICs themselves are linked by the VMV cablebus,
which also connects the Macintosh Computers.

4.2.2 The System Software

The system software can be divided into the parts handling the main data stream, and the controlling,
monitoring .and simulating section. The aim of the first part is to be as fast as possible, to avoid the
waste of CPU resources. This part is covered by the two I/O tasks running on the FIC processors
and their protocol counterpart on the RAIDs. The Input FIC program requests the events from the
eventbuilder and distributes them to the RAID boards, and the Qutput FIC takes the event out of
the RAID board again, if the filter decision was positive, and feeds it back to the CDAQ. The system
software on the RAIDs handles the protocol to get an event from the Input process, calls the Real
Filter Program, and afterwards makes the event available for the output process.
For the other systemsoftware the speed is not critical. The most important parts are :

The Farm Control which loads the different RAID boards and the FIC processors and starts them.
In addition, it permanently displays important quantities like the total number of processed
events and the rejection ratio.

The Database Connection which sends the Farm steering file to the central H1 database on the
IBM and obtains new runinformations from there.

The H1 Mac Event Display which displays the current event out of the datastream or which shows
farm specific histograms with data directly taken from the farm processors. '

The Event Server which sends all these informations to H1 Mac Event Displays, not directly con-
nected to the farm VME crate.

The SUN SPARC simulation program which simulates the entire world for one or more RAID
boards, running filter test versions, before they are used in the real world.
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Figure 9: Physical Farm layout

4.2.3 The Filter Software

The Filter Program which is called by the RAID system software for each event, again consists of
two major parts. The steering module, and modules calculating decision relevant quantities. The
steering part determines the sequence in which the modules are called, depending on the output of
the previously called ones and the remaindent time for the current event. The decisions are based on

informations provided by the farm steering file.
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5 The Details
5.1 The Uniform VME Addressing

5.1.1 The Hardware Connections

One of the most important aspects of a device, which is sayed to be a processor farm, is the data
exchange of the individual farm elements. In our case this is mainly done via the VME bus, realized as
backplain in the different farm crates. Each crate can hold up to 15 single slot boards, and contains at
least one Vertical Interface Controller which are mutually connected with a VMV cablebus. In addition
this bus also links the two farm Mac II with the rest of the system, because they are standalone
Computers without a direct VME interface. Instead, they contain an interfacecard to the VMV bus.

5.1.2 The VME Addressing Concept

In the VME concept, each element can have active or passive interfaces to the bus, or both. All
our processors have active access, that means they can read and write from /to the full 32Bit VME
addressspace. Some of them also have a passive interface which enables others to access parts or all of
their main memory. In the setup phase, each passive component has to learn which address the first
byte of its own memory will have, seen from the VME point of view. So all passive participants occupy
a different part of the total address space( see Figure 10 on page 26 ). The Macintosh Computers
behave slightly different. Though they have active access to the full address space, they don’t share
parts of their main memory. Instead, they can use the internal memory of the VICs, which for its
part is commonly accessible. ‘

If a processor needs to access a part of the VME address space, it can’t do this directly in specifying
the appropriate address, but it has to use an internal mapping mechanism which is different for
the various computer types. One of the memory boards for example is set up to have the global
VMEaddress of 600000Hex, but none of the processors using this card can access the memory by
specifying that number. The Macintosh points to it with F0600000Hex and the FIC Board with
FOE00000Hex. The Sparc Sun takes the address out of its virtual memory pool, which means that the
pointer will be known not before the application starts.

Most common is the usage of a programmable page descriptor, which has to be set up prior to the
access. This page descriptor is a table which maps not locally existing memory space to an arbitrary
VME space. Operating systems with Virtual Memory make use of an additional mapping between
the virtual address and the physical one.

virtual Address 22 physical Address Yer? VME Address

All this is hidden to the application programming level. One only has to request a local pointer for
a part of the VME address space, which one has to specify. From that moment on, the returned
address can be used to read and write from/to this memory portion via the VME bus. These different
behaviors obviously make it difficult to use the same source code on the various machines, which are

o The Farm RAID boards ( no OS )

e A RAID board running Unix ( TC/IX )
o The I/0O FIC boards ( no OS )

e The SPARC SUN running SUN OS

e The two Macintosh Computers

To come around this problem, I have written a library, available for all of the above listed machines,
which considers their specific handling of the active and passive VME bus access. The basic functions
are :
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o Return of the local address under which the specified VME address is accessible.

o Return of the VME address with which an other process has access to the local memory, if the
local computer support passive VME access to this portion of memory.

e Transfer of data between VME and local memory, using the global VME address as source or
destination.

The latter function can also be used on machines, not directly connected to our farm VME system.
They only need to be tied up to the TCP network ®. The advantage is, that source code is portable
between the different computers, without changes and more flexible data exchange is possible. Imagine,
that a task wants to make a local portion of memory available to others. Where this data resides is
normally not know during the design phase of the system, which means, that a hard wiring of addresses
is not possible. With the global mapping functions, the service task only has to call the LOCALtoVME
mapping to get the appropriate VME address, and to send it to a commonly accessible mailbox. All
other processes obtain the local pointer of the remote data with the VMEtoLOCAL function. This
scheme is heavily used in our system.

5.2 A Relay Race

To avoid a waste of time with protocol overheads, the main eventflow is designed as simple as possible.
An event is requested from the eventbuilder by the input FIC, which copies it to an idle RAID board,
which starts the reconstruction and decision process. In the case of a negative decision, the event is
discarded. Otherwise the output FIC is requested to feed the event back to the CDAQ. We should
focus the attention to three points, which mainly determines the performance of the eventhandling :

e From the I/0 FICs point of view, the eventsource and destination are connected via different
bussystems. In detail, the Input FIC takes the event from the corresponding FEB via the VSB
cable and copies it into the RAID memory over the VME backplain. The Output FIC acts the
other way round. Both FICs use their DMA controller to do the transfer, that means, that the
data is not stored intermediately in the FICs local memory. Under these conditions, the system
makes optimal use of the different busses, because after some cycles, the two processes seem to
be synchronized. During the time, the Input FIC, for example, reads a dataportion via the VSB
from the Consumer FEB, the Output FIC can use the VME bus to access the RAID board. As
a result, two different copytasks can act with nearly the full transferspeed.

e Assuming an eventsize of about 120Kbytes and a maximum bus transferspeed of 6 Mbytes/sec
a total copycycle ( Input and Output ) lasts in the order of 80 ms. This time can’t be neglected
against the total processetime of the event. To profit from this time, two buffers are used
alternatively inside the RAID boards. While the decisiontask cares about the event in one of
the buffers, the other one can be emptied by the Output FIC and filled again by the Input FIC.

e To keep track of the different states in this multiprocessor scenario, we decided, not to use
interrupts for the interprocessor communication, but instead, to use mailboxes. Because of the
heavily used VME bus, it is essential, that polling those mailboxes has to be done only in local
memory, and never over the VME bus.

Keeping these points in mind, the following scenario was implemented. ( see diagram below and Figure
11 on page 28).

Each of the I/O FICs holds a table, the RAID Buffer Table, RBT, in its remote accessible
memory, which provides one slot for each RAID event buffer, that means two per RAID. Immediately
after the FIC task starts, the address of this table is send to a mailbox. The RAID programs can

5The way this is possible, will be discussed later.
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Figure 11: Fast Dataflow Protocol

‘read this information, and with the help of its own identification number, the RAID calculates the
entrypoint of the two eventbuffers inside this table. This is done by both FICs. After that, the RAID
boards determine the VME address of the two local eventbuffers, and write these numbers into the
previously calculated slots inside the RBT.

The Input FIC permanently scans this table, which is no problem, because its only local memory.
If it finds an entry, it maps the found VME address to a local one, requests an event from the
eventbuilder, and initializes the DMA transfer between the FEB and the RAID memory. After the
transfer is finished, a flag inside the RAID board is set to a predefined value. Inbetween, the RAID
observes the two flags of the event buffers, which again doesn’t charge the bus, because its done locally.
With the change of the flag value of one of the buffers, the RAID knows that the event fully arrived,
and that it can be processed. The actual Filter program is started on this event, and according to the
decision, the flag is set to accept or reject. In addition the bufferpointer of the relevant event, mapped
into VME notation, is written into the buffertable of the output FIC. This FIC behaves similar to the
Input FIC. Depending on the flagvalue, it resets the RAID eventbuffer or copies the event back to
the event builder. In any case, it takes the bufferaddress out of its own buffertable and writes it into
the corresponding slot inside the Input FIC, because it can be sure, that the buffer is ready again.
From now on the VME address is handled like a token. It wraps around together with the event
requests.
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Step example Slot status flag example Slot

in RBT of Input Fic inside RAID in RBT of Output FIC
Step1 | 0 | l IDLE | | o |

RAID writes address of buffer into RBT of Input FIC

Step 2 | VMEaddress | = | IDLE | { 0 |

Input FIC scans RBT and finds VMEaddress of a RAID buffer. Input
FIC requests next event from Event Builder and copies if from FEB
directly into RAID buffer with the specified address. Then it sets the
status flag to EVENT_COPIED, and clears the slot in the RBT.

Step 3 | 0 ] [EVENT_COPIED| [ 0 |

RAID program was waiting for EVENT_COPIED message and processes
the event. After that, the statusflag is set to ACCEPT or REJECT, de-
pending on the decision of the Filter Program. In addition the VMEad-
dress is written into the corresponding slot inside the OQutput FIC.

Step 4 | 0 l [ ACCEPT | « [ VMEaddress |

Like the Input FIC, the Output FIC scans the RBT, finds the entry, and
depending on the status value, deletes the event inside the RAID board,
or it requests a free feedback buffer from the Event Builder and copies
it. After that, the Output FIC sets the status flag to IDLE again, and
copies the VMEaddress of its own RBT into the corresponding slot of
the Input FIC. Then we continue with step 2.

5.3 The RAID Program

The behavior of the RAID program concerning the Run States can be expressed in form of a state
transition diagram( see Picture 12). The RAID program only exists in one of the three states, Wait-
State, RunActive and RunGoingDown, represented as bubbles in the diagram. State transitions
are stimulated by events like prepareRunEvent, bufferReadyEvent a.s.o.. During the transition,
actions have to be performed, like a refresh of the constants or the execution of the main Filter Program
described in section 7. Actions are marked as boxes.

