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Abstract iii

Abstract

Two-particle correlations in invariant mass are studied separately for like-sign and unlike-sign
charged particles. The like-sign correlations exhibit the familiar enhancement at low invariant
masses possibly related to the dimensions of the hadronic source. The data are compared to
and corrected with different QCD models where the hadronization is performed with the string-
fragmentation model. The observed correlations can be described with parametrizations quite
similar to those obtained in previous analyses of up - inelastic scattering and eTe™ - annihilation.
The data were taken with the H1 detector at HERA ep - collider in 1994, in which 26.7 GeV
positrons collided head-on with 820 GeV protons at /s = 296 GeV.

The detector components used for this analysis are presented. Monitoring the the performance,
the calibration and measuring the efficiency of the innermost driftchamber constitutes a major
part of this work. Those chamber measures the tracks along the coordinate parallel to the beam
line.

Zusammenfassung

Zwei-Teilchen Korrelationen in der invarianten Massenverteilung werden sowohl fiir gleichge-
ladene als auch fiir ungleich geladene Teilchen analysiert. Gegeniiber ungleichen Paaren zeigen
die gleichgeladenen Teilchen die bekannte Hiufung von Ereignissen gegen kleine invariante
Massen hin. Die Form dieser Erh6hung kann mit der raum-zeitlichen Ausdehnung der Quelle
in Verbindung gebracht werden, aus der die Teilchen stammen.

Die Daten werden mit verschiedenen QCD Modellen verglichen und korrigiert, welche fiir die
Hadronisation das String-Modell beniitzen. Die beobachteten Korrelationen kénnen mit densel-
ben parametri- sierten Funktionen verglichen werden wie sie auch von anderen Experimenten
verwendet wurden wie z. B. in tief inelastischen up — Kollisionen oder in der e*e™ — Annihila-
tion.

Die Daten wurden mit dem H1 Detektor am HERA Speicherrings im Jahre 1994 aufgenommen,
in dem Positronen von 26.7 GeV Energie mit Protonen von 820 GeV frontal zusammenstossen,
was einer Schwerpunktsenergie (1/s) von 296 GeV entspricht.

Im experimentellen Teil werden Detektorkomponenten, die fiir diese Analyse verwendet wurden,
speziell besprochen. Die Bestimmung der Effizienz, die Kalibration und die Auflésung der in-
nersten Driftkammer, welche die z—Koordinate (parallel zur Strahlachse) vermisst, bilden einen
wesentlichen Teil der hier vorgelegten Arbeit.




Chapter 1

Introduction

The primary goal of high energy physics today is a theory to describe the basic components
of nature and the forces acting on them. Dramatic progress has been made in particle physics
during the past three decades. A series of important experimental discoveries has firmly es-
tablished the so called standard model in particle physics together with the principle of gauge
theories which represent a comprehensive theory of particles and their interactions. It gives
a complete and correct description of all non—gravitational physics and unifies very different
forces as the electromagnetic and the strong one with the same principle, The proton and the
neutron, which form nuclei, are no longer regarded as elementary particles because in 1968
electron scattering experiments gave the first clear hints that point-like particles are existing
inside the proton. These were named “partons”. Earlier, in 1964, Gell-Mann and Zweig had
proposed that the proton and most other of the discovered particles at that time were in fact
built from more basic entities named “quarks”. With this quark model sense could be made
out of the multitude of meson and baryon resonances then being found. When interpreted as
excited states of multi-quark and quark-antiquark systems, these resonances and their proper-
ties were understood. At the same time one realized that the dynamics of quarks and leptons
can be described by an extension of the sort of quantum field theory that proved successful in
describing the electromagnetic interactions of charged particles. The fundamental interactions
are widely believed to be described by quantum field theories possessing local gauge symmetry.
In the standard model of elementary particle physics the fundamental.particles of the universe
are divided into two groups: particles of spin half (fermions) which make up the whole matter
(quark and leptons) and particles of integer spin which mediate the forces between the matter
particles. The standard model classifies the forces carried by particles of integer spin into four
categories:

The gravitational force is the weakest of the four forces. A particle of spin 2 called graviton is
thought to be the carrier of this interaction.

The electromagnetic force affects only electrically charged particles and is caused by the ex-
change of the massless photon. The corresponding gauge symmetry group of this force is the Lie
group U(1).

The weak force acts on all particles of spin % The carriers are known as massive vector bosons
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W+,W- and Z° Their gauge group is SU(2).

Finally the strong force, constitutes the fourth category. The gluon interacts with quarks and
other gluons as the intermediate particle. Quarks and gluons are carriers of color, a new quan-
tum state in the same way that electrons are carriers of electric charge. This is the origin of the
name Quantum Chromodynamics (QCD). The strong force has the surprising property, called
confinement, that always binds particles together into combinations that are colorless (white).
This particular feature is responsible for the formation of hadrons in the final state in high
energy reactions.

The basic method of studying the structure of particles and their interactions is to carry out
scattering experiments. In deep inelastic scattering (DIS) the electron scatters the proton. To
be able to resolve any structure within the diameter of the proton of 1071% m the probing par-
ticle (electron) needs a momentum greater than 1 GeV according to the De Broglie wave length
p = h-k. The greater the momentum of the probe used the shorter is the wavelength and hence
the smaller are the distances which can be resolved.

At the end of 1991 the first electron proton collider HERA at the DESY Laboratory in Hamburg
came into operation, providing collisions of 26.7 GeV electrons and 820 GeV protons resulting
in a center of mass energy near 300 GeV. This is more than a factor of ten above the energies
reached so far in lepton—nucleon scattering experiments. HERA as a colliding experiment allows
the investigation of deep inelastic scattering down to values of zpjorken = 1074, two orders of
magnitude lower in = than present fixed target experiments. Studies on leptoquark production,
proton structure functions, hadronic final states and a lot more are possible in a new kinematical
region. Two general purpose detectors H1 and ZEUS are installed in the HERA beam lines in
the interaction regions.

The perturbative calculation of physical reactions is limited to phenomena at the parton level
where single gluons and quarks are produced. However, the phenomena occurring afterwards,
i. e. the transformation of the outgoing colored partons into a set of color singlet hadrons, is
up to now not calculable. In order to keep track of the process occurring during the hadroniza-
tion, probabilistic models are used. They fill the gap left by the limited theoretical approaches
between partons and the hadronic final states which are detected and measured in a detector.
These phenomenological models of fragmentation make possible a proper comparison between
experiment and results obtained by perturbative QCD. The models used in this thesis, unfortu-
nately, do not explicitly include interference terms. Important quantum mechanical effects are
therefore ignored.

This thesis deals with a quantum mechanical interference of hadrons in the fragmentation stage.
The interference is a manifestation of the quantum statistics of hadrons which produces a cor-
relation among identical particles. For identical bosons the effect is known as Bose-Einstein
correlation as bosons obey the Bose-Einstein statistic. The principle is used in radio astronomy
as well as in optics to determine the spatial extent of photon radiating sources. The interference
occurs in particle physics at the beginning of the hadronization and therefore Bose-Einstein
correlations reflect, to a great extent, some aspects of the particle production mechanism. Here
the Bose-Einstein effect is used to obtain information concerning the space-time characteristics
of the interaction region and to highlight the role of quantum interferences in the multiparticle
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production process.

Chapter 2 gives a theoretical overview of Bose-Einstein correlations and their interpretation.
Chapter 3 explains the kinematics of deep inelastic scattering processes at HERA.

Chapter 4 shortly describes the HERA accelerator and the H1 detector, in particular the
driftchambers of the tracker part of the H1 detector which are mainly used to analyze the data.
Chapter 5 describes the inner z—drift chamber of the H1 experiment. The performance, the
calibration and the efficiency in the 1993 — 1995 running periods are discussed in detail.
Chapter 6 discusses the analysis of Bose-Einstein correlations with data collected during 1994.



Chapter 2

Theory of Bose Einstein correlations

2.1 Idea

In classical physics it is possible to keep track of individual particles even when they may look

alike. In quantum mechanics, however, identical particles are truly indistinguishable because

we cannot specify more than a complete set of commuting observables for each of the particles,

in particular we cannot follow the trajectory of a particle because that would entail a position

measurement at each instant of time, which necessarily disturbs the system due to the Heisen-

berg uncertainty principle. In particular the two situations (1) and (2) shown in fig. 2.1 cannot
" be distinguished—not even in principle.

source 1 Cn\ source 1 [
T
! "] detector 1

] detector 1

] detector 2 T ] detector 2
T 2

source2 [ 2 source 2 [

direct exchanged

Figure 2.1: Two different paths of a two—pion system, for example, in which we cannot assert
even in principle through which of the paths the pions pass.

One of the most fundamental aspect of quantum theory is that particles are mathematically well
described in terms of wave functions and that production or particle propagation is determined
by the absolute square of the sum of the amplitude of the wave functions for that process.

Let ¥n(...i)...qj, ...) be a wave function of a N-body system of identical particles where the g¢;
denotes the collection of all the coordinates of the i—th particle, including the position coordinates



2.2 History 5

and all other internal coordinates like spin for example. Let P;; be a permutation operator which
interchanges the positions of ¢; and g; when applied to the wave function ¥,,. Since Pfj\I/,. =9,
the eigenvalues of ¥, are +1 and -1. So ¥, is either symmetric or antisymmetric under the
interchange of two coordinates: Py ¥, = +¥,

It turns out that such systems of N identical particles are either totally symmetrical under the
interchange of any pair, in which case the particles are said to satisfy Bose-Einstein (BE)
statistics, hence known as bosons, or totally antisymmetrical, in which case the particles are
said to satisfy Fermi— Dirac (FD) statistics, hence known as fermions. Thus

Pi;Un (N identical bosons) = + ¥, (N identical bosons) (2.1)

Pi;¥n(N identical fermions) = — Up(N identical fermions) (2.2)

where ¢ and j are arbitrary.

It is an empirical fact that a mixed symmetry does not occur. In relativistic quantum theory
it can be proved (spin-statistic theorem from W. Pauli 1940) that half-integer spin particles
cannot be bosons and integer spin particles cannot be fermions.

Let (1|m) be the amplitude for m; to be detected in detector 1 and (2|m2) the same for 75 and
detector 2. Since we have undistinguishable bosons the total amplitude to obtain a particle in
each of the two counters is the sum

(Um1) - (2|ma) + (1|ma) - (2fmy) ' (2.3)

and the probability is the square of that amplitude containing an interference term.

To see the fundamental difference between bosons and fermions we replace the two detectors by
one (say detector 1) and calculate the probability for two particles to be detected in one single
detector. If two particles @ and b are not identical, the probability is 2 - [(1|a)? - |(1]b)|?. This
probability changes to 4-|(1]a)|?-|(1[b)|? if we deal with undistinguishable bosons. For fermions
the probability vanishes according to the Pauli exclusion principle.

The result is an enhanced probability for identical bosons to be emitted with small relative
four-momenta as compared with non-identical bosons under otherwise similar conditions.

The experimental observation of this phenomenon is normally carried out by means of a correla-
tion function. This function is defined as the probability to observe two identical bosons divided
by the probability to observe distinguishable ones and is a function of the spatial distance of
two detectors. From the characteristics of this arisen interference pattern it is possible, at least
principally, to determine the space-time dimensions of the boson source.

2.2 History

In 1954 R. Hanbury-Brown and R. Q. Twiss developed a new type of interferometer for mea-
suring the diameter of discrete radio sources and developed the mathematical theory [17). The
principle of the method is based upon the correlation between the rectified outputs of two in-
dependent receivers at each end of a baseline. The relative phases of the two radio signals are
lost and only the correlation in their intensity fluctuations is measured. This new system was
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developed for use with very long baselines and hence the resolution of the “Michelson interfer-
ometer” could be improved crucially. These advantages lead the authors to suggest that the
principle might be applied to the measurement of the angular diameter of visual stars. Thus
they replaced the two aerials by two mirrors and the radio frequency detectors by photomulti-
pliers and measure, as a function of the separation of the mirrors, the correlation between the
fuctuations in the currents from the photoelectric cells when illuminated by a star [18]. In 1956
a laboratory experiment was carried out to test experimentally the principle of these intensity
interferometer [18]. To get more precise data the experiment was rebuilt and described in detail
in [20]. At the end of 1956 the first measurement of the diameter of Sirius was made, since this
was the only star bright enough to give a workable signal-to-noise ratio with their preliminary
equipment at Jodrell Bank (England) [19]. These intensity correlations are also called “second
order coherence” or “Bose-Einstein correlations” (BEC) or “Hanbury-Brown and Twiss effect”
(HBT effect).

Intensity interferometry with photons is still an important tool for astronomers and is used also
in biology to measure the spatial extent of biological objects.

In 1959 G. Goldhaber, S. Goldhaber, W. Lee and A. Pais were working on a proton anti-proton
collision experiment in Berkeley. They were searching for the p meson which had been theoret-
ically predicted to be a pion-pion resonance state. They searched for a p signal by comparing
the invariant mass of like charged pion pairs with that of unlike charged pairs. Due to the poor
statistics of their experiment, the observation of a p signal was not possible. They compared
therefore the cosine of the opening angle between pions and observed a difference in the angular
distribution for like and unlike charged pion pairs [21]. Some time later they could explain this
difference as a result of a quantum interference of identical bosons i. e. Bose-Einstein correla-
tions [22] (in the future also named as GGLP-effect according to the authors of article [22]).
Applying this technique to particle physics the size and shape of the volume in space-time from
which particles are produced could be measured. In the 35 years since then in nearly all types of
high energy scattering experiments possible in physics such as pp, Bp, 7p, Kp, up, v—deuterium,
ete™ annihilations, vy reactions, and heavy-ion collisions BE correlations were studied.
Comprehensive reviews of results of BEC analyses can be found in [27]-[31].

A possibly different interpretation is offered by the color-string model. As emphasized by An-
dersson and Hofmann [35] and Bowler [36] the string hadronization model contains most of
the ingredients for the Bose-Einstein correlations (BEC). Recently; BEC have been found to
be the likely origin of the so-called “intermittency” effect [24], with its characteristic power-law
behavior. In [25] B. J. Bjorken pointed to the importance of BEC in the understanding of the
geometry of multi-hadron production.

2.3 Derivation of the correlation function

The analogy between the Bose-Einstein effect in particle physics and the “second order interfer-
ence” of photons in optics was realized and the correlation function concept was introduced as
a tool in describing the Bose-Einstein effect. A correlation function for BEC in particle physics
can be expressed as the ratio of the two particle inclusive cross section to the product of the
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single—particle cross sections
P(1,2)

POPD @4)

Rpp =
The intensity of light is classically determined by the absolute square of the sum of electromag-
netic fields. In quantum mechanics the probability for particle production is determined by the
absolute square of the amplitudes for the process. This means that cross terms in the square
of the sum of different contributions to a process give rise to interference in the same way as
interference in light occurs.
This heuristic procedure neglects important effects of multiparticle dynamics but helps to under-
stand the origin of Bose-Einstein correlations. We start from the situation shown in Figure 2.2
where two pions created in the same event in the space-time points Sy and S3 within the pion
source described by p(r) and propagate with the four momenta p; and p; towards the two de-
tectors D4 and Dp.

Figure 2.2: Schematic illustration of a two—pion correlation experiment. The space-time points
S1 and S within the pion source described by p(r) emit the particles which are detected in D4
and Dp.

Because of the identity of the pions the wave function has to be properly symmetrized as follows
(here the Bose-Einstein statistic comes in):

U1 4¥2p + ¥15V24

¥(1,2) = 73

(2.5)
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where U1 4 oc €P1(P4=51) which correspond to the wave function for a boson produced at S} and
traveling to detector D4 under the assumption that the boson wave functions are described by
plane waves. The alternative paths for the observed event (Figure 2.2) must be added coherently
according to equation 2.5. The probability for that special process is then

dPjp o dS1d5271; | ei((p(Da=51)+p2(Dp=52)) + ¢i(P1(Da=S2)+p2(Dp=51)) |2 (2.6)
o [L + cos({p1 — p2)(S1 — S2))]dridrs

If the pions are emitted from the whole source statistically independent (chaotic source) and
if the density of the source is described by a distribution function p(r), one obtains the net
probability by integrating over S; and Sy with the result:

Pip / dPup(S1)p(S2) = 1+ | A(T) |? @.7)

where T' = p; — py and (T is the Fourier transform of p(r) with respect to ¢ and tends to
unity as ¢ — 0. This result represents the correlation function of BEC and hence the basis
of the traditional pion interferometry. Insertion of a model density of the source reveals that
the variation of the probability Py with ¢ determines suitable parameters describing the linear
dimensions of the source i.e. he probability of detecting two identical pions depends on the
shape of the interaction volume p(r) and this dependence is given by its Fourier transform.

