Das Myonsignal in einem Flüssig-Argon-Kalorimeter
mit Blei und Edelstahlabsorbern

Diplomarbeit
von
GEORG FEHRENBACHER

Ruprecht - Karls - Universität Heidelberg
Fakultät für Physik und Astrophysik

angefertigt am

Max-Planck-Institut für Physik und Astrophysik
– Werner-Heisenberg-Institut für Physik –
Postfach 40 12 12, D-8000 München 40

Januar 1989
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>2. Die Physik ionisierender Teilchen</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Energieverlust geladener Teilchen in Materie</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Die Sternheimer-Formel</td>
<td>6</td>
</tr>
<tr>
<td>2.3. Energieverlust-Verteilung nach Landau</td>
<td>8</td>
</tr>
<tr>
<td>2.4. Konstanten der Ladungssammlung im Flüssig-Argon-Kalorimeter</td>
<td>9</td>
</tr>
<tr>
<td>2.5. Effektivität der Ladungssammlung nach Hofstadter</td>
<td>10</td>
</tr>
<tr>
<td>3. Das Kalorimeter und die Ausleeselektronik</td>
<td>11</td>
</tr>
<tr>
<td>3.1. Elektronik und Kalibration</td>
<td>13</td>
</tr>
<tr>
<td>3.2. Datennahme beim H1-Testtrigger</td>
<td>14</td>
</tr>
<tr>
<td>4. Der Test mit kosmischer Strahlung</td>
<td>16</td>
</tr>
<tr>
<td>4.1. Die kosmische Strahlung</td>
<td>16</td>
</tr>
<tr>
<td>4.2. Testaufbau für kosmische Strahlung</td>
<td>18</td>
</tr>
<tr>
<td>4.3. Das Analyseprogramm</td>
<td>19</td>
</tr>
<tr>
<td>4.4. Das Myonsignal</td>
<td>22</td>
</tr>
<tr>
<td>4.5. Vergleich mit den erwarteten Konstanten</td>
<td>24</td>
</tr>
<tr>
<td>5. Myon Test am CERN-Teilchenstrahl</td>
<td>28</td>
</tr>
<tr>
<td>5.1. H1-Test-Aufbau</td>
<td>28</td>
</tr>
<tr>
<td>5.2. Funktion und Aufbau der Triggerzähler</td>
<td>29</td>
</tr>
<tr>
<td>5.3. Triggerkriterien für die Myon-Selektion</td>
<td>29</td>
</tr>
<tr>
<td>5.4. Analyseprogramm für den Durchgang von Myonen</td>
<td>30</td>
</tr>
<tr>
<td>5.5. Ladungsdeponierung aus der Hochspannungskurve</td>
<td>35</td>
</tr>
</tbody>
</table>
5.6. Ladungsdeponierung der Myonen bei $U=2.5$ kV 40
6. Zusammenfassung ... 44
6.1. Vergleich der Ergebnisse des Tests mit kosmischer Strahlung
und des Strahltests ... 44
6.2. Schlußfolgerungen für das H1-Experiment 45
1. Einleitung

Um die Energie hochenergetischer Teilchen zu messen verwendet man häufig Kalorimeter. Ein Kalorimeter ist im einfachsten Fall ein Block Materie, in dem das zu messende Teilchen wechselwirkt und seine Energie in Form von Schauern deponiert. Die Energie der erzeugten Teilchen nimmt in der Schauerkaskade ständig bis zu einer kritischen Energie ab. Das Kalorimeter sollte so beschaffen sein, daß ein gewisser konstanter Anteil der primären Energie des einfallenden Teilchens in ein messbares Signal umgewandelt wird. Kalorimeter haben folgende Vorteile:

— es können geladene und ungeladene Teilchen registriert werden
— aufgrund der unterschiedlichen Schauerprofile können die Teilchen identifiziert werden
— die Energie wird umso besser bestimmt je höher sie ist, da die Teilchenproduktion ein statistischer Prozeß ist und die relative Fluktuation mit zunehmender Energie abnimmt (die Auflösung für die Energie ist \(\frac{\sigma_E}{E} = \frac{K}{\sqrt{E}} \), \(K \) ist eine Konstante). Zum Vergleich erreichen magnetische Spektrometer eine Auflösung \(\frac{\sigma_p}{p} \sim p \)
— die Dimensionen des Kalorimeters, welche einen ganzen Schauer enthalten sollen, wachsen nur mit dem Logarithmus der Energie des einfallenden Teilchens [1]
— die Segmentierung des Kalorimeters in kleine Ausleseeinheiten ermöglicht eine gute Ortsbestimmung.

Kalorimeter können in zwei Klassen eingeteilt werden: elektromagnetische und hadronische. Elektromagnetische Kalorimeter sind zum Nachweis von Elektronen und Photonen optimiert, wobei der Schauer durch Bremsstrahlung, Paarerzeugung und inelastische Compton-Streuung entsteht. Hadronische Kalorimeter dienen vorrangig dem Nachweis stark wechselwirkender Teilchen. Einen großen Anteil am Schauer bilden hier inelastische Stöße des stark wechselwirkenden Teilchens. Um die Schauerentwicklung der beiden Typen zu beschreiben werden zwei charakteristische Größen \(X_0 \) und \(\lambda \) verwendet. Die Strahlungslänge \(X_0 \), die die Schichtdicke angibt, in der die Energie des elektromagnetischen Schauers auf \(\frac{1}{e} \) abgefallen ist. Die nukleare Wechselwirkungslänge \(\lambda \) ist analog definiert. \(\lambda \) ist durch den Wirkungsquerschnitt für Kernreaktionen bestimmt. Die Strahlungslänge ist im allgemeinen kleiner als die nukleare Wechselwirkungslänge, so daß hadronische Kalorimeter größer sind als elektromagnetische.
1. Einleitung

Entscheidend für die Kalorimeter ist deren Energieauflösung. Im Idealfall ist die Energieauflösung eines homogenen unbegrenzten Detektors nur durch die Fluktuation der Teilchenzahl gegeben. Folgende Effekte verschlechtern die Energieauflösung:

— der Schauer ist nicht ganz im Kalorimeter absorbiert, was zu einem Verlust der zu messenden Energie führt

— beim Sampling-Kalorimeter wird die Energie nur stichprobenartig gemessen, da der Detektor abwechselnd aus passiven Absorberschichten und aktiven Ausleseeinheiten besteht, was zusätzlich zu einer Fluktuation der registrierten Teilchenzahl führt. Die Auflösung wird durch die Schichtdicke des passiven Absorbers und der aktiven Schicht bestimmt.

— die Energien der beim Ionisieren in Gasdetektoren oder in dünnen Flüssigkeitsschichten freigesetzten Elektronen sind ebenfalls statistischen Schwankungen unterworfen, welche sich durch die Landau-Verteilung beschreiben lassen.

Für hadronische Kalorimeter treten noch zusätzliche Fluktuationen auf:

— die Erzeugung niederenergetischer Kernfragmente, verbunden mit zeitlich verzögertem \(\gamma \)-Emission entsprechend den jeweiligen Zerfallspektern

Das Verhältnis des Signals der Elektronen zu dem der Hadronen wird \(\frac{e}{h} \)-Verhältnis genannt. Ein Teil der Energie des rein hadronischen Anteils im Schauer ist nicht messbar [2], da einerseits ein Teil der erzeugten Teilchen (\(\nu, n, K^0 \)) den Detektor ohne Wechselwirkung durchqueren, andererseits die Energie dafür aufgebraucht wird Nukleonen und \(\alpha \)-Teilchen vom Kern abzuspalten. Um den elektromagnetischen Anteil im hadronischen Schauer zu beschreiben wird das energienabhängige intrinsische Verhältnis \(\frac{e}{h}_{\text{intr}} \) eingesetzt und der Zusammenhang zum \(\frac{e}{h} \)-Verhältnis wird folgendermaßen formuliert [2]:

\[
\frac{e}{h}(E) = \frac{\frac{e}{h}_{\text{intr.}}}{1 - f_{em}(E)(1 - \frac{e}{h}_{\text{intr.}})}
\]

\(f_{em}(E) \) der elektromagnetische Anteil im hadronischen Schauer. Die Energieauflösung für hadronische Schauer kann beschrieben werden durch \(\frac{e}{h} = \frac{K}{\sqrt{E}} + b \). \(b \) ist durch das \(\frac{e}{h} \)-Verhältnis bestimmt und verschwindet, falls \(\frac{e}{h} = 1 \). Die Energieauflösung für reine Sampling-Fluktuationen ist \(\frac{e}{h} = \frac{K}{\sqrt{E}} \). Das Kalorimeter sollte möglichst so konstruiert sein, daß das intrinsische \(\frac{e}{h}_{\text{intr.}} \)-Verhältnis eins ist. Dies wird dadurch erreicht, daß das Neutron-Signal
verstärkt, bzw. das \(\gamma \)-Signal reduziert wird. Folgende Möglichkeiten bieten sich an:

— man wählt das aktive Medium so, daß die Neutronen einen Beitrag zum Signal leisten (z.B. ein wasserstoffhaltiges Auslesemedium)

— Verwendung von Absorbern mit hohem Wirkungsquerschnitt für Kernspaltung, was auch die Zahl der freien Neutronen erhöht

— Varieren des Samplingverhältnisses.