After the start of the RAID program, it first sends a request for new constants to one of the FIC
processors, and awaits their arrival. If the run is already active at that point, it sends an Input Request
for each of its buffers to the Input FIC and goes into the RunActive State. Otherwise, if the run is still
stopped, it directly jumps into the Wait State. In this state it only waits for the prepareRunEvent,
which is distributed by the Input FIC, to all RAIDs on Run Start. The RAID board than compares
its own version of the loaded constants with the current one residing on the memory card and requests
a new set if necessary. After that it sends the Input Requests to the Input Processor and goes into the
RunActive State. In this state, the BufferReadyEvent is of course the dominating one. This event also
contains the information, which buffer contains a valid input event and has to be processed now. The
actual Filter Program is then called with the appropriate buffer number. With a prepareRunEvent
during the RunActive State, the RAID board can be asked to copy new constants from the memory
card to its own memory. A nothingEventindicates, that there is no new event in one of the I/O buffers.
The behaviour in such a case is the difference between the RunActive and the RunGoingDown state.
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Because the RunGoingDown state can only be reached after the run stopped, a nothingEvent not only
indicates that there is no new event, but that there will be no new one until the run starts again. This
is the condition to enter the Wait state. During the transition to the Wait state all RAIDs except
“one, only clear their Input Requests inside the Input Processor. One RAID, which can be any of them,
got the so called End Of Run Record’. This RAID waits until all other one reached the Wait state
and until the Output Processor cleared one of its I/O buffers. Then it assembles the histograms of
the other RAIDs and adds them to one set of histograms. Finally it send them to the output stream
encapsulated as an ordinary event, but with a special event number. Now, also this RAID switches to
the Wait state, and the cycle can start again.

With this scenario, it is possible to activate a new RAID processor at any time, even if a run is
active.

Although each RAID is able to copy the constants into the own memory itself, it will request them
in most of the cases. The reason is to avoid an overload of the VME bus caused by 30 RAID boards
trying to read from the same memory card. On request, the Input Processor uses the DMAS? controller
to copy the constants sequentially into the requesting boards.

All events except the bufferReadyEvent are generated by the I/ O processors writing the appropriate
event number into a mailbox of the RAID board. The bufferReadyEvent is produced internally, if the
RAID finds out, that a new event has been totally copied into an I/O buffer.

"The EndOfRunRecord is a pseudo event with a special event number. It contains run specific informations available
only at the end of a run
8Direct Memory Access
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5.4 Information Exchange between inner System and Rest of VME

The previous discussed data exchanges only concerned the eventflow, but a lot of more informations
had to be made available to and from the Filter Processes.

The individual Modules inside the Filter Program need special informations about the different
detector components, like geometry data and calibration constants. These data will only change from
run to run. The source of this information can be the H1 database on the central IBM, or a
special Begin Of Run Record which is produced by the eventbuilder and distributed prior to the
first real event.

On the other hand it’s important to know as much as posmble about the behaviour of the system
during a run. These informations can be statistics concerning the whole system, like active processors,
processing times, rejection ratios and so on. But even more important are histograms, which are
assembled by the Filter Program, concerning the distribution of basic and reconstructed quantities.
Because the Farm is the first fully programmable device in the data chain handling the full event, it
gives the chance to monitor critical detector parameters while a run is still active. This is an additional
help for the central DAC shift crew to detect malfunctions of detector components.

5.5 A Pointers Paradise

All these informations reside at different addresses in different devices. Our aim was, to make them
available by only knowing one magic number, the base address of the Communication Vector Table,
CVT.

The CVT is a pointer array which always has the same VME address. It contains pointers to all
relevant structures, describing the different objects of interest. Figure 13 represents a small section
out of the pointer construct, which is sufficient, to follow the discussion. The references to the RAID
Buffer Tables inside the memory of the FICs was already mentioned. They are necessary for the RAID
boards, to place their Input and Output Requests.

5.6 Informations for the Filter Program

An other entry in the CVT points to an array on one of the memorycards, which holds the newest
constants for the Module steering part of the Filter Program and for the various Filter Modules. This
buffer is updated with informations from the database before a new run starts, but only if some of
them changed. But this is still not the final constant version. With the arrival of the first event,
which is always the Begin of Run Record, the Input FIC has to decide if it contains informations to
update the constants or to be added to them. If this happens, the FIC increments the Version Number
of the constants in the CVT. This number is compared by each RAID with the version number it
currently holds. If it finds out, that if is no longer up to date, it requests the constant buffer using
the mechanism, it normally would use to request a new event. :

The request for new constants is answered by the Input FIC, not only at run start, but also during
a run. This is necessary to restart RAIDs without stopping the current run.

5.7 Informations from the Filter Program

Following the arrows in Figure .13, it it obvious that all relevant informations about the the different
objects inside the Farm can by obtained by only climbing through the pointer trees, starting with the
address of the CVT.

5.7.1 The Histograms

Whenever a RAID program starts, it converts the entrypoints of its histogram buffers into VME ad-
dresses, and assembles them in the RAID Histogram List, preceded by the number of entries following.
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The address of this list is written into an entry inside the RAID Descriptor Block . All these memory
portions reside inside the main RAID memory, which is fully accessible via the VME bus. To be
linkable from outside, the converted address of the RAID descriptor block is written into a RAID
specific slots of two tables inside the memory card, the static RAID table and the dynamic RAID
table. The CVT points to both of them. So, at least any VME linked task is able to look into the
histogram buffers of all RAID boards. The way this is done in practice, and from whom, is show in
section The Passive Farm OS.

5.7.2 The Monitorinformations

Informations concerning the more technical aspects of the farm, can be obtained in an active and a
passive way. ‘

The latter one are the already described jumps through the wood of pointers, producing informa-
tions like the number and length of the currently processed event per RAID, the number of already
seen events and so on.

For the active interaction with a RAID task, each RAID descriptor Block contains an External
Command field. If a none zero number is written into this word, the corresponding RAID process
interpretes the number as a command and tries to execute it. Most of the supported requests serve
as debugging tools. The only frequently used command is the Alive Request. On this event, the
RAID task clears the External Command field and continues. This scheme is permanently used by
the Output FIC to determine if the RAID processes are still alive. If the request is not answered
within a fixed time interval, the corresponding RAID is declared to be dead. Its entry is taken out
of the Dynamic RAID Table, a warning message is written to the main Filter Farm Console and the
information is forwarded to the CDAQ display. An automatic restart of the died task is possible and
foreseen, but not yet implemented. The reason is, that it turned out, that these events mainly occured
because of bugs in the imported reconstruction software. And it seemed to us to be a good habit, at
least in the beginning, to find these problems and not to ignore them. At this point, the sense of two
RAID Tables becomes obvious. With the cleared entry in the dynamic one, we are informed about the
RAIDs making problems, and with the static one, we don’t loose track of the internal RAID tables.

5.7.3 The Events

To obtain events out of the data stream similar to the histogram scheme is problematic.

e The events don’t reside long enough in the different buffers to copy them dunng the normal
dataexchange.

e Changing the FIC-RAID protocol to lock a desired event, would slow down the throughput, and
would be potentially unsafe, because an aborted request task could block one buffer forever.

o In addition, allowing an unknown number of different tasks to lock and unlock memory portions
makes it necessary to introduce a semaphore scheme.

e For some investigations, it is necessary to specify properties of the requested event. One or more
external tasks, permanently comparing the desired selections with the actual properties would
surely overload. the VME bus.

The protocol, which I decided to use, is similar to the communication between the IBM cpu and its
channelprocessors( see Figure 14 ).

Each client, which intends to request an event has to provide two buffers. The first is the container
for the expected event, and the second is a parameterblock describing its properties, the Request Area.
Both parts have of course to reside in VME accessible memory. The client has to enter vahd values
in the following field of the Request Area.



5 THE DETAILS T L

“"Command in our case 'GIME_EVENT’

BufferAddress. VME address of the container buffer
BufferSize Size of the container buffer

RAID number Number of the RAID board, the event should
come from, or ANY.
decision mode The event should have been accepted or rejected
decision flag 32 bit mask, compared with a value
produced by the different filter modules

The VME address of this Request Area has to be written into the mailbox of the processor, which
is responsible for the appropriate request. Events are delivered by the Output FIC. As expected it
registers the address of its own mailbox into a field of the CVT, on Farm Startup. After receipt of
the Request Area Pointer, the OQutput FIC clears the mailbox, copies the requestarea into a local
queue, and changes the answer field in the request area to 'REQUEST_ACCEPTED’. The Output
FIC permanently compares the properties of the processed events with the requested properties of
the whole queue. If they match for a queue entry, the event is copied into the container area of this
request. The request area is completed with the actual values, and the answer field inside the request
area is set to 'REQUEST_FINISHED’ or to 'REQUEST_REJECTED’, if the FIC queue is full or the
specified parameters don’t make sense. The client task has to observe this field, until one of t:hese
values appears. Because of the polling, it is recommended, that the Request Area should be local for
* the requesting task, or in the case of the Macintoshes, resides in oue of the VIC memories, which can
be accessed by the Mac via the VMV bus, without interferences with the VME bus system.

Perhaps an other point should be stressed. The FIC mailbox can be accessed by several computers
simultaneously, which yields to the result, that one of the addresses will be overwritten by another,
if the FIC didn’t look into the mailbox inbetween. To avoid this conflict, each participant first reads
the mailbox to be sure, that it is empty. But even inbetween the read and the write, another task
could have used the mailbox which wouldn’t be detected. The most elegant way out, is the use of
a special VME command, the 'read modify write’. During this cycle no other access is permitted,
which ensures the conflictfree handling of the mailbox scheme. Up to now, we didn’t use this special
command, because in practice the problem never occured, and the worst result would be, that a request
isn’t answered. This malfunction would be detected by the clienttask, because it would observe, that
the answerfield doesn’t change to 'REQUEST_-ACCEPTED’ during a fixed timeout period. The task
then is free to send the request again.