2.3.1 Coherence and chaos

Following [10] one can consider the possibility of a time dependent amplitude f(t} which is
similar to a certain “phase” associated with each local source. Assume the case of two pion
radiating point-like oscillators. Then the total amplitude for emitting a pion with momentum
p1 (single particle production) is given by:

(1) o faeP1r=Ta) 4 fpeipr(r=e) (2.8)

where f4 = fa(t) and fp = fp(t) are the phase factors and r the position of the detector. The
joint amplitude of observing two particles with momenta p; and p; is

U(1,2) = UA)T(2) o [f4eP1TT4)  fpelPi(—rBl|[f,eip2(r=ra) 4 fpeipa(r=ra)] (2.9)

which is already symmetric.
The joint probability is given by:

| ©(1,2) >= (| fa > +]| fB [> +fafpePTar4) 4 fgfuePr(ra=ra))x (2.10)
(| fa 2 + | fB I +Fafpe®(8=74) 4 fpFaeira(ra=ra))

If the two sources are coherent , their relative phase does not change and the average of the
product of the two “phases” is non-zero : (fafg) = fafs and | ¥(1,2) [>=| T(1) (3] ¥(2) |
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The chaotic limit corresponds to assuming that the amplitudes f; for radiation from each point
in space fluctuate wildly so that the average of (f4fp) is zero. Hence

| 0(1,2) P= (| fa P+ f8 )? + 21 fa | £5 |? cos{(p2 —p1)(ra ~ B)] (2.11)

All other terms in the product in equation 2.10 like | f4 |2 f 4 fpeP2(rB=T4) op (f AE)%i(m—pz)(m ~5)
a.s.0. are zero in the average. As the correlation function has the form Rpp = PP], 11’922 where
P(1,2) = {| ¥(1,2) ), P(1) = (| ¥(1) |*) and P(2) = (| ¥(2) |?) there is no enhancement of
the correlation function in the case of coherence but the correlation function is enhanced with
an interference term for chaotic emission as P(1)P(2) = (| fa |2 + | f& |?)? in that case.
Coherent emission will reduce the interference effect which is also known in laser optics for the
degree of second order coherence.
This derivation was made for two emitters of pions placed at the points 74 and rg. For a real
source and an infinite number of emitters the most general expression for the correlation function
is [10]

R(T)=1+X|p(T) (2.12)
This gives a physical meaning to A as a “coherence factor” or “chaoticity parameter” taking
values 0 < XA < 1. A =1 corresponds to a complete chaotic source while complete coherence is
expressed by A = 0. In the literature this factor A is sometimes introduced as an empirical scale
factor in order to improve the fit of the correlation function to the data. It is important to note,
that in high energy physics other effects than a simple degree of coherencé of the production
mechanism can reduce the strength of the enhancement of the correlation towards smaller T
(for instance resonance production).

2.3.2 The Goldhaber parametrization

The space-time distribution p(r) proposed by Goldhaber et al. [22] corresponds to particle emis-
sion from a Gaussian distributed source in four dimensions. It is nowadays the most extensively
used parametrization:

2
T
p(z) = p(0) exp(~53) - (2.13)
which leads to the following correlation function: '
R(T) =1+ hexp(—r2T?) . : (2.14)

The width r is interpreted as the size R of the production area according to R = her = 0.197r fm
and T2 is related to the invariant mass M of the pion pair by

T? = —(py — p2)* = M? — 4m? . (2.15)

The extension of the enhancement in T is proportional to R~! in agreement with the Heisenberg
uncertainty principle.

In order to take long-range charge correlations (e.g. of kinematical origin) into account a slightly
modified function can be used :

R(T) = N(1 +6T)(1 + Aexp(—r2T?)) . (2.16)
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where N is a global normalization factor. As most other experiments we will use this parametriza-
tion too in the comparison to our data.

2.4 String model approach to Bose-Einstein correlations

Models of fragmentation are phenomenological approaches to multiparticle dynamics and pro-
duction processes in high energy physics.

The first model of Feynman and Field based on an iterative algorithm for the mechanism of
particle production was developed in 1978 ([13]). Further models improved the description of
experimental data and the “string model of fragmentation” developed by the theoretists from
the University at Lund (Sweden) in 1980 is one of these models (see [33] for a comprehensive
overview). Its underlying idea goes back to 1974 when Artru and Menessier applied the idea of
colored strings to multiple production of hadrons [34]. The string model has recently been ap-
plied to the Bose-Einstein correlations. In [10] M. G. Bowler used the Artru-Mennessier string
model to explain BEC between like pion pairs. This was further improved by B. Andersson
and W. Hofmann in [35] via the area dependence of Wilson loop integrals where the correlation
length in momentum space can be related to the string tension. X. Artru and M.G. Bowler
finally quantized the classical Artru-Menessier string model with a Feynman sum over histories
method yielding a propagation amplitude which can account for the observed BEC. The model
reproduces naturally the quantum mechanical second order interference.

2.4.1 The Lund string model

The basic idea is that the color field of the strong interaction between an outgoing quark pair
qq is compressed in a flux tube which contains a constant amount of energy » per unit length
(k ~ 1 GeV/fm = 0.2 GeV2). Hence the potential between a ¢g pair rises linearly. In a process
where a gg—pair is produced quark g and anti-quark g go out in opposite directions with a color
flux between them as indicated in Figure 2.3. In order to model the dynamics of fragmentation,
a probability is introduced for the string to break up into pieces corresponding to the creation
of a new gg-pair. This can be treated as a tunneling phenomenon with a production probability

. ZTmi
proportional to o« e ™=~ where m? = m? + 3.

Quarks are supposed to have a transverse momentum p; which is randomly distributed accord-
ing to a Gaussian distribution. The distribution of longitudinal momentum is simulated by a
fragmentation function f(z) where # is the fraction of energy taken by the hadron. The pri-
mary quark g, going out along the +z axis (fig. 2.3) initially carries the “lightcone momentum”
Wo = Eg + pgo. From this Wy the first hadron ¢g; (composed of the original and a new quark)
takes the fraction z; = (ZH—V’;])‘”_-‘- leaving Wi = (1—2;)W) to the remaining quark ¢y, from which
the second hadron 17, takes a fraction Z; etc. The distribution function f(z) is related to the
probability for the string to break up and can have several forms.

The general final form of the fragmentation function given in [33] is:

12) = Nag(Lyare (L2 ypoeCEH 217)
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where o and § are the flavor of the quark and anti-quark respectively and a,bg and b are free
parameters. Nyg is a normalization factor. The flavor dependence is given as an exponential of
the mass of the hadrons and has an important implication on the probability to produce a final
state with n particles. The equation of motion of two massless quarks interacting via a linearly
rising potential V = & | z | (see [34]) is

dp

dE
i +x and e +x (2.18)

The evolution of a meson in space-time is thus “yo-yo like” and the return points (z1,t1),(z2, t2)
of the gf-pair are related to the total energy E and momentum of the meson via
E = s(z1 — z2), p =kt — t2) (2.19)
The mass of a meson can therefore be written as
m? = k*(z1 — (1}2)2 - /ez(t1 - 752)2 (2.20)
The action of a classical string is given by

S=-r / ds (2.21)

where [dX is the invariant space-time area spanned by the string and & is the string ten-
sion. Bearing in mind the formalism of path integrals one can write the amplitude for string
propagation as

Ap S = e (2.22)
The amplitude associated with each configuration has a phase equal to the area enclosed mul-
tiplied by the string tension. The probability for the production of a n particle configuration is
suppressed by an exponential of the space-time area enclosed by the string field. This property
of the fragmentation model, as will be seen, allows the incorporation of quantum interference in
the string model.

2.4.2 String model of the Bose—Einstein correlations

In order to incorporate the real quantum behavior of the microscopic nature in string models of
fragmentation, a semi-classical description of phase space been proposed [35]. The probability
for a particular final state with n particles is given by

Prob. = (phasespace) - ¢4 (2.23)

where A is the area spanned by the string in space-time. The exponential of the area was
interpreted by Andersson and Hofmann [35] as the square of a matrix element M. Considering
the possibility that the string state decays one writes S as

S=(x+ )4 (2.24)
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X

Figure 2.4: Two string configurations which lead to the same final state. The areas of the first
closed quark loops are different and the amplitudes have different phases. The phase difference
is proportional to the area AA = Ay; — Ay which arise under the interchange of mesons 1 and
2.

where the imaginary term ‘é—" has been introduced. The production of two identical bosons 1,2,
for example pions, can occur in several ways. As shown in fig. 2.4, the final state obtained after
the interchange of two of the identical bosons remains the same (see fig 2.4. The amplitude
should therefore consider the terms describing the ways to obtain the same array of particles
(addition of the amplitudes), thus

M o elitst Al | lilit5)4a) (2.25)

where A; (Az) represents the area of a n—particle configuration when particles 1 and 2 are
un-permuted (permuted). This amplitude gives

cos(kAA)

Prob. oc| M o [e(=041) 4 b1 + cosh(?84)
2

] (2.26)
where an area difference A4 = A; — A, appears as is shown in figure 2.4. Using the relationship
given in equation 2.19 one can express this area A4 in terms of the momenta of the particles 1
and 2 and of the intermediate state I

S .
; AA=| Ar— 4y |= | 1By — pa By + (1 — o) Br — (By — Ba)pr |

— (2.27)

where (E;,p;) is the two-momentum of bosons i and (Er,ps) is the two—momentum of the
) intermediate state. The enhancement of the probability which arises from this AA can be

—
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computed as a function of the relative momentum variable 7. This computation was done
in [35). The relative phase of the two amplitudes shown in figure 2.4 is very sensitive to the
string configuration, unless the momenta of the two exchanged pions are small. It turns out
[11] that permutations which generate a large area are exponentially suppressed. In this case
the difference in the four momenta of the two interchanged pions is not small. This behavior
explains the characteristic rise of the correlation function towards smaller relative momenta T’
of two identical pions. The appearance of partial coherence was discussed by Bowler in [52].
There it is shown that partial coherence arises when one of the like charged pions is a daughter
of a resonance.
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Chapter 3

Deep inelastic electron scattering

3.1 Deep inelastic scattering

In a deep inelastic scattering experiment the incoming electron scatters with the proton by
exchanging a gauge boson and converts to a charged or uncharged lepton on the charge of
the gauge boson. In deep inelastic scattering the proton is not conserved. Its partons form a
hadronic final state X which can include jets. If the gauge boson is an uncharged v or Z° the
event is called a neutral current (NC) event. The lepton in the final state is an electron which
can be measured in the detector. In the case of an exchange of a gauge boson W~ the event
is called a charged current (CC) event and the scattered lepton is a neutrino which cannot be
directly measured in the detector.

NC : ep — e X
CC : eTp — VX

The Feynman diagram of fig. 3.1 summarizes these most basic reactions in deep inelastic scat-
tering.

) Scattered
¢ lepton
Incident ¢ 0,
electron adoriog ! 7.2 :Neatral current
Struck quark ! W :Charged current
mom. xP
Target | D Incident
j P roton
Hadron Jet Speckaler Setloed p
flow Py
Current
jet

Figure 3.1: Feynman diagram for basic processes in deep inelastic scattering.
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The kinematics of the ep scattering is fully determined by two kinematical variables at a fixed
known center of mass energy /s of the ep system. Two of the following Lorentz invariant
quantities are most frequently used:

- The center of mass energy /s of the ep system
s = (pe -&—;o,,)2 ~ A4E.E, (3.1)

where p, and p, are the momenta and E, and E, the energies of the electron and the
proton.

- The four momentum transfer @ of the gauge boson, which describes its virtuality,
QR = @ = —@-m)? ~ v . (32)

The invariant mass W of the hadronic final state X

W = (g+p)? = m2+q®+2ppq . (3.3)

The energy transfer v in the proton rest frame

- 9P 4
v = m, (3.4)

Another frequently used way to describe the ep system is to use the. dimensionless scaling
variables z and y. They are defined as follow

Q@ Q*
T = = 3.5
2(qpp) 2mpv (3.5)
_ q'Dp v
= = . 3.6
v Pe*Pp Vmax (3.6)

The variable z is the Bjorken scale variable. It describes the fraction of the proton momentum
the elastic scattered parton carries in the infinite momentum frame, where the proton recoils
with high momentum against the electron. The inelasticity of the scattering is described by
y, which is equal to the ratio of the actual to the maximum energy transfer in the proton rest

frame (Vmax = ﬁ) Both quantities range from 0 to 1. Neglecting the masses of electron and
proton, the variables z and y are connected as follows
Q@ = zys . (3.7)

The squared invariant mass of the hadronic final state W? is given by

l-—z
w?o= @ ——tmy (3.8)

There are different procedures to experimentally determine these variables. In NC events the
kinematics can be calculated by measuring the polar angle 9. of the scattered electron with
respect to the outgoing proton direction and the energy of the scattered electron E

El
Ve = 1—E,—e-si2(%9) (39)

e
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Q? = A4E,E. cos? (%) . (3.10)

Another procedure, independent of the measurement of the electron, is the method of Jacquet-
Blondel [62]. It is based on the measurement of the hadronic final state. It is used for CC events
and for events where the electron escapes detection or is measured only with a poor resolution

1
YyB = 25 Z (Bi — pz) (3.11)
¢ hadrons i
1 2
Qs = ( > :o?,») : (3.12)
1-v hadrons ¢

The summation includes all hadrons measured in the detector. The variables E;, p,, and py; are
the energy, the longitudinal and transverse momenta of the hadron 1.

For the majority of DIS events the final state hadronic energy flow is spread between the direc-
tions of the struck quark and the proton remnant. Due to the high incident proton momentum
at HERA, the directions of these two systems are generally very different in the laboratory.
Hence detailed studies of the energy flow associated with them and their interrelation become
possible.

3.2 Diffractive scattering

Recent measurements at HERA [63],64] in the low opjgen kinematic range 5 < Q% < 120
GeV? and 107* < zpjgen < 1072 have demonstrated the existence of a distinct class of events
in which there is no hadronic energy flow in an interval of (laboratory frame) pseudo-rapidity
7 adjacent to the proton beam direction. A natural interpretation of these so called “rapidity
gap” events is based on the hypothesis that the deep—inelastic scattering process involves the
interaction of the virtual boson probe with a colorless component of the proton. Hence there
is no chromodynamic radiation in the final state immediately adjacent to the direction of the
scattered proton or any proton remnant. Observed distributions of such events are found to be
consistent with simulations based on models in which the virtual boson~proton interaction is
diffractive [63], that is in which the colorless component of the proton is hypothesized to be a
pomeron (IP) and the virtual boson—proton interaction may be understood as IP exchange. The
observation of these rapidity gap events in DIS means that a measurement of any short distance
sub-structure of this colorless component of the proton is possible, and thus, if the process is
diffractive, of the JP. Figure 3.2 represents such a diffractive process in deep inelastic electron—
proton scattering where the produced hadronic system X is well separated in phase space from
the quasi-elastically scattered proton. The process proceeds by the emission of a pomeron from
the proton with a small squared momentum transfer and with a fraction zp = 1 — zp < 0.1 of
the proton momentum. This pomeron then interacts with the electron in a large momentum
transfer process, described by the usual kinematic variables (Q? and = Bjorken) described above,
and produces the hadronic final state X. A separate measurement of Bose Einstein correlations
with such a diffractive DIS data-sample has been done [65].
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Figure 3.2: General diagram of a diffractive deep inelastic electron-proton scattering with pro-
duced hadronic system X well separated in phase space from the quasi—elastically scattered
proton..




Chapter 4

The H1 detector

4.1 The electron proton storage ring HERA

The storage ring HERA is the first electron proton collider and came into operation in 1991.
An overview of the accelerator facility is given in fig. 4.1.

The electrons and the protons are accelerated and stored in two separated pipes in a ring 15 to
20 m underground. The earlier accelerators LINAC, DESY and PETRA were in some of their
parts modified and used as preaccelerators. )

The electrons are produced thermo electrically and accelerated to an energy of 450 MeV with the
linear accelerator LINAC II. They are then injected into the electron synchrotron DESY II where
their energy is increased to 7.5 GeV. In PETRA 1II they achieve an injection energy of 14 GeV
for HERA. The electron ring in HERA is designed for energies up to 30 GeV and can store the
electrons over several hours. The required magnetic field of 0.165 T is achieved with normally
conducting magnets in contrast to the proton ring in HERA. The electrons lose 127 MeV energy
at each turn through synchrotron radiation. The total power loss of the accelerator system is
about 6.5 MW.

The protons are derived from negatively charged hydrogen atoms. They are produced in an
ion source with an energy of 18 keV, focused with a high frequency quadrupole magnet and
accelerated to an energy of 500 keV. At the exit of the linear accelerator LINAC III at an energy
of 50 MeV the protons are stripped of their electrons by a thin foil when they enter the proton
synchrotron DESY III. The protons then reach PETRA II with a momentum of 7.5 GeV/c and
are accelerated to the injection energy of 40 GeV for the proton ring at HERA in the same pipe
as the electrons but in a counter-clockwise rotating direction. In HERA they are accelerated in
separate pipes to the design energy of 820 GeV. The superconducting bending magnets achieve
a magnetic field of 4.65 T. The superconducters are cooled with liquid helium at a temperature
of 4.2 K from a special cooling system of DESY. The required power is less than 20 kW.
There are four locations in HERA where the electrons and the protons can collide. The center
of mass energy of the ep system is /s = 314 GeV at nominal beam energies. In comparison to
previous ep scattering experiments with a fixed target the square of maximum four momentum
transfer at HERA is Q2,, &~ s/c? = 98400 GeV?/c? i. e. about two orders of magnitude higher.
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Figure 4.1: The storage ring HERA on the right with its preaccelerators LINAC, DESY and
PETRA on the left.

To get the same center of mass energy with a fixed target experiment it would be necessary to
accelerate the electrons to an energy of 52 TeV which is not possible at present. With HERA
we have therefore access to an entirely new kinematical regime.

In 1994 the electron beam had an energy of 27.5 GeV corresponding to a center of mass energy
/s = 300.33 GeV and a square of maximum four momentum transfer Q%,, =~ s/c* = 87576
GeV?/c?. The accelerator is able to run with 220 bunches of each kind. To achieve the design
luminosity of 1.5 - 103! cm~2s~! HERA has to run with 210 bunches each containing 0.8 - 103
electrons and 2.1-10'3 protons. In this situation the currents are 58 mA and 163 mA respectively.
The electron and proton beams intersect at each crossing point every 96 ns. From the total cross
section one expects only 10° ep interactions a second, whereas there is about 10 times more
interactions between protons and gas molecules in the beam pipe at the interaction zone of the
detectors. .