Der zweite Weg die Energieauflösung zu verbessern besteht darin, daß man nicht selbst-kompensierende Stoffe wie zum Beispiel Flüssig-Argon als aktives Auslesemedium, und Blei oder Eisen als Absorber benutzt, jedoch die hadronischen Signale gewichtet. \(f_{\text{infr.}} \) ist dann größer als eins. Das \(\xi \)-Verhältnis wurde für das H1-Kalorimeter bestimmt zu \(\xi = 1.3 \) bei einer Energie von 20 GeV bis zu 1.2 bei 80 GeV Strahlenergie, was zu einem intrinsischen \(f_{\text{infr.}} \)-Verhältnis von 1.72 \pm 0.17 führt [3]. Flüssig-Argon hat den Vorteil, daß das Kalorimeter langezeitstabil betrieben werden kann. Das hadronische Signal kann nachträglich innerhalb des Analyseprogramms gewichtet werden. Voraussetzung für diese Methode ist jedoch, daß die Eigenschaften des Kalorimeters bei Beschuss mit Elektronen und Hadronen bekannter Energie genau studiert werden, um die Gewichtungsfaktoren für hadronische Teilchen zu bestimmen. Diese Methode wird für das H1-Kalorimeter angewandt [4] [5] [3].

Für das H1-Experiment werden eine Energieauflösung für elektromagnetische Schauer von \(\frac{\Delta E}{E} < \frac{10}{\sqrt{E}} \) angestrebt, für hadronische Schauer \(\frac{\Delta E}{E} \approx \frac{55}{\sqrt{E}} \).

Das H1-Kalorimetersystem besteht aus 7 Ringsystemen. Ein Ring ist in acht Module aufgeteilt. Ein Modul besteht aus einem inneren, elektromagnetischen Teil und einem äußeren, hadronischen Teil. Für das hadronische (elektromagnetische) Kalorimeter wird Eisen (Blei) als Absorber benutzt.

Um nun die Kalorimeter gut zu kalibrieren und die Gewichtungsfaktoren zu bestimmen, müssen Tests bei einem Strahl wohldefinierter Energie durchgeführt werden.

Insbesondere ist man daran interessiert die Ladungsdeponierung für minimale, minimierende Teilchen zu bestimmen. Es sollte außerdem überprüft werden, ob die gefundenen Werte mit den theoretisch berechneten übereinstimmen, was eine Kontrolle der absoluten Ladungskalibrierung ist. Hierzu wurde ein Modul des Kalorimeters zuerst mit kosmischer Strahlung und später mit Myonen in einem Strahl am SPS des CERN getestet. In den folgenden Analysen sollte die Ladungsdeponierung in den verschiedenen longitudinalen Segmenten des Kalorimeters bestimmt werden.
2. Die Physik ionisierender Teilchen

2.1. Energieverlust geladener Teilchen in Materie

\[
\frac{dE}{dx} = 4\pi N \frac{Q^2 e^2}{m_e v^2} \left(\ln \left(\frac{k m_e v^3}{2 \pi N e Q} \right) - \frac{1}{2} \ln(1 - \beta^2) - \frac{1}{2} \beta^2 \right)
\]

\[
\begin{align*}
 e &= \text{elektrische Ladung} \\
 Q &= \text{Ladung des stoßenden Teilchens} \\
 m_e &= \text{Ruhemasse des Elektrons} \\
 \nu &= \text{Eigenfrequenz des Elektrons im Atom} \\
 N &= \text{Zahl der Atome pro Volumeneinheit} \\
 v &= \text{Geschwindigkeit des einfallenden Teilchens} \\
 k &= 1.123
\end{align*}
\]

Falls \(v \ll c \) gilt:

\[
\frac{dE}{dx} = 4\pi N \frac{Q^2 e^2}{m_e v^2} \left(\ln \left(\frac{k m_e v^3}{2 \pi N e Q} \right) \right)
\]

Voraussetzung für die angegebenen Formeln ist eine geradlinige Bahn des einfallenden Teilchens und eine genügend hohe Geschwindigkeit des Teilchens. Berechnet wird der Energieübertrag zuerst für einen Minimalabstand \(b \) des einfallenden Teilchens zur Ruhelage des Elektrons, dann wird über alle Werte von \(b = 0 \) bis \(b = \infty \) gemittelt [7]. Bethe gibt für den nicht relativistischen Fall eine quantenmechanische Näherung für den harmonischen Oszillator an:

\[
\frac{dE}{dx} = 4\pi N \frac{Q^2 e^2}{m_e v^2} \left(\ln \left(\frac{2 m_e v^2}{h \nu} \right) \right),
\]
was sich um einen Faktor \(\frac{4\pi e^2 Q}{\hbar v}\) im Logarithmus unterscheidet. Die Bethe-Bloch Formel wird für ein effektives Ionisationspotential \(I\) des entsprechenden Atoms gegeben:

\[
\frac{dE}{dx} = 4\pi N \frac{Qe^2}{m_e v^2} \left(\ln\left(\frac{2m_e v^2}{I}\right) - \ln(1 - \beta^2) - \beta^2\right),
\]

mit der mittleren Anregungsenergie \(I\). Folgende Merkmale charakterisieren die Bethe-Bloch-Formel:

- Der Energieverlust \(\frac{dE}{dx}\) ist unabhängig von der Masse des einfallenden Teilchens.
- Für geringe Geschwindigkeiten ändert sich \(\frac{dE}{dx}\) mit \(\frac{1}{v^2}\). Nach Erreichen eines Minimums ändert sich \(\frac{dE}{dx}\) schwach mit \(\gamma = (1 - \beta^2)^{-\frac{1}{2}}\).
- Der Grund für den Anstieg liegt im Anwachsen der maximalen auf die Elektronen übertragbaren Energie, die eine \(\gamma\)-Abhängigkeit aufweist.

Abb. 2.1: Der wahrscheinlichste Wert des Energieverlustes von Myonen in Argongas (1bar, 1cm)
Die angegebenen Werte für den Energieverlust beziehen sich auf Mittelwerte. Die Ionisierung ist ein statistischer Prozeß, bei dem nicht Elektronen einheitlicher Energie freigesetzt werden. Für einen statistischen Prozeß mit vielen unabhängigen Ereignissen erwartet man eine Gaußverteilung des Energieverlustes. Da es in seltenen Prozessen zu zentralen Stoßen mit den Elektronen kommen kann, ist die Verteilung asymmetrisch zu höheren Energien hin. Der wahrscheinlichste Wert des Energieverlustes ist nicht gleich dem Mittelwert. Die Myonsignalanalyse bezieht sich im folgenden immer auf den wahrscheinlichsten Wert der Verteilung. Zusätzlich muß der sogenannte Dichteefekt berücksichtigt werden. Man versteht darunter die durch die Polarisierung des Mediums entstehende Abschirmung des elektrischen Feldes des eindringenden Teilchens. Dieser Effekt ist proportional zur Dichte der Elektronen im Medium. Er bewirkt für $\gamma > 10$ eine Sättigung des Energieverlustes. Als Beispiele sind die Energieverluste in Argon-Gas (Abb. 2.1) und Flüssig-Argon angegeben (Abb. 2.2). In Abbildung 2.1 setzt der Dichteefekt bei $p \approx 11 \text{ GeV} / c$ ein (gestrichelte Linie). In Flüssig-Argon setzt dieser Effekt schon wesentlich früher ein ($p \approx 0.3 \text{ GeV} / c$).