5.8 The Environment Simulation

The system software described in the previous sections, has been tested and used during the last half
of 1992, The time, the system can act without a total breakdown, is in the order of days. So there is no
need to concentrate on the debugging of that part. This is not true for the reconstruction modules of
the RAID program. This software grows and changes permanently, which makes it necessary to have
a tool with which the new versions can be tested in a nearly identical environment. The simulation
should be possible with simulated and real events from the IBM and SGI disks and of course directly
out the main data stream.

For this purpose a third farm VME crate holds a Sparc SUN, a single RAIDboard, some memory
and as usual a VIC to link the crate to the rest of the farm environment. Because of the fact, that
this crate doesn’t contain any real run relevant objects, the bus can be used without disturbing the
main system. But on the other hand, the address space is totally integrated in the Main Farm address
space. That enables us to use the previously discussed protocol to get events from a real run, with
which a new Filter Versions can be tested. For the simulation the software on the RAIDboard is
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absolutely identical to that one used in the real system. All tables, including the CVT and the tables
normally residing in the I/O FICs are now on a special memory card. The actions which are done by
different processors in the real world, are totally simulated by tasks running on the Sparc Sun. The
actions are

o Loading the object code from the local SUN disk or via NFS into the RAID memory.
o Loading the constants from Disk into the memory card.

¢ Consuming events from various sources and feeding them to the RAID process. (Input FIC)

Reading the processed events out off the RAID board and writing them to Disk. ( Output FIC)

Extracting the histograms out of the RAID card and making them available for a Display
Program.

This simulation system is an event consumer and an event and histogram source. Because of the
identical pointer structure, applications which are able to get information out of the real system
also will get the data out of the simulation, by only changing the CVT base address. Actually, the
simulation is not restricted to the use with one raid board. In addition the Sun can also SImulate the
Event Builder task only, and serve the real I/O FICs with the total system.



5 THE DETAILS

‘Run Number:

Ouiput FIC
Input FIC

RAID Buffer Tabel

1 RAID | Buffer I

| | L [Bufferl]

1 . uffer
_’E@Z. RAID | Buffer I
| . 2 [Bufferll
FIC
Statistics RAID | Buffer I
Buffer Il

Constant
Buffer
The RAIDs !
I =
[ =
[ =
f /
RAID status Buffer Descriptor Block 1
External Command Buffer Descriptor Block II
Buffer I Status Flag I *
Buffer 11 Event Buffer
Histogram Buffers {-— Event I;\; 9P e;rtzes Event
Run Number
Constant Buffer Event Number Buﬁer
:| Length
The Buffer Statistics —1
Constants
Buffer specific
Informations
# of Histo Buffers[+—
Pointer to 1 l l
Pointer to Il ]
NULL - Histogram Buffer

Figure 13: Pointer Layout

36



5 THE DETAILS

Memory Card

cvr

Memory
inside the
Output FIC

Mailbox

A 4

FIC steering

allocated
Memory
te
hold
the
Event

VIC Memory
Request Area

Command

» Answer
Process ID

A

Figure 14:

Buffer Address
Buffer Size

Run Properties

Run Number
Event Number
Event Length
Event Mask

Farm Event Request Protocol

37



6 A GENERAL DATA DISTRIBUTION CONCEPT . 38

6 A general Data Distribution Concept

Up to now, we discussed how to obtain different types of data objects out of several steps in the data
processing chain, using different protocols :

¢ Events from the CDAQ with CDAQ-FEB protocol.

¢ Histograms from the CDAQ Histograming unit, using direct VME memoiy access. ]Majnly used
by H1 Online Event display.

¢ Events from the Farm I/0 processors via the Farm Reguest Protocol.

o Histograms from the Farm, directly out of the RAID histogram buffers, or from the simulation
processes.

All these protocols can only serve participants which are directly connected to the corresponding VME
bus. But the aim is of course, to make the informations available wherever they are needed. To provide
this, we make use of a network protocol which is implemented on nearly all DESY computers, the

TCP/IPS.

6.1 The Network

When the Farm project came into a phase, where we were able to perform the first realistic tests,
it was necessary to run the system with simulated eventfiles residing on the central IBM. We used a
Macintosh computer to simulate the Eventbuilder, and because of the restricted disk space on this
device, a copy of the large Eventfiles to local disks seemed not to be recommended. So we decided
to read these files event for event via the network, directly from the IBM disk. The only network
protocol, for which drivers were available on both, the IBM and the Macintosh was the TCP /1P0.
Unfortunately both machines used different programming interfaces, so it was necessary to define
a unique interface to make code portable. Taking pattern from the IBM driver name K-NET, our
software part was called Farm N-NET.

Farm N-Net

K-Net TCP driver for IBM | NSCF''TCP driver for Mac

After a year, IBM released the socket interface for TCP, which is the Unix Standard for this protocol.
So I also changed my interface to the sockets, with the advantage, that now all Unix Systems were also
covered. Some time later, DEC followed with the UCX socket software for VAXes. In the meantime
Apple released a new interface to TCP, but unfortunately not yet using sockets. The easiest response
for me was to write my own socketinterface for the Apple software, wh_ich leads to the following final
configuration[PAT 93].

®Transport Control Protocol/Internet Protocol
0For Details, see section Network Details
! National Supercomputer
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Farm N-Net

IBM MVS sockets | VAX UCX sockets | Unix sockets | my MAC sockets
MacTCP

TCP/IP layers

This scheme had the additional advantage, that RPC!? calls could be implemented on Macintosh,
which was necessary to install the network part of FPack!® on that computer type.

With the development to the sockets, the usage of the N-Net seemed to be unnecessary, but it
provided some other useful features.

¢ N-Net is packet oriented. The number of bytes, received by one receive call exactly corresponds
to the number sent within one send call, while TCP/IP is free to spit and merge the different
packets.

¢ Additional informations about the exchanged data packet is available, like a packet identification
number, and the data type.

e According to the data type specified, the packet is converted, in the case were different data
representations come into account, like ASCII versus EBCDIC, big Endian versus Little Endian
and so on. '

o Automatic memory allocation is performed for incoming packets, which avoids the waste of
memory space.

Based on N-Net I defined a simple protocol which was able to read and write events from/to remote
computers[PAT 90]. It was realized in terms of the client server mechanism. On the service computer,
lets say the central IBM, a Global Server is permanently listening for incoming requests. If the client,
the computer which wants to read a file, needs to do this, it sends a user identification together with
its own network address to this Global Server. The Server checks, if the identification data is valid
for this computer, and starts the so called Private Server under the account of the requesting user'*.
This became necessary to ensure data security. The private server then connects to the client and
awaits further commands, which are :

e Open, create and close a file.

o Read and write an event.

Skip an event.

Rewind the file.

e Database access, see 6.4.3.

Currently two of these servers exits, one on the IBM, and one on the SGI cluster, because these
computers nearly hold the total H1 disk space.
Though we are now able to send events over the network, the possible number of protocols increases
to three.
12Remote Procedure Calls, an upper layer of TCP/IP

13The offline filesystem
M4 PFpack adopted this scheme some time later
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I. The CDAQ Protocol to obtain events directly from the Event Builder VME,
II. the Farm Protocol to obtain events directly from the Farm VME.
III. and the recently discussed Network Protocol.

On the other hand the online events from farm and CDAQ are still only locally available. What is
missing 7

e A general interface is necessary to obtain events from the different sources with the same function
calls.

¢ Two gateways are needed which take events from the farm and the CDAQ and dist_ribilte them
via the network on request.

6.2 The Online Event Servers

The Eventservers are realized as Macintosh applications. One is connected to the CDAQ VME crates
and the other to the farm VME system. Both have of course an Ethernet connection. From the
network point of view they look like the previously described servers on the IBM and SGI, which
means that the clients remain unchanged and only have to specify a different hostname. The Mac
servers only differ in the interface to the VME protocol, but they are conceptually identical. Both are
able to serve multiple clients simultaneously. Because of the restricted multitask capability they don’t
start a private server, but they wrap around and handle the next incoming request. On startup, both
try to read an initialization file from the Farm MIPS/120 via TFTP'®. This file contains the following
types of information. .

o Nodenames or domains from which access is permited or denied. So, one can for example enable
the connection from the whole DESY except the central IBM. In addition, single nodes and whole
domains can be declared as trusted hosts, which permits an access without user identification.

e Usernames, the corresponding passwords and their access priorities. This is only necessary for
the farm server, because it has the possibility to execute all farm functions. A feature which is
quite dangerous without password protection.

o Internal steering parameters, like maximum number of users, external and internal buffer re-
quirements, address of the CVT or the CDAQ FEB and so on. «

The CDAQ server is connected to a single CDAQ FEB and uses the first word ( 4 bytes ) of the
eventbuffer to communicate with the CDAQ. This word contains the number of bytes following this
word, if the full event is available. This information is of course written by the CDAQ after copying
the event into the buffer. If the server needs the next event, it only has to set this word to zero, which
is the signal for the CDAQ to copy the next one. The eventserver distributes the same event until
one client would get it again, then the next is taken from the CDAQ. On the one hand this reduces
unnecessary event copying, on the other hand it makes sure that a client doesn’t get the same event
twice. Specifications concerning event properties are ignored by the CDAQ server.

The farm server has two servicemodes, depending on the priority of the engaged client. In low
priority mode, a specification of event properties isn’t possible, and all connected clients in this mode
share the same event buffer. Each high priority connection manages its own VME buffer, and requests
are send as individual requests to the mailbox of the Output FIC. All possible event selections are
accepted. With this feature the online event display can monitor special classes of events, for example
only those, which had been rejected, by the Filter Program.

13Trivial File Transport Protocol, an application level TCP protocol
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6.3 The passive Farm VME OS

Although the Farm Request Protocol provides a flexible handling of requests it produces some new
problems. Fach participant of the communication needs some memory out of the pool of the different
farm memory cards. The users mainly are

¢ One or two Online Event Displays directly connected to the Farm.

e The Farm Eventserver with one buffer for all low priority connections, and one buffer for each
high priority one.

¢ The Farm simulation process running on the Sparc Sun.
The available memoryportions are

e Two memorycards a 2 Mbytes

¢ 128 Kbytes memory for each VIC card.

A preassignment of buffers to the different processes would waste memory because not all of the tasks
are running permanently, and on the other hand it would restrict the system to a fixed number of
assigned tasks.