The radial extensions are ;e = 280 pm and oy = 37 pym for the electron beam and ozp =
265 um and oy, = 84 pm for the proton beam. The profile of the beams are of similar
dimensions. That is not the case for the length of the bunches. The proton bunches are more
than 10 times longer than the electron bunches and therefore the interaction zone extends over
50 cm (1993 beam conditions). These parameters are summarized in Table 4.1.

At two of the four interaction zones, experiments were installed in spring 1992. The experiment
H1 is installed in the north hall, the experiment ZEUS [4] in the south hall. Two new experi-
ments, HERA-B [2] and HERMES (3], are located in the remaining two interaction zones.

In order to improve the life of the beam the HERA preaccelerators were switched to positrons in
July 1994. Thus the data used in the analysis presented here are dealing with positron proton
collisions.
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parameter pbeam e beam | p beam e beam unit |
design 1994 \
Length 6336 6336 m |
Beam energy 820 30 820 27.55 GeV |
Injection energy 40 14 40 12 GeV |
Number of bunches 210 210 94 90
Particles per bunch 10-101° 3.8.101° | 3.101 3.6.1010
Current per bunch 760 290 210 265 uA
B field 4.68 0.165 4.68 0.149 T
o, at interaction point 0.29 0.26 0.27 0.28 mm
oy at interaction point 0.07 0.02 0.08 0.04 mm
o, at interaction point 110 8 200 10 mm
Center of mass energy 314 300.33 GeV
Luminosity 1.5.10% 0.15 - 103! cm~?g7!
52.05 52.05

HF frequency 208.2 499.7 208.2 499.7 MHz

Table 4.1: Summary of HERA parameters [1].

4.1.1 The H1 Detector

This chapter briefly describes the H1 detector. A detailed discussion of the H1 detector can be
found in [1].

Figure 4.2 gives a schematic view of the detector. The z direction is identical with the pro-
ton flight direction. Starting from the interaction point the detector consists of the following
, components:

, e Central Tracker @ : It consists of six cylindrical chambers which cover a range in
theta of 20° < ¥ < 170°. They are used for reconstruction of charged particles, particle
identification and triggering.

Forward Tracker IE : It consists of three identical supermodules with drift and propor-
tional chambers. It completes the tracking system in the forward direction and measures
particles at a polar angle 7° < 9 < 20°.

: e Liquid Argon Calorimeter (LAC) E IE] : It surrounds the tracking system in the
forward and barrel region. It comprises an electromagnetic part with lead absorbers which
measures the electron energy with a resolution of the order of 12 %/ VE [GeV] and a
1 hadronic part with stainless steel absorber. Its resolution is about 55 %/ VE[GeV]. The
1 absolute energy scale for the electromagnetic part is presently known within 3 % for the

backward region and 5 % for the forward region. For the hadronic part, the absolute energy |
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Figure 4.2: The H1 detector with its main components.
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scale is measured within 7 %. In the very forward region the calorimeter is completed by a
silicon-copper plug. It measures the energy deposition at 0.6° < ¥ < 3° between the LAC
and the beam pipe.

deposition measurement in the backward direction (151° < ¢ < 177°). This lead scintilla-
tor calorimeter provides a good electromagnetic but a poor hadronic energy measurement.
Just in front of the calorimeter is the backward multiwire proportional chamber giving an
accurate space point for tracks. The energy scale for electrons is known to an accuracy of

2 %. Its resolution is about 10 %/+/E [GeV]+42 %/E [GeV].

e Backward Electromagnetic Calorimeter (BEMC) : It completes the energy |

Time of Flight System (ToF): 2 m upstream of the interaction zone just behind the
BEMC two scintillator walls are installed. The accurate time resolution of 2 ns allows the
identification of particles crossing the detector from outside (upstream).

Magnet @ : The superconducting solenoid with a diameter of 6 m, surrounds the H1
calorimeter, providing a homogeneous field of 1.2 T parallel to the beam axis in the tracking
region of the H1 detector. At the proton entrance side of the solenoid, the compensating
coil is located. Its purpose is to provide a longitudinal field integral [ B, dz opposite to
that of the main magnet. This is to compensate the solenoid’s influence on the beam.

Muon System @ : Muons escaping the H1 detector are recorded in the instru-
mented iron, on an octagonal yoke surrounding the solenoid. It also allows measurement
of the hadronic energy leakage. The system is completed by a forward muon system with
its own toroidal magnet to measure high energy muons in the energy range 5 GeV < E, <
200 GeV and muon chambers outside of the iron yoke.

Luminosity System: It consists of two crystal calorimeters for the measurement of
collinear photons and electrons scattered at very small angles. The photon detector is in-
stalled at z = —103 m, the electron detector (e-tagger) at 2 = —33 m. The system provides
an accurate measurement of the luminosity using the Bethe-Heitler process ep — epy
which is proportional to the luminosity and has a well known cross section. Furthermore
it measures electrons scattered at very small angles (¥ < 5 mrad) and photons from initial
state bremsstrahlung.

4.1.2 The H1 Tracking System

A schematical view of the tracking system of H1 is given in Figures 4.3 and 4.4. The innermost
chamber is a double layer multiwire proportional chamber (CIP) [6] giving a fast but rough ¢
and z position of a track. It is followed by a z-drift chamber (CIZ) with a spatial z resolution of
300 pm . Two jet chambers (CJC) [5] measure the r-¢ projection of a track within an accuracy
of 210 pm. The inner chamber (CJC1) is divided into 30 ¢-sectors each with 24 sense wires, the
outer chamber (CJC2) into 60 p-sectors with 32 layers. The sense wires are stretched parallel
to the beam axis. The cells are tilted by 30° in order to give optimal track reconstruction. The
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Figure 4.3: Side view of the H1 tracking system.

tilt compensates the Lorentz angle of the drifting electrons in the magnetic field. Thus the drift
direction is almost perpendicular to the track which leads to a better spatial resolution. Further,
all tracks with a transverse momentum p; above 400 MeV/c cross at least once the sense wire
plane. For this sense wire, the drift distance for the drift electrons is as short that the drift
time is shorter than 50 ns. This property allows the assignment of a bunch crossing time to
each track. They not only cross the sense wire plane, they also cross the cell boundaries which
leads to the possibility of distinguishing between hits and their mirror hits. For short track
segments the ambiguity is resolved with staggered sense wires. An overview of the parameters
of CJC1 and CJC2 is given in Table 4.2. Between the two jet chambers another z-drift chamber
(COZ) and two layers of a multiwire proportional chamber (COP) are placed. The signals of
CIP and COP are only used for triggering. Taking into account the asymmetry in electron and
proton beam energies there is a forward tracking system to detect tracks at small angle 9. It
consists of three identical modules each with a multiwire proportional chamber (FPC), a radial
drift chamber and a planar drift chamber. The FPC gives fast signals for triggering purpose
while the radial drift chamber gives an accurate measurement in r-¢ plane (o, = 200 pm,
design value) and the planar drift chamber measures the z-y projection within 170 um (design
value). In the backward direction in front of the BEMC are installed four layers of a multiwire
proportional chamber (BPC). Normally hits in three out of four planes are required which lead
to an efficiency of 89 % [7] in 1993.
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Figure 4.4: Radial view of the H1 tracking system.
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parameter CJC1 CJC2 | unit
Active length 2200 mm
Inner radius R; 203 530 mm
Outer radius R, 451 844 mm
Number of cells 30 60
Number of sense wires per cell 24 32
Number of potential wires per cell | 50 66
Number of filed wires per cell 10 10
Number of cathode wires per cell 49 65
Sense wire distance 1016 .| mm
Maximum drift distance at R; 229 285 mm
Maximum drift distance at R, 445 43.1 mm
Gas mixture Ar/CyHg 50: 50 %
Sense voltage 1170 v
Field gradient 120 V/mm
Drift velocity =~ 54.2 pm/ns
Lorentz angle ~ 42 °
Org 145 pm
o, 25 mm
O4E /dz 10 %
Double hit resolution 2.5 mm

Table 4.2: Central jet chamber parameters [5].




Chapter 5

The inner z-drift chamber

5.1 The hardware

Two thin drift chambers, the central inner and outer z-chambers (CIZ, COZ) (see Chapter 4
for an overview) surround the inner half of the jet chamber and complement the measurement
of charged track momenta. These two chambers deliver track elements with typically 300 um
resolution in z and 1 to 2 % of 27 in ¢.

¥ire plane lilted in
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a backward (-z) direction Opsn drift
cells
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/ i g S A
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Quter diameter 399 mm (polygon edges)

Inner diameler 347 mm

Figure 5.1: The inner z-drift chamber

This requires a drift direction parallel to the beam axis and sense wires running perpendicular
to the beam axis on the surface of two cylinders with 180 and 460 mm average radii. Linking
these track element to those obtained from the jet chamber with accurate r¢ and moderate 2-
information gives the final accuracy on both the longitudinal as well as the transverse momentum
components. A double track resolution of a few mm, high efficiency and low chamber mass were
further design criteria for CIZ. The CIZ uses the inner carbon fiber wall of the CJC for closing
its gas volume. The polar angle covered by the CIZ is 16° < ¥ < 169°. The length of the
full detector is 2200 mm reaching from -1030 mm to + 1080 mm in the H1 coordinate system.
Fifteen rings, each 12 cm long containing sixteen drift cells, are arranged on a regular polygon.




The inner z-drift chamber

unit value
active length Az mm 1800
active zone starts at z mm -1080
mechanical length Az mm 2254
total length Az mm 2467
thickness Ar mm 20
chamber starts at z mm -1373
inner diameter mm 347
outer diameter mm 400
number of drift-cells (rings) in z 15
number of ¢—sectors 16
number of sense wires per ring 4
number of potential wires per ring 3
mean wire length mm 1120
drift cell length Az mm 120
maximum drift distance Az mm 61.25
sense wire material Elgiloy
sense wire resistance kQ/m 3.0
sense wire diameter pm 20
potential wire material Au
potential wire diameter pm 120
wire tension N 0.2
dead zone in ¢ (readout channel) deg (%) | 7.5 (2.1)
dead zone in ¢ (wire support) deg (%) | 14.4 (4.0)
dead zone in z (cell walls in active zone) % 1.6
radiation length in active zones % Xo 0.6
radiation length averaged % Xo 1.2
gas mixture % Ax(70)

% C2He(30)

cathode voltage A% 4300
potential wire voltage v 2150
field gradient V/mm 52.7
drift velocity mm/us 50

Table 5.1: CIZ parameters

The independent rings are separated by printed circuit boards on each side serving as the cathode
plane. These walls, the axial dividers extending from the corners of the polygon and the Kapton
foil with the field forming strips are glued to the chamber body. The cells are closed electrically
with another foil identical to the one on the bottom which is glued to a removable cover. There
are four anode wires and three potential wires running around the circumference in each ring.
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The sense wire planes are tilted by 45° from the normal to the chamber axis, with the first nine
cells in backward direction tilted backward and the last six in forward direction tilted forward,
i.e. following the direction of the tracks crossing the respective cells. As shown in picture 5.3 this
tilt produces a distortion of the equipotential wire lines resulting in a non-uniform distribution of
the charge collected on the four wires and an equivalent tilt of the isochrones. In the orientation
shown in Figure 5.3 wire # 4 collects charge only when a track crosses to the left of the sense
wire plane and wire # 1 collects charge only if a track crosses to the right. Both collect roughly
60 % of the total charge, while wires # 2 and # 3 collect about 20 % for both sides. This
unusual wire arrangement hence solves the left-right ambiguity automatically without a need
for wire staggering and furthermore dampens the dependence of the resolution on the crossing
angle in particular for low crossing angles. Picture 5.2 (upper picture) summarizes the different
possibilities of wire signals given with different tracks. Two, three or four hits can be the signal
of a track depending where the track passed the chamber.

40 track 60° track 45° track 135° track 80° track 45 track 135° track
Wires 1234  Wires 1,23 Wires 2,3 Wires 2,3 Wires 23 Wire 4 Wires 2,3
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Figure 5.2: Schematic view of drift-cells in the middle of CIZ at z = 0 (upper picture), and side
and radial view of the whole chamber (lower picture)

The wires are soldered to both side walls of a 23 mm wide cable channel at ¢ = 0°. Here the
signal wires are connected to line drivers and the potential wires to high voltage cables.

A dedicated current monitoring system (see ref. [56] for details) was included into each potential ;
wire supply line. It allows to measure the precise currents in the nA range. These wires control |
the gas amplification in the chamber. In this way the activity introduced by interaction products
or stray beam can be monitored quite sensitively. More details on the results are given in a
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Figure 5.3: One single driftcell of CIZ. Shown are the drift-lines for the four wires with positions
of equal drift times marked at fixed intervals (150 ns).

following chapter.

Damages on the sense wires seen during the repair in winter 93/94 forced a change of the gas
mixture. Presently we run the chamber with an ArCyHg gas mixture, to which a small amount
of water (0.4 %) for radiation damage protection is added. Further details and results are again
given in the following chapters.

Some properties and technical data of the inner z—chamber are summarized in Table 5.1 which
presents the status of CIZ at during the 1995 run period. A comprehensive description of the
CIZ hardware can be found in [1] and in [55].

5.1.1 Current monitoring

Since the CIZ is the chamber closest to the interaction point, it senses most directly changes
in beam tune and quality of the luminosity optics. When beams of high energies are lost,
mainly during the filling of the HERA ring, a large amount of reaction products pass through
the trackers and normally cause high voltage trips, i.e. the over-current monitor switches the
voltages off. Our sensitive current monitor [56] provides a better safeguard against sudden
increases in chamber current. After the successful tests with a single channel prototype a
complete unit was assembled for all CIZ cells. It was found that the background level in CIZ
depends only on the electron current in the machine and the current measured indicates also
the quality of the beam tune, which varied often considerably. Actually the currents measured
in the CIZ were often used to assess the beam conditions and to decide whether the chambers
of the central tracker after a new fill of the HERA ring should be switched on or off.
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5.1.2 Gas mixtures

The gas mixture has been changed several times in different running periods. During 1992
and 1993 an Argon/Methane (80/20%) mixture were used to run the chamber. Inspection of
the chamber wires during the shutdown revealed serious ageing effects.(see [55] Chapter 10.5
and Figure 10.9-10.12), Such effects for this particular choice of gas had been seen in other
experiments, and also on the inner wires of the central jet chamber and the forward tracker.
During the winter shutdown 93/94 all sense and potential wires were replaced and the chamber
was thoroughly cleaned. Starting in 1994 with an Ar/CqHg (50/50%) mixture we lost most of
the efficiency due to a lower gas gain. The mean charge seen with the different mixtures (ArCHy
80% 20% and ArCyHg 50% 50%) can be seen in Figure 5.4. The data were taken during a cosmic
run at the beginning of 1994.
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Figure 5.4: Mean charge of CIZ with different gas mixtures as a function of high voltage.
(Me = Methane (CH,); Et = Ethane (CaHg))

In principle we could have enhanced the high voltage up to 5100 Volt to get a satisfactory
efficiency with the gas mixture of Ar/C;Hg (50/50%) but the chamber was never tested in such
a high region of the cathode voltage. The danger of a serious hardware damage lead us to change
the ratio of the components of the gas mixture.
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In Figure 5.5 the mean collected charge is shown for Argon and Ethane in different mixtures. An
increase of the gas gain is evident if the ratio of Ethan to Argon becomes smaller. This higher
gas gain with a lower Ethane contribution has been observed also in a proportional chamber at
the Crystal Barrel experiment at CERN [58).
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Figure 5.5: Mean charge of CIZ with the gas mixture Argon/Ethane in different ratios as a
function of high voltage

During the winter shutdown 1994/1995 the chamber was removed from the tracker part of the
detector and opened. There were much less deposits on the sense wires using the Ethane/Argon
gas mixture instead of the Methane/Argon one.

5.1.3 Experience with another sense wire type

During 1994 the most forward rings in z-direction (13 and 14) were rewired with gold-plated
WRe 20 pm sense wires instead of Elgiloy. Due to a smaller resistance of these wires the
resistors on both ends of the wires were also lowered in order to get the same charge division
performance. During operation the amplitude of the signals were smaller than for the other
rings and the efficiency dropped drastically in these two rings. Unfortunately the thresholds of
the scanner (see [1] and [55]) could not be lowered independently for the different rings. The
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high voltage of these two rings were raised by 200 volts above the nominal value of 4500 in order
to get the same efficiency. The ageing effects of W Re wires were comparable to Elgiloy but a
faster rise time is seen for W Re.

5.1.4 High voltage problems

During the 1994 run in three out of 15 rings the desired high voltage could no longer be reached
already after a short running period, which excluded radiation damage as a possible cause. The
problem arose only in conjunction with high electron currents mainly at the beginning of a new
filling period of the HERA ring. The hardware protection system switched the high voltage off.
No problems were observed during comics data taking. When the chamber was opened during
the 1994/95 shutdown again large deposits were observed in these cells on the potential wires,
while the neighboring cells were clean. The deposits arose from oil residues on the gold wires
left from the production process, which could not properly be removed with the wires soldered
into the chamber, and were produced during the initial burning-in phase of the chamber. A
special tool was fabricated, which allowed to clean gold wires during transfer from one spool to
another in an ultrasound bath before putting them into the chamber. This was evidently the
reason for the problems with the high voltage as CIZ was full operational and efficient during
1995. These high voltage problems occurred also during the run in 1993 where two rings could
not be operated on the nominal value.

5.2 The software

5.2.1 Qt analysis and noise studies

The relevant parameters of a drift chamber wire signal are the arrival time (¢) and the pulse
integral (Q) i. e. the collected charge. They allow the calculation of the distance of a crossing
particle from the sense wire (using the drift time) and the position along the sense wire (using
the pulse integral from both ends of the wire, referred to as “charge division”). The energy loss
dE/dz is measured by summing the charge of all pulses on the wires. The determination of these
signal parameters is done in a program which runs on the front-end processor. The input data
are digitized signals with suppressed digitisations of the baseline (zero suppression, as provided
by the scanner hardware [1] and [55].)