2.2. Die Sternheimer-Formel

Die Bethe-Bloch-Formel berücksichtigt nicht den erwähnten Dichteefekt, der bei Flüssigkeiten und Festkörpern schon sehr viel früher einsetzt (Impuls $\approx 0.3 \text{ GeV}$ für Myonen) als bei Gasen (Impuls $\approx 11 \text{ GeV}$ für Myonen) [8]. Bei Flüssig-Argon-Kalorimetern muß dieser Effekt berücksichtigt werden. Viele Veröffentlichungen von Sternheimer behandeln diesen Aspekt, wobei systematische Messungen hauptsächlich für Argon-Gas vorliegen. Die Konstanten der Dichtekorrektur sind für Flüssig-Argon nur theoretisch abgesichert. Der wahrscheinlichste Wert des Energieverlustes des Dichteefekt berücksichtigend wird folgendermaßen angegeben [9]:

$$E_p = \frac{Ax}{\beta^2} (B + 1.06 + 2\ln\left(\frac{P}{\mu c}\right) + \ln\left(\frac{Ax}{\beta^2}\right) - \beta^2 - \delta(\beta))$$

\[
\begin{align*}
A &= \frac{2\pi n e^4}{m_e c^4 \rho_0} \\
B &= \ln\left(\frac{m_e c^2}{\beta^2}\right) \\
\text{mit} &
\begin{align*}
A &= \text{Ruhemasse des Elektrons} \\
I &= \text{mittleres Ionisierungspotential} \\
n &= \text{Zahl der Atome pro Volumeneinheit} \\
x &= \text{Schichtdicke} \\
\delta(\beta) &= \text{Korrekturfaktor für den Dichteefekt}
\end{align*}
\end{align*}
\]
Analytisch wurde δ von Sternheimer berechnet [10]:

$$\delta(\beta) = \begin{cases}
0 & \text{für } Y < Y_0; \\
4.606Y + C + a(Y_1 - Y)^m & \text{für } Y_0 < Y < Y_1; \\
4.606Y + C & \text{für } Y > Y_1.
\end{cases}$$

mit $Y = \log_{10}(\frac{P}{\mu^2})$, $P = Impuls$, $\mu = Masse$ des einfallenden Teilchens. a, m, Y_1 sind materialabhängige Konstanten. $C = -2\ln(\frac{1}{h\nu_p}) - 1$, ν_p ist die Plasmafrequenz. Y_0, Y_1 wurden empirisch festgelegt [10].

Abb. 2.2: Der wahrscheinlichste Energieverlust in Flüssig-Argon (3,2 cm)-Dichte- und berücksichtigt (nicht berücksichtigt) durchgezogene Linie (gestrichelte Linie), nach Sternheimer [10]
2.3. Energieverlust-Verteilung nach Landau

Die von Bethe und Sternheimer angegebenen Formeln geben den Mittelwert bzw. den wahrscheinlichsten Wert des Energieverlustes an. Um die Fluktuationen des Energieverlustes zu berechnen greifen viele Autoren auf die Veröffentlichung von Landau zurück. Im Vergleich zu Bohr und Bethe berechnete Landau den Energieverlust in Schichten endlicher Dicke. Zwei grundlegende Annahmen setzte er für seine Berechnungen voraus. Der typische Energieverlust in dieser Schicht sollte groß sein im Vergleich zur Bindungsenergie der am schwächsten gebundenen Hüllenelektronen, aber klein zur maximal übertragbaren Energie bei einem einzelnen Stoß. Landau [11] definierte eine Funktion \(f(x, \Delta) \), die die Wahrscheinlichkeit für den Energieverlust \(\Delta \) in einer Schicht der Dicke \(x \) angibt. Der Wirkungsquerschnitt für Energieabsorption \(\epsilon \) eines einzelnen Atoms errechnet sich aus der Funktion \(f(x, \Delta) = \lim_{x \to 0} \frac{f(x, \epsilon)}{x} \). \(w(\epsilon) \) ist die Wahrscheinlichkeit pro Einheitsweglänge für einen Energieverlust im Bereich \(\epsilon \) bis \(\epsilon + d\epsilon \). Es wird nun die Funktion \(f(x, \Delta) \) mit einer Funktion \(P_{dx}(\epsilon_{dx}) \) gefaltet [12]. Letztere gibt die Wahrscheinlichkeitsverteilung für den Energieverlust \(\epsilon_{dx} \) in dem differenziellen Bereich \(dx \) an. Wendet man die Laplacetransformation auf diese Faltung an, so ergibt sich eine Differentialgleichung:

\[
\frac{\partial \tilde{f}}{\partial x} (x, p) = -\tilde{f}(x, p) \int_{0}^{\infty} (1 - e^{-p\epsilon}) w(\epsilon) d\epsilon,
\]

und daraus:

\[
\tilde{f}(x, p) = e^{\beta x} \int_{0}^{\infty} (1 - e^{-p\epsilon}) w(\epsilon) d\epsilon.
\]

Die inverse Laplacetransformation liefert dann das gesuchte Ergebnis:

\[
f(x, \Delta) = \frac{1}{\pi} \Phi_L(\lambda),
\]

mit der Funktion

\[
\Phi_L(\lambda) = \frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} \lambda y} \cos(y \lambda + y \ln y) dy.
\]

In \(\lambda \) steckt der wahrscheinlichste Wert der Energieeponierung \(\Delta_{\sigma} \) und eine der gausschen Standardabweichung äquivalente Größe \(\xi : \lambda = \frac{\Delta - \Delta_{\sigma}}{\xi} \), mit \(\Delta_{\sigma} = \xi (\ln \xi + 0.423) \), wobei \(\xi \) durch die Bethe-Bloch-Formel bestimmt ist. Moyal [13] gab in Anlehnung an die Landauverteilung eine analytische Funktion an:

\[
f_L(\lambda) = \alpha \exp(-\frac{1}{2}(\lambda + \exp(-\lambda))),
\]

wobei hier die Berechnung der Verteilung nicht erst über die Auswertung eines Integrals geführt werden muß. Sie hat außerdem den Vorteil, daß sie einfach an die gemessenen Verteilungen über einen \(\chi^2 \)-Fit angepasst werden kann.
2.4. Konstanten der Ladungssammlung im Flüssig-Argon-Kalorimeter

— Neutralisierung an der Anode mit der Rate \(k_n \)

— Anlagerung der Elektronen an elektronegativen Verunreinigungen (wie z.B. Sauerstoff) mit der Rate \(k_s \)

— Rekombination mit positiven Ionen mit der Rate \(k_r \).

Für die Elektronenkonzentration gilt [14]:

\[
\frac{d[e]}{dt} = -k_n - k_s[S][e] - k_r[P][e].
\]

\([e]\) stellt die Dichte der Elektronen dar, \([S]\) gibt die Konzentration der Verunreinigungen an, \([P]\) ist die Konzentration der positiven Ionen. Der letzte Term kann vernachlässigt werden, da die Ionisierungsdichte für Myonen klein ist. Die Rate der Neutralisierung an der Anode wird durch die Driftgeschwindigkeit der Elektronen bestimmt. Den Zusammenhang mit der Driftgeschwindigkeit erhält man dadurch, daß die Differentialgleichung für \(k_s = 0, k_r = 0 \) gelöst wird: \(k_n = \frac{[e_0]}{t_d} \). \(t_d \) gibt die Driftzeit der Elektronen für die Durchquerung des Kondensators an: \(t_d = \frac{d^2}{\mu U} \), für ein homogenes elektrisches Feld, \(d \) ist der Plattenabstand, \(U \) ist die angelegte Hochspannung. \(\mu \) gibt die Beweglichkeit der Elektronen im Flüssig-Argon an. Für niedrige Feldstärken ist die Driftgeschwindigkeit proportional zum angelegten elektrischen Feld. Die Beweglichkeit der Elektronen ist jedoch für höhere Feldstärken nicht mehr konstant, sondern nimmt ab, so daß die Driftgeschwindigkeit der Elektronen sich einem konstanten Wert nähert [14]. Physikalisch erklärt man sich dieses Verhalten durch die Annahme, daß die Beweglichkeit der Elektronen durch inelastische Stoße mit den Argonatomen begrenzt wird [15]. Die Elektronen sind für niedrigere Feldstärken im thermischen Gleichgewicht mit dem Medium. Der Wirkungsquerschnitt für Elektronenstreuung nimmt in diesem Bereich mit zunehmender Feldstärke bis zu einem Minimum ab (Ramsauer-Minimum). Für dieses Minimum registriert man die höchste Beweglichkeit der Elektronen in Argon. Danach steigt der Wirkungsquerschnitt wieder an, was zu einer Begrenzung der Elektronenbeweglichkeit führt [16].
2.5. Effektivität der Ladungssammlung nach Hofstadter