6.3.1 The VME Memory Allocation

To solve this problem I have written a VME memory allocation system. On farm startup all available
memory portions have to be made known to the system. To each portion the following attributes are
assigned.

o The start address and the length.

¢ A unique name.

o If the portion should be divided into fixed blocks or not.
e A priority to reserve memory to special applications.

The fized attribute means, that the total portion is divided into equally sized parts.” They need
less management overhead and are used as request areas for FIC requests. From the other type of
memory, which is declared variable, one can request parts of any length up to the total buffersize. For
a memory request, one has to specify the length and the priority, the name and the type of the memory
are optional. The system then tries to find a part, with matches the specified requirements. This part
is locked and belongs to the requesting process until it is freed again. It can be used as eventcontainer
for a FIC event request. For all these applications again semaphores are required, because several
different tasks could try to allocate memory at the same time.

6.3.2 The VME Task Monitor

Together with the allocation of memory, another problem arises. If an application aborts, or for some
other reason is not able to free the allocated memory, this part would be wasted until the next full
system start. To avoid this, a task, intending to get memory, has to register itself to the VME system.
In this register call, a process name has to be specified together with the highest priority the task
is willing to get memory for. The registerfunction returns a pointer, and only with this pointer an
allocation of VME memory is possible. If the tasks finishes, it has to call only one close function, and
all memories belonging to it will be returned.
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If the process aborts, before-it could call the close function, the entry remains in memory as zombi.
To make it possible to detect such a zombi, a running task has to call an alive routine regularly, which
updates an internal timestamp. With a shell program one can observe the different tasks and its last
update and if the idletime increases, it is possible to kill the zombi by hand, without affecting the rest
of the system. With this kill, all memory allocated to that process is release again.

If, for some reason, a process entry of an alive task is cleared, this task should be enabled to
recognize the problem. So, a function is provided, which returns the unique process identification
number of the task, belonging to that memory. The corresponding task only has to compare it with
the ID returned by the registercall to know, if the memory does still belong to it. This precaution is
also used by the I/O FICs before they copy something into an external buffer. For that reason, the
requestarea must always contain the task ID of the process, sending the request.

6.3.3 Again the Event Server

All the above listed features, like registering a task, allocating VME memory, writing and reading of
VME memory or using it to send a request to one of the I/O processors, are not only available for
machines directly connected to the Farm VME system. Instead, the Farm Event Server also maps
appropriate requests arriving as network commands to the corresponding VME activities. This is
true not only for basic actions like reading a single word, but there are also complicated commands
which are mapped to several VME accesses to reduce network traffic. The best example is the already
discussed eventread via network from the farm. This single read triggers the following actions-:

o Allocation of a large memory portion, for the event.

e Allocation of the request area.

Filling the request area with the chosen selections.

Sending the address of the request area to the mailbox of the Output FIC.

Observing the answer field of the request area to determine the arrival of the requested event.

Sending back the event to the requesting task.

¢ Deallocation of all memory parts, if no longer needed.

6.3.4 The Unification

Now we have all tools available to construct a system, which provides us with events and other objects,
without the need of the knowledge of the underlying protocols or activities. This part of software is
the highest level of the Passive Farm Operating System. Concerning the reading of events, exactly
the same calls are able to read events from IBM or SGI disk, out of the CDAQ datastream or the
Farm datastream via network or directly connected to the Farm VME system. Reading and writing
from/to Farm memory can also be done directly from the Farm computers or from other computers
connected to the TCP network, without changing the code. Even the small Farm OS shell, which is
able to monitor and control most of the farm functions, can run anywhere.
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6.4 The Farm Startup
6.4.1 The Installation Language

There is still another open question. How does the Farm OS learn about the different parameters,
which are necessary to install the initial tables.

The Farm OS shell provides a command to execute an initialization file containing the appropriate
parameters. An example part is plotted below.

//
// Farm Startup File
1/
1/ General Parameters
//
etc = { BuffersPerRAID = 2 ; // the number of io buffers per RAID
maxProcessors = 32 ; // the maximum number of RAIDs
maxProcesses = 16 ; // the maximum number of 0S tasks
Y
//
// Addresses of VME accessible FIC memory
1/
fics = { input = 0x600000 ;
output = 0x600010 ; } o
//
/1 The available memory portions
//
memory = {
//
// FEB buffers ( information for FIC only )
/1
input = { start =  O0xE00000 ;
type = wvsb ; // or VME for simulations
}s
output = { start =  0xE00000 ;
type = vsb ;
I
// .
// Memory areas, usable by all VME tasks
//
// I) buffers on the memory card
//
buffer.var.1 = { -
name = mc.varl ;
start = 0x680000 ;
size = OxO7FFF8 ;
type = variable ;
priority = 15 ;

/1l
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// 1I) buffers on
//
buffer.vicl.fix = {

name
start
size
type
blksize

priority

¥
Yy /7

End of memory structure

the VIC local memory

= vicl.fix;
0x0e88000 ;
0x8000 ;
fixed ;
100 ; // small blocks for
// the request areas

i85 ;

Fortunately it is quite easy under Unix to construct compilers, which understand the above small
language. The tools[SFR 85, KOP 88] are lez- and yacc , an abbreviation for Yet Another Compiler-
Compiler. lez is the lexical analyzer. It collects the single characters of the input file and builds

tokens like Numbers, Names and Operators.

These items are the so called Terminals for the next

step, the grammatical analysis, done by yacc. To describe the new constructed language, the Backus
Naur Form, BNF is used. With this input, yacc produces C code which can be extended to the_ﬁnal

compiler.

The BNF for the Farm Description Language actually is quite simple :

program

definitions

definition

assignment

Where the terminal objects are :

Terminal

[ description l

definitions

definition
definitions definition

Keyword ’=’ assignment ’;’
Constant
HexConstant

Name
'{’ definitions '}’

characterset

Constant

decimal constant 0-9

HexConstant | hexadecimal constant |0-9 ,a~f,A-F

Name . character string

Keyword

digits letters .

After the compilation of the Farm Startup File, the following directorylike structure is produced.

e etc

— BuffersPerRAID = 2
— maxProcesses = 16

— maxProcessors = 32
s memory

— buffer.var.1



6 A GENERAL DATA DISTRIBUTION CONCEPT 45

% name = mec.varl
x start = 0x0e8000
* a.5.0

— buffer.vicl.fix

* name = vicl.fix
x start = 0x680000

* a.8.0

- a&.8.0

Each installation module can obtain the values of the corresponding keyword out of this directory
tree. '

6.4.2 The Startup Procedure

After the Farm Startup file produced the already discussed tables inside the different memory cards
the following steps have to be performed. ‘

¢ The IO program has to be loaded into the Input and Output FIC.
e The Filter Program has to be loaded into the RAID boards.
e The run constants have to be obtained from the Database on the central IBM.

The IO program is written in C under the Macintosh MPW!6 environment. A modified c-library
enables the I/O FICs to execute the linked programs. They are loaded directly from the Macintosh
disk into the FIC memory via the VIC connection, and started.

The Filter Program consists of the C-steering and the FORTRAN Filter modules. All parts are
assembled on the M/120 Computer and linked together with a standalone library, which enables the
executable code to be run on the RAID boards. This code is also loaded with a Macintosh program
into the different RAID memories, and started.

6.4.3 The Database Access
The connection of the Farm System to the central H1 Database has two reasons.

o The Module Steering File, which coordinates the actions of the different filter modules and its
results and histograms, has to be made available to the offline analysis, to keep track of the
decision chain. So, whenever parameters of this file change, the new file is assigned to the
appropriate run number and send to the Central Database on the IBM.

e The same has to be done by the subdetectors, if detector specific constants changed. For the
corresponding analysis modules, running in the Filter Software, this means, that they have to
recognize these changes as fast as possible.

Both actions are combined to one remote database access. First the Global Server on the IBM is
requested to start a special Private Server which enables the database interactions. Then the Module
Steering File is sent to the server, which pushes the information into the database. This information
includes a list of data objects needed by the different filter modules. These items are extracted out of
the database and send back to the farm client.

The described job can be done by either the control Macintosh or the M /120 Minicomputer. This
scenario makes sure, that one can always determine, which Module Steering File was used by the Farm,
and which constants version was taken by the different filter modules.

16 Macintosh Programmers Workshop
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6.5 The H1 LAN

Beside the already discussed types of information, an other one had to be covered with a more general
concept. It mainly consists of small messages or data to be displayed on special Computers far away
from the datataking device. The expected datarates should be in the order of some hundred Kbytes
per minute. Some other constraints had to be fulfilled. A breakdown of one of the participants should
not influence the behaviour or its counterpart and the programmers interface should be easy to use
and available in the most popular computer languages. Because the Farm N-Net was already available,
I decided to construct a new layer above this level. It was called H1 LANPAT 91, PAT 92]. It uses
the advantages of the underlying parts, like the data convertion of N-Net and the reliability of the
TCP/IP. The main extentions are :

e Hi LAN opens a new connection for each message to be send, and closes it immediately after
the delivery.

e The received message is copied into an internally allocated buffer and send to the application
layer in form of an event.:

¢ Automatic installation of a network listen port is performed. This portnumber, together with
the network address is send with each packet, which makes it easy for the process to send an
answer.

Unfortunately the features provided by the standard socket interface were not sufficient for Macintosh
applications. The main reason is, that the Mac is no real multitasking system. Instead, control has
to be given back explicitly to the Operation System, if the task is going to be idle. This makes it
necessary to avoid all actions, which wait for the completion of tasks. So I have completely rewritten
the N-Net and the HI LAN for Mac, to meet all its specific requirements. The point is that none of
the new routines wait until an action is completed, instead it returns immediately and sends failure
or success in form of an event to a nextEvent Routine which has to be called frequently, a well known
habit for Mac programmers. So, the final H1 LAN scenario looks like :

H!I LAN H1 MacLan

N-Net Mac N-Net

IBM MVS sockets | VAX UCX sockets | Unix sockets | my MAC sockets
MacTCP

TCP/IP layers

For binary data exchange this software is used between Macintoshs belonging to the same subdetector,
for example the Central Trigger Mac permanently sends data to the Trigger Display Mac in the H1
Control Room. In the beginning of the experiment, the luminosity system sent Lumi Informations to
the HERA Control Room. The slow control uses HI LAN to connect VAXes with OS/9 stations.