A considerable amount of work has been concerned with noise studies. Since nearly all readout
devices in H1 are clocked by the HERA bunch repetition frequency of 10 MHz, this particular
frequency appears at different levels also in all analog chains and appears also superimposed
on some of the pulses registered by the analog chain of the CIZ. This can be seen in [61] as a
pattern of peaks in the drift time distribution which reflects a clear 10 MHz structure. If they
are sitting on top of a real hit “fake” hits which are generated by the noise can emerge a real
hit produced by a charged particle. In such a situation the two hits are “clipped” by the Qt
program and seen as two individual signals. Most of the hits are coming from real particles
crossing the chamber but the superposition of a 10 MHz signal shifts all hits systematically and
hence modifies the original drift time distribution. An analysis of the output data of the Qt
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program indicated that the noise is less prominent in the backward part of the chamber in z. If
there are two hits on the same wire the first hit is less affected by noise than the second one,
often identified as an additional hit produced by noise. Investigation on the parameters of the
Qt program removed partly the most prominent spikes in the drift time distribution.

5.2.2 Isochrone map

The influence of the magnetic field of 1.2 Tesla with direction parallel to the beam axis on
the drift field direction has been studied in detail in [55] (Chapter 4.3.3). The most important
effect is a modified isochrone map installed during 1994 which takes into account these effects.
Calibrating the tgf fset (gee section 5.3.2) separately for the inner and the outer wires lead to
a difference in values. Adjusting £27/°¢ to its correct value the triple hit resolution (as the
deviation of one hit from the line which connects two other hits) became worse. This effect was
revealed as an artifact of the isochrone map used and a third map was created which improved
the situation but still did not make it perfect (see Figure 5.13). For very small and very large
theta of tracks the actual parametrization of the isochrones as circles is not well suited for the
reconstruction of the hits. Looking for the deviation of the hits measured by the CIZ from a
track in the CJC as a function of theta (Figure 5.6) a spreading of the hits for flat tracks is
visible. Taking a parametrization with polynoms instead of circles would improve the situation,
but has not been implemented yet. '

5.2.3 Reconstruction of tracks

Since the beginning of data-taking in 1992 different solutions were tried to relate the hits in the
tracker chambers to particle tracks (“pattern recognition”). The linking procedure between the
2-chambers and the central jet chambers is inherently difficult for the following reasons: The
CJC has a resolution for one hit of about 200 pm in the r¢— plane and a resolution of about
3 cm in the z direction which is measured using “charge division”. The z-chambers have an
excellent resolution in z of a few 100 um, but a low resolution in r¢. A track as such can only be
defined by the jet chamber. Experience of the analysis of the data have shown, that usually as
many as 10 hits within the CJC and also a minimal length of a track are required for so called
“good” tracks which are accepted for physics analysis.

Due to the large range of allowed crossing angles in the detector (16° — 169°) there is no simple
relationship between drift time and the position in the chamber. The position (2,r) is a function
of drift time (¢p), wire number (n,,) and crossing angle (), which is unknown initially.

The procedure depends crucially on the knowledge of the isochrones in the chamber which were
parametrized as circular arcs in the form

(z—a) +(z— b)? = p? (5.1)

2 and z are the coordinates in the chamber and a, b and r are functions of the drift time and wire
number. For a given drift time the isochrone parameters are then computed via interpolation in
the table, where the values of z and r are constrained to be maximal and minimal values. Using
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Figure 5.6: Deviation of CIZ hits from a CJC track as a function of ¢ of the track. This Figure
is produced with the third isochrone table used during 1995.

the center of the isochrone section an initial guess for the position (2,7) is simply given by
Zguess = a(t) + p(t) (52)

Tguess = 70 + Tguess = To + b(t) (5.3)

where 79 is the nominal radius of the chamber. Two procedures are then applied to correlate
hits with one another to reconstruct segment in a single drift cell or to link the hits to track
segments from other detector parts.

In the beginning single track segments in both z-chambers, CIZ and COZ were reconstructed
and linked to corresponding tracks in the jet chambers. Details on the reconstruction of those
segments within CIZ can be found in [55] and [59).

In a further step the program was modified such that only single hits are collected within the
z-chambers rather than full segments. If a vertex has been found by the jet chamber recon-
struction program, and if it is assumed that all tracks originate from this vertex the appropriate
coordinates for hits in the CIZ can be calculated, and the corresponding hits found can be col-
lected in a linking module [59] [60].

Given the vertex coordinate (z,, 7, = 0), and the isochrone parameters for the hit (as,bi, 73,29, 29),




36 The inner z-drift chamber

the slope & can be estimated as .

2z =2
= —— 5.4
« mf + g (54)
Using a, a better point can be obtained as
d=et i (55)
13
et (5)

Both the left and the right solution for every valid hit in the CIZ are computed. The recon-
struction program then uses the CJC track information to project into the CIZ and identify hits
which could be associated with the track. If an association is made, with the track information
from the CJC an improved z and  for the hits can be provided. The more precise ¢ value from
the CJC also allow to better determine radial coordinate, which varies because wires are strung
along a polygon and not along a circle.

In a third step the priority changed which was given to the vertex fit. To do this first the hits
from the z-chambers are combined and associated with the tracks. The initial vertex fit using
only the information from CJC improves the quality of the central tracks and makes it easier
to link the tracks to the other detectors. The linking routine uses an algorithm similar to the
“simulated annealing” procedure (developed in neuronal networks programs) link the 2-chamber
hits to tracks from the jet chamber. The new program allows a link to the CIZ even if only
one single hit was found to match a CJC track. ( See further chapters for detailed numbers on
linking efficiencies).

5.3 Calibration

The final determination of the space point in r, z, and ¢ also depends on a number of calibration
constants and parameters. These include geometrical constants like the accurate wire position.
Electrostatic and gravitational forces will move the wires away from their original position. A
mechanical deformation of the detector will change the wire position also. Secondly, there are
parameters which depend on the running condition of the drift chamber, as the drift velocity
which is a function of the applied electric field and the gas mixture as well as the magnetic
field. Finally the readout and signal electronics influence the measurement of the time and the
charge. All these influences could be corrected in a calibration procedure which has to adjust
the calibration constants needed in the reconstruction program.

5.3.1 ¢ calibration

The determination of the ¢ coordinate along a wire of CIZ is done using the method of charge
division. This method is an application of the Ohm’s law and relates the fraction of the charges
on both ends of the wire Q.+ to the ratio of the resistors to both ends Ry :

Q+ _R _3+(4-d)
TR i -6 &1
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This can be written as :
L Q_-Q4
= o+ = 5.8

¢=dot3 0 F 0 (5.8)
The contribution of the input resistance of the amplifiers and the capacities of course does not
depend on the actual position of a particle in ¢. The ratio = o is reduced due to this effect, which
make the wire seemingly longer. This effect can be corrected for by a factor Legy in formula
5.8. The integrals of collected charge after the digisation step can be written as a product of
effective charge and gain factor of the amplifier:

Qright = 9+ * Q (5.9)
Qlest =9-- Q- (5.10)

The final ¢ coordinate of the hit is then given as:

Qleft Grel * Qnyht
it = ¢g — —_— 5.11
$aie = do eff Qleﬂ Grel Qﬂght ( )

where ¢g is the center of the wire and gre = %i the relative gain factor which corrects for
differences in the amplifier gain. There are 3 calibration constants which need to be tuned: ¢y,
Leyss and grer-

In principle the three parameters can be tuned using cosmic tracks with requirement that the
difference of the two peaks in the pulse spectrum correspond to 180° for vertical tracks. A more
precise and accurate determination of the calibration constants can be done with respect to an
external detector like the CJC. Vice versa the CJC uses the accurate z information from the
z-chambers to tune their z resolution.

A special program was developed which minimizes a x? function according to:

xt =y Wose —doral ;2%[2)2 (5.12)

where ¢¢ ¢ is the reference value of ¢ measured in the jet chamber and ¢¢rz is the same as ¢
in formula 5.11. ¢crz = dcrz(do, Lefs, grels Queft, Qright) is a function of the three calibration
constants and minimizing x? is equivalent with tuning the correct parameters. The program is
able either to calibrate all wires together or to tune all parameters for all wires separately.

At the beginning of 1994 the line drivers were replaced for the inner wires (number # 2 and #
3 (see Figure 5.3)) in order to equalize the pulse-heights of the outer and the inner wires. A
separate calibration for both wire types was needed. (See [55] Figure 9.5 for the resolution).

5.3.2 Calibration of drift velocity and time offset

The drift time to calculate the position of a hit in the chamber is given by:

tp = Tog —t2ffoet 4w (5.13)

where t)r is the measured time as provided by the Qt routine, ty is the wire by wire offset
introduced by differences in cable length and propagation times and tof faet i the global time
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offset determined by the global cable length and delays in the readout system. The drift velocity
is contained in the isochrone map, nevertheless a linear correction factor cseqje is used for a precise
adjustment. The isochrone map is scaled linearly to correspond to the actual drift velocity. In
principle the time offset and the drift velocity can be evaluated simply from the drift time
spectrum using the the rising edge of the distribution to calculate the time tgf Fset and the
falling edge for the maximum drift time, which corresponds to the maximum drift length. The
drift velocity is then calculated by vp = lpmaz/tDmaez. There are other and more accurate
methods to tune these two parameters. In matching the track segments, which cross the wire
plane it is possible to tune tgf fset and the drift velocity can be determined too by matching the
segments from tracks which cross the cathode cell boundaries. However, for CIZ the precision
of these two methods is limited by the geometry of the tilted wire arrangement and the small
number of wires (see Figure 5.2 the upper plot where the different situations are shown.) In
addition inhomogeneities in the drift field near the cell boundaries and near the wires can be a
source of wrong measurements. For the CIZ a third method is used with great accuracy to tune
both calibration constants tgf Fset and vp using cosmic tracks.

Calibration with cosmic data

This section describes a procedure for calibrating the CIZ using cosmic events. The procedure
requires clean cosmic events in which a single cosmic ray penetrates the H1 detector from above,
passes through the COZ, CIZ, then near the beam axis, then through the CIZ and finally the
COZ. The events must also be reconstructible. The reconstruction must yield two CJC tracks,
each of which has a CIZ and a COZ link. Given these criteria, the procedure fits the two
tracks as one long straight track in the 2—s plane, (2 coordinate along the beam axis, and the
arclength s).

Given a helix in space, whose axis of symmetry is parallel to the z axis, the points on the helix
satisfy the equations:

zi(B:) = rosinypo+ % [s - cos B; + sin g} (5.14)
yi(Bi) = —rocosth + % [s - sin §; — cos o] (5.15)
w(f) = 20—, [ﬂi ~go—s- %] . (5.16)

There k™! is the radius of curvature, and is signed. 7y is the distance of closest approach to the
z axis, and is also signed. 1) is the angle between the tangent to the helix in the z—y plane at 7.
Zp is the z coordinate of the track at 7o, while 9 is the polar angle of the helix. The parameter
s is either 41 or —1, and depends on the charge of the track, and the direction of the magnetic
field. For B along the +z axis, s is positive for a negative track. The sign of « is chosen to be
the sign of s, while the sign of rg is taken from the direction of 7 X pr; positive if this is in the
+2z direction, and negative otherwise. Finally, §; is the running parameter that describes the
angle in the z~y plane relative to the center of the helix, that describes the point (z,y). In the
z—y projection, the helix appears as a circle of radius T’l?[’ while in the 2—S projection, it appears
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as a straight line, (S is the length of the arc in the z—y plane). The arc length can be computed
at a point (z,y) as follows. If r = /22 + 42, and p = T}EI

p2+R2—7‘2)

R (5.17)

S = p - arccos (

where R = p — rq - sign(k). For r = 7, S = 0 Thus for every point along the track, we can
compute the arc length, S;. It is also important to estimate the error in S, ds. To do so, we will
write equation 5.17 as:

cos(S/p) =1 -

Now, in the typical case of a cosmic track, S/p < 0.1, which means we can approximate the cos
function by its Taylor series, or:

5?2 =1— r? — 12
2-p° 2p(p — o)’

S=,/’—’(—;i_:r-§@ o (5.18)

We can now estimate the error in S with respect to the various parameters.

This then can be reduced to yield:

2

p-r
dS/dr = ——— e
1 = o= =)

1 T—To 72— p?
L P [H(p—roV
S
dSjdp = ———mm
% = T =)

These can be simplified for typical values to estimate the significance of each contribution.

dSfdr =~ 1
dS/dry = 0.1t00.4
dS/dp = 0.001

The error with respect to g is roughly independent of p, and grows as | g | increases. The error
with respect to p is very tiny, even for 100% errors in p.

In the problem at hand, the parameters x and r¢ are taken from the CJC tracks, and the
points of interest are then the attached hits in the CIZ and COZ. Using the (z;,r;) pairs for the
attached z—chamber hits, we use the CJC information to convert these to (;,5;) pairs. These
points should then fall on a line:

z=a-S+0
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In order to take advantage of the fact that the two tracks are the same, we can make the S; on
one of the tracks negative. Thus all the points from both tracks will now satisfy the same linear
equation. Given that we have n points, each of which is measured with an error o; = dz;, we
can solve for a and

"1 S? <" St>2
A = — S, fod 3
1 [l &S RS z,}
a —3 — — — — pren
A [i a? Zz: a? ; o? 2;.:0?
1 n S-L2 n Z; n Si n S,-z,

Given these equations, we can define several different fits, all of which are useful for the overall
calibration. We define here two quantities, the deviation and the resolution. We use only the
COZ points to make the fit, and then compute the deviation of each CIZ hit from the fitted line.
Further we can compute the resolution of a single hit by making the line fit excluding only the
desired hit, and then computing the distance from this hit from the line, the resolution. In order
to facilitate looking at these things, we map all of the CIZ data onto one ring. We can then
look at the deviations from the track fit as a function of the drift distance. This plot, shown
in Figure 5.7 is the heart of the calibration procedure as it is used to tune both calibration
constants. In Figure 5.7 (a) we see the deviation with correctly tuned calibration constants. A
straight flat distribution with matched left and right part of the CIZ drift cell indicates a correct
calibration of £5//°¢ and drift velocity v In the next plot we see a shift in 10/ fs€t of 100 ns
with a correct vp. This appears as a shift of the deviations in the right and the left drift cell
but no slope in the distribution. In (c) we see a 10% misadjusted vp with a correct tgf fset The
left side matches the right one but there is a slope in the distribution. Finally both calibration
constants vp and £3/7*®* are wrong in (d) which results in a shift together with a slope.

In principle we are now able to tune the parameters checking the plots and varying the input
parameters until the distribution is flat and match the left and the right side of the drift time
distribution.

To be able to run the calibration automatically a special program fits each side of the drift cell
independently with a straight line ( A + B - D where D is the drift distance) and calculates
from the shift of the two lines (A) the offset in tgf feet and the correct drift velocity from the
slope of the two lines (B). These numbers are converted into the units used in the database and
can be used directly as new input parameters for the program. Thus, this procedure can work
iteratively and converges after two or three iterations. The two most inner bins near the wires
are excluded from the fit due to a non homogeneous drift field.

This procedure is able to measure 1 ns deviation in time and 1 permille shifts in vp. The
statistical error in the drift velocity measurement is 3 permille. The stability of the variables A
and B from the straight line can be deduced from Figure 5.8. If 10000 hits are collected the fit
begins to converge and the results remain stable.
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Figure 5.7: Deuviations of CIZ points from the track fit which uses only the COZ as a function
of the drift distance. The left and the right drift cell range from -60 to 0 mm and from 0 to 60
mm respectively.

a) correctly tuned CIZ calibration constants.

b) t3f7°°* is shifted by 100 ns.

c) vp is shifted by 10%.

d) both shifts included.

It is important to note that a miscalibration of the COZ either in the time or in the drift velocity
does not affect our measurement as we measure the mean of the distribution and not the width.
Not correctly tuned calibration constants of the COZ cause a broadening of the deviation plot of
the CIZ but no shift. The CIZ calibration constants remain stable within the statistical errors.
This is demonstrated in Figure 5.9 where the upper plots correspond to correctly tuned COZ
parameters and the lower one do not. We see a projection from the left (left side) and the
right driftcell (right side) of CIZ. A clear broadening of the distribution is the result. With this
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Figure 5.8: Fit-parameters A and B from the straight line fit through the Deviation of the left
and right drift cell in dependence of the number of hits.

a) and b) fit-parameter A,

c) and d) fit-parameter B.

method it is also possible to note absolute shifts between the two chambers. In Figure 5.10 coz
is shifted by 3.8 mm relative to the COZ in positive z direction. We observe that the deviation
distribution of the CIZ is splitted in an upper and a lower band. The upper band consists of hits
within rings tilted in forward direction and the lower one collects hits in rings 0-8. Hence a slight
shift of the z—chambers relative to each other results in a vertical shift of the deviation. This
method was used to fix both chambers in their relative position in the z direction. As a cross
check the deviation of the COZ hits from the line fixed only with the CIZ can be used to test the
procedure. For geometrical reasons this method is not so sufficiently to calibrate the COZ, but
wrong CIZ parameters immediately broaden the COZ deviation according to Figure 5.11. In
(a) a clear structure is visible which proves that the CIZ parameters are correct. A slope in the
distribution indicates some problems in the drift velocity calibration of the COZ. In (b) t‘c’,f Joet
of COZ is shifted by 100 ns. In (c) vp is shifted by 10 % and (d) includes both shifts together.
Using the whole drift region where the drift field is homogeneous is the main advantage of this
calibration method compared to the other method mentioned above. The basic idea was to use
the COZ to calibrate the CIZ and then to use the CIZ to calibrate the COZ as an iterative
procedure. The COZ is calibrated independently, so we use the COZ to calibrate the CIZ.
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Figure 5.9: Projection of the deviation of CIZ as in Figure 5.7
a) and b): correct tuned COZ calibration constants. The left and right drift cell of CIZ is shown.
c) and d): the same as in a) and b) but with wrong calibration constants of COZ.