Den Zusammenhang deponierter Ladung in Abhängigkeit von der angelegten Hochspannung kann durch die von Hofstadter entwickelte Formel beschrieben werden. Sie wurde ursprünglich für die Ladungssammlung in Kristallen verwendet, kann aber auch auf Flüssigkeiten angewandt werden. Hofstadter berechnete das zu erwartende Signal in einem Kristall in Abhängigkeit von der angelegten Hochspannung und der Konzentration der Verunreinigungen bzw. der Defekte im Kristall [17]. Die verschiedenen Beiträge der Elektronenabsorption werden durch eine mittlere freie Weglänge beschrieben. Eine weitere wichtige Annahme ist die Proportionalität der Driftgeschwindigkeit zum angelegten elektrischen Feld, d.h., die Konstantheit der Beweglichkeit der Elektronen. \[Q = N e \frac{\lambda}{d} (1 - e^{-\frac{d}{\lambda}}) \] mit \(\lambda = v ET \), wobei \(v \) die Driftgeschwindigkeit pro Einheitsfeldstärke, \(E \) die elektrische Feldstärke und \(T \) die mittlere Driftzeit ist. Mittelt man über den Weg so erhält man:

\[Q_I = N e \frac{\lambda}{d} (1 - \frac{\lambda}{d} (1 - e^{-\frac{d}{\lambda}})). \]

Die vereinfachenden Annahmen von Hofstadter liegen darin, daß die Beweglichkeit der Elektronen als konstant angesehen werden, welche jedoch in Wirklichkeit von der angelegten Hochspannung abhängt [15], zum anderen ist die mittlere freie Zeit \(T \), welche die Absorption der Elektronen repräsentiert, nicht nur von der Konzentration der Verunreinigungen, sondern auch von deren Wirkungsquerschnitten und damit auch von der Energie der Elektronen abhängig.

In den folgenden Fits für die Hochspannungskurven wird die Größe \(\beta = \frac{\alpha}{pd} \) als einer der beiden Parameter benutzt. In die Fitkonstante \(\beta \) geht der Abstand \(d \) und die Verunreinigung \(p \), die gemessen wurde, ein. Der zweite Parameter ist \(Q_0 \).

\[Q = Q_0 \beta E (1 - \beta E (1 - e^{-\frac{1}{\beta E}})) \]

ist die Funktion, die für den Hochspannungssit benutzt wird.
3. Das Kalorimeter und die Ausleseelektronik

Das Flüssig-Argon-Kalorimeter des H1-Detektors ist ein Sampling-Kalorimeter. Es besteht aus passiven absorbierenden Elementen und aktiven Ausleseeinheiten, die durch die Ionisation freigesetzte Ladung sammeln und an die Ausleseelektronik weitergeben. Abbildung 3.1 zeigt ein Modul, welches aus einem elektromagnetischen und einem hadronischen Kalorimeter besteht. Pro Einheit verwendet man 19 mm Eisen (Absorber und Hochspannungsanschluss) und 2 * 2.3 mm Flüssig-Argon (siehe Abb. 3.2). Die Argon-Schichtdicke ergibt sich aus der maximal zulässigen Integrationszeit für die Ladungssammlung von 600 nsec. Es gibt insgesamt für den Test mit kosmischer Höhenstrahlung (Strahltest) 29 (30) Ausleseeinheiten. Einzelne Ausleseeinheiten werden zu Lagen zusammengefaßt. Man wählte eine longitudinaline Segmentierung von 6,7,8,8 Ebenen beim Test mit kosmischer Höhenstrahlung und 6,7,8 und 9 Ebenen beim Strahltest (Abb. 3.3). Ziel der Analyse war, das Verhältnis der zusammengefaßten Ausleseeinheiten anhand der Myonsignale zu bestätigen und damit zu zeigen, daß alle Ausleseeinheiten zum Myonsignal beigetragen haben. Lateral besteht jede Ebene aus 60 Ausleseeinheiten (Pads), die letztlich das Signal an die Elektronik weitergeben und durch ihre Größe die Ortsauflösung bestimmen. Die Pads haben eine Größe von ca. 10 * 13 cm² bis zur doppelten Größe. Die integrierte nukleare Wechselwirkungslänge beträgt für das hadronische Modul bei senkrechtem Einfall 3.4 λ für das Eisen und 0.16 λ für das Flüssig-Argon. Ausgedrückt in Strahlungslängen X₀ sind die entsprechenden Werte 30 X₀ für das Eisen und 1 X₀ für das Flüssig-Argon. Analog findet man für den elektromagnetischen Teil 1.57 λ (48 X₀) für das Blei und 0.33 λ (2 X₀) für das Argon.

Der Querschnitt des Kalorimeters zeigt die Anordnung der Absorberplatten, die Stahlplatten, an die die Hochspannung angelegt ist und die Ausleseeinheit (Abb. 3.2).
Abb. 3.1: Schema eines Moduls des H1-Kalorimeters

Abb. 3.2: Querschnitt durch eine Ausleseeinheit
3.1. Elektronik und Kalibration

Die Kette der analogen Signalverarbeitung beginnt beim ladungssammelnden Kondensator C_D (Abb. 3.4). Über möglichst kurzgehaltene Kabel wird das Signal auf einen integrierenden Vorverstärker gegeben, der ladungs-
empfindlich verstärkt \((U_{Out} = C \cdot Q_{Inp})\). In einer zweiten verstärkenden Stufe wird das Signal über die sogenannten ‘Twisted-Pair-Kabel’ zu dem weiteren entfernten Verstärker (Receiver) transportiert. Ein Signalformer (Shaper) erzeugt ein bipolares Signal. Die Analogsignale werden dann durch die Analog-Digital-Wandler (ADC’s) in Digitalsignale verwandelt.

Die Kalibrierung hat die Funktion die Beziehung zwischen gepulster Ladung und digitalem ADC-Signal herzustellen. Für die Kalibrierung standen zwei Verfahren zur Verfügung. Zum einen wurden die Vorverstärker direkt über einen 10 pF-Kondensator gepulst (Abb. 3.4). Bei der Zweiten Methode pulste man einen Kalibrationskondensator sehr nahe am Pad (d.h. direkt im Kalorimeter im Flüssig-Argon). Dies hatte den Vorteil, dass es keine reflektierende Signale gab. Diese Methode stand jedoch nur für den Test mit kosmischer Strahlung zur Verfügung. Die zweite Methode erreichte eine Genauigkeit von 0.5% [4]. Bei einem typischen Kalibrationsablauf werden nach einander alle elektronischen Kanäle in feinen Stufen gepulst. Man erwartet eine lineare Eichkurve. Außerdem werden auch die ADC-Signale registriert, falls keine Ladung gepulst wird. Dies hat folgende Gründe:

— Es sollten die Offset-Signale der ADC’s bestimmt werden, die im folgenden als Pedestal bezeichnet werden

— Die Standardabweichungen \(\sigma\) der Verteilungen sind durch die Kapazitäten der einzelnen Kanäle bestimmt \((\sigma = \sigma_0 + aC, C\) ist die Kapazität der Pads, \(a\) und \(\sigma_0\) sind Konstanten\). Diese sind deswegen auch eine Kontrolle der einzelnen Kanäle.

Die Pedestal-Messungen sind für schwache Signale, wie die der Myonen wichtig. Der Kalibrationsrun wurde einmal pro Tag wiederholt.