Another type of message, mainly human readable one are exchanged in a standardized way, using
character stings. They are automatically converted, so that also the IBM can participate. The request
consists of digits and commands at fixed string positions[PAT 91]. A heavily touched server for this
kind of data, is the HI Central DAQ Control Mac. It answers two types of inquiries.

e The current status of the CDAQ, including informations about most important subdetector
parts.
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o The run summary for a specific run number, containing informations, like the number of taken
events, the availability of detectorparts, the farm rejection ratio, the run comment of the CDAQ
shift and much more.

The latter request is send by the IBM datalogging job after each run, to fill these informations into a
human readable database on the IBM. The first request is send with the H1CDAQ command on the
IBM and with the CDAQ desktop program for the Macintosh. Just for fun : This desktop obtained
the H1 CADQ informations even from a Macintosh at the SSC laboratories in the US, as tests turned
out.

On the IBM and on the central VAX cluster, servers distribute informations about the HERA
machine status.

All these services can be tied together in the form of a directory tree. A central server, currently
I’m using the Farm Sun, knows the address and the public request port of the subdetector servers. To
climb to the next tree, one only has to send a directory request to one of these tasks, which responds
with the possible inquiries for that section, or references to other directory servers.

6.6 The Alternative

Though I tried to cover most of the data producers and consumers with a more or less unified interface
to the application layer, the work grew up to a patchwork. So, the aim should be to use the same data
handling methods, at least between the different subdetectors and the outer world. The advantages
are obvious. Today, a lot of time is wasted by each online group to write code for the readout the
controlling and the display of data and tasks. Jobs, which are in principle very similar.

One reason for the missing unification could be, that at the time, the detector was designed, it
was obvious to everybody, that the hardware of the subsystems only can be planed together with the
global frame of the detector hardware. An understanding, which seemed not to be available for the
software of the project.

Better concepts already exists from other experiments. Only one example is the Glish[PAX 92]
software package from the Lawrence Berkeley Laboratory. This work describes a software bus con-
necting various computers. A loosely coupled distributed computer system. The convertion for the
different data representations is done on the fly. The different computers provide several services like
data measurement, displays, fast calculations and much more. The servers and clients describe their
tasks with the help of a C-like language, the Glish script, supporting data exchange specific commands.
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7 The Filter Program

The actual decision, if an event is worth being stored or not is done by the Filter Program, which runs
in "N’ identical copies on the RAID processors. The events are delivered and assembled by the FIC
I/O Tasks.

7.1 The Module Steering File

In principle, the Filter Task is a reduced Reconstruction Program. Like the offline reconstruction, it
consists of different modules, calculating the subdetector specific quantities. The aim is to adopt the
offline modules as much as possible without changes.

Each module takes one or more data structures'” out of the stream, performs its calculations and
returns the tesult in form of a structure into the data pool, were the new information is available for
the next module. This implies, that a group of functions is able to run independently, while others
depend on the output of previously executed ones.

In addition, a module can optionally provide decision relevant quantities, which are accessible from
the module steering layer. With the help of these values, the steering can always decide to accept or
reject the event. Then, the processing chain is immediately broken, and the decision is sent to the
output processor.

To obtain a maximum of flexibility concerning the module execution sequence and the cut off
parameters, Alan[CAM 92] has written the steering in a way, which makes it possible to predict the
decision behaviour with the help of a description file without recompiling the Filter Code. This Module
Steering File has to provide the following informations.

e In the first part, all modules have to be defined, together with the quantities they pmduce, and
the modules they depend on.

¢ The second section describes the accept and reject conditions, using the above defined quantities.
This part implicitly determines the order in which the modules are executed. A module is only
called, if one of its output variables is used in the currently active trigger statement, or if it
is declared to be an ancestor of a module, which is going to be executed. Even if an output
variable is used several times, the corresponding module is never called twice.

o In two special parts, modules are listed, which should be called after a successful decision,
depending on accept or reject.

o Keywords can force the system to execute all trigger statements even if a decision had been
taken, or to call modules if there is still some time between now and the average execution:time
of the Filter Program.

e The last section defines histograms of the produced decision values and of informations concern-
ing the time behaviour of the different modules.

7.2 The Modules

In October 1992 there were mainly 9 Reconstruction Modules active in the Filter Program. Only 6 of
them provide variables, which influence the L4 trigger decision. A special module, the QT Analysis
is necessary for the reconstruction of tracks inside the two Central Jet Chambers and the Forward
Trackers. Charge division is used to calculate the particle position with the help of the accumulated
charges at both ends of the sense wires. The other modules provide the following quantltles for the
decision process :

17This structures are called BANKS and are an assembly of the atomic data types Integer, Real and Character, in
linear form or in the form of tables
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e The L1 Module unpacks the L1 trigger bits and assigns them to the variables. The most
important are :

L_L1_AllBunch indicates, if the trigger occured during a bunch crossing.
L_L1_Diode is a trigger of the Backward Electromagnetic Calorimeter.
L_L1_Muon_FEc indicates a muon track in the Forward Endcaps.
L_L1_eTag states the detection of an electron in the Electron Tagger.
L_L1_TrkMsk is a trigger of the Central Tracker.

o The BEMC Module only provides the R_.BMC_Diode variable, which holds the energy fraction
of the hottest Diode in relation to the total BEMC energy in the same stack.

e The IRON Module reconstructs muon tracks in the Instrumented Iron and provides the number
of tracks found.

o The FWD doesn’t yet reconstruct anything, but only assigns the number of hits found in one
of the Forward Radial Chambers to I FWD_NhitFrr3

e The Z-Vertex Module is used to decide if it is worthwhile to run the time consuming CJC
code. The method is, to build combinations of hits in one segment of the Central Jet Chambers
and to enter these pseudotracks into an histogram. The provided quantities are

I.ZVT_nZVTXray : the number of combinations
R_ZVT_ZVTXhoriz : the fraction of nearly horizontal pseodotracks

R_ZVT_ZVTXfrac : and the fraction of entries which touch the z-axis at a distance greater
than 75 cm of the nominal interaction point in the electron direction.

e The CJC Module provides a full track reconstruction in the Central Jet Chambers. It is the
most time consuming part and needs about 125 % of the average execution time for one event,
but it is only called for 70 % of them. It produces the following values :

I.CJC_nTrackZdca : The number of tracks with more than 8 hits. The distance of closest
approach according to the z-axis must be below 2 cm, and the point of contact of the dca
and the z-axis must be greater than —50cm, where negative distances point in the electron
direction.

I_.CJC_NegTrkZdca : Same as above, but only for negative tracks.

I_.CJC_nUpstrTrack : The number of tracks with more than 14 hits. The distance of closest
approach according to the z-axis must be below 2 cm, and the point of contact of the dca
and the z-axis must be greater than —100cm. In addition, the tracks must come from
upstream.

Figure 15 shows the reduction fraction of the different Farm Trigger Statements. From top to bottom
the reject trigger statements are :

1 L_L1 Diode A R_BMC_Diode > 0.95

2 L._LileTag A R_ZVT_ZVTXhoriz > 0.5

3 L.LleTag A 1.ZVT_ZVTXray = 0 A ILFWDnHitFrr3 =0

4 L.L1.TrkMsk A R.ZVT.ZVTXhoriz > 0.5

5 L.L1.TrkMsk A I.CJCanTrackZdca = 0

6 L_L1.TrkMsk A I.CJC NegTrkZdca = 0

7 I_.CJCnUpStrTrack > 3

8 0 < I.CICaUpStrTrack < 3 A I.CJC_NegTrkZdca =0
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The greatest step is achieved by requiring at least one nTrackZdca. The numbers are calculated for
a run at the 19 of October 1992. The integrated luminosity was 60.6ub~! and about 37500 events were
produced as input for the Filter Farm. Figure 16 points out the behaviour of the Farm as a total.
Slightly more than a quarter of the input events were accepted. From the rejected events, about 1%
was also kept for monitor purposes. Both, the monitor and the accepted events were processed by the
full reconstruction task.

Two parts of the pie chart are of special interest and need further investigations.

About 50% of the Farm Accepted events were classified as beam gas events or not classified at all
by the L5 Reconstruction Program. The aim is of course to filter these events at farm level.

A more serious problem are the 15% of the Farm rejected events, which would have been accepted
by the L5 Trigger level. One has to show that none of them was a real physics event. This can actually
be done. For example a third of them had been rejected because of the R_.BEC_DIODE > 0.95 ,
which means that one BEMC Diode holds more than 95% of the energy of the corresponding stack,
which indicates a BEMC malfunction. Another part would have been accepted by L5 because the
definition of the NtrackZdca is different for the reconstruction, where the —50.0¢m cut for the point
of contact with the z-axis is not applied, which means, that for the Reconstruction, a good track can
also start below —50cm of the interaction point. '
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8 The Performance

To get an impression of the performance behaviour of the Farm as a device in the event processing
chain, I have written a tool, which is able to simulate the event flow.

Logically the whole Farm can be divided into three parts. The Input Processor,the N RAID boards
and the Qutput Processor. For each part, a maximum event rate can be calculated.

The Output Processor doesn’t need to be taken into account, because the rejection rate will always
exceed 50%, which means, that the Output Task only has to shuffle less that half the amount of the
Input Processor.

The maximum transport rate of the Input Processor T, is solely dependent on the inverse ratio of
the event size and the VME copy speed, which is about 6.5 Mbytes/sec within a crate and 6 Mbytes/sec
via the crate interconnects. The constraint to reach this value is, that the processing device which
follows, is able to consume all delivered events.

The rate of the actual processing device is (7,/N)~!, where T}, is the average time used for one
event by one processor, and N is the number of RAID processors. Again the condition has to be
fulfilled that the preceding Input Processor guarantees to produce the required event rate.

