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Abstract

The inclusive production of D±(2010) mesons in deep inelastic scattering is
studied using data recorded by the H1 experiment in the years 1999 to 2000
and corresponding to an integrated luminosity of 47.66 pb-1. The measure-
ment covers the region 2 < Q2 < 100 GeV2 in photon virtuality and the
region 0.02 < y < 0.7 in the inelasticity of the scattering process. The visi-
ble range of the D∗± meson production is restricted in transverse momentum
to pT (D

∗) > 1.25 GeV and in pseudorapidity to |η(D∗)| < 1.8. Single and
double differential cross sections are compared to leading order and next-to-
leading order perturbative QCD predictions.

Zusammenfassung

Es wird der inklusive Erzeugungswirkungsquerschnitt von D∗±(2010) Meso-
nen in tief-unelastischer ep-Streuung gemessen. Hierzu werden Daten ausge-
wertet, die vom H1-Experiment in den Jahren 1999 bis 2000 entsprechend
einer integrierten Luminosität von 47.66 pb-1 aufgezeichnet wurden. Die Mes-
sung findet in einem kinematischen Bereich statt, der durch die Virtualität
des Photon 2 < Q2 < 100 GeV2 und die Unelastizität 0.02 < y < 0.7 definiert
ist. Der sichtbarer Bereich für D∗± Meson Erzeugung ist durch den transver-
salen Impuls p⊥(D

∗) > 1.25 GeV und die Pseudorapidität |η(D∗)| < 1.8 ge-
geben. Die einfach und doppelt differentiell gemessenen inklusive Wirkungs-
querschnitte werden verglichen mit Vorhersagen der perturbative Quanten-
chromodynamik in führender und nächstführender Ordnung.
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Introduction

The present understanding of the structure and dynamics of the Universe
at the smallest experimentally accessible scales is represented by the Stan-
dard Model (SM) of elementary particles and interactions. In this theoretical
framework, the elementary particles are grouped in gauge bosons and three
families of fermions. The photon (γ), W± and Z0 carry the electroweak inter-
action and the gluons mediate the strong interaction. Each family of fermions
contains two quarks and two leptons, the former interacting both strongly
and electroweakly and the latter participating just in the electroweak force.
The Standard Model was and still is extensively tested and improved, its
ultimate precision being one of the goals of modern particle physics research.

The Standard Model uses quantum field theory to describe the dynamics
of the elementary particles: electroweak theory for the electroweak interac-
tions and quantum chromodynamics (QCD) for the strong interactions. A
good testing ground for these theories is represented by deep inelastic scat-
tering of leptons on nucleons, where the exchanged boson (photon, Z0, W±)
is utilized to probe the nucleon. Deep inelastic scattering experiments had
a crucial role in the measurement of the nucleon structure. The HERA1

accelerator at DESY2 in Hamburg, where electron and proton beams have
been collided, allowed the access to much higher energies than realized at
fixed target experiments. At HERA many aspects of the Standard Model,
in particular of QCD, have been confirmed with high experimental preci-
sion. At present, HERA results represent the ultimate knowledge of nucleon
structure.

The mass of the charm quark, mc, provides a sufficiently high scale to
apply perturbative QCD (pQCD) to the cross section calculations. How-
ever charm production is a multi-scale problem since additional scales are
involved, e.g. the virtuality Q2 of the exchanged photon and the transverse
momentum p⊥ of the outgoing quarks. Depending on the details of the treat-
ment of mc, Q

2 and p⊥, different approaches in pQCD have been formulated.
Fixed-order QCD calculations are reliable to calculate total and differential
charm quark production cross section and are used in the present work.

At HERA, different techniques have been used to measure open charm
production cross sections in deep inelastic scattering. Beside the full recon-
struction of the charmed mesons, the long lifetime of the heavy flavoured

1Hadron-Elektron-Ring-Anlage.
2Deutsches-Elektronen-Synchrotron.
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hadrons or their semileptonic decays are exploited. These different methods
of charm tagging have advantages and disadvantages. In general, the best
signal-to-background ratio of the charm samples can be achieved by the mea-
surement of fully reconstructed D∗±(2010) mesons, this method being used
in the present work.

The charm production represents a particular challenge at low virtuali-
ties of the exchanged photon, where the mass of the charm quark is of the
same order as Q2. The precision of the measurements in this region is very
important, as it impacts the parton distribution functions at the starting
scale. The visible phase space of charm production accesible with D∗ mesons
is limited by the constraint of measuring all products from the D∗ meson
decay. Improvements in the detector understanding allowed access to an ex-
tended phase space of the charm production in the Q2 range between 2 and
100 GeV2 and inelasticity y between 0.02 and 0.7.

The thesis is structured in four chapters. In the first chapter, the the-
oretical framework of the deep inelastic scattering is presented. Also, the
Monte Carlo program and the next-to-leading order calculation used are re-
viewed. The second chapter is devoted to the H1 detector, with a focus on
the components relevant to this analysis and the general event reconstruc-
tion algorithm. In the third chapter, the event selection of the D∗ sample
is described. The fourth chapter covers the cross section measurement and
the comparison with the leading order and next to leading order QCD pre-
dictions. The results are summarized in the last chapter.
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Chapter 1: Open Charm Production in DIS

The present understanding of the structure and dynamics of the matter at
the smallest experimentally accessible scales is summarised by the Standard
Model (SM) of elementary particles and interactions. In this SU(3) × SU(2)
× U(1) gauge theory, the elementary particles are grouped in gauge bosons
and three families of fermions. The photon (γ), W± and Z0 carry the elec-
troweak interaction and the gluons mediate the strong interaction. Each
family of fermions contains two quarks and two leptons.
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Figure 1.1: Elementary particles in the Standard Model. The picture was obtained using

a code from [BR97].

The quarks come in six flavours: up (u), down (d), strange (d), charm
(c), beauty (b) and top (t), and in three colors: red (r), green (g) and blue
(b). The u, d and s flavours are considered ’light flavours’, whereas the
other three, c, b and t, are called ’heavy flavours’. This distinction is made

3



Electron-Proton Scattering and the Quark Parton Model

with respect to the mass of the proton - the light flavored ones have masses
up to 130 MeV, while the c, the lightest of the heavy quarks, has a mass1

[N+10] of 1.27 GeV. There are two leptons in each family, one negatively
charged (electrons, muons and taus) and one electrically neutral (associated
neutrinos). Although the exact values of the neutrino masses are not known,
there are upper limits set [N+10] and they are definitely not massless.

The main theoretical aspects of the Standard Model, with a focus on
those relevant in the case of DIS and heavy flavour production are detailed
in the following sections. Also, an overview of the detector simulation and
event generators used in this analysis are given.

1.1. Electron-Proton Scattering and the Quark Parton Model

1.1.1. The Kinematics of the Deep Inelastic Scattering

The interaction between the lepton and the nucleon is mediated by the
exchange of a virtual vector boson, γ, Z0 or W±. A graphic representation
of an neutral current process (in which a γ or Z0 is exchanged) is shown in
Figure 1.2.

Figure 1.2: Schematic representation of lepton-proton scattering.

Starting from the 4-momenta notations introduced above, the kinematics
of a DIS process2 is characterized using the following notations:

• the virtuality of the exchange boson:

Q2 = −q2 = −(k − k′)2 (1.1)

1The masses quoted are estimated in the MS scheme, which will be presented in section
1.2

2A scattering process is considered ’deeply inelastic’ if it takes place at large momentum
transfer (k − k′)2 ≫ M2

T and Mfinal state ≫ M2
T , where MT is the mass of the target.
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Open Charm Production in DIS

• the centre-of-mass energy squared:

s = (k + p)2 (1.2)

• the invariant mass squared of the hadronic final state (the proton rem-
nant plus the scattered quark) is given by:

W 2 = (q + p)2 (1.3)

• the Bjørken-x variable:

x =
Q2

2p · q (1.4)

• the inelasticity, or the fraction of energy transferred from the lepton to
the hadronic system in the nucleon’s rest frame:

y =
p · q
p · k (1.5)

The range for x and y are:

0 ≤ x, y ≤ 1 (1.6)

In the proton rest frame, the expression for y is reduced to:

y = 1− E ′
l

El

The expression for Q2 can then be written:

Q2 = 2ElE
′
l(1− cos θ)

where θ is the angle between the incoming and the scattered lepton. This
expression holds in all reference frames.

In the data analysed, positrons are scattered on protons. Only the case
of one photon exchange is considered. The reason is that, in the studied
Q2 range (2-100 GeV2), the contributions from the weak interactions are
suppressed by Q2/M2

Z0,W±, where MZ0 ≈ 91 GeV and MW± ≈ 80 GeV. If
the masses of the electron and the proton are considered negligible, one gets:

Q2 ≈ sxy

W 2
γ∗p ≈ ys−Q2

where p stands for proton. In this case, only three Lorentz-invariant variables
determine the complete kinematics of the lepton-nucleon scattering. Having
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Electron-Proton Scattering and the Quark Parton Model

constant beam energies at HERA, just two variables are needed to describe
the kinematics of a DIS event. The resolving power of the photon for probing
the proton is given by:

∆b ∼ ~c
√

Q2
=

0.197
√

Q2
GeV fm

Before HERA, there were no measurements in the low Bjørken-x region,
particularly below 0.01. The energies available, 27.6 GeV for the leptons and
920 GeV for the protons, have made it possible to access x-values down to
10−6 [AAA+09].

1.1.2. The Parton Model and the Inclusive DIS Cross Section

The basic idea of Feynman’s parton model [Fey72] is to represent the
inelastic electron-nucleon scattering as a scattering of the exchanged photon
from point-like quasi-free constituents within the proton when viewed from a
frame in which the proton has infinite momentum and provided the collision
is deeply inelastic. In this frame of infinite momentum, the transverse mo-
menta of the proton’s constituents and their masses can be neglected. This
assumption has two consequences:

1. The parton 4-momentum can be written as a fraction of the nucleon
4-momentum, p = fP , where f is a number and p is the 4-momentum
of the parton.