3.2. Datennahme beim H1-Testtrigger

Abb. 3.5: Übersicht Trigger und Datennahme nach [4]
4. Der Test mit kosmischer Strahlung

4.1. Die kosmische Strahlung

Abb. 4.1: Entstehung der kosmischen Strahlung aus [18]

Wichtig für unseren Test ist die Zusammensetzung der kosmischen Strahlung auf Seehöhe. Die mittlere Lebensdauer eines ruhenden Myons beträgt 2,2 μsec, die entsprechende Lebensdauer für ein geladenes Pion beträgt 26,0 nsec. η und π^0 haben wesentlich kürzere Lebensdauern. Man muß berücksichtigen, daß sich die Lebensdauer der Teilchen mit zunehmender Geschwindigkeit um
den Faktor \(\gamma \) erhöht (\(\gamma = \frac{1}{\sqrt{1-u^2/c^2}} \)). Die Lebensdauer ist ein wichtiges Kriterium für die Zusammensetzung der kosmischen Strahlung in Abhängigkeit von der durchlaufenen Schicht. Das Energiespektrum der Myonen ist primär durch das Spektrum der Pionen und Kaonen bestimmt, die ihrerseits das Energiespektrum der Protonen widerspiegeln. Experimentell ergibt sich für das differentielle Spektrum der Protonen: \(D_p(E) = A_p E^{-\delta p} \). Entsprechend erhält man für das Pionenspektrum: \(D_\pi(E) = A_\pi E^{-\delta_\pi} \), mit \(\delta_\pi \simeq \delta_p \). Letztendlich wird das differentielle Myonenspektrum so beschrieben:

\[
D_\mu(E) = D_\pi(E)(\frac{\alpha B_\pi}{B_\pi + E} + \frac{(1-\alpha)B_K}{B_K + E})
\]

[19] (Abb. 4.2).

\[\text{Abb. 4.2: Differentielle Energiespektren für Pion und Myon} \]

Die mittlere Reichweite der Myonen mit höchster Intensität haben eine ca.11-fach höhere Reichweite als die der Pionen. Kaonen haben noch kürzere Reichweiten als Pionen. Die kosmische Strahlung auf Seehöhe besteht hauptsächlich aus Myonen. Die Bestandteile der kosmischen Strahlung auf Seehöhe sind: \(\frac{\pi}{\mu} = 4.37 \), \(\frac{\pi}{\mu} = 126 \) [20]. Da die Intensitätsverteilung der
Myon in Abhängigkeit vom Impuls von der durchlaufenen Schicht in der Atmosphäre abhängt, muß der Winkel zum Zenith berücksichtigt werden, um das Maximum der Intensität zu bestimmen. Die Intensitätsverteilung in Abhängigkeit vom Zenithwinkel ist [21]:

\[I(\theta) = I(0^\circ) \cos^n(\theta), \]

wobei \(n \) vom Impuls der Myonen abhängt, so daß sich das Spektrum der Impulsverteilung verschiebt (\(n \approx 2 \) für \(p = 1 \text{ GeV}/c \)). Das Maximum der Intensität für senkrecht einfallende Myonen liegt im Bereich 1-2 GeV. Der mittlere Energieverlust für Myonen im Eisen(Argon) des Kalorimeters beträgt 664 MeV(29 MeV).

4.2. Testaufbau für kosmische Strahlung

Der Testaufbau für kosmische Strahlung sollte folgende Funktionen erfüllen:

- Ein Teilchen, das das Kalorimeter durchquert, soll einen Ereignistrigger auslösen
- Die Richtung des Myons sollte bekannt sein, um die deponierte Ladung in den einzelnen Lagen auf die Weglänge korrigieren zu können.

Zu diesem Zweck wurden 4 Szintillationszähler (S1,S2,S3,S4) oberhalb und unterhalb des Kryostaten angebracht (Abb. 4.3 und 4.4). Die Zähler sind so angeordnet, daß die kosmische Strahlung unter einem Winkel von ca. 60° zur Vertikalen auf das Kalorimeter fallen. Es gibt vier Möglichkeiten, die die Triggerlogik als Myonsignal identifiziert: \((S3 \land S1) \lor (S4 \land S1) \lor (S3 \land S2) \lor (S4 \land S2)\). Zusätzlich werden Ereignisse aufgrund des Rauschens irrtümlicherweise getriggert. Die Rate wurde über einen zeitlich verzögerten Zufallstrigger ermittelt. Bei einer zufälligen Koinzidenzrate von ca.1Hz und einer Gesamtrate von ca. 3.8Hz wird mit einer Wahrscheinlichkeit von 74% ein Myon registriert.
4.3. Das Analyseprogramm

Zur Datenanalyse wurde ein Spursuchprogramm entwickelt. In dem Flußdiagramm wird vereinfacht die Prozedur der Spurrekonstruktion erläutert (Abb. 4.5). Die in den Kalibrationsruns gewonnenen Daten (ADC-Wert als Funktion der gepulsten Ladung, Pedestal und die Standardabweichung σ der Rauschverteilung) werden mit den rohen ADC-Daten verglichen. Als Ergebnis erhält man das Signal der einzelnen Kanäle. Als erste Bedingung wird gefordert, daß dieses Signal um ein n-faches größer ist als die Standardabweichung der Rauschverteilung: $Q_{Signal} \geq n\sigma$ (für n wurde 2 gewählt).
Um sicherzustellen, daß kein ganzer Kaskadenschauer, der durch ein hochenergetisches Elektron oder Photon in der Atmosphäre ausgelöst wird, das Kalorimeter durchquert, werden nur solche Ereignisse akzeptiert, bei denen nur ein Pad bzw. ein Cluster pro Ausleseebene aktiv ist. Als Cluster bezeichnet man ein Gruppe von maximal 4 benachbarten Pads. Die 29 Ausleseebenen (Layer) sind in 4 Lagen unterteilt, wobei jeweils eine verschiedene Anzahl von Lagen miteinander verbunden sind (in der Reihenfolge 6, 7, 8, 8). Von den 4 Lagen werden 3 zur Spurfindung benutzt und damit diejenigen Pads in der vierten Lage bestimmt, die ein Signal anzeigen müssten (Eine Abweichung der aktiven Pads von der Geraden von der Größenordnung eines Pads wird hier toleriert). Es werden nur Myonspuren akzeptiert, falls \(\chi^2 \leq NDEF \) ist (NDEF ist die Anzahl der Freiheitsgrade).

Schließlich wird hier noch geprüft, ob die Spur die Szintillatoren trifft, die den Trigger angezeigt haben. Zur Berechnung der Ladung wurde auf die unterschiedliche Spurlänge im Flüssig-Argon korrigiert. Die einzelnen Schritte reduzieren die Daten folgendermaßen: (es sind in % jeweils der Anteil der Ereignisse angegeben, der sich auf die Gesamtstatistik bezieht):
die Ladungsdeponierung eines oder zweier Pads pro Lage soll $> 2\sigma$ sein, 70% Ereignisse bleiben übrig
- nur ein aktiver Cluster (maximal 4 benachbarte Pads), 63%
- Es werden nur die Ereignisse akzeptiert, die in 3 Lagen des hadronischen Kalorimeters ein Myonsignal sehen. 20%.
- Einführung eines maximal zulässigen χ^2 für den Geradensatz, es verbleiben schließlich nur 4 – 7% der Ereignisse.