The total throughput is in the order of the smallest of the two values :

Total Rate = min( (T,/N)~!, ;1)

The interesting point is the transition between these values, which means T,/N = T,. For a given
event size ( that means copytime 7, ) and a given processtime T}, the critical number of RAID boards

would be :
Neriticat = Tp/Tc

As first approximation I simulated the behaviour around this point assuming T, and 7, to be constant,
which actually is extremely unrealistic. So the results were not surprising. Below Neyisicai, the eventrate
increased linear with the amount of used RAID boards unless N.,isicar Was reached. From that on,
the rate remains constant at 7, '. Even the assumption, that T, and 7, were flat distributed around
the mean value, didn’t change the response of more than 2%. So, to be nearer to reality, I modified
the simulation to be able to distribute T, and T, exactly like both values were distributed in a given
run. The following discussion is based on the total execution time and event length distribution of run
33846. The corresponding histograms are shown in Figure 17. The mean values of the distributions

are 7, = 186.8ms and
8688 Words x4
I.= 6 Mbytes/sec 5.8ms
which leads to N,riica & 31 RAIDs. Figure 18 shows the result for one, two and three IO Buffers per
RAID. More than one IO Buffer means, that events can be copied into and out of the RAID, without
interference with the actual Filter Program. The effect can be observed in Figure 18. The solid line

reflects two buffers, the line below one and line above three of them. Summarizing the results :

¢ The saturation rate is about T, ~! and independent of the number of IO Buffers.

e In the region between 50% and 100% of the critical number of RAIDs, the use of more than one
Buffer can save up to two Boards to achieve the same IO rate. This again is no surprise, because
the additional buffers are able to hold the data of bunches of very short events, which otherwise
would slow down the system.

e The slope of the curves decreases before the saturation point is reached.

The last point is surprising. The left plot of Figure 19 shows the load per RAID ( dotted line ) in
addition to the event rate for two IO buffers. The x-axis is labeled with the relative number of RAIDs



8 THE PERFORMANCE 53

total Execution Time

12000 — : N
=
L ] —
>
L‘_J [ —
S r -
2 sooo
=
= B —
=
r -
4000 | 1 i
- l -1
O —""700000 300000 300000  40000C
Time / sec
th
wn 15000 ey e ‘ E'Velr’\t'l_.e'hg'
—‘E ] -
(5]
> B -
[}
k=) " i
g1ooooF i
E -
£ I
Z 3 -
5000 F i

o 10000 20000 30000 20000
Length / Words

Figure 17: Input Event Length and total Execution Time

according to Neyiticwr- Although the load per RAID decreases to about 96% for relRaid = 1.0, the
throughput doesn’t come up to it’s final value.

Actually this effect is no longer of interest, because we have to go beyond the current saturation
value anyway. This is achieved with the help of a second Input Unit. The results are superimposed
on the left of Figure 18. It can be stated, that the load per RAID and the event rate again behaves
linear under two constraints :

¢ Both Input Units have to use separate VSB links to the central DAQ.
e The Input Units have to éerve disjunct RAID crates.

Otherwise bus interferences would reduce the data transfer speed.
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A Network Details
A.1 TCP/IP and the OSI Reference Model

To understand the way the farm uses the network to exchange data, one should first have a brief look
to the underlying transport protocols.

At DESY, several different protocols are in use, which mainly connects machines of the same kind,
like

¢ SNA for IBM host computers.

¢ DECnet for all machines of the Digital Equipment Cooperation.

. AppleTalk for Machintosh Computers and Macintosh Disk Severs.

o InterLink for the connection of IBM mainframes and DEC computers.

The TCP/IP protocol is a more generic one. It is known to nearly all machines participating the
network.

To have a unique description tool for all the different network languages, the International Stan-
dardization Organization ( OSI ) defined a 7 layer model, which covers most of the different cases.
Each layer offers its service to the upper layer and uses the service of the lower one. It is not permitted,
that a level makes use of informations provided by an upper layer.

Application
Presentation
Session
Transport
Network
Link
Physical

From bottom to top, the layers have the following responsibilities.

Physical This part describes the physical medium, which transports the information. It ranges from
a simple telephone line using the RS232 protocol via coaxial cables like the Fthernet and optical
fibres like the FDDI Ring concept up to Satellite Connections. Beside the hardware, it also has
to define what a logical One and Zero means for that device. '

Link The link layer knows about the connections of the transport medium and the host computers.
The atomic item is no longer the bit, but a packet, whatever that means for the specific medium.

Network The network layer doesn’t longer depend on the restrictions of the hardware. It can access
nodes, which are not directly connected to its own section. Bridges and Gateways are necessary
to interconnect different hardware sections. This level creates virtual pathes between nodes. It
does not yet connect processes.

Transport This layer is not only able to address the remote host, but it also knowns about the
remote communication partner, which usually is a task at the remote machine. The link can
be connection oriented of not. If the first case, a so called virtual circuit is created, which is
used to deliver the data packets. Using connectionless protocols, one has to specify the remote
partner with each packet. The transport layer should also guarantee an errorfree delivery of
data, a feature which includes the error detection and error recovery.

Session The Session layer controls the data exchange, and determines actions like the change of the
communication direction and the relink after an abort.
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Presentation In the presentation layer the representation of the different datatypes is defined, to
enable a dataexchange between computers, not using the same data representation. This includes
the conversion of ASCII EBCDIC characters, VAX IBM and IEEE floating point numbers and
the big to little endian convertion.

Application The Application layer defines high level application protocols for services like database
queries and file exchanges.

There is no unified opinion how to map the ISO layers to the TCP/IP levels. The next figure shows
one possibility[COM 91].

Application Virtual File Transport || Electronic Name Network
Session Terminal Protocol Mail Server File
Representation | TELNET FTP SMTP System
Transport Transmission User Datagram
Control Protocol TCP Protocol UDP
Network Internet Protocol IP &
Internet Control Message Protocol ICMP
Link ARPANET Satellite X.25 Ethernet || Token
Physical Network Ring

Above the transmission protocol, the OSI model distinguishes between Session, Representation and
Application, which is not done by TCP/IP. All these levels are combined to the application layer. To
become more familiar to TCP/IP some additional expressions have to be explained.

The ARPANET Advanced Research Project Agency was the first TCP/IP network backbone. It
was supported by the US Military. Today its a subnet of the worldwide Internet.

The Internet Protocol builds the Node to Node connection, using unique hostnumbers or host-
names. The IP number can always be represented in four bytes. One can mainly distinguish 3 different
classes, A to C , depending on the size of the subnet. Large subnets, belonging to class A, can have
up to 22* hosts and the smallest subnet, class C can only hold 256 different machines. Because of the
32 Bit limit of the total address, it is obvious, that the worldwide Internet can only have a maximum
of 64 class A subnets. The two most significant bits in the address are used to select the subnet type.

The Transmission Control Protocol uses an additional information, the port number, to reach
the destination process inside a host. Portnumbers are chosen in the range from 1 to 2'°. Some
of them are so called Known Ports. They provide standard services, e.g. 21 for the TELNET and
25 for the Mail protocol. The TCP is connection oriented. After a virtual connection is established
the protocol takes care of data reliability, order of packets and data losses. The User Datagram
Protocol is packet oriented. The data is not acknowledged on arrival, and the order of the packets is
not conserved during the transmission. The advantage is an increase in performance, caused by the
missing overhead of the datachecks and the acknowledgments.

The IMCP Internet Control Message Protocol is mainly used by the hosts operatingsystem to
inform the connected participants of status changes concerning the network connections, like buffer
overloads and the change in the average transmission times.

A.2 A Protocols Framework

Whenever a dataexchange has to follow a protocol, additional data, so called pseudodata has to be
added to the user supplied informations. This pseudodata contains source and destination addresses,
packet lengths and much more. In most cases the additional informations are sent prior to the the
real data body. An example is-a TCP packet send over the Ethernet. The user data is encapsulated
in the following way :
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Ethernet Packet | Ethernet Header | IP Data |
IP Data } IP Header | TCP Data |
TCP Data | TCP Header l User Data J

All these encapsulations are of course hidden to the TCP user. He can’t even influence the fragmenta-
tion. Two packets of 100 bytes, send by one node can arrive as one packet of 200 bytes or 20 packets
of 10 bytes. That means, that from the users point of view, TCP builds an unstructured connection
stream.

A.3 The N-Net

Following the above introduced tradition of encapsulating data, N-Net also uses this method. The
main additional features of N-Net are

o the switch to packet oriented behaviour and

e the knowledge about the datastructure, which leads to the appropriate convertion ‘according to
the machine dependent data representation.

Like TCP/IP, N-Net internally uses the big endian form of data, which means, that for integers the
most significant byte is sent first. Again a data packet is preceded by a header

N-Net N-Net body
Header | Data Body | Data Resource

The Data Resource is optional. Currently only a Date Format Description can be used as resource.
The N-Net Header is of fixed length, and consists of 16 Bytes, with the following contents :

Word Byte 0 Byte 1 Byte 2 Byte 3
0 Subprotocol : Detail | 0 | Command
1 length of N-Net body in bytes
2 Subprotocol : Type | N-Data Type
3 length of Data Resource in bytes

The Command describes the content of the body, following the header. Only two values are of interest.

| bit | 7 6 5 4 3 2 1 0 |
Send Message |0 = 0 0 0 0 0 1 0
Send Data | 0 0 0 0 0 1 1 1

Where the least significant bit always indiates if data will follow the header or not. In the case of a
’0’, no data is following, and beside word 0, the header doesn’t have the above described form. If the
packet consists of homogeneous data of the same type, the N-Data, type field has one of the following
values :

| Data Type'[ Convertion I Num. of Bytes [ Symbol l Value l

Integer Integer 4 Nint 0
Character | Character 1 Nchar 1
Word Nothing 4 Nncint 2
Byte Integer 1 Nbyte 3
Short Integer 2 Nshort 4
Float Float 4 Nfloat 5
Double Float 8 Ndouble 6
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The header fields, labeled Subprotocel make it possible for upper layer protocols to participate the
header structure. This avoids another encapsulation for a higher level. Currently there are only two
higher level protocols in use : ’

o the H1 LAN Protocol
o the Remote Server Request Protocol

In the ISO layer model, the N-Net builds the presentation layer.