Calibration with ep data

Not only cosmic muons are helpful to calibrate the tﬁf fset and the drift velocity. In principle it

is possible to use normal data from ep collisions and follow the same procedure as for cosmic
data. This has been tested in a program which selected good CJC tracks with linked to both 2-
chambers and pointed to the primary vertex. These tracks are fixed by the COZ and the vertex.
In Figure 5.12 the deviation of linked CIZ hits from such a track is shown. The distributions
are the same as in Figure 5.7 but for ep data. The left column shows the scatter plot and the
right side represents the corresponding mean values of the histogram with a different vertical
scale. The deviation of the CIZ hits which are linked to that track yield the same deviation as
just discussed for cosmic tracks. There is a crucial difference between these two methods. The
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Figure 5.10: CIZ deviation with CIZ shifted by 3.8 mm in positive z direction.

cosmic track is very long and fixed with both ends in the outer z-chamber. The ep data track
has half the length of the cosmic track and the accuracy of the vertex is not so good. Hence
the precision of the measurement of the calibration constants using cosmic data is much better
than for ep data.

This method is only usable if the tracks are constrained to a vertex and if the measurement of
the CIZ has no influence on the assignment of tracks to the vertex.

5.4 Resolution, efficiency and performance

Resolution

The H1 detectors have been designed to provide a good momentum resolution in combining
the information from the different sub-detectors. The resolution of the inner z-chamber was
measured with data and Monte Carlo data.

A combined resolution of the CIZ can be measured with cosmic tracks using the same procedure
as for calibration i. e. the deviations of the CIZ hits from the track fit using only COZ. Another
quantity is the resolution of CIZ by making the line fit excluding only the desired hit, and
then computing the distance of this hit from the line, As mentioned earlier in this chapter the
problem of the isochrone map affects the width of the deviation and resolution. This is an artifact
of the isochrone table used and has nothing to do with cable length or delays in the readout
system. The tgf feet parameter seems to be different for the different wire types as can be seen
in Figure 5.13 in the scatter plots (a) and b)) which illustrates the deviation as a function of
the drift region shown for the outer and inner wire types separately. Below a projection through
the left and the right drift cell is shown for both the outer wires (middle) and the inner ones
(below).

Figure 5.14 summarizes the external resolution measurements. Only the inner wires are used.
All fits are made as a Gaussian on top of a quadratic polynomial. The deviation is shown in the
two upper plots 5.14 (a) and (b). Figures 5.14 (c) and (d) represent the resolution of the inner
wires (i. e. line-fit excluding the desired hit and then computing the distance from this hit to
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Figure 5.11: Deviations of COZ from the track fit which uses only the CIZ as a function of the
drift distance. The left and the right driftcell ranging from -50 to 0 mm and from 0 to 50 mm
respectively.

a) correctly tuned CIZ calibration constants. b) tgf fset ig shifted by 100 ns. ¢) vp is shifted by
10%. d) both shifts included.

the line). The lower scatter plot in Figure 5.14 (e) illustrates the resolution as a function of the
full drift region from -60 mm to +60 mm. The difference between the width of the deviation
and the resolution is small indicating quite good calibration.

The overall resolution number of about 700 pm also contains effects like multiple scattering
between the different chambers and miscalibration of the latter.

An internal resolution can be obtained by looking at the deviation of the hits from a track
segment which has been reconstructed only with hits collected in the inner z-chamber. Another
possibility is the triple hit resolution which combines two hits to a line and measures the deviation
of the hit lying in between. Both distributions are shown in Figure 5.15. These distributions
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Figure 5.12: Deviations of CIZ hits from ep data tracks which are linked to both 2z - chambers
and to the primary vertex. The distributions are the same as shown in Figure 5.7 for cosmic
tracks. There is a change of the calibration constants of CIZ from the top to the bottom :

correctly calibrated (top), drift velocity off by 10%, tgf fset shifted by 100 ns, both calibration
constants shifted (bottom).

Left side: scatter plot of deviation vs. drift cell
Right side: mean values of the histograms on the left.

are produced with tracks restricted to 45° < 9135° as measured perpendicular to the z—axis.
Table 5.2 summarizes the results.

The improvement in the momentum determination if the information of the 2-chambers is used
are studied with Monte Carlo data. A simulated track was matched together with its recon-
structed one and the difference in the momentum is computed (Figure 5.16). Table 5.2 is a
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Figure 5.14: Deviation and resolution of CIZ using cosmic tracks.

a) and b): deviation of the inner wires

c) and d): resolution of the inner wires by making the line fit excluding only the desired hit,
and then computing the distance from this hit from the line.

e): the resolution of all wires as a function of the drift field.

compilation of different values concerning the resolution in space and of different momentum
components.

The theoretical calculation of the momentum resolution has been discussed in [55] in detail.
The relative momentum Ap/p in GeV as a function of the angle ¥ of the tracks is shown in
Figure 5.17 using the difference between simulated and reconstructed track parameters for the
total momentum difference Ap. The different values for tracks measured only with the jet
chambers are compared to tracks which use both z—chambers CIZ and COZ to determine the
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Figure 5.15: Internal resolutions of CIZ.
a) The deviation of hits in CIZ from a segment reconstructed using only hits of CIZ.
b) Triple hit resolution of CIZ.
The tracks are restricted to 45° < 9 < 135° as measured perpendicular to the z-axis.

momentum. The more precise measurement of the z—coordinate using the z-chambers results
in smaller tails of the relative momentum resolution for tracks crossing the detector with flat
angles. This behavior is in agreement with expectation.

Efficiency

Three different types of efficiencies were studied :

Single wire efficiency

Tracking efficiency

Linking efficiency

Sigma of distribution unit value
deviation (external) mm 0.70
resolution (external) mm 0.60
deviation from segment (internal) mm 0.25
triple hit resolution (internal) mm 0.55
momentum resolution with P, only measured with the CJC MeV 14.5
momentum resolution with P, measured with both z-chambers | MeV 6.5
total momentum resolution only measured with the CJC MeV 12.
total momentum resolution with z-chambers included MeV 9.8

Table 5.2: CIZ resolutions
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Figure 5.17: Relative momentum resolution Ap/p in GeV using simulated and reconstructed
tracks.

The single wire efficiency is calculated using a method independent of other detector com-
ponents. Two hits are required on different wires within the same drift cell: one on an outer
wire and the other one an inner wire in such a way that there has to be a single wire between
these two hits. Two combinations are possible for CIZ: the wire numbers # 1 and # 3 and the
numbers # 2 and # 4 dependent of the side of the drift cell where the track is crossing the
chamber. The occurance respectively of the middle hit within the expected drift time window
is the criterion used for determine the single wire efficiency of the inner wires # 2 and # 3.

The track efficiency is measured using tracks in the jet chambers pointing to CIZ. The impact
point in CIZ has to be within a window in the z—coordinate in order to take into account the
finite resolution of the measurement of the z—coordinate using only the CJC with the charge
division method. No other track should point to the same ring of CIZ. The chamber is regarded
as efficient when there are at least two hits on two different wires found. Four combinations of
two or three hits are possible for one drift cell.

The link efficiency is defined as the number of CJC tracks which have at least two hits found
in CIZ. These linked hits fulfilled all criteria of the linking program and are used to improve the
measurement of the z—coordinate.

Figure 5.18 summarizes the dependence of all three efficiencies as a function of the high voltage.
This has been done with cosmic data and the actual gas mixture of Ar/C,Hg (70/30%).

If p denotes the single wire efficiency for all four wires the linking efficiency can be calculated
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Figure 5.18: Three different efficiencies as a function of the high voltage measured with the gas
mixture of Ar/CqHg (70/30%).

according the following equation:
effi=p*+3p*(L - p) (5.19)

This is valid if combinations of two and/or three hits within CIZ define a link to the jet chambers.

In 1995 the gas mixture and the high voltage remained stable and unchanged. The values
of the single wire efficiency were written periodically to a database and are displayed in Fig-
ure 5.19. The efficiency of both combinations (efficiency of wire 1 (upper plot) and wire 2 (lower
plot)) are shown. A slight decrease towards the end of the year in both distributions indicate
ageing effects.
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Chapter 6

Bose Einstein correlation analysis

6.1 Event selection

The present study is based on a sample of positron proton collider events collected with the H1
detector in 1994. The data sample comprises an integrated luminosity of 1.26 pb~!. Preliminary
results of this analysis were presented previously in reference [16]. After full reconstruction of
the raw data and after a first rejection of unphysical background the data is divided into event
classes according to different physical quantities. These criteria are chosen so loose that nearly
all events belonging to that specific class can be included but further cuts are needed to get a
clean sample.

Three different types of data sets are used: Low Q® and high @Q? deep inelastic scattering events
(DIS events) and diffractive events (rapidity gap see section 3). The scattered positron has to
be detected within the backward electromagnetic calorimeter for low Q? events (corresponding
to a range in Q2 from 10 GeV? to 80 GeV?) and in the liquid argon calorimeter for high Q?
events with Q2 > 20 GeV?. In the high @Q? data, the positron track is identified with a track—
cluster linking algorithm. The main analysis is based on variables from tracks, so calorimeter
information is used only for event selection and determination of kinematic variables.

6.1.1 Deep inelastic scattering events

We use the standard event selection of the H1 deep inelastic analysis group. Low Q2 events are
selected via the detection of the scattered positron with E, > 12 GeV and 157° < d, < 173°,
where the polar angle 1 is measured with respect to the proton beam direction. This energy
requirement ensures the remaining photoproduction background to be less than 1%. To exclude
events with with large QED radiative effects and to ensure substantial hadronic energy flow in
the detector the invariant mass squared W? of the hadronic system, determined from energy
clusters in the calorimeter, is required to be larger than 4400 GeV?2. Diffractive events (“rapidity
gap events”) are removed in the final event sample. To that end events for which the energy
deposited within the polar angular range 4.4° < ¢ < 15° is less than 0.5 GeV, are excluded.
The same selections are applied to the various Monte Carlo generated event samples used in the
analysis. An event vertex, reconstructed from tracks in the central tracker, and located within
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+ 30 cm of the mean vertex z-position, is required to reject beam-induced background and to
permit a reliable determination of the kinematic variables.

In Figure 6.1 a typical example of a low Q? event with the positron in the BEMC is shown
and Figure 6.2 illustrates a high Q2 collision where the positron produces a shower in the
electromagnetic calorimeter. At least two selected tracks are finally required in an event in
order to get at least one charged track pair in each event. 48’000 events passed these cuts from
the low Q? sample and 16’100 in the high Q2 sample.

6.2 Track selection

Charged tracks are required to arise from the primary vertex in order to minimize decay products
from long lived resonances which are not able to interfere. A minimum of 10 hits within the
jet chambers are required for each track. Requiring a transverse momentum pr > 0.15 GeV/c
rejects strongly curving tracks within the central tracking chambers. Positive and negative
tracks do not have the same reconstruction efficiency in the low momentum range as a result of
the construction of the jet chamber [39]. The ratio of positive to negative track pairs illustrated
in Figure 6.3 proves an acceptable relation after the track selection. In addition a non perfect
reconstruction efficiency of like charged track pairs very close together in space compared to pairs
with the opposite charge can bias the strength of the BEC measurement. Again Figure 6.3 does
not show any depletion towards small total momentum nor in the p; distribution. In addition,
in a visual scan of selected tracks passing all criteria with the event display no spurious tracks
(“ghost tracks”) due to noise hits or reconstructed mirror hits of real tracks have been found.
A polar angle ¥ satisfying 22° < 9 < 150° restricts the analysis to particles which can be
measured at least in the inner jet drift chamber in order to improve the quality of the tracks.
The invariant mass squared of a pair of pions is

M? = (Br + B)? — (i + 13)? = 2m2 + 2B, Ep — 2|p||p}| cos @ (6.1)

where « is the opening angle between the momentum vectors pi and p3.

BEC studies are very sensitive to double counting effects i. e. the splitting of a single track into
two pieces. If the opening angle is very small the invariant mass of such a pair contributes to
the interesting region where BEC are significant. The invariant mass of like and unlike pairs
are shown in Figure 6.4. A huge peak in the distribution of like pairs indicates such splitted
tracks, mostly caused between the inner and outer jet chamber. For splitted tracks one finds
E, = By, pi = p and M? = 4m2. Taking only those tracks which start within the inner CJC
the problem is reduced drastically (see Figure 6.4 (c) ). High voltage problems with a cathode
plane in CJC1 required special rejection of double tracks in a particular region. Figure 6.4 (d)
illustrates the resulting invariant mass distribution after all cuts on track parameters.

A typical event used to measure BEC is shown in Figure 6.5. Some pairs of charged tracks have
such a small invariant mass that they enter into the first ten bins of the mass distribution (this
is the case for the pairs with the numbers : (6,8), (6,3), (1,2), (3,10)). In Figure 6.6 a special
pair with a mass of 298 MeV is inspected in detail. A good reconstruction quality and pattern
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scaltered electron in the BEMC

Figure 6.1: A typical low Q**2 event.

scattered electron in the liquid argon calorimeter

Figure 6.2: A typical high Q**2 event.
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Figure 6.3: Plot (a) shows the ratio of the total momentum of positive and negative tracks and
in (b) that for the transverse momentum.

recognition is visible even for tracks very close together. The cut of p; > 150 MeV rejects 20%
of all pairs while the cut on the beginning of the tracks within CJC1 affects 9.4% and the final
double rejection procedure only 1.7% of all pairs. In Figure 6.7 we demonstrate the effect of
the track selection on the angles ¢ and ¢ of the tracks. Both distributions remain unchanged,
i. e. no bias is visible. Another method to reduce the reconstruction certainly for nearby like
charged track pairs is to cut on the opening angle between the two like sign tracks, as done by
other experiments [42]. In our analysis we did not apply that cut. The energy loss information
available from the CJC is not used in this analysis. All charged particles are assumed to be
pions (see Chapter 6.7.2).

6.3 Technical aspects of the analysis

In order to measure the correlation Function 2.4 we have to normalize the two-particle like-sign
inclusive density denoted with pa(M) = py(M)'e = py(M)! to a reference sample (background)
pref(ar ) which contains no Bose-Einstein correlations and form the ratio :

)= 22 (M)

= £ (6.2)

BOD = ety

The choice of such a reference sample is not trivial and a source of bias and systematic errors
in all BEC measurements. Ideally it should satisfy the following conditions:

(1) absence of BEC

(2) presence of correlations due to energy-momentum and charge conservation

(8) presence of correlations due to the topology and the global properties of the events

(4) absence of additional dynamical correlations due to resonances or long-lived particle decays.
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In this analysis we use either the two particle unlike-sign inclusive distribution pref(M ) =
pY (M) or we create uncorrelated pairs by mixing tracks from different events, denoted by
pref(M ) = p1 ® p1(M) to simulate the background data sample. These two techniques are
commonly used in different experiments [45, 42, 46, 47).

The whole analysis was done in two steps in order to study systematic effects and to be able to
compare the results with other experiments which used the same analysis method.
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Figure 6.5: Radial view of a typical low Q2 event. The invariant mass of some pairs is very
small and enters in the first ten bins of the mass distribution.
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Figure 6.6: Two tracks (No. 6 and 8) with a very small invariant mass of 298 MeV used for
BEC analysis.
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Figure 6.7: The final track selection (grey) is compared to those tracks where only the cut on
theta is imposed (white). (a) represents the distribution of the angle ¢ while (b) shows the angle
3 of the tracks.

In a first step all events were divided into four classes according to the invariant mass of the
final hadronic system W and for each event a partner event was found within the same class.
Track pairs were formed with one track from the event under study and the other from the
partner event (first analysis).

In a second step the event-mixing technique was improved. Up to 20 partner events were found
for that event under study (second analysis). Classes according to the invariant mass of the final
hadronic system W, the four momentum transfer of the scattered electron and the multiplicity
of selected charged tracks are formed and only candidates in the same class are mixed. This
second method increased the number of available combinations drastically and reduced potential
bias by mixing events which are not equivalent in their kinematics. The results of both methods
will be presented.

The invariant mass of a track pair is calculated in formula 6.1 containing the opening angle be-
tween the pair. If we mix events which typical jet structure and if the corresponding jet axes are
not collinear in space the invariant masses of the mixed pairs became larger on average than the
corresponding inclusive density pa(M) of pairs from the same event. The result manifests itself
as a slight shift of the phase space shape which can be seen in any distribution of p; ® p; (M)
(see Figure 6.11).

Rotation of the partner event in the ¢ plane such that positron tracks have the same direction
in the ¢ projection reduces this bias slightly as depictured in Figure 6.8 (a) . The open circles
show the original invariant mass distribution of the mixed pair sample p; ® p; (M) and the full
dots represent the same distribution but with rotated partner event which is used to mix the
tracks.

Further studies were done with a selection of different event topologies. A cone jet-algorithm
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Figure 6.8: Invariant mass distributions of pairs of like sign tracks from different events p1 ®
p1(M). Full dots illustrates the mass spectrum of the mixed event sample where the second
event is rotated in the r~¢ plane such that the projection on the r~¢ plane of the scattered
positron track has the same direction with the event studied. Open circles belongs to the mass
spectrum of mixed pairs where the partner event is not rotated and is hence shifted towards
higher masses. In (b) and (c) the same is shown for two selected event classes where only one
single jet could be found (b) and where more than one jet is found by a cone jet algorithm (c).
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Figure 6.9: Invariant mass distributions of pairs of like sign tracks from different events ne
p1(M). In (a) the difference in the mass spectrum of the two event samples with selected jet
topologies according to Figure 6.8 is shown. Both distributions are formed with events where
the partner event is rotated in the r~¢ plane to match projections in the ¢ plane of the positron
tracks.