Abb. 4.5: Flussdiagramm des Analyseprogramms
4.4. Das Myonsignal

Myonsignal Lage 3 HV: 2.0 kV

![Diagramme](image)

Abb. 4.8: Myon-Signal in der Lage 3 bei 2kV
Gesamtsignal

Abb. 4.6: Gesamte Ladungsverteilung in der Lage 3 bei 2kV

PEDESTAL

Abb. 4.7: Pedestal in der Lage 3 bei 2kV
4. Der Test mit kosmischer Strahlung

\[
\begin{array}{|c|c|}
\hline
Q_{\text{Experiment}}[\text{fC}] & Q_{\text{Sternheimer}}[\text{fC}] \\
3.3 \pm 0.4 & 2.95 \\
\hline
\end{array}
\]

Tab. 4.1: Sättigungswert der Ladungsdeponierung, ermittelt aus der HV-Kurve

\[
\begin{array}{|c|c|}
\hline
\alpha_{\text{Experiment}}[\text{cm}^2\text{ppm/kV}] & \alpha_{\text{Literatur}}[\text{cm}^2\text{ppm/kV}] \\
0.22 \pm 0.07 & 0.15 \\
\hline
\end{array}
\]

Tab. 4.2: Anstiegskonstante \(\alpha = \beta p d \), ermittelt aus der HV-Kurve und der Annahme \(p = 15 \text{ ppm} \)

4.5. Vergleich mit den erwarteten Konstanten

Ziel der Analyse ist die Bestimmung der Ladungsdeponierung in jeder Lage und der Vergleich mit der Sternheimer'schen Theorie. Für jede Lage wurde der wahrscheinlichste Wert der Ladungsdeponierung bei verschiedenen Hochspannungen bestimmt. Abbildung 4.11, 4.12 und 4.13 stellen die Ladungsdeponierungen der 4 Lagen. normiert auf einen Layer, dar. In Abb. 4.11 kann man gute Übereinstimmung der Ladungsdeponierung in den 4 verschiedenen Lagen sehen. Für die Verteilungen bei einer Hochspannung von 2.5 kV und 2.8 kV stellt man eine niedrigere Ladung (2σ-Abweichung) in der vierten Lage fest. Dies könnte eine statistische Fluktuation sein. Die Messung wäre auch mit der Annahme verträglich, daß eine Ausleseebene bei den Werten 2.5 kV und 2.8 kV ausgefallen ist. Eine eindeutige Schlußfolgerung ist wegen der Größe der Fehler nicht möglich. Um den Sättigungswert der Ladungsdeponierung zu bestimmen wurde die Hofstadtersche Formel benutzt mit den zwei Parametern, Sättigungswert \(Q_{SAF} \) und der Anstiegskonstante \(\alpha^* \) (Abb. 4.14). Der Anstieg \(\alpha \) wurde aus dem Fit an die Hochspannungskurve bestimmt. Für die Hochspannungskurve wurden nur die Lagen 1, 2 und 3 genommen. Für \(Q_{SAF} \) zeigt der Vergleich von Messung und Theorie gute Übereinstimmung. Zum Vergleich ist in Tabelle 4.1 der Sättigungswert nach Sternheimer angegeben. Für die Anstiegskonstante \(\alpha \) ist als Referenzwerte der von Engler [22] angegeben. Tabelle 4.2 zeigt den entsprechenden Vergleich für \(\alpha \).

*Genau ist \(\beta = \frac{\alpha}{pd} \) der Fitparameter, siehe Kap. 2.5
4.5. Vergleich mit den erwarteten Konstanten

Myonsignal Lage 3 HV: 2.5 kV

![Graph showing Myonsignal at 2.5 kV]

Abb. 4.9: Myon-Signal in der Lage 3 bei 2.5kV

Myonsignal Lage 3 HV: 2.8 kV

![Graph showing Myonsignal at 2.8 kV]

Abb. 4.10: Myon-Signal in der Lage 3 bei 2.8kV
Abb. 4.11: Wahrscheinlichster Wert der Ladungsdeponierung pro Layer für die verschiedenen Lagen HV:2kV

Abb. 4.12: Wahrscheinlichster Wert der Ladungsdeponierung pro Layer für die verschiedenen Lagen HV:2.5kV
4.5. Vergleich mit den erwarteten Konstanten

Ladungsdeponierung HV: 2.8 kV

Fitparameter nur Lage 1-3 \(Q = 2.27 \pm 0.04 \) fC

Abb. 4.18: Wahrscheinlichster Wert der Ladungsdeponierung pro Layer für die verschiedenen Lagen HV: 2.8kV

Sättigungskurve

PARAMETER FOR FIT

SCALE=3.32 ERROR=0.41
BETA=0.064 ERROR=0.02

Abb. 4.14: Sättigungskurve der Ladungsdeponierung
5. Myon Test am CERN-Teilchenstrahl

5.1. H1-Test-Aufbau

Abb. 5.1: Schema des H1-CERN Testaufbaus

Abb. 5.1 zeigt den Aufbau des Kalorimeters im Kryostaten und wichtige Teile des Testaufbaus. Die Ausleseebenen des Kalorimeters sind nicht senkrecht zur Strahlachse. Dies hat zwei Gründe:

— Die nukleare Wechselwirkungslänge (Strahlungslänge) ist für diagonalen Einfall größer (ca. 4.35λ gegenüber 3.56λ bei senkrechtem Einfall)

— Da die Kalorimeter beim H1-Experiment so angeordnet sind, daß die Bahnen der Teilchen nicht senkrecht die Ausleseebenen passieren, galt es, das Kalorimeter unter möglichst ähnlichen Bedingungen zu testen.

Aus der Graphik ist ersichtlich, daß die Lage 1 des hadronischen Kalorimeters nicht vom Teilchenstrahl getroffen wurde.
5.2. Funktion und Aufbau der Triggerzählern

Der Test wurde im Strahl H6 des CERN SPS durchgeführt. Dieser Strahl kann sowohl als sekundärer Strahl ($p > 100 GeV$) als auch als tertiärer Strahl ($p < 100 GeV$) mit Kupfer, Polyäthylen oder Aluminium als sekundärem Target betrieben werden. Die Teilchenart (π, e, p) wird mit 2 als differentiellen Zählern betriebene Čerenkovdetektoren (CEDARS) selektiert. Die in den CEDARS ringförmig angeordneten Photomultiplier registrieren den durch das einfallende Teilchen ausgesandten Lichtkegel mit dem Öffnungswinkel θ. Über den Gasdruck werden bei einer bestimmten Energie die Triggerteilchen selektiert: $cos(\theta) = \frac{1}{n}$, wobei n der Brechungsindex und $\beta = \frac{v}{c}$ die Geschwindigkeit des Teilchens ist. Für niedrigere Energien ($p < 10 GeV$) kann zusätzlich ein SchwellenČerenkovzähler eingesetzt werden. Um den Teilchenstrahl örtlich genau zu definieren, werden 2 Fingerszintillationszählern (B1 und B2), 2 Drahtkammern (MWPC), sowie eine in Antikoinzidenz geschaltete Veto-Wand (VM), bestehend aus parallel angeordneten Szintillationszählern, mit einem longitudinalen Loch für den Teilchenstrahl, verwendet. Ein zusätzlicher Veto-Loch-Zähler (VH), bestehend aus zwei kleinen Szintillationszählern oberhalb und unterhalb der erwarteten Strahllinie, definiert ein Strahlteilechen. Vor der Veto-Wand ist eine Bleiwand angebracht, die niederenergetische Photonen aufschauern lässt und damit ein Signal in der VM-Wand erzeugt. Zwischen Kalorimeter und Veto-Wand steht eine Eisenabschirmung, die vom Kalorimeter rückgestreute Teilchen absorbiert soll.

Weiter sind 2 Szintillatorwände M1, M2 installiert, die vor allem Myonen nachweisen sollen. M1 steht zwischen Kryostaten und Beam-Dump (1.6m Eisen). Die zweite Szintillatorwand M2 steht hinter dem 'Beam-Dump'. Myonen geben sowohl in M_1 als auch in M_2 Signale. Pioniere und Elektronen sind dagegen vor M_2 weitgehend absorbiert.

5.3. Triggerkriterien für die Myon-Selektion

Die Selektion der Daten auf Myonen geschieht im Programm durch die Forderung einer Koinzidenz der verschiedenen Zähler. Um ein Ereignis als Myon zu akzeptieren müssen folgende Kriterien erfüllt sein:

- Koinzidenz in den Zählern $CEDAR_1$, $CEDAR_2$, B_1, B_2, M_1, M_2
- λ Myon-Zählern müssen die zentralen Szintillatoren ansprechen
- Berücksichtigung des Gesamtsignals im Kalorimeter Q_{tot}.