2. The deep inelastic scattering can be seen as an incoherent sum of point-
like elastic scattering of spin-1

2
nucleon components (the partons).

The inclusive cross section for lepton-nucleon DIS is given by [DCS04]:

d2σ

dQ2dx
=

4πα2

Q4x

[

(1− y)F2(x) +
y2

2
2xF1(x)

]

(1.7)

where

F2(x) =
∑

i

e2i

∫ 1

0

dx′ qi(x
′)x′δ(x′ − x)

and

2F1(x) =
∑

i

e2i

∫ 1

0

dx′ qi(x
′)
x

x′
δ(x′ − x)

are structure functions, the fractional momentum of the struck parton, x’, is
identified with Bjørken-x, e′ = eie is the electrical charge of the quark in terms
of the electron charge e and qi(x) is the distribution function which gives
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Open Charm Production in DIS

the probability that the struck quark i carries a fraction x of the nucleon’s
momentum p.

Assuming that the proton constituents participating in the scattering are
point-like spin-1

2
particles, Callan and Gross showed [CG69]:

2xF1(x) = F2(x) (1.8)

or
FL(x,Q

2) = 0. (1.9)

The first observations of DIS [BCD+69, BFK+69, BBD+79] occured in a
region (x ≃ 0.1) where the Bjørken scaling holds, therefore confirming the
quark parton model.

Taking Equation 1.8 into account, the cross section can be written as:

d2σ

dQ2dx
=

2πα2

Q4x

[(

1 + (1− y)2
)

F2(x)
]

(1.10)

where the term 1 + (1− y)2 is called the helicity factor Y+.

1.2. The DIS Formalism in Quantum Chromodynamics

The concept of ’colour’ was introduced [Gre64] in order to preserve the
antisymmetry of the ∆++ meson’s wavefunction, i.e., one more degree of free-
dom was needed, in addition to flavor, spin and space. The colour attribute
for quarks can take any of the three possible values, denoted by: red (R),
green (G) and blue (B), the quarks being assigned to a triplet of an SU(3)
colour group. The gluons form an SU(3) color octet and they can carry the
following colour combinations:

RḠ,RB̄,GR̄,GB̄,BR̄,BḠ,

√

1

2
(RR̄−GḠ),

√

1

6
(RR̄ + GḠ− 2BB̄) (1.11)

The SU(3) colour singlet,

√

1

3
(RR̄ + GḠ + BB̄) (1.12)

does not carry colour and can’t mediate between colour charges. From the
perspective of the SU(3) algebra, the interaction of a gluon with a quark is
understood as rotating the quark’s colour in the SU(3) space. Neither quarks,
nor gluons are observed as free particles. They can exist only in colourless
combinations, called ’hadrons’, which are colour singlets under SU(3) colour
group. This property of the colour interaction is called ’confinement’. All
colourless states are invariant under colour rotations in the SU(3) space -

7



The DIS Formalism in Quantum Chromodynamics

the leptons don’t feel the strong interaction. Experimentally, only two types
of hadrons are obeserved: three-quark or three-antiquark compunds, called
’baryons’, and quark-antiquark mixtures, called ’mesons’, though other com-
binations are hypothesized to exist, like glueballs and pentaquarks. The
formalism describing the colour interactions was derived within the frame-
work of quantum field theory and it is called ’Quantum Chromodynamics’
(QCD).

1.2.1. Renormalization and the Running of the Strong Coupling Constant

Renormalization is a collection of techniques used to regulate the diver-
gences which appear in the contributions to the perturbative expansion of
scattering amplitudes beyond leading order. A renormalizable field theory is
one in which the renormalization of a finite number of parameters ensures
finite results for calculations to all orders of perturbation theory.

In the Quark Parton Model, the quarks are considered quasi-free, which
implies that the coupling strength of the interaction is weak in the short-
distance, high momentum transfer regime. The failure of observing free
quarks led to the assumption that the coupling constant of the interaction
must be rather large in the long-distance, low momentum transfer regime,
making the quarks confined in the hadrons. This behaviour of the coupling
constant is determined by the self-interaction of gluons, which has as a result
an antiscreening effect from the vacuum polarization. Calculating the QCD
coupling constant according to the renormalization group equation, one ob-
tains that αs is described by a decreasing function of the characteristic energy
scale in the interaction. In the leading order approximation αs is given by:

αs(Q
2) =

4π

β0ln
Q2

Λ2

, with β0 = 11− 2

3
nf (1.13)

where nf is the number of quark flavours and Λ characterizes the strength
of the coupling. The latter depends on the number of active flavours and, in
case of higher order calculations, on the convention.

In QCD, three types of divergences occur:

• Infrared divergences. They appear when a quark emits a very soft
gluon (Eg → 0) or an electron emits a very soft photon. An example
of this kind of diagram is shown in Figure 1.3.

• Collinear divergences. This kind of divergences appears when a
quark radiates a collinear gluon (cos θqg → 1).

• Ultraviolet divergences. When diagrams with loops, like those in
Figure 1.4, are included in the cross section calculations, ultraviolet

8



Open Charm Production in DIS

divergences arise due to the infinite loop momenta, i.e., the particle in
the loop can have infinite momentum.

Figure 1.3: Diagram for γ∗ → qq̄g showing the particle 4-momenta.

Figure 1.4: Examples of Feynman loops.

There are several renormalization techniques which help getting rid of the
divergences. One of the renormalization schemes is the minimal subtraction
scheme of ’t Hooft and Veltman (MS). Considering the divergence arising
from a Feynman loop integral (two examples can be seen in Figure 1.4):

∫

d4k

k2 −m2 + iε

which diverges quadratically, is dimensionally regularized by evaluating the
integral in an n-dimensional space (n 6= 4) in which it converges:

∫

d4k

k2 −m2 + iε
→ iπ

n
2Γ

(

1− n

2

)

(

−m2
)

n
2
−1

where

Γ(1− n

2
) = − 2

4− n
− 1 + γE +O(4− n)

γE being the Euler constant, ε > 0 an arbitrarily small non-zero number and
the divergences occuring as the pole at n = 4. However, for most perturbative
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The DIS Formalism in Quantum Chromodynamics

calculations, it is preferred that the singular terms and the terms involving γE
terms are removed. This scheme is called the modified minimal subtraction
scheme (MS).

The renormalization procedure introduces an additional parameter, called
the renormalization scale (µR), which is chosen for removing the ultraviolet
divergences. This parameter being arbitrary, the theory retains its power of
prediction as long as it doesn’t depend on the particular choice of µR.

1.2.2. Scaling Violations in QCD

One of the predictions of the quark-parton model is that the structure
functions Fi scale and don’t depend on Q2, when Q2 and the lepton’s en-
ergy loss in the nucleon rest frame goes to ∞. This property is related to
the assumption that the transverse momentum of the partons in the infinite
momentum frame of the proton is small. In QCD, gluons carry colour and
therefore vertices of the type ggg and qqg also appear. The gluon emis-
sion leads to the production of partons and hadrons with high transverse
momenta. Considering the one-gluon emission contribution, the structure
function F2 becomes:

F2 (x,Q
2)

x
=

∑

q

e2q

∫ 1

x

dy

y
q(y)

(

δ

(

1− x

y

)

+
αs

2π
P

(

x

y

)

log
Q2

µ2

)

(1.14)

where q(y) is the quark structure function and P (x
y
) are the splitting func-

tions that describe the probability of a given parton splitting into two other
partons. The log Q2 term leads to a violation of the parton model scaling
for the structure functions. As Q2 increases, more and more gluons are radi-
ated, which in turn split into qq̄ pairs. This process leads both to softening
of the initial quark momentum distributions and to the growth of the gluon
density and the qq̄ sea as x decreases. The behaviour of the proton structure
function F2 for two fixed Q2 values is shown in Figure 1.5.

The structure function F2 also has a strong dependence on Q2 at fixed
x, as it can be seen in Figure 1.6. The H1 and ZEUS measurements span
a wide range in x, showing the differences between the scaling violations at
high x, where F2 decreases as a function of Q2 due to gluon bremsstrahlung,
and at low x, where F2 increases as a function of Q2 mainly due to qq̄ pair
production from the splitting of the gluon in a quark-antiquark pair, g → qq̄.

1.2.3. QCD Factorization

Factorization is the hypothesis that the cross section for DIS may be writ-
ten as the convolution of two terms: a calculable hard scattering cross section

10



Open Charm Production in DIS

Figure 1.5: The proton structure function F2 at two fixed Q2 values (3.5 GeV2 and 90

GeV2). Figure from [N+10], page 203. References for the data sets are given there.

and a non-perturbative parton density distribution. The factorization theo-
rem has been proved only for a few processes, though it is assumed to hold
for most processes taking place at high energy colliders. The factorization
theorem is usually expressed in a specific scheme, like DIS or MS. In the DIS
scheme, the gluon contributions are absorbed into the parton distributions,
while in the MS only the collinear divergency is factorized out. Particular
schemes are used when studying heavy flavour production, which will be de-
tailed in Section 1.3. The factorization scale considered in the predictions
used in this analysis is Q2 + 4m2

c .

1.2.4. Parton Evolution Models

Parton distribution functions (PDFs) are the momentum distribution
functions of the partons inside the proton and they represent the probability
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The DIS Formalism in Quantum Chromodynamics

H1 and ZEUS
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Figure 1.6: HERA combined neutral current e+p reduced cross section and fixed target

data as a function of Q2. The error bars indicate the total experimental uncertainty. The

HERAPDF1.0 is represented by the blue line. Figure taken from [A+10].

densities to find a parton carrying the momentum fraction x at a specific Q2

value. DIS experiments have shown that the number of partons increases at
low x with Q2 and decreases at high x. The valence quarks dominate the
nucleon structure at low Q2, whereas at high Q2 more quark-antiquark pairs
carrying low momentum fractions x are available. The gluon contribution to
the nucleon structure increases together with Q2.