In (b) the partner event of the event sample with more than one jet is remained unrotated, so
the maximal shift is visible relative to the one jet sample which is rotated.

(c) Comparison of the original inclusive density p; of like sign tracks with the rotated one jet
sample.
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was used to separate two classes of events : those where only one jet was found and those with
more than one jet. Figures 6.8 (b) and (c) show the same as Figure (a) but use only pairs from
the corresponding classes of events just mentioned. The magnitude of the effect due to rotation
is quite the same independent of the topology if only events from the same class are compared
but the whole shape of the phase space is more flat in (c). This difference is also illustrated
in Figure 6.9 (a) where the two event samples are compared under the same conditions (both
with rotated partner event). From Figure 6.9 (b) we can deduce the combined effect of rotation
and influence of the multi jet topology on the shape of the invariant mass. We can conclude
that a rotation of the second partner event used to mix tracks to get a reference distribution
p1 ® p1(M) solves the phase space shift only partly, as apparent from Figure 6.9 (c) where the
rotated one jet event sample is compared to the inclusive density p2(M) of like pairs of pions.
On the other hand BEC are incorporated in p% (M) and produce the discrepancy between both
curves in the range below 0.7 GeV. The influence of multi-jet events is hence the strongest cause
of the rise at small masses in the ratios

" e nlh o

(see Figure 6.13 (b) open circles (MC without BEC is used) or in Figure 6.13 (a) where unlike
pairs show a slight rise even in the absence of BEC). Full dots in Figure 6.13 (b) include these
artificial “correlations” (which have nothing to do with BEC) and BEC together. We expect a
flat distribution of the Ratio R(M) = p—:’;%‘:]glﬁ%é% as there is no difference in the selection of a
like or unlike track pair if we combine the pair from different events. Figure 6.10 (a) proves this
supposition. For this reason we simply write p; ® p1{M) for the mixed reference distribution.
In the analysis p; ® pii*¢(M) and p; ® p¥"™#e(M) are added in order to increase the statistics.

To obtain the final result and to extract the BEC from these artificial correlations, we take a
double ratio by dividing the correlation Function 6.3 from the data by the one obtained from
reconstructed MC events which do not contain BEC:

Rdata T
R(T) = Wf(% (6.4)

The extracted BEC effect in the double ratio (Formula 6.4) is shown in Figure 6.14 and there is
1o enhancement visible in the double ratio for unlike sign pairs (Figure 6.10 (b)) which proves
the correctness of the method.
This procedure (double ratio) also corrects for the geometrical acceptance, kinematical cuts,
and resonance decays if the unlike-sign reference sample is used to build pref(T). In the end a
suitable parameterization of the correlation Function 2.4 is found with equation 2.16 and the
double ratio 6.4 is fitted to that function.
The formula (2.16) is the so called “Goldhaber Parameterization” which assumes a Gaussian
shape of the pion emitting source (see Chapter 2.3.2. It is worthwhile to note that the two
reference samples p; ® p1 (M) and p}}(M) are not equivalent as was demonstrated by DELPHI
in [42] and also discussed in the next Chapter 6.4.
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Figure 6.10: Control plots for the event mixing scheme. Full dots represent the detector data
and open circles the Monte Carlo generated data.
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6.4 Correlations in invariant mass

All data in this chapter belong to the low Q? data-sample and the Monte Carlo based on a
parton shower model.

Figure 6.11 shows py(M), the inclusive two-particle density and p; ® p; (M), the uncorrelated
reference distribution obtained from event mixing. The upper one (a) is for like-sign pairs and
the lower one (b) for unlike-sign pairs. The distributions are weighted according to the number
of accepted events. The mixing technique is performed according to the second method which
yields much more statistics (see Chapter 6.3). Each reference distribution containing mixed track
pairs p1 ® p1(M) is weighted with the number of pairs of the corresponding inclusive density
p2(M), i e. divided by the ratio 2ol pOMM) paits A quite sharp peak at M =~ 0.5
GeV in Figure 6.11 (b) identifies K¥ and a rather large flat hump at M ~ 0.77 GeV stems from
the p® decay. Figure 6.12 shows the same distributions as Figure 6.11 for Monte Carlo events
(CDM), after full reconstruction. For further analysis, the first bin in Figures 6.11 and 6.12 was
excluded because their content is strongly affected by reconstruction bias, especially in the like-
sign sample. This bin is therefore not shown in the Figures 6.13 and 6.14. The effect of BEC can
be seen in the Figures 6.11(a) and 6.12(a) in a different shape of the inclusive density py(M).

The discrepancy between pa(M) a.nd p1 ® p1(M) is discussed in Chapter 6.3 in detail. Figure
6.13 (a) shows the ratio R(M) = ﬁéﬂm for both data and the CDM-model. This unlike-sign
inclusive density, normalized to the reference sample from event-mixing displayed in Figure 6.13
(a) is used as a check of the Monte Carlo predictions. The fragmentation models overestimate the
amount of p production, as previously observed in the references [44, 45, 42, 46)] and discussed in
Chapter 6.5.1, but otherwise good agreement between data and MC is observed. In Figure 6.13




66 Bose Einstein correlation analysis
= 18
o F . .
STeF a) like sign tracks (data)
© 14
212 |
=z E L
SN0 kb P2
8 g— .'. ”“::;o . 580.9%20000 ’ p 1 X p 1
R g,
4 E— : '“‘3732"’22233320%
2 f— R TR
O :8 1 1 1 1 i 1 I 1 ! 1 | 1 1 1 I 1 I i ] 1 1 I 1 1 1 ' 1 ] 1 ‘ 1 1 1L M
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
M (GeV)
< 18 ¢
o E . .
SeE b) unlike sign tracks (data)
© 14 =
#* C °
z12 e LU
\ 10 il .0” OOOWOOOOO::“ p 2
A F < o°°o 0088 ° ><
g b o B30, P1 A Py
6 i_:oo “"i:,. °°°o°o
4 :—: m."’:::j°°°0 .
, E -..:z.ﬁ-;z‘:zxzzz.wgmw
O :sl 1 l 1 L 1L I i 1 1 l 1 1 H | 1 i 1 1 I 1 | 1 1 1 { 1 1 i [ ! 1 1
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
M (GeV)

Figure 6.11: The invariant mass distribution of pairs of tracks, normalized to the number of
accepted events N.
a) Full dots denote the two particle inclusive spectrum for like-sign pairs (p2(M)). The open
circles represent the distribution obtained from event mixing p; ® p1(M).

In b) the same is shown for unlike-sign pairs: full dots p3 (M) and open circles p; ® p1(M).
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Figure 6.13: The ratio R(M) = p2(M)/, p§ef(M ) for three combinations:

a) Ratio R(M) = p}(M)/p1 ® pr(M).

b) Ratio R(M) = pa(M)/p1 ® p1(M) (with MC model without simulated BEC.

) Ratio R(M) = po(M)/p§(M).

The full dots represent the data, the histograms represent the CDM Monte Carlo. The difference
between Monte Carlo and data in (b) and (c) is attributed to the Bose-Einstein correlations.
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(b) we see the ratio R(M) = p%(M Ve ® p%(M ) for like-sign pairs where the reference sample
is obtained from event mixing. The experimental values of R(M) are considerably higher than
those of the MC for M smaller than 0.6 GeV/c?. This is usually attributed to the Bose-Einstein
interference. The Monte Carlo also predicts a rise of R(M) towards threshold. These correlations
are mainly caused by mixing tracks of events with a different jet topology which generates a shift
towards larger masses and a depletion of the p; ® p1 (M) distribution at small masses as discussed
in Chapter 6.3. These residual (non-BE) correlations should be nearly absent for events with no
typical jet structure, as discussed in [42, 46]. From this discussion and the agreement of data
and Monte Carlo demonstrated in Figure 6.13 (a), it becomes apparent that the double ratio
of equation 6.4 should be used to fit the BE enhancement of equation 2.16. Figure 6.13 (c)
shows the ratio of like-sign p%(M ) over unlike-sign p§(M) two-particle densities. Clear K9 and
p° signals at 0.5 and 0.77 GeV, respectively, are visible in both Figures 6.13 (a) and (c).

The double ratios of data and Monte Carlo for signal and reference sample (Figure 6.13 (b)
and Figure 6.13 (c)), i. e. the quantity R/(T) = Rdata(T)/RMC (T') are shown in Figure 6.14
(a) and Figure 6.14 (b) respectively. The fit of the “Goldhaber parameterization” (2.16) is
superimposed. In Figure 6.14 (a) the region around the p® and the K? is excluded from the fit.
This corresponds to a range of 0.65 - 0.85 GeV and 0.38 - 0.43 GeV in the variable T'. Note that
these plots show the variable T instead of the mass.

6.5 Comparison with Monte Carlo

The use of Monte Carlo generators is an integral part of this BEC analysis in order to correct
systematic effects, to study resolution and errors and to build the double ratio R'(T) (equation
6.4).

The hadronic final state of neutral current DIS events was modeled using two different Monte
Carlo generators in this analysis (see Chapter 6.5.2 for details).

The Monte Carlo simulation program HISIM which is based on the GEANT CERN package
[57) was used to simulate the detector response in detail and correct the data for geometrical
acceptance, kinematical cuts, resolution and particle interactions with the detector material.
The simulated events were finally processed through the same reconstruction chain as real data.

6.5.1 Track finding efficiency and correction factors

Correction factors were calculated per bin of invariant mass as the ratio of the generated to
the accepted number of pairs. This is done by selecting charged particles at the generator
level which do not decay at the generator level. The same kinematical and geometrical cuts
as on the reconstructed quantities are imposed for the generated particles. Figure 6.15 shows
the correction factors for p2(M) and p; ® p1(M) and for the ratio of the two. Slightly more
track at the generator level (denoted as “GEN”) are visible compared to the simulated and
reconstructed Monte Carlo data (denoted as “MSR”). These numbers differ due to technical
cuts on the impact parameters such as the reconstructed tracks have to begin within the inner
jet chamber or the requirement of at least 10 hits on each track. The correction factors for the
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ratio R(M) = p%(M }/p1® p1(M) shown in Figure 6.15 (c) are equal to unity and are smooth as
a function of mass, except for the unlike sign combination (open circles) at M «~ 0.5 GeV, where
a small influence of KJdecay is seen which is not completely suppressed by the fit to the primary
vertex in the “MSR” sample but which is excluded in the generator sample as it is considered a
stable particle at the generator level. These correction factors are applied to the data in order
to compare data directly with the raw generated (*GEN”) quantities. If we form the double
ratio with reconstructed Monte Carlo data (“MSR”) then these correction factors drop out.
The correction factors are multiplied bin—by-bin to the data sample and can be compared to
the generated distributions (“GEN”) illustrated in 6.16. The main physical quantities remain
unchanged after applying the correction factors. The peak from the K?Y-decays visible in the
simulated data in Figure 6.13 (a) was disappeared, but it is still present in the data. Figure 6.16
(a) shows quite good agreement of the Monte Carlo prediction with the data if we neglect the
region below 1 GeV where some resonances are dominant which are not well reproduced by the
Monte Carlo. Especially the production rate of the p° meson and in the very low mass region
the 7' resonance are overestimated. This is a known effect in the JETSET model, also stressed
in other experiments [46, 42]. It is also evident in the double ratio of Figure 6.10 (b) which
should be completely flat if resonance production is properly simulated in the Monte Carlo or
in an enhancement in the double ratio 2.16 visible in 6.14 (open circles). .

Contrary to the relative agreement of the data with the simulation, the ratio with the like-sign
distribution (Figure 6.13 (b)) R(M) = p%lke(M }/p1 ® p1(M) is not reproduced by the Monte
Carlo except for masses below 1.2 GeV. This disagreement is usually attributed to the Bose
Einstein effect. These Figures are however in good agreement with other experiments like [42].
As already stressed by the DELPHI collaboration [42] there is a much better agreement of data
with Monte Carlo in the case of z;; > 0.01 , where z;7 = 2 | p |/Wem and p is the momentum
of the w7 system and Wepy is the total hadronic energy of the event. Pairs of tracks are selected
which have a value of T, in this two regions. Figure 6.17 shows the mass distribution of the
two data-samples and confirm the observation of the DELPHI collaboration.

To rely on the simulation program a comparison between some track parameters of data and
reconstructed Monte Carlo tracks was made. Pairs with low invariant masses, i. e. in the
first bin used in the analysis are selected both in data and in MC. As explained in section 6.3
this low mass region is the most interesting and most important kinematical regime for BEC.
Since a variety of effects can enhance or reduce the ratio between like and unlike sign tracks the
following quantities were compared :

— track starting point

- track end point

— track length in the 7 — ¢ plane

— number of hits in the inner jet-chamber

— number of hits in the outer jet-chamber

— number of hits in the z-chambers (CIZ and COZ separately)

-4

—-¢

— total momentum
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— transverse momentum
The plots are not shown. However, good agreement is found between data and MC for that
critical region in the invariant mass distribution.

6.5.2 Comparison of different Monte Carlo generators
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Figure 6.18: The same distributions as in figure 6.13 but for the parton shower model instead
of the color dipole model.

As already mentioned two different Monte Carlo models are compared with data : the Color
Dipole Model (CDM) and the parton shower model (MEPS). Figure 6.18 shows the same as 6.13
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(a) and (b) but for the Parton Shower model. With the data the agreement is are slightly better
than for the CDM model. In the figures we sometimes use the abbreviations “GEN” and “MSR”
which stand for generated Monte Carlo (GEN) data and detector simulated and reconstructed
Monte Carlo data (MSR). “MEAR” and “CDM” means the same data from a MOnte Carlo
generator which uses an algorithm based on the color dipole model. “MEPS” uses the parton
shower model to generate deep inelastic scattering events.

6.5.3 Monte Carlo with BEC included

A crude option for the simulation of Bose Einstein correlations is included in the JETSET Monte
Carlo (subroutine LUBOEI) and written by Torbjorn Sjostrand [8]. What is offered is merely
a algorithm but not a model based on a physical concept. In this scheme, the fragmentation
is allowed to proceed as usual, and so is the decay of short-lived particles like p. Then pairs
of identical particles, 7+ say, are considered one by one. The Tj; value of a pair i and j is
evaluated,

Tij = 1/ (pi +pj)? — 4m? (6.5)

where m is the common particle mass. A shifted (smaller) T}; is then to be found such that the
ratio C3(T') of shifted to unshifted T' distributions is given by the requested parameterization.
The shape may be chosen either exponential or Gaussian,

Co(T) =1+ Aexp(—(T/d)"), r = lor2 ‘ (6.6)

The change in Tj; can be translated into an effective shift of the three- momenta of the two
particles. The Bose Einstein effect is here interpreted almost as a classical force acting on the
“final state”, rather than a quantum mechanical phenomenon on the production amplitude.
The inclusive density p2(M)(GEN(BE)) for like pairs formed by the generated quantities of the
Monte Carlo program which contains BEC is shown in Figure 6.19 (a) (full dots) and the same
distribution for the Monte Carlo without BEC (open circles). The phase space shift is apparent
and may be compared with the invariant mass spectra obtained with the mixed reference method
p1 ® p1(T) from Figure 6.11 (2). In the ratio po(M)(GEN(BE))/p2(M)(GEN) (Figure 6.19
(b)) the input value for the generator (given in appendix A) of 0.53 fm is nearly extracted.
Figure 6.20 show the much better agreement of the Monte Carlo with the data mainly in (b)
where the like sign inclusive density is shown. The correction factors are applied to the data
and generated data (GEN) with the BEC included are plotted. These distributions have to be
compared with Figure 6.16 where the same quantities are shown without the simulation of BEC
in the Monte Carlo program. The uncorrected data are compared in Figure 6.21 to reconstructed
Monte Carlo events . We find an almost perfect agreement between Monte Carlo and data, if the
BEC is included in the generators. The gap of the distributions below 0.6 GeV in Figure 6.13(b)
is nearly disappeared and even in the higher mass region above 0.6 GeV the Monte Carlo is in
better agreement with the data than in Figure 6.13 (b). The strength of the BEC effect is still
less pronounced in the Monte Carlo than in the data resulting in a slight rise for very low masses
in the double ratio in Figure 6.22 (b) where R'(T) = Rda‘ta(T) /RMSR(BE) (T) is outlined.
The BEC signal has really disappeared, only a very slight enhancement is visible below 0.05
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GeV in the variable T. The extracted values of the correlation Function 2.16 are compared in
Figure 6.22 (a), (c) and (d). Figure (a) shows the same distribution as Figure 6.14. In 6.22
(b) the Monte Carlo background RMC (T') is replaced by the file which incorporates simulated
BEC. A perfect simulation would produce a flat distribution. Figures (c) and (d) deal with
the double ratio R/(T) = RMSR(BE)(1)/RMSR(T) and R/(T) = RGEN(BE) 1)/ gGEN (1
respectively and illustrate the difference between generated and reconstructed Monte Carlo data.
The BEC survive the whole simulation and reconstruction nearly unbiased and the values of the
parameters extracted agree within ~ 1.5 standard deviations with those used in the generator
step. All numbers are summarized in section 6.10.

The differences between Figures 6.22 (a), (c) and (d) are used to estimate the systematic effects
of the reconstruction procedure. The precise parameters which are used for the JETSET Monte
Carlo to simulate BEC are given in Appendix A.