A.4 The H1 LAN

The H! LAN is totally based on the N-Net Protocol, using all Subprotocol fields in the N-Net Header
part. In addition, it reduces the data transmission to a single packet per connection to decouple the
network participants as much as possible. This concept only allows the exchange of messages with a
relatively low frequency. The Subprotocol : Detail field of each message contains the port number
where the answer has to be sent to, if an answer is required. The Subprotocol : Type field is split into
a Message ID and the HI Data Type part. The message ID allows the application to keep track of the
requests and answers sent and received. The H1 Data type extends the possible data types mainly to
cover the dialects of handling character strings in the different computer languages. The new types
are mapped to a valid N-Net Data Type, and the actual conversion is still done by N-Net. The HI
LAN header has the following outfit :

Word Byte 0 Byte 1 Byte 2 Byte 3
0 Answer Port ] 0 | Send Data
1 Length of N-Net body in Bytes
2 Message 1D | H1 Data Type | N-Data Type
3 Length of Data Resource in Bytes
. using the HI-Data Types :

[ Data Type ] N Convertion | Num. of Bytes ] Symbol [ ValueJ
Byte Nbyte 1 YHraw 1
Integer Nint 4 YHint 2
Float Nfloat 4 YHfloat 3
Pascal String | Nchar 1 YHpascalString 4
C String Nchar 1 YHcString 5
Fortran String | Nchar 1 YHfortranString 6
Short Nshort 2 YHshort 11
Double Ndouble 8 YHdouble 12
Byte Nbyte 1 YHbyte 13
F Pack Nbyte 1 YHbyte 14

A.5 The Remote Server Request Protocol

To obtain a service from a remote computer, the client has to connect to a so called Known Port. The
Known Port is a port number which permanently provides the same service. The corresponding task,
listening on that port number mainly has three ways of reacting on a connection request.

I. The server can answer the requests sequentially. This is only possible for trivial services, not
requiring too much CPU power. In addition it is assumed that the operating system queues the
incoming connection requests. If it is necessary to keep a connection to such a server alive for
a longer time, the task has to handle the communication to several connections simultaneously.
This requires an absolute asynchronous behaviour of the Network routines, because a network
problem to one of the clients should not influence the performance of the others.



A NETWORK DETAILS ’ ' 59

II. Mainly Unix Systems provide the feature of forking a server task after a successful connection
request. At a special point, which is the OS fork Routine, the program is duplicated, and both
copies have access to the same 10 channels. In our case both are connected to the same client.
Only by checking the return value of the fork routine, the different tasks can determine if they
are the original server or the daughter process. The mother process closes the connection and
waits for the next one, and the daughter continues to talk with the client. The client doesn’t
notice this change in the identity of its counterpart.

III. Some machines, like the IBM mainframe running MVS, do not support the Fork feature. Instead,
one has to submit a Private Server Task. This scheme is a bit more complicated to implement,
because the private server needs the information how to reach the client. I introduced this
mechanism the first time with the installation of the H1 BOS Server{PAT 90].

Two major checks have to be done by all of the above listed possibilities. The requesting client has to
send access informations to ensure data security on the server hosts, because in most cases the Main
Servers have no privilege restrictions. On the other hand each process has to make sure that no kind
of incoming data is able to corrupt its own integrity, and causes unpredictable behaviours.

To make clients independent of the server type, implemented on the different machines, I have
chosen an initialization handshake, which allows the clients to find out how to proceed. It uses the
N-Net Header in the Send Message mode. The Subprotocol : Detail is set to zero, and the remaining
three words are interpreted as integer informations.

| Send Message | Information 1 | Information 2 | Information 3 ]

An initial request to a N-Net Server jumps through the following steps :
1. The client connects to the Known Port at the server site.

2. The server sends back the N-Net Message

| Send Message | Server Type I | 0

where Server Type can have the values

N_Prot_Fork which belongs to Server Type I and IL
N_Prot_Submit belonging to Type III

3. Depending on the Server Type the client behaves in the following way.

Problem If the client is not willing to accept the specified server it answers :

[ Send Message | NotAccepted [ -1 | -1 |
N_Prot_Fork No special action on the client side is required. So it only sends back the
acknowledge : :
| Send Message | Accepted K | 0 |

N_Prot_Submit The client asks its own Operating System for a currently unused port number.
This port number is opened for listening. Together with the host IP address, the port
number is sent to the server :

l Send Message I Accept [ local Host IP [ local Listen Port J

4. From now on the usual N-Net protocol is used for the exchange of the access informations and
the parameters. If the default service of the connected task is required, the client only has to
send the access informations, in the form of a character string.
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Nchar | User Password;PROGRAM=service;... |

If a special program is required, which resides in a different directory, the path has to be make
known :

Nint

Nchar | Directory String |

Nchar | Access String |

. The server replies with :

Nint | Request Accepted = 0 |

or

Nint | Request Rejected = -1 |

. If the server supports the fork protocol, it forks and the already existing TCP connection is used
for the following data transfer. In the case of the submit scheme, the server submits the private
tasks together with the information about the clients listen port number. The private server
tries to connect to the client and the new connection is used. The control connection is closed
by both parties.

Now a bidirectional client server connection exists. The above steps are a good example for the OST
Session layer, because the protocol determines the direction of the data exchange.

A.6 The Net - Event Request Protocol

One possible service, which belongs to the Farm Event Distribution Concept is the Event Server.
These servers can deliver events from Disks like SGI or IBM and out of the Main H1 Eventstream,
directly from the Event Builder or from the Farm System. Sometimes a single client needs to access
several files on the same disk. To avoid an overload with Private Servers a multiplexing.of one private
server would be desirable, handling all files belonging to the same client. To achive this, I created a
kind of virtual channels using a single TCP connection. All requests concerning the channels consist
of 4 Integer Words. This block is sent by the client, modified by the server and sent back to the client.
First, the client has to request a channel number which it can use in subsequent requests :

Request :
Reply :

createChannel

0

0

0

createChannel

Channel #

0

return Code

If the return Code indicates success, the returned channel number can be used for Net I/O operations.
Each operation has to be embedded into a channel select block :

Request :
Reply :

selectChannel

Channel #

Argument

Function

selectChannel

Channel #

Argument

return Code

Function and Argument specify the I/O operations, like open, read, write, close and rewind. Depending
on the function, a variable number of packets may follow, and are interpreted as be sent via the
currently selected channel. If no longer needed, a channel can be returned with :

Request :
Reply :

freeChannel

Channel #

0

0

freeChannel

Channel #

0

return Code
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The whole server can be stopped by :

Request : | stopServer 0 0 0
Reply : | stopServer 0 0 return Code

This protocol part also belongs to the OSI Session Layer. For the file access, 7 actions can be sent via
an I/O channel. The open, read, write, rewind, skip and select function. The select functions allows
to select several event properties, which is only of use in conjunction with the Farm Event Server. All
other functions are selfexplaining.

The OPEN channel function initiallizes the following handshake.

Client to Server ~ Nint : [ 1 [ 1 [ 0 [ Action | Filename Length | Format Length
Client to Server Nchar : Filename

Client to Server Nchar : Format String

Server to Client  Nint : Return Code

The Action Field can contain openRead or openWrite. The Format String is used to send machine
specific informations, and the Return Code must be zero to indicate success.
The READ function causes the server to send the following packets, if the next event is available.

Nint : # of Words in this Block
' length of Format Block or Zero
“length of Data Block 1
length of Data Block 2
* % Kk
length of Data Block N
Zero

For each nonzero length in the above descriptor block, a Data Packet in the Nint format is sent by
the server. All these packets together build the full event.

After initiallizing the WRITE function, the client has to send the event exactly in the same manner.
The server replies with a single integer, which indicates success if it is zero.

CLOSE, REWIND and SKIP are pure, unacknowledged channel functions.

The SELECT function has to be acknowledged :

Client to Server Nchar : Select String
Server to Client Nint : return Code

A.7 The Farm Event Server Protocol

The Farm Server is a Server of type 1. It serves multiple clients with only one task. The server runs
on a Macintosh computer and makes use of Mac specific system calls to access the TCP layer. They
work fully asynchronous, which is a fundamental requirement for the simultaneous handling of several
TCP connections. Because the farm as event producer can be compared with a single file, more than
one I/O channel per connection doesn’t make sense. So the server always returns the same channel
number for different createChannel requests. For the additional service of the farm server, the remote
VME memory access, the channel concept is superfluous anyway.
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B The Passive Farm OS
B.1 The Task Monitor

The main job of the Farm Task Monitor is to keep track of all Processes currently using farm resources.
These tasks can be directly linked to the Farm VME bus System or attached to it via a Network Server.
The reasons for an access can be to obtain the recent status informations, to assemble the online farm
histograms or to request an event out of the date stream. Whatever is intended, the corresponding
process has to make itself known to the system. After that it occupies an entry in the Monitor table
and a unique Task ID is assigned to the process. From the programming point of view, the connection
is achieved with the mXherelam call, which returns a pointer to the mLproc structure. This pointer
is the reference to the farm in all subsequent calls of the task to it.

To get an entry in the Task List, the list has to be searched for an empty slot. Because several
tasks accidentally could try this simultaneously, the corresponding code in the Library is
called a Critical Path. This Path has to be protected against simultaneous access. In real
time programming the problem is solved with the help of semaphores[RIP 90]. Iimplemented
binary semaphores, which can hold the values I_am_in Use or I.am free . In our case,
the introduction of semaphores creates two problems.

e The Deadlock problem occures when two tasks try to get a semaphore, which is
currently hold by the other task respectively. But both are only willing to free the
already attached flag if they were successful in obtaining the other one. It is obvious
that such a strategy will lead to a hopeless situation.

o The Abort problem occures when a task dies, before it was able to return an attached
semaphore. The object, which was protected by the corresponding flag is then lost
forever.

I’m using two types of semaphores, which show a different sensitivity for the above problems.
The Longlife and the Shortlife ones. The latter are only occupied during a very short time
interval, mainly to search through lists. They are used indirectly by system calls and they
are returned before the system call finishes. Because in the same call, no second semaphore
will be requested, they are safe of deadlocks. The extreme short lifetime and the fact, that
they are only in use during the time, were system code is active, reduces the probability,
that the job aborts while it holds the flag.