The PDF sets are obtained by a fit on a large number of cross section data
points in a large grid of Q2 and x values from one or several experiments. The
most commonly used procedure consists of parametrising the dependence of
the parton distributions (quarks, antiquarks, gluons) on the variable x at
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Open Charm Production in DIS

the lowest value possible of Q2 and use the DGLAP3 equations to get their
behaviour at higher energies. This lowest value of Q2 is denoted Q2

0 and it
is large enough that the unknown terms of the perturbative equations are
assumed to be negligible. The number of parameters left free for the fitting
procedure is typically between 10 and 30 [Fel10]. An example of a PDF set
is the HERAPDF1.0, shown in Figure 1.7 at the starting scale Q2 = 1.9
GeV2. The PDFs are universal, i.e., once determined they can be used for
calculating the cross section for any hard process to which the factorization
theorem is applicable.
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Figure 1.7: Extracted parton densities from the HERA PDF fit HERAPDF1.0 for the

valence quarks xuv and xdv, the sea quarks xS and the gluons xg. The uncertainties are

shown in red for experimental uncertainty, yellow for the model uncertainty and green for

the parametrization uncertainty.

3Dokshitzer Gribov Lipatov Altarelli Parisi
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The DIS Formalism in Quantum Chromodynamics

By ’parton evolution’ one understands the dependence of the parton dis-
tribution functions in the proton on the energy scale. There are several par-
ton evolution models, each of them providing a specific treatment of the par-
ton distributions. The most widely used one for predictions at collider experi-
ments is the DGLAP model [Dok77, GL72, AP77], which gives Q2-dependent
parton distributions and holds for medium and high x range. The BFKL4

model [KLF77, BL78] provides unintegrated gluon densities and it is intended
for the small x regime, while CCFM5 [Cia88, CFM90a, CFM90b, Mar95] at-
tempts to cover both ranges and has DGLAP and BFKL as border cases.

Figure 1.8: Gluon ladder in DIS (left) and the three main evolution schemes (right). The

graphic on the right shows the dependence of the evolution of the parton densities for each

scheme.

DGLAP. The equations give a formalism for calculating the changes of
the parton densities as Q2 changes. The procedure involves the summation of
leading αslnQ

2/µ2 terms and it assumes that the gluons in the gluon ladder
are ordered in Q2. It requires input from elsewhere for the x dependence
of the parton distribution functions at the starting scale Q2

0. This type of
evolution has been tested at HERA and it holds for most of the HERA range,
though it is expected to break at small x. The evolution equations for quark
and gluon densities in the proton are:

4Balitsky Fadin Kuraev Lipatov
5Ciafaloni Catani Fiorani Marchesini
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dqi(x,Q
2)

d logQ2
=
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d logQ2
=
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)

+ g(y,Q2)Pgg

(

x

y

))

(1.16)

In Equation 1.15, the index i runs over all quark flavours. The second term
considers the probability αsPqg(x/y) that a quark with momentum fraction
x is the result of qq̄ pair creation py a parent gluon with momentum fraction
y > x. In Equation 1.16, the index i = 1, ..., 2nf runs over quarks and
antiquarks of all flavours. The processes described by the splitting functions
P are shown in Figure 1.9.

Figure 1.9: Diagrams illustrating the processes described by the splitting functions.

BFKL. At very small x and small Q2 the logarithmic terms in Q2 are
no longer divergent, but problems arise from logarithmic terms in 1/x. The
gluon density increases strongly at low x, and the gluon induced processes
are dominating this regime. The resummation of the logarithmic terms in
1/x is done independent of Q2 in the BFKL framework, in which the rungs
from the gluon ladder are strongly ordered in their longitudinal momenta.
The result is the BFKL evolution equation, which gives the evolution in x

of the unintegrated gluon density function Fg in terms of x and transverse
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Heavy Quark Production in ep Scattering

momentum kT . This function is related to the gluon density that appears in
the DGLAP equations by:

xg(x,Q2) =
1

π

∫ Q2

0

d2k

k2
Θ(Q2 − k2)Fg(x,k) (1.17)

CCFM. The CCFM equation is the application of angular ordering to
the calculation of the gluon ladder. It provides an alternative approach to
inclusive DIS. The predictions are given also in the form of unintegrated gluon
densities. BFKL and DGLAP equations are border cases of the CCFM set.

1.3. Heavy Quark Production in ep Scattering

1.3.1. Charm Production

Conventional perturbative QCD theory is formulated most simply in
terms of zero-mass partons and the factorization theorem provides a straight-
forward procedure for order-by-order perturbative calculations in the case of
processes depending on just one hard scale Q [TKS02]. The heavy flavour
quark (c, b and t) production brings an additional hard scale in the per-
turbative calculations, due to the large masses of these quarks. There are
several prescriptions for treating the heavy flavour production, some con-
sidering the heavy quark masseless, like the Zero-Mass scheme (ZM), and
some which take into account the mass of the heavy quark, mhq and the
ratio mhq/Q, like Fixed Flavour Number Scheme (FFNS) and General Mass
Variable Flavour Number Scheme (GMVFNS).

In the conventional parton-model approach the zero-mass parton approx-
imation is applied to a heavy quark calculation as soon as the energy6 scale
E of the physics process is above the mass scale mhq of the heavy quark,
leaving E as the only apparent hard scale of the problem. This scheme is
well suited for analyses in which E2 ≫ m2

hq. However, as one approaches
the charm production threshold region, the calculations become unreliable
[TKS02].

In the fixed flavour number scheme, the proton consists of gluons and
three light (u, d, s) active flavours. The heavy flavour quarks appear only in
the final state and are generated perturbatively. The mass parameter mhq is
explicitely kept along with the energy scale. As E becomes large with respect
to mhq, this approach becomes unreliable, since the perturbative expansion
contains terms of the form αn

s log
n(m2

hq/E
2) at any order n. This type of

terms are not infrared safe as mhq → 0 or E → 0.

6The energy scale E is a generic name for a typical kinematic physical scale: Q2, W or
p⊥, depending on the process.
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Open Charm Production in DIS

A model which combines the two aforementioned approaches was also
developed, the so called ’generalized mass variable flavour number scheme’
[TT08]. This consists of a sequence of nf−FFNS calculations, each in its
region of validity, for flavour number nf = 3, 4, .... They are matched at a
certain scale which is usually set to the heavy quark mass.

The charm production in DIS proceeds mostly via photon-gluon fusion,
γg → cc̄. In this case, the charm production is directly sensitive to the gluon
density in the proton. By comparing the measured charm cross section with
the gluon density from the inclusive analyses, a powerful cross check on the
perturbative QCD calculations is available.

There are two types of mechanisms through which the charm quark may
be produced in DIS: direct and resolved. In the direct process, the interaction
is point-like between the photon and the gluon. In DIS, the direct process
dominates the medium and high Q2.

The resolved processes contribute mainly at low Q2. In this case, the
photon behaves like a source of partons, one of which takes part in the hard
interaction, thus ’resolving’ the hadronic structure of the photon. Since the
photon virtuality and the large mass of the heavy quark suppress the hadronic
fluctuations of the photons, the contribution from these processes decreases
rapidly with Q2, such that their contribution is negligible at medium and
high Q2. Diagrams for direct and resolved processes are shown in Figure
1.10.

There are other processes which can produce charm in the DIS: diffractive
heavy flavour production, scattering off charmed sea quarks and intrinsic
charm in the proton [AC99]. These processes have either been measured to
have small cross sections relative to the already discussed mechanisms, or are
not expected to contribute in the current kinematic regions.
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Heavy Quark Production in ep Scattering

Figure 1.10: Heavy quark production processes in LO QCD: boson-gluon fusion (a) and

resolved photon processes (b-e).
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Open Charm Production in DIS

1.3.2. Charm Fragmentation

Experimentally, heavy quarks are not observed directly, but heavy flavou-
red hadrons are measured instead. The fragmentation of the quarks into
hadrons is described only by phenomenological models. The fragmentation
process is assumed to be independent of the production mechanism of the
heavy quark. Within the fragmentation process two independent aspects
have to be considered. One aspect concerns the probability that a quark
will turn into a certain colourless object. The fraction f(c → D∗) of charm
quarks fragmenting into D∗ mesons is 23.5±0.7 % [Loh11]. The other aspect
deals with the fragmentation function DH

hq(z), where z is the energy fraction
which is transferred due to fragmentation from the parent parton hq to the
daughter hadron H. The fragmentation function can be factorized into a hard
interaction part and a soft non-perturbative part. The first part is described
perturbatively by parton showers, where the virtual quarks participating in
the hard matrix element emit particles until they become on-shell. The
non-perturbative part, or hadronization, corresponds to the transition of the
on-shell partons to bound hadron states.

There are several hadronization models available, among them the Lund
String model and the cluster model. In the Lund String model, when both
particles of a qq̄ pair are moving away after the interaction, the resulting
colour field is compressed into a string. If sufficient energy is stored in this
string it breaks and a new qq̄ pair is produced. Radiated gluons cause kinks in
the strings, which influence the angular distribution of the hadrons produced.
This model is utilized in the Monte Carlo generator used in this analysis.

The cluster model assumes that, when the virtualities of the partons in
the cascade reach a lower limit, beyond which the perturbation theory can’t
be applied any more, any gluons in the cascade are forced to split non-
perturbatively in qq̄ pairs. Those pairs sharing a colour index form color sin-
glet clusters. The clusters convert into hadrons by isotropic quasi-two-body
decays into pairs of resonances. This model has few parameters compared
to the Lund String model and a natural mechanism for generating tranverse
momenta and suppressing the heavy particle production in hadronization
[Web00].