6.6 Final state interactions and corrections

The final state of two or more charged bosons is affected by strong and electromagnetic inter-
actions. Strong interactions are very difficult to calculate. An estimation of the effect has been
made by Suzuki [32]. A correction factor for this effect does not exist and no correction has been
performed. The electromagnetic interactions in the final state appear in two ways. First the
particle interacts with the system as a whole and secondly it interacts with the partner in the
pair. The interaction of the particle with the remaining system is not considered to influence
the two particle correlations and its effect is neglected [12]. The electromagnetic interaction
between pairs of particles is considered below and corrections were applied to the data.

6.6.1 Coulomb correction

Coulomb forces between charged pairs of particles accounts for electromagnetic attraction and
repulsion and are expected to modify the two particle correlation. Since two unlike (like) charged
bosons experience electromagnetic attraction (repulsion), the number of pairs in the region of
small relative momenta, is enhanced (suppressed). The correction factors for this effect are
known as Gamov factors [9]. For like (I) and unlike (u) charged pairs the inclusive corrected
distribution is given by :

PE¥ O (1) = Gilm) A Re(M) (6.7)

punlike COTL (M) = Gy (n) p;mlike( M) (6.8)

where pgun)like(M ) is the uncorrected and pgun) like corr (M) the corrected inclusive distribution
and 2mn

Gi(n) = apm) — 1 (6.9)

Guln) = 1—_;{;—’2_%—17) (6.10)

Hx (6.11)

=
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Figure 6.19: Comparison of the Monte Carlo with and without simulated BEC.

a) The two particle inclusive spectrum of like-sign pairs (p2(M)(GEN(BE)) of generated Monte
Carlo data which includes BEC (full dots) and (p2(M)(GEN) from the Monte Carlo without
simulated BEC (open circles).

b) Ratio p(M)(GEN(BE)) / po(M)(GEN).
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included in the CDM Monte Carlo.
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Figure 6.22: Comparison of the data with the Monte Carlo with BEC included. Double ratio
R(M) for R(M) = ;200

The fitted values for R and )\ corresponds to the “Goldhaber Parameterization” formula 2.16.
a) Double ratio R'(M) = R32ta(17) /RMSR§M)
b) Double ratio R'(M) = Rdata(pr) {RMSR BE) (1)
¢) Double ratio R'(M) = RMSR(BE) (1) RMSR (37

=R
d) Double ratio R'(M) = RGEN(BE) ()] RGEN( M)
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where o = 1/137, and T? is the four momentum difference between the two particles. As can be
seen in Figure 6.23, the correction is significant only at very small values of T2. The correction
is performed bin by bin weighting the distribution by the corresponding Gamov factor. The
Coulomb repulsion is not simulated in the Monte Carlo generated events and does not appear in
the sample of mixed events. In [12] M.G.Bowler stressed that the Coulomb corrections to BEC
are greatly exaggerated by applying the Gamov factors. The overestimation can reach a value
up to 20%. In this analysis the Gamov factors were applied only for completeness to be able to
compare the data with other experiments treated similarly. The results are again summarized
in Chapter 6.10.

6.7 Purity and its correction

Resonance production plays an important role in the study of Bose Einstein correlations. If
the reference sample pref(M ) is formed with unlike sign pairs, dips due to decay products of
resonances in the ratio R(M) = m%“ﬂ,,)rm can influence the result of the analysis and bias the
extracted parameters. The suppression of the “coherence” factor A from its maximum value is
caused mainly by resonance decays. It is known [46, 43] that pions are effectively uncorrelated
within the experimental resolution if they are produced from the decays of long-lived resonances.
Special studies were done to test this [43].

6.7.1 Resonances and decay channels

In the region of the invariant mass we are predominantly encountering 7, 7'(958), w(782), K?
and pO(770) decays. A special study with the JETSET Monte Carlo data where the particles
could be identified is performed. The Figures 6.24 and 6.25 show these channels in the decay
chain with two charged pions. In Figure 6.24 (a) we see the phase space of all unlike sign pion
pairs. A sharp signal from the K? is visible superimposed on a broad p" signal and the continua
from the other resonances. Monte Carlo data are shown directly without detector effects. In
Figure 6.24 (b) the mainly two body decay of the p°(770) resonance is present. As the lifetime is
very short the width is about 150 MeV. In Figure 6.24 (c) we see the contribution of the w(782)
into a pair of unlike sign pions. The sharp peak at 782 MeV belongs to the direct decay into a
7Tw™ pair with a rate of 2.2% while the other pairs are smeared around low invariant masses
as they represent three particle decays. Figure 6.24 (d) illustrates the contribution of the 7 to
the mass of a charged mt#~ pair. The available phase space is limited as the charged channels
are 3 body decays and contribute with 30% to all  decays. The mass of charged pion pairs
originating from the 7'(958) is shown in Figure 6.25 (a). It is the same plot as Figure 6.25 (d)
for the /. As the decay 7' — wtn~1 is followed by n — atn 2% or n — w¥m~, there are
two like sign pion pairs in the total decay chain. We see these pairs in Figure 6.25 (b).

6.7.2 Purity correction

In order to correct the data-sample for pions which are not able to interfere the ratio of such
particles have to be determined with Monte Carlo data. A special sample of such tracks is

i
|
S
|
|
i
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Figure 6.23: Gamov correction factors Gy(n) (dotted line) and Gy (n) (dashed line). The solid
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line represents the ratio T is the four momentum difference between two pions.
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Figure 6.24: The invariant mass distributions of some resonance channels.

(a) All decays in a m* 7~ pair. A sharp signal from the K| 0 decay is visible together with a broad
peak from o° decay.

(b) p° decay channel. Only unlike sign 7 pairs which are decay products of the p° are plotted.
(¢) w decay. A small peak from the rare two pion channel is superimposed on the continuum
from three pion decay.

(d) n decays.
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Figure 6.25: The invariant mass distribution of the decay of the 7. in (a) the mass of the two
unlike sign pions are plotted and in (b) the mass of all like sign pions from the combined decay
of n and %' is shown i. e. ' — wFn~ 7 followed by n — 7~ 70 and n—ntn 7y

created which contains only pions which are directly produced on the string or which are decay
products from the same weakly decaying particle. Here and in the following, “direct” pions are
taken to be pions which are either produced promptly, or with a mother which has a lifetime
shorter than the K*(890) (motivated by [42]). In the JETSET model, the fraction of such
direct like-sign pion pairs in the sample of all like-sign charge particle combinations, can be well
parameterized in the low mass region (T' = 0. + 1.2 GeV/c?) by the function:

£(T) = 0.183 + 0.26T — 0.095T2. (6.12)

which was experimentally found by fitting the polynomial f(T) = P(1) + P(2)T — P(3)T? to
the fraction in Figure 6.29 (c). One can correct for the presence of non-direct pion-pion pairs
by fitting the double ratio R’ for like-sign pions (Figure 6.14) with a slightly modified form of
equation 2.16:

R' = N(1+8T)[1 + Mf(T) exp(—T?r?)). (6.13)
The fitted parameter values from the Function 6.13 applied to the uncorrected data and shown
in Figure 6.29 (b) are :

A =146 £0.10, 7 =0.61 £ 0.03 fm (6.14)

Using these fitted values of A and r, the individual entries of the R/(M ) distribution can be
corrected for the finite purity of direct pion pairs by weighting each entry by the factor:

14 dexp(—T?%r?)

(6.15)

1+ Af(T)exp(—T?r2)"
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The result is shown in Figure 6.29 (c). The fraction of all like-sign pions pairs to all detected
particle pairs within the jet chamber has been calculated using the JETSET hadronization
procedure and its value varies around 70% as depictured in Figure 6.26 (a). In Figure 6.26
(b) the fraction of all “direct” like-sign pion pairs to all like-sign pion pairs is shown and
Figure 6.26 (c) illustrates the fraction of all “direct” like-sign pion pairs to all charged pairs
which is parameterized in Function 6.12 and used in 6.13. Both ratios decrease towards smaller
masses indicating the influence of long living resonances which decay at least into two pions.
Figure 6.26 (d) includes the fraction of like-sign pion pairs directly produced from the string to
all like-sign pion pairs which is very tiny and increases towards higher masses since the energy
of these pions is normally quite large. The purity correction Function 6.15 to be used to weight
the double ratio (Figure 6.14) is illustrated in 6.26 (e).

6.8 Dependence of BEC on kinematic variables

Events are selected from the low @2 event sample and are divided into classes according to global
kinematical variables of the event like the DIS-variable gy ken Or the multiplicity of tracks in
order to study BEC under different conditions. The limited statistics allows only a separation
of the full low Q? event-sample into two sets. A limit at which the sample is divided was chosen
such, that the number of events in each sample is more or less equal.

There are 5 variables investigated:

® TBjgrken (see equation 3.5) (limit: 107%)
e multiplicity of selected tracks in the event (limit: 10)
e invariant mass of the hadronic final state W (see equation 3.3) (limit: 140 GeV)

e The four momentum transfer Q? of the scattered positron (see equation 3.3) (limit: 20
GeV?)

e Sum of the momenta of the pion pair: | pi + p3 | (limit: 1.5 GeV)

The double ratios are formed with each sample and a fit to the correlation Function 2.16 yields
the parameters r and A. The results are summarized in Table 6.8. Comparing the data-samples
witch contain events with an zpjyyeq of less than 0.001 and the corresponding distribution with
TBjgrken = 0.001 then a slightly other behavior is visible (Figure 6.27). Although the quality of
the fit is not so good, a difference towards smaller values of r is evident for increasing ZBjgrken
Comparing the difference between two data-samples where the multiplicity of selected charged
tracks is smaller than 10 and bigger than 10 respectively, the magnitude of the r parameter
tends to be higher as the multiplicity increases. This behavior has been observed also in [50].
There is no significant tendency visible in the other three variables as given in Table 6.8.
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Figure 6.26: (a) Fraction of all like-sign pion pairs to all like sign charged particles.

(b) Fraction of all “direct” like-sign pion pairs to all like-sign pion pairs.

(c) same ratio as (b) but with all charged particles in the denumerator.

d) Fraction of like-sign pion pairs directly produced on the string to all like—sign pion pairs.
Histogram (c) is used to determine Function 6.12 which is used to form the correction function

14+)exp(—T2r? :
—J——ylr;lﬂf(m xp(=T7r shown in (e).
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Figure 6.27: Double ratios of four of the data-samples with different event kinematics (event
mixing).

a) B/(T) = R98%3(7)/RMSR(T) for the data-sample with zpjgyen < 0.001

b) R/(T) = RI2t2(T)/RMSR(T) for the data-sample with opjyen > 0.001

¢) R'(T) = R3ata(7)/RMSR(T) for the data-sample with a multiplicity of less than 10 selected
tracks per event.

d) R(T) = R4ata(1)/RMSR(T) for the data-sample with a multiplicity of more than 10
selected tracks per event.
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6.9 Systematic errors

An estimation of the systematic errors was performed using Monte Carlo generated events and
a full detector simulation. Two correlation functions were calculated, one at the generator level
(GEN) and the other after detector simulation and reconstruction of the Monte Carlo events
(MSR). The CDM Monte Carlo with simulated BEC (see Chapter 6.5.3) is used too. The
variable 7 which correspond to the radius of the source and the “chaoticity ”parameter A from
equation 2.16 are the most interesting ones and usually compared with other experiments. In
order to assess the influence of an assumption or a particular analysis step on the values of these
two parameters a reference distribution (6.17) is chosen and the deviations of the parameter
values relative to that reference are determined.

A summary of all values and checks performed is given in the Tables 6.1, 6.2, 6.3 and 6.5 in
section 6.10.

For the final error quoted all contributions are added in quadrature. There are five main con-
tributions to the overall systematic uncertainties:

Finite detector resolution and acceptance effects as well as an imperfect pattern recognition
in the reconstruction step can be tested by comparing the generated data-sample (“GEN")
with the simulated and reconstructed one (“MSR”).

The choice of parametrization for correlation Function 2.4 is tested by comparison to
alternatives used in the literature.

The influence of the reference sample can be obtained using Monte Carlo generated events
with ad hoc inclusion of BEC, i. e. by considering the double ratio

RGEN (BE)(T)
R/(T) = ——spir——=
( ) RGEN (T)
i. e. comparing this double ratio with the outputvalues of the routine LUBOEI in the
ratio GEN(BE
psPN(T)

e To check the influence of the event generator we compared the MEPS and CDM Monte
Carlo packages.

e Technical differences like bin width, range in T in which the fit is performed and the
influence of the resonances can be checked by varying the corresponding quantities.

In order to understand these results, a few further points need to be mentioned. The three
different parametrizations of the correlation Function 2.4 are:

F(T) = N(1 + Aexp(—r?T?)) . (6.16)
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F(T) = N(1 4 6T)(1 + Aexp(—r2T?)) . (6.17)
F(T) = N1+ 6T + eT?)(1 + Aexp(—r?T?)) . (6.18)

Systematic differences are evident between the fit with all bins and that where the regions
of the p° (0.65-0.85 GeV) and the K° (0.38-0.43 GeV in T') resonances are excluded. Some
experiments only fit a range of 0 — 1.2 GeV in T instead of 0 — 2 GeV. We investigate both
ranges, because it is known that long range correlations may shift the extracted values from
different parametrizations.

The errors are furthermore calculated separately for both reference samples p2(T)* and p1 ®
pu(T).

Different bin sizes do not influence the result of the fit within the statistical errors. This has
been tested using a sample with half the bin-with and an enlarged bin size. The exclusion of
the p° resonance region lowers r by 10% and enhances A by 6% if the unlike-sign reference
sample is taken. When the “mixed” reference sample is used, the effect is less drastic : a
6% enhancement for A and a 1.5% decrease for the radius. The K° peak has practically no
influence on the variation of these values. The larger effect of the p® can be understood, because
the p® peak appears in a critical region of the invariant mass where the enhancement of the
correlation function starts and hence the influence on the radius parameter is noticeable. This is
in particular true for the Functions 6.17 and 6.18 which take into account long range correlations.
Function 6.16 is more stable in this respect, but the radius depends much more on the T-region
for the fit. For a larger range r increases using Function 6.16 but also x? increases, because the
fit does not match the data well. For this reason we excluded the results using Function 6.16
from further considerations, but quote the results here for completeness.

In general, the systematic errors of the double ratio taken with the “mixed” reference sample
seem to be smaller than for the unlike-sign sample. The highest contribution to the systematic
error in the “unlike” case comes from the difference between the MEPS and the MEAR Monte
Carlo, as the extracted A parameter is significantly higher as for the latter model.

For the reference distribution the first bin and the regions of the p’ resonance (0.65-0.85 GeV
in T') and K? resonance (0.37-0.43 GeV in T') are excluded from the fit which is taken over the
full range in T from 0-2 GeV.

The final results are collected in Table 6.6. The entry in this table include only the results from
the second analysis (Table 6.2, (A), (C), 6.3 (C), 6.4 (B))

6.10 Results and discussion

Tables 6.1 — 6.9 summarize all results, which were obtained in this analysis using the high and
low Q? data sets, for both the unlike-pair and event-mixed reference samples, in the latter case
for the two ways, which were used to mix events, and lastly also for those cases, where final
state corrections were applied. Since the low @2 data sample is the statistically most significant
one, it was used to study the systematic uncertainties mentioned in the last section and the
corrections, hence Tables 6.1 — 6.8, where these studies are summarized, pertain only to this
sample. Though the first and second analysis in principle only differ by a new way to mix
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events, and hence should not effect the results for the unlike-pair reference sample, we have
quoted them in Tables 6.1 — 6.5, 6.8 and 6.9 too, because small differences existed also in the
event and track selection for both these analyses. The second analysis set a cut on the hadronic
energy sum determined via the Jacquet-Blondel method [W25 > 4400 GeV?, and required
more than 10 hits in the central jet chambers. Both these cuts were absent in the first analysis
and lead to a loss of 20 % of the events. The values found for the two analyses are in good
agreement with each other in general. For the two cases, where differences occur, they are well
within the range of systematic uncertainties. The results are grouped as follows: Tables 6.1 —
6.2 present results for the double ratios, data compared to reference sample divided by Monte
Carlo compared to reference sample, for the CDM and the MEPS event generator and up to
three different functions used for the parametrization. Tables 6.4 and 6.5 list the results from the
intercomparison of two different data samples generated with the same event generator (CDM)
with BEC included in the generation step or not. The radius used in the generation step was
7 = 0.53 fm (see Appendix A), approximately matched to the experimental result. Here also a
comparison between double and single ratios could be made and also a comparison directly at
the generator level, i. e. before the events had passed the detector simulation and reconstruction
step. Table 6.7 exhibits the influence of purity and Coulomb correction. For these the analysis
was not repeated. Table 6.8 collects the data from the different data subsets, and lastly Table 6.9
can be considered the essence of our analysis, the parameters from the fit to the high and the
low Q2 sample using the double ratio and the standard parametrizatibn (Equation 2.16). For
completeness we have included results obtained within our collaboration [65] for the diffractive
subset of the deep inelastic scattering data set.

6.10.1 Low @Q? data

The results (Table 6.9) for the two different reference samples are slightly different, as already
observed in other experiments [41, 42, 46, 47, 49, 50]. These differences are ascribed [51, 27]
to correlations imposed by the decays of other long lived resonances as e. g. w,7,7', non-
resonant 7w —interaction and Coulomb effects. This observation is independent of the choice of
the Monte Carlo generator used to describe the scattering process — the detector description of
course being the same. The difference appears already at the generator level, in the double and
single ratios as apparent from Table 6.4 and 6.5. The event mixing method however leads to
values for the radius quite close to what has been used in the generator, which why these values
in general are preferred and used for communication with other recent analysis.

Since R = 0.53 fm was used in the generator and 0.51 < 7 < 0.61 fm is found in the analysis, we
must assign a systematic error of & 0.05 fm to our results. The detector influence is small on
the other hand. At the generator level and after the reconstruction nearly identical results are
obtained. The unlike-pair reference sample was included mainly to allow also to look for trends
in comparison to older low energy experiments.