Durch die Koinzidenzbedingung werden nur 10% der Ereignisse in der M2-Szintillatorwand als Myon-Ereignis akzeptiert.
5.4. Analyseprogramm für den Durchgang von Myonen

Ziel des Analyseprogramms ist die Rekonstruktion der Myonenbahn durch einzelne Triggerkomponenten und durch das Kalorimeter selber, um die Weglängen in den einzelnen Ausleseeinheiten berechnen zu können und damit eine normierte Ladungsdeponierung zu bestimmen. Das Kalorimeter besteht aus vier Lagen. Es wurde longitudinal jeweils eine verschiedene Anzahl von Ausleseebenen in diesen Lagen zusammengefasst (6, 7, 8, 9). Horizontal hatten diese Ebenen 60 Kanäle. Ursprünglich bestand die Absicht, das elektromagnetische Kalorimeter ebenfalls in die Spurrekonstruktion miteinzubeziehen. Es zeigte sich jedoch, daß die Ladungsdeponierung in den einzelnen Kanälen im Vergleich zum elektrischen Rauschen zu gering war, so daß das von den Myonen getroffene Pad (Auslesekanal) nicht immer richtig identifiziert wurde. Die Koordinaten x und y geben die Position des Myons in einer Ausleseebene an. Die Ortsbestimmung des Strahls in den Kalorimeterebenen erfolgte durch den in der Ladung gewichteten Mittelwert:

\[
\bar{x} = \frac{1}{Q} \sum_i x_i Q_i \quad \text{und} \quad \bar{y} = \frac{1}{Q} \sum_i y_i Q_i
\]

mit \(Q_i\) als Ladungsdeponierung in einem einzelnen Pad und \(x_i, y_i\) als Mittelpunkt der Pads in x und y. Es wird über das zentrale Pad mit der höchsten Ladungsdeponierung und die nächsten Nachbarn addiert. \(Q\) ist die Ladungs-\(\sum\) über alle Pads. Für die Ortsgenauigkeit gilt:

\[
\sigma^2_x = \frac{1}{Q} \sum_i Q_i (x_i - \bar{x})^2 \quad \text{bzw.} \quad \sigma^2_y = \frac{1}{Q} \sum_i Q_i (y_i - \bar{y})^2.
\]

Fällt ein Myon zentral auf ein Pad und ist in den Nachbarpads keine Ladung, so gilt:

\[
\sigma_x = \frac{l_x}{\sqrt{12}} \quad \text{und} \quad \sigma_y = \frac{l_y}{\sqrt{12}},
\]

mit \(l_x, l_y\) als Dimension in x bzw. y vom Pad.

Die Abbildungen 5.2 und 5.3 zeigen die Ortsauflösung in den Kalorimeterpads für die Lage 2. Es sind die Abweichungen der x und y-Koordinaten, gewonnen aus dem Geradenfit, von den Koordinaten, die direkt den Ladungsschwerpunkt in der Lage 2 bestimmt wurden, dargestellt. Der Mittelwert der Verteilungen sollte bei Null liegen. Die Ortsauflösung ist die Standardabweichung. Zusätzlich zu den Punkten im Kalorimeter wurden für den Geradenfit die Koordinaten des Teilchens in der Drahtkammer MWPC (siehe Abb. 5.1) benutzt. Dieser Punkt ist sehr genau definiert. Es wurden 2 Koordinatensysteme verwendet. Das erste, in welchem die Koordinaten der
ORTSAUFLÖSUNG

PARAMETER GAUSS-FIT
MITTELWERT=1.12 ± 0.56 MM
STANDARDABWEICHUNG=6.19 ± 0.42 MM
SKALIERUNG=20.31 ± 2.27

DIFFERENZ X IN MM

Abb. 5.2: x-Differenz der durch den Geraden-Fit bestimmten Koordinaten zum Ladungsschwerpunkt (Lage 2)

ORTSAUFLÖSUNG

PARAMETER GAUSS-FIT
MITTELWERT=0.03 ± 1.06 MM
STANDARDABWEICHUNG=10.37 ± 0.98 MM
SKALIERUNG=10.85 ± 1.38

DIFFERENZ Y IN MM

Abb. 5.3: y-Differenz der durch den Geraden-Fit bestimmten Koordinaten zum Ladungsschwerpunkt (Lage 2)
Ausleseeinheiten im Kalorimeter definiert wurden, und das Koordinatensystem, in dem der Teilchenstrahl parallel zu \(y' \) verläuft (siehe Abb. 5.4).

Abb. 5.4: Die 2 Koordinatensysteme

Die genaue Position der Drahtkammer wurde anhand der Daten ermittelt. Dazu wurden die Punkte im Kalorimeter in das Koordinatensystem, in welchem der Teilchenstrahl parallel zur \(y' \)-Achse war, gedreht. Selektiert wurden nur solche rekonstruierte Geraden, bei denen die Bedingung der Parallelität genügend gut erfüllt war (Einheitsvektor in Richtung \(y \) \(e_y \geq 0.99 \)). Die konstante Abweichung in \(x \) und \(z \) wurde dann mit dem Geradenfit der 3 Kalorimeterpunkte bestimmt. Die Mittelwerte dieser Abweichungen wurden mit einem Gaußfit bestimmt. Diese Mittelwerte ergeben die exakte Position der Drahtkammer. Die Abbildungen 5.5 und 5.6 zeigen die Abweichungen der extrapolierten Punkte von den berechneten Punkten in der Drahtkammer nach Bestimmung der Drahtkammerposition. Die Standardabweichung des Gaußfits gibt den Fehler in der Bestimmung der Ortsposition innerhalb der Drahtkammer wieder.

Schließlich wurden mit diesen vier Punkten die Geradenparameter durch einen \(\chi^2 \)-Fit bestimmt. Abbildung 5.7 zeigt die aus \(\chi^2 \) resultierende Wahrscheinlichkeitsverteilung für den 4-Punkte Geradenfit. Es wurden nur solche
Abb. 5.5: Abweichung von der ermittelten Position der Drahtkammer in \(x \)

Abb. 5.6: Abweichung von der ermittelten Position der Drahtkammer in \(z \)

Ereignisse akzeptiert, die eine Wahrscheinlichkeit für den Geradenfit von mehr als 10% hatten.
Den Programmbauplan zur Bestimmung der Ladungsdeponierung in den einzelnen Lagen kann man in folgenden Schritten zusammenfassen:

- Auslesen der Triggerinformation, falls die schon erwähnte Kombination von Zählern anspricht (siehe Kap. 5.3), Kontrolle der Gesamtladungsdeponierung \(Q_{total} \) im Kalorimeter: falls \(Q_{total} > 900 \) fC wird das Ereignis verworfen

- Auslesen der ADC-Kanäle in den Lagen 2, 3 und 4 und Suche der Kanäle mit der höchsten Ladungsdeponierung, falls der entsprechende Kanal weniger als 5 fC Ladung hat, wird das Ereignis verworfen

- Suche der Nachbarkanäle mit der zweit- und dritt-höchsten Ladungsdeponierung, wobei eine minimale Ladungsdeponierung von 1\(\sigma\) des Pedestals erwartet wird.

- Ortsbestimmung des Teilchens in den 3 Lagen. Man nimmt hierzu das zentral getroffene Pad und die maximal 8 Nachbarn

- Rotation der Punkte in das Koordinatensystem der Drahtkammer, Bestimmung der Geraden, Berechnung der Wahrscheinlichkeit für den Geradenfit, Einführung einer 10%-Minimalwahrscheinlichkeit als Akzeptanzkriterium

- Berechnung der Ladungsdeponierung des zentralen Pads und der Ladungen der 2 benachbarten Pads. Hierbei werden die Pedestalwerte, die aus der Analyse der Zufalltrigger für den jeweiligen Datensatz ermittelt wurden, subtrahiert.