For the fragmentation of the heavy flavoured quarks, different models are
employed. The most known and used are Peterson fragmentation [PSSZ83],
Bowler model [Bow81, Mor89] and Kartvelishvili function [KLP78]. These
functions describe the longitudinal momentum transfer (z = EH/Ehq) from
the quark hq to the hadron H :

Peterson: DH
hq(z) ∝

1

z[1 − 1/z − ǫhq/(1− z)]2
(1.18)
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Bowler: DH
hq(z) ∝

1

z1+b rhq m2

Q

· (1− z)a · expb M
2
T

z
(1.19)

Kartvelishvili: DH
hq(z) ∝ zα · (1− z) (1.20)

The Peterson and the Kartvelishvili parametrisations have one free pa-
rameter each, ǫQ and α, respectively, whereas the Bowler function has two
free parameters, a and b. The value mQ is the mass of the heavy quark,

MT =
√

M2
H + p2⊥ stands for the transverse mass of the hadron H with the

transverse momentum p⊥, rQ for the radius of the quark which is set to 1
by default. The ǫQ parameter scales for charm and beauty fragmentation
with 1/m2

Q [N+10]. The heavy quark fragmentation function is expected to
be harder than that of the light flavours because the formed hadron carries
a high momentum fraction and for heavy quarks the fragmentation function
peaks near 1 [N+10].

1.3.3. Properties of the D∗ Meson

The chargedD∗+ (D∗−) meson with the quark content cd̄ (c̄d) is the lowest
excited state of the charged D meson. With its quantum numbers I(JP ) =
1/2(1−), where I stands for isospin, J for angular momentum and P for
parity, the D∗± meson is a vector meson. Its mass amounts to 2010.28±0.13
MeV [N+10] which differs from the mass of the D0 meson 1864.86±0.0.13
MeV by somewhat more than one pion mass.

The D∗ meson decays into a neutral pion or a photon and a D± meson
or into a charged pion and a D0 meson. The total decay width Γ of the D∗

amounts to 96±22 keV. The decay channels with their branching ratios are
summarized in Table 1.1. In this analysis only the decay of the D∗ in D0π±

is used. Due to the small difference between the D∗ and the D0 mesons, the
pion is produced in this decay with a small momentum in the D∗ rest frame.
It is therefore denoted ’slow pion’ (πs).

Decay channel Fraction

D0π± (67.7±0.5) %

D±π0 (30.7±0.5) %

D±γ (1.6±0.4) %

Table 1.1: Decay channels of the charged D∗ meson [N+10].

The D0 decays via the weak interaction with a mean lifetime of τ =
(410.1± 1.5) · 10−15 s. The decay channels relevant for this analysis together
with their branching fractions are listed in Table 1.2. For this analysis the
decay of the D0 meson into a charged kaon and a charged pion is used. It
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Open Charm Production in DIS

follows that in the final state only charged particles are present, which can be
detected with track detectors. For the reconstruction of D∗ mesons a strong
background suppression exists due to the small phase space of the πs. This
particular decay channel is also called the ’golden channel’.

Decay channel fraction

K±π∓ (3.80±0.07) %

K±K∓ (3.84±0.10) ·10−3

π±π∓ (1.364±0.032) ·10−3

K±l∓νl (6.7±0.4) %

π±π∓π0 (1.31±0.06) %

Table 1.2: Selection of decay modes of the D0 meson, where the meson decays into

charged particles [N+10].

1.4. NLO Calculations

In this analysis the HVQDIS program [HS95, HS98] is used for the NLO
calculation of the D∗ cross sections in the massive scheme. This calculation
also makes use of the fixed flavour number scheme, assuming three active
flavours in the proton (u, d, s). Heavy quarks are produced dominantely
in the boson-gluon fusion. In addition, a small fraction of quark induced
processes with the emitted gluon splitting into a cc̄ pair is present. For the
calculation the HERAPDF1.0 set is used. On top of the HVQDIS calcula-
tion, which yields complete four-vectors of the charm quarks produced, the
quarks are fragmented into D∗ according to the Kartvelishvili fragmentation
function. To obtain the central values for theD∗ cross section, both scales are
set to µR = µF = µ0 =

√

Q2 + 4m2
c and the charm mass is set to mc = 1.5

GeV. The fragmentation is calculated with the parameter α chosen according
to the measurement [A+09]: α = 3.3+0.4

−0.4 for ŝ > 70 GeV2 and α = 6.0+1.1
−1.3

for ŝ < 70 GeV2. The notation ŝ stands for the centre-of-mass energy of the
cc̄ pair. To estimate the theoretical uncertainties the input parameters are
varied as follows:

• the charm mass is varied from mc = 1.35 GeV to mc = 1.65 GeV.

• the renormalization and factorization scales are varied simultaneously
from 0.5µ0 to 2µ0.

The resulting uncertainties are added in quadrature and are correlated.
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1.5. Event Generators and Detector Simulation

A measurement of the physical quantities like cross sections requires cor-
rections due to the detector response. This includes the limited acceptance
and efficiency as well as the influence of the resolution of the detector com-
ponents. The treatment of these aspects constitutes the main task for the
Monte Carlo simulations since it is difficult to determine these corrections for
a complete physics analysis just from data. Monte Carlo simulations are also
used in developing the selection criteria, by helping to determine which vari-
ables are particularly useful for separating signal from background. Where
simulations and data disagree the MC simulation is tuned to model the data
behaviour in several ways. Where the detector response is concerned, the
relevant parts, for example the material distributions, can be determined di-
rectly from data and then implemented in the simulation. If the differences
between data and Monte Carlo arise from simulation of the underlying physi-
cal processes on the generator level, one can either try varying the parameters
(the fragmentation, for example) or change the physical input for the simu-
lation. When using a Monte Carlo simulation for correction of the measured
quantities to the detector response, it is common practice to reweight the
Monte Carlo events with respect to the generated distributions in order to
describe the data.

The Monte Carlo generator RAPGAP [Jun95] performs calculations of
charm production in ep scattering in the massive scheme in leading order
pQCD. Higher order corrections within the hard interaction part are im-
plemented via initial state (proton side) and final state (heavy quark side)
parton showers. For the parton evolution RAPGAP uses the DGLAP for-
malism where the PDF set HERAPDF1.0 at the starting scale is used for this
analysis. The RAPGAP version used is 3.1. The renormalization and the
factorization scale for RAPGAP has been set to µR = µF = µ0 =

√

Q2 + p2⊥.
The charm quark mass is set to mc = 1.43 GeV. For the fragmentation of
the light quarks the Lund String model is used, whereas for the fragmen-
tation of the heavy quarks the Bowler fragmentation has been used. The
initial and final state QED radiation in LO, i.e., single photon emission off
the lepton line, as well as virtual electroweak corrections were considered via
an interface with HERACLES [KSM92].

The detailed simulation of the detector response is contained in the H1SIM
package [Mey89] which is based on the GEANT3 program [BBM+87]. The
simulation contains information like the generation of hits in the tracking
chambers as well as showers in the calorimeters. Inflight decays of the insta-
ble hadrons and production of new particles by interactions with the material
are also considered. The parameters used in this program were determined
in test beam measurements and optimized during ep data taking. For the
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reconstruction the data and the simulated events pass through the same pro-
gram H1REC [Col08].
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Chapter 2: HERA and the H1 Detector

The electron1-proton storage ring HERA [Wol] was in operation between
1992 and 2007 at the DESY laboratory located in Hamburg, Germany. There
were four interaction points at HERA: H1 and ZEUS (general purpose ex-
periments), and HERMES and HERA-B (fixed target experiments). The
analysis presented in this thesis was done with data collected by the H1 ex-
periment. In this chapter, the main features of the HERA ring and a general
description of the H1 detector are presented.

2.1. HERA

HERA consisted of two independent rings designed to accelerate and store
electrons or positrons and protons in a tunnel 6.3 km in circumference. In the
Figure 2.1 the layouts of the HERA accelerator and of the injection system
are shown.

Figure 2.1: Schematic view of the HERA collider: the main HERA ring (left) and the

pre-accelerator system (right).

Before injection into the HERA ring the electrons and protons were first
passed through a chain of pre-accelerators. Negatively charged hydrogen ions
were accelerated in a 50 MeV linear accelerator and then stripped of their
electrons in order to get the protons which were afterwards injected into
DESY III. The protons were accelerated to 7.5 GeV before being transferred

1The term ’electrons’ refers to both electrons and positrons
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to PETRA III. There they were accelerated to 40 GeV and then injected into
the main HERA ring. The proton current achieved was of approximately 100
mA.

Electrons were first brought up to 500 MeV in a linear accelerator, then
injected into a small storage ring. There they were allowed to accumulate
in a single bunch of 60 mA before being injected into DESY II and then
accelerated to 7 GeV. Afterwards, the bunch was transferred to the PETRA
II ring, with this stage being repeated at a rate of 12.5 Hz until 70 bunches
have been filled. The bunches were then injected into the HERA ring. This
procedure was carried out three times with a resulting electron current of
approximately 30 mA being achieved.

Some bunches were left empty such that a proton or an electron bunch
may arrive in the detector with no collision partner. These unpaired ’pilot’
bunches were used to estimate the rates of background processes such as
beam interactions with the residual gas in the beam pipe and collisions with
the beam pipe wall.

During the 1999 and 2000 running periods, 27.6 GeV positrons were
brought into collision with 920 GeV protons, providing a center-of-mass en-
ergy

√
s ≈ 318 GeV and a time of 96 ns between bunch crossings.

2.2. The H1 Detector

The H1 detector [A+97a], [A+97b] was a general purpose 4π detector
measuring both the scattered electron and the final hadronic state produced
by the scattered quark and proton remnant. Due to the energy imbalance of
the colliding particle beams, the H1 detector was forward-backward asym-
metric in design. The forward region of the detector was instrumented to
measure the large energy flows and particle multiplicities emerging in the
proton direction. The backward region was designed to provide an accu-
rate measurement of the scattered electron energy and momentum which are
important in determining the event kinematics.

The H1 detector consisted of several components, layered around the
interaction point. A three dimensional view is shown in Figure 2.2.
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The H1 Detector

1 Beam pipe and beam magnets

2 Central tracking device

3 Forward tracking device

4 Electromagnetic LAr calorimeter

5 Hadronic LAr calorimeter

6 Superconducting coil

7 Compensating magnet

8 Helium supply for 7

9 Muon chambers

10 Instrumented iron yoke

11 Forward muon toroid

12 Backward electromagnetic
calorimeter
13 PLUG calorimeter

14 Concrete shielding

15 Liquid argon cryostat

Figure 2.2: A three-dimensional view showing the layout of the H1 Detector. The com-

ponents are indicated by numbers on the picture.
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Figure 2.3: The coordinate system at H1

The beam pipe was surrounded by the tracking detectors which were
followed by the calorimeters. The superconducting solenoid enveloped the
latter. It provided the magnetic field of∼ 1.15 T needed to measure particles’
momenta with the tracking detectors. The whole apparatus was surrounded
by an iron yoke to return the magnetic flux of the solenoid. The iron yoke
was instrumented and used as a central muon detector.