In our first analysis we found a 1.6 standard deviation difference between the two Monte Carlo
generators for 7. This observation lead us to redo the analysis with a more refined mixing
technique, which removed this difference completely. Since we could not isolate any cause for
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the difference in the first analysis we consider it a statistical fluctuation. Taking the average of
all differences, were both Monte Carlos have been compared for the event mixing sample, we
arrive at a variation of Ar = £+ 0.04. X has been treated similar.
Including the other smaller error source mentioned above, our final result of the low Q? data-
sample is :

r=0.54%0.03 +£0.10 A=0.32+0.02 +£0.10 (6.19)

where the first quoted error is statistical and the second systematic.
The corresponding result for the unlike-sign reference sample is :

r=0.68+0.04 +£0.21 A=10.52+£0.03 £0.29 (6.20)

The inclusion of the final state corrections does not alter these results, as Table 6.7 shows. In
Figure 6.28 we demonstrate, how the double ratio is modified, when the Gamov factors are
applied in order to correct for the Coulomb repulsion and attraction, i. e. when the correction
function shown in Figure 6.23 is multiplied bin by bin. An enhancement of the very first bins
is obvious, while the rest remains unchanged. The effect on the fit variables is an enhancement
of the radius of 3% and in lambda. of 4.5% in the sample which uses the event mixing reference
sample and in the ratio using the unlike sign reference sample the change is 2.5% for r and 14%
for A.

When the purity correction is applied to the double ratio in order to study the effect of long
lived resonances and particles in the data-sample, which do not obey Bose Einstein statistics
according to Section 6.7.2, one has two choices: either one can fit the data with Function 6.13 or
multiply each bin of data with 6.15. Both methods are summarized in Figure 6.29. The values
from the purity corrected data fitted with the Function 2.16 are :

A=109+004, 7=056+001fm (6.21)

and hence in good agreement with a value of one for the “chaoticity” parameter ).

Other functions to fit the double ratio

As already discussed in the theory part the string fragmentation model predicts an exponential
shape of the correlation function which is based on the treatment of BEC in that model. In the
course of our analysis we noticed that both reference samples the double ratio matches slightly
better to an exponential function than to a Gaussian one. Furthermore effects like purity or
Coulomb correction enhance the correlation mainly in the first bins. The measured correlation
function appears reduced and hence “real” correlations should look even more like an exponential
function and less Gaussian.

It is worthwhile to note that in the article of Andersson and Hofmann [35] on BEC and strings,
a model is introduced in which the length scale measured by BEC is not interpreted as the
diameter of the total pion emitting source, but instead as the distance in production points for
which the momentum distributions still overlap. In this picture it is not surprising that nearly
all measured radii in so many different experiments (except heavy ion ones) are the same (see
Chapter 6.11).

__ .
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Figure 6.28: Double ratio with different reference samples for the uncorrected data (a) and (b)
and for corrected data (c) and (d) with the Gamov correction function showed in Figure 6.23

6.10.2 High @Q? and diffractive data

The selection of the high Q? data-sample was described in section 5.1. The data. is processed
through the same analysis software as the low @2 data and its double ratio

S —
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Figure 6.29: Double ratio with purity correction applied. a) unchanged data fitted with Func-
tion 2.16. b) unchanged data fitted with Function 6.13. c) purity corrected data with 6.15 fitted
with Function 2.16.

R(T) = Rdata(T) /RMC (T) is fitted with the the same Function 6.4.

No differences appeared between our two data-samples . The data are shown in Figures 6.30
and 6.31. First, the Tables 6.1, 6.2 and 6.3 collect the fit-parameters from the double ratios
corrected with the CDM and the MEPS Monte Carlo.
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Figure 6.30: The same distributions as in Figure 6.13 for high Q2 data.
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Figure 6.31: Double ratios of the high @? data sample. The plots are the same as in Figure 6.14.
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excluded areas in the fit

Reference sample

unlike-sign p3(T")

event-mixed p; ® p1(T)

r{(fm) A 7(fm) A
first analysis MEAR
A function of the fit  N(1+ 0T)[1 + dexp(—r>T?)]

fit-range 0 - 1.2 GeV'

all bins 0.76£0.04 0.4840.03 | 0.49+£0.06 0.28+0.05
all bins except first | 0.7620.04 0.4840.03 | 0.4940.06 0.28+0.05
p° excluded 0.66+0.05 0.52+0.05
K9 excluded 0.77+0.05  0.4920.04
o° and K° excluded | 0.6840.05 0.53+0.05
fit-range 0 - 2 GeV
all bins 0.75+0.04 0.49+0.04 | 0.47£0.04 0.3040.03
o° excluded 0.674+0.04 0.5240.03
KO excluded 0.76+0.04 0.504+0.04
o° and K° excluded | 0.684+0.04 0.52+0.04
B function of the fit N[l + Aexp(—r2T?)]

all bins
P and K° excluded

all bins
p° and K excluded

fit-range 0 - 1.2 GeV
0.79+0.04 0.46+0.04
0.76+0.04 0.47+0.04
fit-range 0 - 2 GeV
0.814+0.04 0.46+0.04
0.80+£0.04 0.47%0.04

0.52+£0.04  0.26:0.02

0.554+0.04 0.26+0.02

C  function of the fit

N(L+ 8T + eT?)[1 + Aexp(—r?T?)]

all bins
0° and K° excluded

all bins
p° and K° excluded

fit-range 0 - 1.2 GeV'
0.76+0.05 0.4840.04
0.68+0.05 0.5340.05
fit-range 0 - 2 GeV
0.76+0.04 0.48+0.05

0.68+0.04 0.5240.04

0.4840.07 0.27+0.04

0.47£0.04 0.27+0.02

Table 6.1: Summary from fit-parameters with different functions and different ranges. The CDM
Monte Carlo is used as the reference sample to form the double ratio
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excluded areas in the fit

Reference sample

unlike-sign p3(T)
r(fm) A

event-mixed p1 ® p1(T)
r(fm) A

second analysis MEAR

A function of the fit

N(1+6T)[1 + dexp(—r°T?)]

all bins
all bins except first
2° excluded
KO excluded
p° and KO excluded

all bins
p° excluded
K9 excluded
o° and K° excluded

fit-range 0 - 1.2 GeV

0.77+£0.05 0.48+0.04
0.77+0.05 0.48+0.04
0.67+0.05 0.53+0.05
0.78+0.05 0.49+0.04
0.67+£0.05 0.53+0.05

fit-range 0 - 2 GeV

0.76+£0.04 0.49+0.04
0.68+0.04 0.52+0.04
0.774£0.04 0.49+0.04
0.68+0.04 0.52+0.03

0.56+0.03  0.3240.02
0.56+0.03  0.324:0.02

0.54+0.03  0.3240.02

B function of the fit

N[ + dexp(—r2T?)]

all bins
p° and K° excluded

all bins
0° and K° excluded

fit-range 0 - 1.2 GeV
0.80+0.04 0.46+0.04
0.76+£0.04 0.47+0.04
fit-range 0 - 2 GeV
0.82+0.04 0.46+0.04
0.80+£0.04 0.46+0.04

0.56+0.03 0.314:0.02

0.57+0.03  0.31+0.02

C  function of the fit

N(1+ 0T + eT?)[1 + dexp(~r?T?)]

all bins
2° and K° excluded

all bins
o and K excluded

fit-range 0 - 1.2 GeV
0.77+£0.05 0.4840.04
0.67+0.05 0.53+0.04
fit-range 0 - 2 GeV
0.77+0.05 0.48+0.05
0.68+0.04 0.5240.04

0.56+0.03 0.31+0.02

0.54+0.03 0.32+0.03

Table 6.2: The same table as Table 6.1 but for the second analysis

i
!
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excluded areas in the fit

Reference sample

unlike-sign pS(T')
r(fm) A

event-mixed p; ® p1(T')

7(fm) A

first analysis MEPS

A function of the fit

N(1+6T)[1 + dexp(—r2T?)]

all bins
2° excluded
p° and K° excluded

all bins
0° excluded
p° and K° excluded

fit-range 0 - 1.2 GeV'
0.71+0.05 0.31+0.03
0.63+0.07 0.33+0.05
0.66£0.07 0.33+0.04
fit-range 0 - 2 GeV
0.71+0.05 0.314+0.03
0.654+0.05 0.32+0.03
0.67+£0.06 0.33+0.03

0.65+0.06 0.3040.04

0.60+0.06 0.3140.03

B function of the fit

N[1 + Xexp(—r?T?)]

all bins
p° excluded
p° and K° excluded

all bins
p° excluded
p° and KO excluded

fit-range 0 - 1.2 GeV
0.71+£0.05 0.31+0.03
0.65+0.04 0.3240.03
0.68+0.05 0.3340.03
fit-range 0 - 2 GeV
0.71+0.05 0.31+0.03
0.67+0.04 0.3240.03
0.69+0.05 0.32+0.03

second analysis MEPS

0.66+0.06 0.30£0.03

0.69+0.06 0.30+0.04

C function of the fit

N(1+ 6T)[1 + )exp(—rT2)]

all bins
p° excluded
o° and K° excluded

all bins
p° excluded
p° and K° excluded

fit-range 0 - 1.2 GeV
0.714+0.05 0.31+0.03
0.6240.07 0.34+0.056
0.641+0.08 0.34+0.05
fit-range 0 - 2 GeV
0.70+0.05 0.31+0.03
0.65+0.05 0.32+0.03
0.66+0.06 0.33+0.03

0.55+0.05 0.37+0.05

0.54+0.03  0.38+0.02

D function of the fit

N[1 + Xexp(—r2T?)]

all bins
p° and K excluded

all bins
p° and K° excluded

fit-range 0 - 1.2 GeV'
0.71+0.05 0.31+0.03
0.67+0.05 0.3240.03
fit-range 0 - 2 GeV
0.71+0.05 0.31+0.03
0.69+0.05 0.32+0.03

0.61+0.03  0.3340.02

0.65+0.03  0.33+0.02

Table 6.3: Summary from fit-parameters with different functions and different ranges for the
first and the second analysis. The MEPS Monte Carlo is used as the reference sample to form

the double ratio.
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unlike-sign p§(T) event-mixed p; ® p1(T)
r(fm) A r(fm) A
A first analysis
DATA and MSR 0.68+0.04 0.52+0.04 | 0.47+0.04 0.30+0.03
MSR(BE) and MSR | 0.68+0.04 0.47+0.04 | 0.53+0.05 0.25+0.04
GEN(BE) and GEN | 0.74+0.04 0.58+0.04 | 0.514+0.04 0.29+0.03
B second analysis
DATA and MSR | 0.684-0.04 0.52+0.03 | 0.54+0.03 0.33+0.02
MSR(BE) and MSR | 0.67£0.04 0.48+0.04 | 0.62+0.04 0.27£0.02
GEN(BE) and GEN | 0.71+£0.04 0.57+0.04 | 0.61+0.03 0.35+0.02

Table 6.4: Double ratios with CDM Monte Carlo with BEC included

unlike-sign p§(T)
7(fm) A
first analysis i |

DATA | 0.81+0.03 0.5440.02
MSR(BE) | 0.7440.03 0.47+0.03 T
GEN(BE) | 0.68+0.02 0.5530.03
second analysis

DATA | 0.78+0.03 0.5040.02
MSR(BE) | 0.73+0.03 0.44+0.03
GEN(BE) | 0.68+0.02 0.56+0.03

Table 6.5: Single ratios R(T) = R(T) = p2(T)/p4(T) from data and CDM Monte Carlo with
BEC included.

overall systematic errors for both reference samples

unlike-sign p%(T') event-mixed p; ® p1(T)
7(fm) A r(fm) A
+0.21  +0.29 +0.10 +0.10

Table 6.6: Summary of systematic errors
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CORRECTIONS and FITS unlike-sign p3 (T') event-mixed p1 ® p1(7T)
r{fm) A 7(fm) A
first analysis
Gamov corr. 0.71+£0.05 0.58+0.04 | 0.4940.05 0.33+0.07
Purity corr. 0.80£0.05 2.304+0.22 | 0.56+0.01 1.09+0.04
Purity and Gamov corr. | 0.774+0.06 2.71+£0.20 | 0.58+0.04 1.30+0.11

Table 6.7: Double ratios with final state interactions applied

kinemat. variable limit LOW ,mixed reference p; ® p1(T) | HIGH ,mixed reference p; ® p1 (T')
r(fm) A r(fm) A
first analysis

TBjgrken 1073 0.53+£0.05 0.37+0.04 0.50+0.05  0.40+0.05
multiplicity 10 0.45+0.03 0.44+0.04 0.83+0.11  0.45+0.08
w 140 GeV 0.494+0.04 0.43+0.05 0.624+0.05 0.36+0.04

Q? 20 GeV 0.5140.04 0.93+0.04 0.5614+0.06 0.38+0.05

p1 + P2 1.5 GeV 0.56240.04 0.38+0.04 0.6140.06 0.35+0.05

second analysis )

TBjprken 1073 0.57+0.05 0.33+0.03 0.264:0.02  0.30+0.01
multiplicity 10 0.50+0.04 0.3240.03 0.71+£0.08  0.35+0.05
w 140 GeV 0.594+0.07 0.274+0.04 0.53+0.04 0.34+0.03

Q? 20 GeV 0.57+0.05 0.29+0.03 0.49+0.04 0.40+0.04

p1 + P2 1.5 GeV 0.5614+0.03 0.29+0.02 0.59+0.05 0.40+0.04

Table 6.8: Double ratios with different kinematical event-classes

DATA-SAMPLE unlike-sign py (T') event-mixed p; ® p1(T)
7(fm) A r(fm) A
first analysis
Low Q% MEAR 0.68+0.05 0.52+0.05 | 0.49+0.06 0.284-0.05
Low Q% MEPS 0.63+0.07 0.33+0.05 | 0.65+0.06 0.3040.04
second analysis
Low Q2 MEAR 0.68+£0.04 0.52+0.04 | 0.5440.03 0.324-0.02
Low Q% MEPS 0.63+0.06 0.33+£0.03 | 0.54+0.03 0.38-40.02
High Q? 0.70+0.11  0.32+0.05 | 0.574+0.04 0.3940.03
diffractive (ARIADNE) (see [65]) | 0.62+0.12 0.46+0.11 | 0.5140.06 0.40+0.14
diffractive (Parton shower) (see [65]) | 0.57+0.14 0.5240.13 | 0.464+0.05 0.49+0.06

Table 6.9: Summary of the tree data-samples.
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6.10.3 TBjgrkens W and multiplicity dependence

Subdividing the sample indicated, that the results obtained are rather independent of the kine-
matical region. Only for the high-Tgjgrken subset (smaller radius) and the high-multiplicity
subset (larger radius) differences outside the statistical and systematical errors are observed. If
substantiated by higher statistics data sets in subsequent analyses, where really in function of
TBjgrken and multiplicity trends could be observed, such deviations would be clearly the most
exciting result of our analysis.

6.11 Comparison with other Experiments

Table 6.10 is a summary of the results from the fit to the double ratio from other experiments.
The errors are only the statistical ones. Different experiments used different data-samples i. e.
sometimes purity correction and|or corrections to final state interactions as Coulomb corrections
(Gamov factors) were applied. This is the main source for the big systematic differences of both
values and of the difficulty to compare results from other events. The values of r extracted
with a mixed reference sample are systematically lower than those obtained with an unlike-sign
background which is also visible in our data. The fluctuations in the parameter A are much higher
and more sensible on different analysis techniques used in this field. Our results are broadly
consistent with results from £N —scattering at lower energies and from ete~—annihilation.

EXPERIMENT unlike-sign p§(T) event-mixed p; ® p1(T") Vs
r(fm) A (fm) A [GeV]
¢N  EMC (up) 0.8440.03 1.084+0.10 | 0.4640.03 0.7340.06 23
E665 (up) 0.39+0.02 0.35+0.02 30
BBCNC (vN) 0.8040.04 0.6140.04 | 0.64:£0.04 0.46+0.03 10-28
HERA 0.6840.04 0.52+0.03 | 0.54+0.03 0.32+0.02 300
ete~ DELPHI 0.83+0.03 0.31+0.02 | 0.47+0.03 0.24+0.02 91
ALEPH 0.8040.04 0.62+0.04 | 0.504+0.02 0.40+0.02 91
OPAL 0.93+0.02 0.86+0.03 91
MARK 2 0.84+0.06 0.5040.07 29 (3)
TASSO 0.80+0.06 0.35£0.07 34
AMY 0.734+0.05 0.47+0.05 | 0.58+0.06 0.39+0.02 58
VEPP 0.73+£0.11  0.71:£0.16 9.5 (7-10)
CLEO 0.54+0.10 0.99+0.14 9.5 (7-10)

Table 6.10: Results from other experiments
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Appendix A

The parameters of the generator (JETSET 7.4) which were changed from their default values
(see [8]) are :
MSTJ(51) =2 (6.22)

which includes a Gaussian parametrization according to : Ca(T') =1+ PARJ(92)- ¢~ (At
MSTJ(52) =7 (6.23)

which specifies the number of particle species for which Bose-Einstein correlations are to be
included. MSTJ(52) = 7 incorporates the inclusion of: 7%, ¥, 7=, K+, K=, K0 and K}.

PARJ(92) = 1. (6.24)

steers the nominal strength of Bose-Einstein effects for T. This parameter corresponds to the
“chaoticity parameter” A.

PARJ(93) = 0.38 (6.25)

is the size of the Bose-Eistein effect region in terms of the T variable, see MSTJ (51). The
more conventional measure, in terms of the “radius” r of the production volume, is given by:
7 =h-c/PARJ(93) = 0.2fmGeV/PARJ(93). Our value of PARJ(93) = 0.38 corresponds to a
radius r = %;2—8 = 0.53 fm
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