- Winkelkorrektur für senkrechten Einfall des Strahls zu den Ausleseebe- nen und Eintrag des Wertes ins Histogramm.
5.5. Ladungsdeponierung aus der Hochspannungskurve

Die Abbildungen 5.8, 5.9 und 5.10 zeigen die Hochspannungskurven für die Lagen 2, 3 und 4. Es sind jeweils die Werte der wahrscheinlichsten Ladungsdeponierung eingetragen. Beispiele dieser Verteilungen sind in Abbildung 5.11, 5.12 und 5.13 zu sehen. Die Fehlerbalken der einzelnen Punkte in 5.8, 5.9 und 5.10 beziehen sich auf den im Fit bestimmten Fehler. Es konnte der Sättigungswert der Ladungsdeponierung in den Lagen 2, 3 und 4 mit einer Genauigkeit von ca. 1% bestimmt werden. Da die Statistik der Hochspannungspunkte gering war, lieferte diese Methode einen zuverlässigeren Wert für den Sättigungswert der deponierten Ladung in den einzelnen Lagen als der direkte Vergleich bei einer festen Hochspannung. Der Anstiegsparameter \(\alpha \) kann nur sehr ungenau bestimmt werden, da er hauptsächlich durch die Ladungsdeponierungen bei niedrigen Feldstärken bestimmt wird und hier nur wenige Messpunkte vorlagen. Tabelle 5.1 gibt die ermittelten Parameter, Sättigungswert der Ladungsdeponierung \(Q_{Sat} \) und Anstiegsparameter \(\alpha \), für die 3 Lagen an. Tabelle 5.2 gibt die Werte Ladung pro Layer und Anstiegskonstante \(\alpha \) wider. Sie wurden durch eine \(\chi^2 \)-Minimierung der Werte der 3 Lagen bestimmt.
Lage Nr.	$Q_{\text{Stern.}}$ [fC]	$Q_{\text{Sat.}}$ [fC]	α [cm2/ppm kV$^{-1}$]
2 | 21.73 | 20.8±0.99 | 0.16±0.07
3 | 24.98 | 25.7±0.6 | 0.34±0.12
4 | 28.27 | 27.6±1.2 | 0.16±0.05

Tab. 5.1: Konstanten aus den Sättigungskurven

| α | 0.17±0.035 cm2/ppm kV$^{-1}$ | Ladung/Layer | 3.12±0.17 fC |

Tab. 5.2: Parameter der Hochspannungskurve (durch χ^2-Fit bestimmt)

Abb. 5.8: Hochspannungskurve für Lage 2

Um den Wert der Ladungsdeponierung mit theoretischen Berechnungen vergleichen zu können, muß für Flüssig-Argon der Dichteeffekt berücksichtigt werden. In dem interessierenden Bereich kann der Dichteeffekt parametrisiert werden zu [8](siehe Kapitel 2):

$$\delta = 4.606Y + C + a(Y_1 - Y)^m,$$
5.5. Ladungsdeponierung aus der Hochspannungskurve

Abb. 5.9: Hochspannungskurve für Lage 3

Abb. 5.10: Hochspannungskurve für Lage 4
5. Myon Test am CERN-Teilchenstrahl

Abb. 5.11: Myon-Signal für Lage 2, HV: 0.6 kV

Abb. 5.12: Myon-Signal für Lage 3, HV: 0.6 kV
mit \(C = -2 \ln \frac{1}{h \nu_p} - 1 \), \(\nu_p \) ist die Plasmafrequenz, in die die Materialdichte eingeht: \(h \nu_p = 28.8(\frac{\rho \cdot Z}{A_0})^{\frac{1}{2}} \text{eV} \). Die Konstanten für Flüssig-Argon sind aus [8] entnommen:

- Bereichsgrenzen: \(Y_0 = 0.271 \), \(Y_1 = 3.0 \), wobei \(Y = \log_{10} \frac{p}{m_0 c} \). Für Myonen ist dies ein Bereich im Impuls \(p \) von \(0.2 < p < 100 \frac{\text{GeV}}{c} \).

- \(C = 5.432 \), \(a = 0.206 \), \(m=3 \).

5.6. Ladungsdeponierung der Myonen bei $U=2.5$ kV

Für die normale Datennahme wurde eine Hochspannung von 2.5 kV verwendet. Die Statistik der Myonsignale für die einzelnen Runs war sehr niedrig. Da die Energieabhängigkeit des Energieverlustes $\frac{dE}{dx}$ für große Energien (30-50 GeV) gering ist, kann man die Verteilungen der Myonsignale der verschiedenen Lagen jeweils zu einem Histogramm zusammenfassen. Die Abbildungen

MYON-SIGNAL LAGE 2, HV: 2.5 kV

PARAMETER LANDAU-FIT

WAHRSCHENL. WERT = 20.0 ± 0.27fC

SD-ABWEICHUNG = 4.32 ± 0.16 fC

CHI2=44.51/37=3

SKALIERUNG=117.05 ± 6.64

Abb. 5.15: Ladungsdeponierung für Lage 2
MYON-SIGNAL LAGE 3 , HV: 2.5 KV

PARAMETER LANDAU-FIT

Wahrscheinlichkeit = 22.49 ± 0.31 fC
SD-Auslenkung = 4.67 ± 0.18 fC
CHI² = 39.85/138.31
Skalierung = 104.56 ± 5.64

Inhalt vs. Ladung in fC

Abb. 5.16: Ladungsdeponierung für Lage 3

MYON-SIGNAL LAGE 4 , HV: 2.5 KV

PARAMETER LANDAU-FIT

Wahrscheinlichkeit = 30.16 ± 0.43 fC
SD-Auslenkung = 6.69 ± 0.26 fC
CHI² = 37.58/130.31
Skalierung = 76.62 ± 4.18

Inhalt vs. Ladung in fC

Abb. 5.17: Ladungsdeponierung für Lage 4
Abb. 5.18: Energieverlust in Abhängigkeit von der Schichtdicke für 30-50 GeV Myonen, durchgezogene (gestrichelte) Kurve mit (ohne) Dichteeffekt
6. Zusammenfassung

<table>
<thead>
<tr>
<th>Lage Nr.</th>
<th>$Q_{Sat.} [fC]$</th>
<th>$Q_{zus.} [fC]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.97±0.37</td>
<td>2.95 ±0.08</td>
</tr>
<tr>
<td>3</td>
<td>3.21±0.21</td>
<td>2.76 ±0.11</td>
</tr>
<tr>
<td>4</td>
<td>3.10±0.40</td>
<td>3.27 ±0.10</td>
</tr>
</tbody>
</table>

Tab. 6.1: Vergleich Ladungsdeponierung pro Layer
6.2. Schlußfolgerungen für das H1-Experiment

Der theoretische Wert für 30 GeV Myonen ist 3.1 fC.

Zusätzlich konnte die Anstiegskonstante \(\alpha \) aus den Hochspannungskurven bestimmt werden. Für die Konstante \(\alpha_{Strahl} \) wurde ein kombinierter Wert aus den drei Hochspannungskurven des Strahltests genommen. \(\alpha_{Cosmic} \) ist der Wert aus dem Test mit kosmischer Strahlung. \(\alpha_{Literatur} \) ist der Wert von [22]. Innerhalb der Fehlergrenzen stimmen die gemessenen Werte mit den erwarteten überein.

<table>
<thead>
<tr>
<th>(\alpha_{Strahl})</th>
<th>0.17±0.035 cm(^2)ppm k(\ell)V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{Cosmic})</td>
<td>0.22±0.068 cm(^2)ppm k(\ell)V</td>
</tr>
<tr>
<td>(\alpha_{Literatur})</td>
<td>0.15±0.03 cm(^2)ppm k(\ell)V</td>
</tr>
</tbody>
</table>

\textit{Tab. 6.2: Vergleich der HV-Konstanten}

6.2. Schlußfolgerungen für das H1-Experiment

LITERATURVERZEICHNIS

[3] H1 Calorimeter Group: Results from a Test of a Pb-Fe Liquid Argon Calorimeter, Januar 89, wird veröffentlicht

[4] H1 Collaboration: Results from a Test of a Pb-Cu Liquid Argon Calorimeter, DESY 87-098

Danksagung

Mein besonderer Dank gilt Herrn Prof. A. Wagner, der sich bereit erklärte, von Heidelberg aus die Betreuung der Diplomarbeit zu übernehmen.

Herrn Prof. G. Buschhorn danke ich für die Aufnahme am Max-Planck-Institut für Physik und Astrophysik.

Den Herren Dr. C. Kiesling, Dr. H. Oberlack und Dr. P. Schacht danke ich für die Vermittlung der Diplomarbeit. Insbesondere danke ich Herrn Dr. P. Schacht für seine Geduld in den zahlreichen Diskussionen während der Datenanalyse, sowie für seine motivierenden Vorschläge.

Frau Dr. L. Görlich danke ich für die Einarbeitung in die Myonsignalanalyse und die Überlassung der geometrischen Konstanten des Kalorimeters.

Dr. H. Oberlack und Dr. P. Schacht danke ich für das Korrekturlesen der Diplomarbeit.

Bei den Mitgliedern der H1 und der CELLO-Gruppe möchte ich mich für die freundschaftliche Atmosphäre bedanken.

Für die vielen praktischen Hilfestellungen am Rechner danke ich Hubert Greif, Stephan Scholz und Dr. Werner Wiedenmann.