The z axis of the right-handed H1 coordinate system, illustrated in Figure
2.3, was defined by the beam axis with positive values in the direction of the
proton beam. The x axis pointed towards the center of the HERA ring
and the y axis pointed perpendicular upwards. The origin of the coordinate
system was the nominal interaction point. The azimuthal angle φ laid in the
xy plane and the polar angle θ was measured from the z axis.

The luminosity measurement was based on the Bethe-Heitler process
[BH34], for which the cross section can be calculated precisely by the quan-
tum electrodynamics framework (QED), and was performed with a dedicated
detector system.

2.3. Central Tracking Detectors

The central tracking system was composed of the central silicon tracker
(CST), the central inner z chamber (CIZ), the central inner proportional
chamber (CIP), the central outer z chamber (COZ), the central outer pro-
portional chamber (COP) and the central jet chamber (CJC). A schematic
view of the entire tracking system is presented in Figure 2.4.

The main tracking device was the CJC, which consisted of two coax-
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Figure 2.4: The H1 Tracking system (r − z) view.

ial cylinders filled with gas, and was positioned along the beam axis from
z = -1.1 m to z = + 1.1 m. The inner cylinder (CJC1) covered the angular
range 11o < θ < 169o and the outer cylinder (CJC2) covered 26o < θ <154o.
Both chambers had their wires strung parallel to the beam axis and the drift
cells were inclined with respect to the radial direction in the (r, φ) drift plane.
Charged particles traversing the CJC ionized the CJC gas. The released elec-
trons drifted towards the wires and caused an electron cascade, driven by the
electric field between the wires. The drift velocity and the time at which the
charge collected by the wires was measured defined the position of hits in
the (r, φ)-plane. The charge was read at both ends of the wires. The space
point resolution in the drift plane was 170 µm, and by comparing the signals
read from both ends of the wires a resolution of 1% of the wire length in z

was achieved.

To further improve the z -resolution, hits in CIZ and COZ were also taken
into account in the track reconstruction. They were located inside the CJC1
and in between the CJC1 and CJC2, respectively. Their signal wires were
perpendicular to the z axis, resulting in a z -resolution better by two orders
of magnitude compared to the CJC alone.

The central silicon tracker (CST) was the innermost track detector. It
consisted of two layers with a polar coverage of 30o < θ <150o. In the
(r, φ) plane a hit resolution of σrφ = 12 µm was achieved. Including the
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precise CST (r, φ) hits in the track fit improved the transverse momentum
resolution due to the good hit resolution and due to the extension of the
measured arc length in the (r, φ) plane.

The central inner and the central outer proportional chambers (CIP and
COP) didn’t have any influence on the final track measurement. Together
with the forward proportional chamber (FPC) they performed a fast mea-
surement of the z position of the interaction point at first trigger level. Like
in the CJC, the wires in CIP and COP were parallel to the z axis. Each
of these two chambers contained two layers. CIP (COP) was divided in 8
(16) azimuthal φ sectors and in 60 (18) pads of 36 (120) mm each in the
z direction. The two CIP layers were rotated by π/16 in φ with respect to
each another, thus halving the eightfold segmentation of each chamber at the
trigger level by requiring coincidences of the two planes.

In the forward region of the H1 detector the forward tracking detectors
(FTD) and the forward proportional chambers (FPC) were located. Informa-
tion from the FTD was not used in this analysis because the track information
obtained with it was worse qualitatively than the information from the cen-
tral tracking system. One reason for this was the multiple scattering of the
particles in the region between the interaction point and the forward tracking
detectors. The forward proportional chamber was used together with CIP
and COP to gather rapid information about the position of the interaction
vertex.

2.4. Track Reconstruction

The solenoid generated a longitudinal magnetic field in the central track-
ing system and bent the tracks of the charged particles. The trajectory of
a charged particle was ideally approximated by a circle in the (r, φ) plane
and by a helix in three dimensions. The five parameters of the helix were
afterwards determined:

• the signed curvature parameter κ = ±r−1 of the track in the (r, φ) plane,

• the signed distance of closest approach dca of the track to the z axis in
the (r, φ) plane,

• the azimuthal angle φ of the track in the point of closest approach: the
angle between the x direction and the transverse momentum (tangent
to the helix) in the (r, φ) plane in the point of closest approach,

• the polar angle θ in the point of closest approach: the angle between
the z direction and the momentum in the point of closest approach

• z position zca of the track in the point of closest approach.
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The sign of the κ parameter was positive when the particles were moving
in the (r, φ) plane projection in the anticlockwise direction from the point
of closest approach. This was a negatively charged particle. The transverse
momentum of the track was directly correlated to the curvature parameter κ
of the helix in the (r, φ) plane: κ ∝ 1/p⊥. The sign of the dca parameter was
positive when the vector from the origin to the point of closest approach,
the momentum vector in the (r, φ) plane and the positive z axis made a
right-handed system.

The first three parameters were determined from the fit of the projection
of the track in the (r, φ) plane to a circle. The polar angle θ and the z

position zca of the track resulted from a subsequent fit in the (r, z) plane.

Due to the fact that the real interaction point, which is relevant for the
physical observation, usually differs from the nominal interaction point, in
addition to the variables dca and zca, that depend on the origin of the coor-
dinate system, the variables dependent on the real interaction vertex d′ca and
∆z0 were also defined:

• d′ca is the signed distance of closest approach of the track to the recon-
structed interaction point in the (r, φ) plane

• ∆z0 = δca−zrec vtx, where δca is the difference between the z coordinate
of the point of closest approach and the nominal interaction vertex, and
zrec vtx is the z position of the reconstructed vertex.

For tracks fitted to the reconstructed vertex, these variables vanish by
definition. Therefore, when the quality of these tracks was evaluated, the
values of d′ca and ∆z0 were used, which were determined for a track with the
same hits in the tracking detectors as the evaluated track, but which was not
fitted to the reconstructed interaction point.

The track reconstruction algorithm has been modified for the most recent
offline reconstruction program. It takes into account the effects of the sources
that can spoil the ideal form of a circle in the (r, φ) plane or of a straight
line in the Sz plane2, like multiple scatterings in the material (which mani-
fest in sudden changes of direction) and energy loss in the material (which
affect the curvature of the track) by using a broken-line fit. The new track
reconstruction also comprises with a more robust treatment of the outliers
(hits that are far from the reconstructed track) in a reasonable amount of
time. More details can be found in [Blo].

2S is the distance in the xy plane
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2.5. Calorimeters

The Liquid Argon calorimeter (LAr) [A+93] enclosed the forward and the
central part of the detector, covering the polar angular range 4o < θ <154o.
It was a sampling calorimeter with absorbers of lead in the inner electro-
magnetic and of stainless steel in the outer hadronic part. Altogether it had
more the 44 000 readout channels, called calorimeter cells.

The LAr was a non-compensating calorimeter, having on average a larger
response to the electromagnetic compared to hadronic energy depositions.
A software weighting algorithm was applied to correct for the electromag-
netic shower fraction of energy depositions caused by the hadrons, examining
shower shapes. Since the shape of low energetic hadronic depositions is irreg-
ular, for energy depositions below ∼ 7−10 GeV in a specific cone weighting
factors were applied without detailed analysis of the shower shape.

The reconstruction software provided energy measurements with and with-
out this correction of hadronic energies. The hadronic energy level applied
the individual hadronic weighting factor for each calorimeter cell. The elec-

tromagnetic energy level assumed the energy deposition to be purely electro-
magnetic and only corrections for dead material in front of the calorimeter
were applied. Finally the cells were grouped into clusters.

An energy resolution of σ(E)/E ∼ 12%/
√

E/GeV⊕ 1% in the electro-

magnetic part and of σ(E)/E ∼ 50%/
√

E/GeV⊕ 2% in the hadronic part
was achieved.

The spaghetti calorimeter (SpaCal) [A+97c] was composed of a forward
electromagnetic part and of a backward hadronic part, covering the polar
angular range between 153o and 177.5o. The 1192 electromagnetic cells pro-
vided a fine granularity. The hadronic part had 136 cells. Both the hadronic
and electromagnetic parts used the so-called spaghetti technology. A cell
in the electromagnetic part had an area of 40.5 x 40.5 mm2 and contained
scintillation lead fibers strung parallel to the beam axis, whose ends were all
tied together and were read by the same photomultiplier. Both the electro-
magnetic and the hadronic part had each an active volume of 25 cm deep,
corresponding to 28 radiation lengths for the electromagnetic part and to 29
radiation lengths for the hadronic part.

The energy resolution of the electromagnetic part of the SpaCal was mea-
sured in test beams at CERN and DESY [N+96] to be:

σem(E)

E
=

(7.1± 0.2)%
√

E(GeV )
⊕ (1.0± 0.1)% (2.1)

The calibration for high electron energies was performed by studying the
energy spectrum of the scattered electrons reconstructed by the electron and

31



The Trigger

double angle methods3. The energy scale up to small energies can be verified
by comparing the energy of the scattered electron cluster in SpaCal to the
track in the backward silicon tracking detector [Eck02]. The energy resolution
of the SpaCal was found to vary linearly from 1% at 2 GeV to 0.2% at 27.6
GeV ([Pet11]).