For Longtime Semaphores, the Abort Problem is solved by the Task Monitor itself. A
watchdog, for example could try to find out, if all registered tasks are still alive. If not, the
corresponding semaphores and the allocated resources are returned. As long as systemcode
is used to request histograms or events, which sometimes makes it necessary to allocate
several memory portions, Deadlock is no problem, because whenever a semaphore is_not
available, the already attached one are freed again.

In addition to mXherelam, there are only very few calls directly managing the the Task List. The
mXwillGo call which unlinks a connection to the Farm OS, the mXalive call which has to be called
frequently to inform the system, that the task is still alive and the mXmyID call which returns the
process ID of the calling task.

The structure of the organization tables is shown in Figure 20. A field in the Communication Vector
Table points to the Farm OS Entry Header which contains global informations about the next free
process Identifier, the maximum number of allowed processes, a semaphore for the task registration
and a pointer to the Memory Management Area. This header is followed by an array of structures
describing the properties of the registered processes.

Process ID A unique number identifying a process. System processes occupy numbers below 100.

Traceback Pointer back to the first word of Farm OS Entry Header. That allows processes to find
the OS Entry by only knowing it own process descriptor.

Timestamp The Unix-Time of the process start.
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Priority Number between 0 and 15, describing the priority of the process. This assignment is neces-
sary to reserve special memory sections for tasks which can not effort to wait for memory.

Semaphore Flag which indicates, that this process entry is in use.

Alive Counter This field is set, whenever mXalive or any other system routine is called by the task.
So, this word only has to be reseted and observed for some time to find out, if the process is still
alive.

Name Character string, holding the name of the task.

B.2 The VME Memory Management Part

One entry inside the Farm OS Header points to the VME Memory Management Area which again
consists of a header followed by one descriptor for each memory section. The sections may reside on
different VME boards and need not be continues.

The header mainly contains the number of descriptors. Each descriptor holds a peinter to the
corresponding memory section, its size, type and name. Two types of memory are supported, the
variable and the fixed blocked one. Each section consists of a header and a body. The body is divided
into blocks which themselves hold a header and the usable memory area (see Figure 20). The headers
contain :

¢ The Semaphore, which declares the block to be in use or not.

e The Process Identification number, which protects the tasks of so called Dangling References.
To visualize this problem, imagine a client, allocating memory and sending the pointer to that
portion to a server task. The server possibly needs an unusual long time to handle the request,
and copies some data into the remote allocated memory area. Because of the delay, the client
could have decided in the meantime, that the server doesn’t intend to answer the request. So, it
deallocates the memory and continues. This action would be unrecognized by the server, which
still copies the data into a memory location possibly occupied by the next task. To avoid this,
the server task has to compare the Process ID of the remote memory with the ID of the task
it is working for.

¢ The Traceback points back to the header of the section. This enables a task to free the memory
again, without knowning more than the pointer to the memory block.

The Fixed Blocked Memory Sections consist of Blocks, all having the same size. Different
sections may use different block sizes. They have the advantage, that they can be allocated without
protecting the whole section with a semaphore, and their fragmentation can not increase. This memory
type is mainly used as request area.

The Variable Blocked Memory Sections adjust their block sizes according to the allocation
requests. The disadvantage is, that the whole section has to be locked as long as a task is looking for a
free memory portion. The allocation strategy is outlines in figure 21. Each block header doesn’t only
hold the number of bytes used but also the number of bytes which are usable. The difference is the
available free memory. The next allocation request places its memory header and the used memory
inside this space and corrects the values in the preceding header. The deallocation process adds its
own memory amount to the usable amount of the memory portion before. Figure 21 explains the
method in four steps.

1. The Usable field of the initial header is set to the total amount of free memory and the Used
value is set to Zero. At the end of the section, a Stopblock indicates that no blocks are following.
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2. An allocation request, not requiring the full free memory, places its header next to the initial
header and changes its Usable field to the number currently stored in Used, which is Zero. The
own Usable value is calculated to oldUsable minus sizeof( header ) . The Used variable is set to
the size of the required portion.( See step II ) »

3. The following request will do exactly the same with block header I. The difference is, that
the own Usable field is set to the Used amount, and not to zero. The initial header remains
unchanged.( Step III )

4. Step IV shows the deallocation of the first block. The Used field of the preceding block is
not changed, and the Usable value is incremented by the number of bytes stored in the Usable
variable of the block which is going to be deallocated.

This method takes care, that successive free memory blocks are merged to avoid a too
large fragmentation. Actually there are other possibilities to reduce fragmentation nearly
completely. They all make use of so called Handles, which are pointers to pointers to the
memory locations. The advantage is, that the allocated memory block can be moved to
a more optimal place, without informing the application, using that memory. But for a
multipocessor system this scheme contains a lot of disadvantages. To be sure to own the
memory, the Handle has to be locked before each access, and unlocked afterwards. The lock
prevents the Garbage Collection Task from moving the memory around. In addition, a lock
needs not always to be successful, because the memory might be on the way to another
place, which causes a waste of time. The Garbage Collection Strategy has to be well tuned,
otherwise the total memory is permanently shifted around. Another point is, that in our
case, there are some memory blocks with special purposes, which shouldn’t reside in other
places. The request area of a Mac, for example always has to be in the local memory
of the corresponding VIC to avoid VME bus overloads, due to polling accesses. On the
other hand a fair allocation and deallocation strategy of the connected task can also reduce
fragmentation without the use of Handles.

To allocate memory it is necessary to be a registered task, and the own priority must Bg_ greater or
equal to the priority of a free memory section. The allocation routine allows to specify a Memory
Section Name, which may contain wildcards and a hint, if Fixed or Variable memory is prefered.

B.3 The External Requests for the I/O Processors

Using the above VME tools, we are now able to obtain informations out of the I/O processors.
The method is uniform to all requests. The structures are shown in picture 22 and the protocol in
picture 14. A request area is allocated and filled with the request command, the process ID and request
specific data. The pointer of the request area is send to the mailbox of the appropriate I/O processor.
The Answer field of the area is observed until it changes from statusWaiting to statusFinished or
statusRejected. The possible requests are :

¢ The aliveRequest only tests is the I/O processor is still alive. It consists of one word, to receive
the return code.

¢ The messageRequest sends the specified message to the central DAQ console The messag‘e
can be contained in the request area itself.

¢ The queryRequest is used to obtain informations about all pending requests of the correspond-
ing I/0 processor. The answer will be copied into a separately allocated buffer. The pointer to
that buffer and the size are expected in the Buffer Description Structure, a part of the request
specific part. If the Answer field changes to statusFinished, the additional buffer contains an
array of the EXrequest structure. One field of this structure is the unique request ID, assigned
to each request. With the help of this ID a pending request can be taken out of the queue. This
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becomes necessary in the case where a task needs to quit, but a request, launched by it has not
been answered.

The purgeRequest is used to take requests out of the I/O processor queue. The request specific
part has to contain only the request ID. This request is restricted to a system task or to the task
which launched the request to be deleted.

The most important application is the gimeEventRequest. It filters the next event with the
specified properties out of the data stream and copies it into the buffer area specified by the
Buffer Description Structure. The Output Processor expects the Raid Number and the Event
Mask in the Event Selection Structure of the request specific part. The Raid Number may be
zero to indicate anyRaid, and in addition to the Event Mask a Mask Validity Word has to be
provided, which selects bits in the mask which have to be used or to be ignored. If an event is
copied, the Event Property Field is filled with the actual event properties.

The different ways of obtaining informations from the farm processors are hidden by a unique pro-
graming interface, which chooses the appropriate way to access the data. For tasks using the network,
the request is first transformed into the network protocol. The Farm Event Server, which produces a
mirror process for each network task, translates this protocol into the VME requests. In the following,
an example is given to obtain farm events and farm histograms.

mLproc *task :
EventProperties eventprops ;
char xbigBuffer ;
long endTime , histoStack ;
mLHdesc histos[maxHistos] ;
/* _
* get enough local memory to hold the event and histograms
*/
bigBuffer = malloc( 100000 ) ;
/%
* open the connection to the Farm
*/
priority = 156 ; /* highest priority, will be reduced */

/* according to the password x/

strcpy( accessString , " see text " )

task = mXherelam( defaultCVT ,

accessString ,
priority ,
& returnCode ) ;

test if ’task’ is not zero, otherwise check ’returnCode’

now, select the event type you are interested in.
- any RAID board
- maximum event size is 60000 bytes
- only events, which have been rejected by the Filter program
- the event mask should be ’1xx0’
|1l+-- must be zZero
| |+--- any value
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|+---- any value
* +-—--- must be one
*/
mXselect( task , "event raid=*,size=60000,mask=1xx0" )
/*
* check each second, if the event already arrived.
*/

for( endTime = time() + 10 ; endTime > time() ; ){

returnCode = mXreadRequest( task , bigBuffer , &éventProps )
if ( returnCode )break ;

sleep(1) ;

}
/*

* if returnCode is zero or negative, there is no event
* otherwise, bigBuffer contains the event, and

*  eventProps holds the properties :

* eventProps.run ' run number

* eventProps.event event number

* eventProps.length length of the event in bytes
* eventProps.mask the actual event mask

*/
/*

* Now try to get the current histograms of an active raid board.

histoStack = maxHistoé ;
mXgetHistDescPos( task , histos , &histoStack , 1 )

/*

* histos contains the pointers to the histogram buffers

* of all active RAIDs.

* 1 =0 ... histoStack-1

* histos[i] .raidNumber : number of the RAID

* histos[i] .LOOKdesc : pointer to start of buffer

*

* with mXreadVME( task , histos[i] .LOOKdesc, length, bigBuffer ) ;
* the contents of the histograms are copied into local memory.
*/

/*

* at the end of the session the connection has to be cut.

*/

mXwillGo( task ) ;

This code would run for example on our Sparc Sun directly connected to the VME bus, and on one of
the SGI machines using Ethernet to access the eventserver which serves as gateway. In the first case
the access string can be any name, which is used as processname for the Farm OS, and in the latter
case, the string should have the form : .

serverNodeName'"username password"::gateway

The event request part of the example will also work to get events from the IBM or the SGI.-In that
case, the keyword gateway has to be replaced be the name of the file, which one intends to read.
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Figure 20: The Farm OS Kernel
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Figure 21: The Farm OS Structures
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