The energy resolution of the hadronic part of the SpaCal was measured
in test beams at ITEP Proton Synchrotron in Moscow [eaHSG] to be:

σhad(E)

E
=

(56.0± 3.0)%
√

E(GeV )
(2.2)

The backward drift chamber (BDC) [Col], [Sch96] was positioned in front
of the SpaCal. Together with the latter, it improved the precision of the
scattered electron polar angle measurement. The BDC was divided in eight
parts. One part consisted of four drift chambers with two scintillating fiber
layers, each layer positioned along the z axis. The 2048 fibers of the BDC
were strung perpendicularly on the beam pipe, such that a fast measurement
of the radial drift direction could be made. This geometry optimized the
resolution of the polar angle measurement. From outside inwards the distance
between the fibers diminished, such that an uniform resolution of the polar
angle was achieved. In order to allow the measurement of the azimuthal
angle, the two layers were rotated by 11.5o with respect to each other. The
final resolution of the scattered electron polar angle is σθ = 2 mrad.

2.6. The Trigger

Electron and proton bunches collided every 96 ns leading to a rate of
10.4 MHz. Since the rate of the physically interesting ep rates was much
lower and the reading out of the total detector in 96 ns is not possible, fast
hardware and software algorithms had to decide whether to keep an event
or not. This was done by a sophisticated multilevel trigger system which
selected the relevant ep events and reduced the background rates in several
steps. The input rate decreased from about 100 kHz at the first level (L1)
down to 50 Hz at the fourth level (L4). During the data taking periods 1999
and 2000 there were three trigger levels in use.

The L1 decision was based on special trigger signals from various detec-
tor components. There were 256 trigger elements logically combined in 192
subtriggers. An event was kept at L1 if at least one of the 192 subtriggers
was giving a positive decision. To allow sufficient time to acquire the indi-
vidual signals, they were first fed into a pipeline, bunch crossing by bunch
crossing. The decision to keep an event came 24 bunch crossings later. The

3The electron and double angle methods are presented in Chapter 3.
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pipelines were stopped if the decision was positive. Until the pipelines were
restarted, so-called dead time accumulated in which no data could be col-
lected. If a specific subtrigger had a too large rate, it was scaled down by a
factor n. That means that only every n-th positive decision of this subtrigger
was taken into account, effectively reducing the integrated luminosity seen
by this subtrigger. The L1 output rate was of the order of a few kHz.

Neural networks and topological triggers were implemented on L2. Within
20 µs the decision had to be made whether to start the full detector readout
or to reject the event and restart the pipelines. The L1 subtriggers selected
in this analysis did not require an L2 condition to be fulfilled. The L2 output
rate had to be below 50 Hz since L3 was not yet operational for the data
analyzed here.

On the fourth trigger level an on-line event reconstruction was performed.
This did not contribute further to the dead time since an asynchronous event
buffer was used. If the L1 and the L2 decisions could be validated, the events
were classified into L4 classes. They belonged to at least one of the physics
event classes if they provided a ”hard scale”, e.g. a scattered electron with
a sufficiently large squared momentum transfer (Q2) or if specific final state
finders selected them. All events assigned to physics classes were kept. The
remaining events were downscaled. For the kept fraction of the downscaled
events an according weighting factor was stored, the L4-weight. The maximal
allowed decision time of L4 was 100 ms.

2.7. The Luminosity System

The luminosity was determined from the rate of the Bethe-Heitler process,
ep → epγ. This process depends on the inner structure of the proton and can
be computed precisely in the quantum electrodynamics (QED) framework.
The cross section of the Bethe-Heitler process in the visible phase space of
the H1 luminosity system is around 70 nb [Fav].

The luminosity system [Fav],[eaHC] was based on two dedicated detec-
tors: the electron tagger for the detection of the scattered electrons and the
photon tagger for the radiated photon. The kinematics of the Bethe-Heitler’s
process favors the electrons scattered inside the beam pipe. Therefore the
electron tagger was located very close to the beam pipe and quite far from
the interaction point (z = -33 m), in order to detect the electrons scattered
at angles close to 180o. Just like the beam electrons, the scattered electrons
were also bent by the magnetic system which separated the beam electrons
from the beam protons after the interaction point. The outgoing photon
went straight to the photon detector centered on the proton beam axis at z
= -103 m. A graphical overview of the luminosity system is shown in Figure
2.5 and the total luminosity recorded by the H1 experiment in the 2 runs are
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shown in Figure 2.6.
The luminosity was calculated from the total rate Rtot of the bremsstrah-

lung events, R0 is the rate for electron pilot bunches, Itot and I0 are the
corresponding electron beam currents and σvis is the visible part of the
Bethe-Heitler cross section with acceptance and trigger efficiency included:

L =
Rtot − (Itot/I0)R0

σvis
(2.3)

The event rate of pilot bunches allowed for a good estimate of the brems-
strahlung events coming from the interaction between the electrons and the
residual gas in the beam pipe (eA → eAγ), which is the main background
for the Bethe-Heitler processes.

After the trigger selection, a complete off-line event reconstruction is per-
formed and the output is stored on tapes. Using the knowledge obtained
from previous technical studies and physics analyses, a new reprocessing
of the recorded data was made recently4, leading to improvements in the
electromagnetic and hadronic calibrations and in the track reconstruction
efficiency.

4The reprocessed files are available since year 2011.
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Figure 2.5: The layout of the luminosity system at H1 experiment.
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Chapter 3: Event Selection

In this chapter, the criteria used in the event selection are presented. The
distributions of different observables in the data sample are compared with
the Monte Carlo simulation.

3.1. General Event Selection

The data set analyzed in this thesis covers the period of HERA oper-
ating positron beams from the years 1999 and 2000 and corresponds to an
integrated luminosity of 47.66 pb−1.

A run is a short data taking period with constant readout and the trigger
settings. The runs must fulfill the following conditions in order to be selected:

• The run quality has to be good or medium. It means that all major
subsystems must be operational: the luminosity system, CST, CJC1,
CJC2, LAr and SpaCal.

• The integrated luminosity of a run should be at least 0.1 nb−1. If the
collected luminosity in a run is lower, it is usually because of technical
problems.

• The subtrigger 61 has to be on.

3.2. Online Selection

The selection of the data events is performed in two steps. In the first
step, an online preselection is done during data taking. This step is based
on a trigger decision which selects a certain class of physics events. In the
second step, the final selection is done offline by applying analysis specific
cuts.

The trigger used in this analysis, trigger 61, receives signals from several
detector components. It is a level 1 trigger and it fires if the conditions
formulated in terms of trigger elements are fulfilled. Trigger elements are
the digital information that is sent from the individual subdetector triggers.
Trigger 61 decides on the scattered electron, z vertex and track information:

(DCRPh THig & zV tx sig & (SPCL IET > 2 | SPCLe IET Cen 3))

The scattered electron: (SPCL IET > 2 | SPCLe IET Cen 3)).
All electrons are triggered using the inclusive electron trigger (IET). The
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condition for a scattered electron is an energy cluster deposit in the electro-
magnetic part of the SpaCal. The deposit must be of at least 6 GeV. There
are also rules in place to discard the events in which the energy cluster de-
posits in the hadronic part of the SpaCal are higher than 0.6 GeV for the
electron candidate cluster and 12 GeV in total. These requirements are a
veto condition for the hadrons faking electrons.

z vertex: zV tx sig. The z vertex information is obtained from CIP,
COP and FPC. The trigger recognizes the tracks seen in these chambers
and the information with all the intersections between these tracks and the
z axis is provided as a distribution, which for real tracks, has a significant
peak in one bin, whereas the number of entries in the other bins is randomly
distributed.

Tracks: DCRPh THig. The information on tracks comes from the CJC.
The DCRPh THig requirement means that at least one energetic track, cor-
responding to a transverse momentum larger larger than 800 MeV, passes
through these chambers. There are additional conditions coded to discard the
events with high multiplicity of charged particles, thus reducing the non-ep
background.

The subtrigger efficiency will be discussed in Chapter 4 as a function of
the kinematic variables.

3.3. Offline Reconstruction of the DIS Events

The recorded events are subjected to the offline reconstruction and af-
terwards to an extended set of selection criteria to minimize the background
contributions. The methods used and the constraints applied are detailed in
the following subsections. The data distributions of the variables analyzed
are compared with the distributions given by the Monte Carlo simulation.
These comparisons are the so-called control distributions.

3.3.1. Reconstruction of the Kinematics

The first step in the reconstruction of the event kinematics is determining
the interaction’s primary vertex position. For an efficient event reconstruc-
tion, the primary vertex z position should be within 35 cm from the nominal
interaction point. This restriction maximizes the rejection of the non-ep
events, like beam-gas and beam-wall interactions, halo and cosmic muons. A
comparison between the z position in data and the Monte Carlo simulation
is shown in Figure 3.1.

At H1 several methods are used for reconstructing the kinematic variables,
using the redundant information for cross checks and calibrations. The event
kinematics can be reconstructed using the information just from the scattered
electron measurement or from the hadronic final state measurement.
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Figure 3.1: The comparison between data and Monte Carlo simulation for the z position

of the primary interaction vertex. A good agreement between the data (black points) and

the simulation (orange band) is observed. The error bars on the points and the width of

the band represent the respective statistical uncertainties.

Electron method. This method is based on the measurement of the
scattered electron only. The transferred momentum squared Q2, the inelas-
ticity y and the Bjørken-x are reconstructed using the energy of the incoming
electron Ee, the energy of the scattered electron E ′

e and the scattering angle
of the electron θe:

Q2
e = EeE

′
e(1 + cos θe′) (3.1)

ye = 1− E ′
e

2Ee
(1− cos θe′) (3.2)

xe =
Q2

e

s · ye
(3.3)

The resolution for y reconstructed using the electron method is given by:

δye
ye

=
(1− ye)

ye

(

δE ′
e

E ′
e

⊕ δθe′

tan(θe′)

)

(3.4)

and it degrades fast when y → 0 because of the 1/ye term. Another drawback
of the method is the sensitivity to the initial state radiation (ISR) of a photon
by the electron, as it lowers the energy of the beam electron available for the
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interaction: Ee = Ebeam−Eγ , influencing the reconstruction of high y values.
The electron method is rather safe against final state radiation (FSR) of a
photon by the scattered electron, because the photon cluster is merged with
the scattered electron cluster. Both ISR and FSR influences are accounted
for in the cross section calculation, as described in Subsection 4.1.3.

Sigma method. It is based on the longitudinal momentum conservation
relation:

∑

i

(E − pz)i = 2Ee (3.5)

where the sum runs over all the particles in the final state, including the
scattered electron. The reconstruction of the event kinematics is done using
both the scattered electron measurement and the hadronic final state mea-
surement Σ =

∑had
i (Ei − pz,i), where the sum runs over all the particles

measured in the final state, except the scattered electron.

yΣ =
Σ

Σ + E ′
e · (1− cos θe′)

(3.6)

Q2
Σ =

E
′2
e · sin2θe′

1− yΣ
(3.7)

xΣ =
Q2

Σ

yΣ · s (3.8)

The advantages of this method are the good resolution at low y and the low
sensitivity to radiative corrections. The drawback is that it needs a very good
measurement of the hadronic final state. The resolution in y reconstructed
with the Σ method is given by:

δyΣ
yΣ

= (1− yΣ)

(

δΣ

Σ
⊕ δE ′

e

E ′
e

⊕ δθe′

tan(θe′/2)

)

(3.9)

and it degrades slightly at larger y values due to particles emitted very close
to the beam pipe.

Electron-Σ method. The eΣ method for reconstructing the event kine-
matics was developed [BB95], such that one could reconstruct simultaneously
the transverse momentum squared and the Bjørken-x with good resolutions
and little dependence on the radiative corrections. In this method, the in-
elasticity y is obtained from:

yeΣ =
Q2

e

xΣ · s (3.10)
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Figure 3.2: The data distribution (black points) and the Monte Carlo simulation (orange

band) for Q2, Bjørken-x and inelasticity y.
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The ratio yrec/ytrue is compared for the three reconstruction methods,
where yrec is y and ytrue is the y generated by the Monte Carlo program
RAPGAP. The ratio yrec/ytrue is drawn in bins of ytrue and then fitted with
a Gauss function. The fitted value of the σ parameter for each method is
plotted as a function of ytrue and it is shown in Figure 3.3.

For this analysis, the Q2
e range is between 2 and 100 GeV2 and the yeΣ

range is between 0.02 and 0.7. The control distributions for Q2
e, xe and yeΣ

are shown in Figure 3.2.
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Figure 3.3: Resolution in y for different reconstruction methods as a function of true y

derived from fitted distributions of the fraction ymethod/ytrue in each ytrue bin.

Double angle. The double angle method uses the scattered electron
polar angle and the polar angle γ which characterizes the hadronic final
state. If the quarks are considered massless, then γ is the polar angle of
the scattered quark. This method has low radiative corrections and doesn’t
depend heavily on the energy scales, but it has a low resolution at small y
due to the particle losses in the beam pipe. The observables reconstructed
with this method are used in calibration procedures of the electromagnetic
and hadronic energy scales.

δhad =
no. of hadrons

∑

i

Ei(1− cos θi) = Ehad − pz had (3.11)

cos γ =
p2t had − δ2had
p2t had + δ2had

(3.12)
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Q2 = 4E2
e

sin γ(1 + cos θe)

sin γ + sin θe − sin (θe + γ)
(3.13)

x =
Ee

Ep

sin γ + sin θe + sin (θe + γ)

sin γ + sin θe − sin (θe + γ)
(3.14)

Due to the longitudinal momentum conservation relation 3.5, the
∑

i(E − pz)i
is expected to peak at ∼55 GeV if all particles are detected. In order to reject
those events in which there are particles emitted close to the beam pipe and
thus escaping detection,

∑

i(E − pz)i is restricted between 40 GeV and 70
GeV. The distribution is shown in Figure 3.4.

Figure 3.4: The comparison between data and Monte Carlo simulation for E−pz. A good

agreement between the data (black points) and the simulation (orange band) is observed.

The error bars on the points and the width of the band represent the respective statistical

uncertainties.

3.3.2. Scattered Electron Selection

Because the kinematics reconstruction is partially based on the measure-
ment of the scattered electron, there are several criteria employed for an
efficient electron identification. The information used in the reconstruction
of the electron candidate is taken from SpaCal and BDC subdetectors.

The scattered electron produces showers in the electromagnetic part of
the SpaCal. The cells with the energy depositions from the shower form a
cluster, which is then used to calculate the properties of the electron can-
didate. If more than one candidate is found, then the one with the highest
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transverse momentum is considered to be the scattered electron. The energy
of the cluster has to be at least 8 GeV and a polar angle between 153o and
177.8o. The properties of the scattered electron, the energy, the polar and
the azimuthal angles, are well described by the Monte Carlo simulation, as
it can be observed in Figure 3.5.

A true scattered electron shower seldom extends into the hadronic part
of the SpaCal. Therefore, the electron cluster position is restricted to the
electromagnetic part by a cut in the radial position of the cluster, where
xcluster and ycluster are the x and y coordinates of the electron cluster:

re =
√

x2
cluster + y2cluster < 74 cm

Figure 3.5: The properties for the scattered electron: the energy (upper left), the polar

angle (upper right) and the azimuthal angle (bottom) in data and in the Monte Carlo

simulation. Data is represented by the black points and the Monte Carlo simulation by

the orange band. Statistical uncertainty is represented by error bars for data and by width

of the band for Monte Carlo.
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Also, the amount of energy deposited in the hadronic SpaCal is limited by
two requirements: it should not exceed 500 MeV and it should not be more
than 3% of the total energy of the electron cluster. These two requirements
help differentiating the electron shower from hadronic showers, as the latter
deposit more energy in the hadronic part of the calorimeter. Also, the cluster
radius is larger for hadrons than for electrons. The electron shower doesn’t
have an uniform deposition in the calorimeter cells, so the cluster radius is
calculated by using the logarithm of the ratio between the cell energy and
the cluster energy as a weight for the cell position:

wi = max

(

0, w0 + ln
Ei

∑

i Ei

)

−→r =

∑

i wi
−→ri

∑

i wi

Ecra =

√

∑

i w̃i (
−→ri −−→r )

∑

i w̃i

where −→r is the cluster position as a weighted sum over the positions of all
cells, with the weight functions wi [Gla98]. Ecra denotes the size of the cluster
and it is restricted to 4 cm:

Ecra < 4 cm.
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The inner part of the SpaCal is shielded from the beam pipe by a layer
of tantalum (see Figure 3.8). This layer is called the VETO layer. If the
scattered electron is emitted under a large angle and enters close to the
beam pipe, a part of its energy will be deposited in the VETO layer cells and
another part will leak into the beam pipe. Due to this leakage, the energy of
the electron will not be fully reconstructed. This type of events is rejected
in the analysis by requiring that the energy in the VETO layer is less than 2
GeV. Also, all the events with clusters in a radius of 8.7 cm from the beam
pipe are discarded.

The electron and the proton beam are not parallel to one another and are
not exactly parallel to the z axis of the coordinate system. This can lead to
a shift of the actual cluster position closer to the beam pipe than it is read
from the SpaCal geometry alone. This effect is corrected for by requiring
that:

|(zSpaCal − zvertex) · tanθe| > 9.1 cm

In order to improve the resolution of the electron’s azimuthal angle mea-
surement, BDC conditions are also applied. At least 4 hits in the BDC
have to be used in the reconstruction. In addition, the distance between the
SpaCal cluster and the electron cluster in the BDC shouldn’t be larger than
1.5 cm. In this way, the background consisting of the photons originating
from the π0 decays is rejected. The efficiency of this cut as a function of the
radial position of the cluster in SpaCal is close to 100% and it is shown in
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Figure 3.8: The (x,y) view of the SpaCal inner cells and the VETO layer

Figure 3.6.
The efficiency of some regions in SpaCal can drop due to possible malfunc-

tions of the cables and the trigger. In order to identify the inefficient regions,
the efficiency of the SpaCal part of the trigger is evaluated in SpaCal x-y
bins. In Figure 3.7, the few inefficient cells are represented by green shaded
boxes and are marked by black rectangles. The events recorded in the ar-
eas in which the trigger efficiency of the SpaCal part drops below 80% are
discarded during the selection of both data and Monte Carlo events.

3.4. Selection of D∗± candidates

The D∗ mesons are reconstructed in the decay channel:

D∗± → π±
s D0 → π±

s K∓ π±.

The difference between the D∗± 1 mass and the D0 mass is 145.4 MeV,
leaving very little energy for the pion from the decay of D∗, therefore the
label of ’slow pion’. By subtracting the Kπ invariant mass from the Kππs

invariant mass, ∆M = m(Kππs) − m(Kπ), the resolution of the resulting
distribution is much better than the resolution of the separate invariant mass
distributions.

1In the following, D∗ refers to both D∗+ and D∗−
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A set of quality requirements is applied, to ensure a good reconstruction
of the D∗ candidate and the reduction of the background.

3.4.1. Track selection

Only those tracks are selected, which are fitted to the primary vertex and
fulfill a set of general criteria, which are summarized in Table 3.1. The tracks
passing this general set are called ’good tracks’.

Variable Condition

pT > 0.07 GeV

|dca′ · sinθ| < 2 cm

Rstart ≤ 50 cm

Rlength ≥ 10 cm if θ ≤ 150o

Rlength ≥ 5 cm if θ > 150o

NCJC hits ≥ 0

Table 3.1: ’Good track’ selection criteria refer to the transverse momentum of the track

pT , the distance of closest approach dca′, as defined in Chapter 2, the polar angle of the

track θ, the radial position of the first hit of the track Rstart, the radial length of the track

Rlength, the number of the hits in the two CJCs used in the reconstruction of the track

NCJC hits.

These conditions are tightened further to select tracks with a better qual-
ity. A summary of these cuts is given in the Table 3.2.

The pT distributions for the kaons and the pions are shown in Figure 3.9.
There is a good agreement between data and Monte Carlo in all distributions.
The track of the πs candidate curls in the CJC and dedicated studies for low-
pT tracks [Bri10] have shown that the behaviour of this kind of tracks is well
understood down to pT = 0.12 GeV. For more energetic charged particles,
like the D0 decay products, the required minimum transverse momentum
is 0.25 GeV. An additional constraint for these decay products is applied,
pT (K) + pT (π) > 2 GeV, to reduce the combinatorial background from the
Kπ pairs with a low pT pion candidate.

The selected tracks should be reconstructed from at least 10 hits in the
central jet chambers. The higher the number of hits, the smaller the uncer-
tainty on the track’s parameters. The description of this number is a good
test of the detector simulation software. There is a reasonable agreement
between data and Monte Carlo, as it can be seen in Figure 3.10, left.
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Variable Condition Daughter

pT
> 0.12 GeV πs

> 0.25 GeV K, π

pT (K) + pT (π) > 2 GeV K, π

|dca′| < 1 cm K, π, πs

Rstart < 30 cm K, π, πs

Rlength
> 10 cm πs

> 18.9 cm K, π

NCJC hits > 10 K, π, πs

dE/dx likelihood > 1% K, π, πs

Table 3.2: Selection criteria for the tracks in the current analysis. The dE/dx likelihood

is the probability of the particle identification, obtained from the energy loss behaviour.

Figure 3.9: Transverse momenta of the daughters. The black points represent data, the

orange band represents the RAPGAP Monte Carlo simulation.
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Figure 3.10: Number of CJC Hits (left) and the radial position of the first hit of the

track (right). Black points are data, the orange band is the Monte Carlo simulation.
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The selected tracks are required to start no further than 30 cm from the
z axis. This condition ensures that the tracks considered start in the inner
central jet chamber. The radial starting position of the track Rstart in data
is well described by the Monte Carlo simulation (see Figure 3.10, right).

If the tracks leave the CJCs before they reach a sufficient length for a
good reconstruction, the radial length of the track is less than 10 cm for the
slow pion and less than 19 cm for the kaon and the pion. The comparison
between data and the Monte Carlo simulation is shown in Figure 3.11, left.

The range of the dca′ of the track is further constrained, to reduce the
contribution from the tracks originating from other sources than the primary
vertex, like beam pipe interactions or cosmic rays. The Monte Carlo sim-
ulation gives a good description of this observable, shown in Figure 3.11,
right.
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Figure 3.11: Radial track length (left) and the distance of closest approach (right). Black

points are data and orange band represents Monte Carlo simulation.
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3.4.2. The reconstruction of the D∗ meson

The D∗ meson candidate is reconstructed from charged kaon and charged
pion candidate tracks. First, a kaon candidate and a pion candidate are
selected, each having a transverse momentum of at least 250 MeV. The in-
variant mass of theKπ pair is required to agree within 80 MeV with the mass
of the D0 meson quoted by the Particle Data Group [N+10], 1.86 GeV. Both
opposite-sign K±π∓, and same-sign K±π±, pairs are kept. The opposite-sign
pairs are denoted right charge combinations. The same-sign pairs are called
wrong charge combinations. When plotting the invariant mass of the wrong
charge Kπ pairs, it can be noticed that the distribution mimicks the light
flavour background (see Figure 3.12).
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Figure 3.12: Invariant mass of the candidate Kπ pairs in data. The right charge combi-

nations are represented by black points and the wrong charge combinations are represented

by the orange line.

A second pion is selected, whose transverse momentum is larger than
120 MeV. The D∗ meson candidate is selected using the mass difference
method [F+77] between the invariant mass of the Kπ1π2 combination and
the invariant mass of the Kπ1 pair:

∆M = m(Kπ1π2)−m(Kπ1)

The difference ∆M is required to be smaller than 170 MeV. The ∆M dis-
tribution in data is plotted for right charge and wrong charge combinations
in Figure 3.13. There is a clear peak around 143 MeV in the right charge
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distribution. The wrong charge distribution gives a good description of the
light flavour background.

Figure 3.13: The invariant mass difference ∆M . The right charge combinations are

represented by black points and the wrong charge combinations are represented by the

orange line.

The pseudorapidity of the D∗ candidate is defined as:

η(D∗) = −ln tan
θ(D∗)

2
(3.15)

where θ(D∗) is the polar angle of the D∗ candidate. The visible phase space is
restricted by the detector acceptance to pT (D

∗) > 1.25 GeV and |η(D∗)| <
1.8. The complete definition of the visible phase space is given in Table
3.3. Data and Monte Carlo distributions for pT (D

∗) and η(D∗) are shown in
Figure 3.14.

The number of D∗ mesons is determined using statistical methods. For
the present analysis two methods are used. The statistical subtraction method
is used when comparing distributions in data to the distributions in the
Monte Carlo simulation. Only those events are used, for which |∆M −
0.1454| < 0.0025 GeV. The wrong charge distribution is subtracted from the
right charge distribution.

The other method is based on fits to the ∆M distributions and is used
for the determination of the cross sections. The method using fits will be
described in Chapter 4.
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Observable Range

Q2
e 2-100 GeV2

yeΣ 0.02-0.7

pT (D
∗) > 1.25 GeV

|η(D∗)| < 1.8

Table 3.3: The visible phase space of the analysis

As mentioned in Section 1.3, the production of D∗ mesons takes place
through two mechanisms: the direct and the resolved processes. In the
RAPGAP Monte Carlo generator, these processes can only be generated
separately. Therefore, two distinct Monte Carlo samples, one direct sample
and one resolved sample, are used to describe the data. When comparing
the distributions in data to the distributions in the Monte Carlo simulation,
only the sum of the two Monte Carlo samples is shown. In Figure 3.15 each
contribution can be seen, for the transverse momentum and the pseudora-
pidity of the D∗ candidate. Each Monte Carlo contribution is normalized to
the data luminosity. The total Monte Carlo prediction is obtained by adding
the two normalized Monte Carlo contributions.

3.4.3. Additional Reduction of the Background

To further reduce the large background contribution at low transverse
momenta of the D∗, particle identification criteria based on the energy loss
with the distance are used. The energy loss is described by the Bethe-Bloch
formula [H+02]:

− dE

dx
= Cz2

Z

A

1

β2

[

1

2
ln

(

2mec
2β2γ2Tmax

I2

)

− β2 − δ

2

]

(3.16)

where z is the charge of the incident particle, β is the velocity of the incident
particle, γ = (1 − β2)−1/2, Z and A are the atomic charge and atomic mass
of the absorber, me is the electron mass, I is the mean excitation energy,
Tmax is the maximum energy transfer energy per collision, δ is the density
correction and C = 4πNAr

2
emec

2, with NA the Avogadro number and re the
classical electron radius.

The experimental dE/dx values measured by the H1 detector differ from
the theoretical dE/dx values, due to influences from the detector and track re-
construction. The measured dE/dx values are therefore empirically parametrised
using the function:
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Figure 3.14: Distributions of transverse momentum pT (D
∗) and pseudorapidity η(D∗)

in data (black points) as compared to the Monte Carlo simulation (orange band).

− dE

dx
= a1z

2β−a2
(

1 + a3e
−a4log(0.25+βγ)

)

(3.17)

with a1 = 1.4139, a2 = 1.6504, a3 = −0.6410 and a4 = 0.56924. This
parametrisation is documented in [Ste99]. The measured dE/dx and the
parametrization for kaons, pions, electrons and muons is shown in Figure
3.16.

Experimentally, the measurement of the energy loss proceeds in two steps.
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Figure 3.15: Distributions for transverse momentum pT (D
∗) and pseudorapidity η(D∗).

The data is represented by black points, the direct contribution by the hashed region, the

resolved contribution by the doubly hashed region and the sum of the two Monte Carlo

contributions by the orange band.

First, the energy loss is measured on one wire in a CJC chamber by adding
the charges collected at each end of the wire:

dE/dx ∼ qi = q+i + q−i (3.18)

The single hit charge of the wires are averaged. The value obtained is then
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Figure 3.16: The energy loss with respect to the momentum of a particle, for kaons and

pions, compared with the empirical parametrization for several particles. The kaon and

the pion bands are well separated and reasonably well described by the parametrization.

corrected for the effects from various sources - material, position on the
wire, readout electronics, operating conditions (temperature, pressure, high
voltage). The second step is to get the dE/dx measurement for a particular
track. The measured dE/dx values for each hit are evaluated, and only those
satisfying certain quality conditions are kept. The dE/dx average value for
a track is then obtained by:

dE

dx
=





1

NhitsdE/dx

NhitsdE/dx
∑

i

1
√

(

dE
dx

)

i





−2

(3.19)

where NhitsdE/dx
is the number of hits with dE/dx information used. Further

details regarding the measurement are given in [Ste99].
The momentum information together with the dE/dx knowledge allow

identifying certain kinds of particles, like pions, kaons, electrons etc. The
variable used for the particle identification is the likelihood of a track to
belong to a specific particle:

lh =
1√
2π

∫ ∞

χ2

dt e−
t
2 · 1√

t
(3.20)

where the χ2 is the density for one degree of freedom of t = dE/dxmeasured −
dE/dxreference. Experimentally, the normalised likelihood is used, in order to
account for the probability of misidentification of the particle of interest. The
normalised likelihood definition for the the kaon is given in equation 3.21,
where lhK,K is the likelihood that the kaon candidate is a ’real’ kaon, lhK,π
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and lhK,p are the likelihoods that the kaon candidate is actually a pion or a
proton, respectively.

Nlh,K =
lhK,K

lhK,K + lhK,π + lhK,p
(3.21)

The normalized likelihood for the pions is defined in a similar manner to
the one for kaons. The normalised likelihood for each daughter is required
to be at least 1%. The effect of this cut is most pronounced in the events
with low reconstructed pT of the D∗ meson. The ∆M distribution for the
pT of the D∗ in the range 1.25− 2.0 GeV is shown in Figure 3.17 for events
passing the dE/dx requirement compared with the events before applying
this condition.
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Figure 3.17: Comparison of the ∆M distributions for 1.25 GeV < pT (D
∗) < 2.0 GeV in

data. The dashed blue line is the signal fit for the sample without the dE/dx conditions,

the dotted blue line is the background fit for the same sample, the continuous red line is

the signal fit for the sample with the dE/dx requirements and the dashed-dot red line is

the background fit for the second sample. The fitting procedure is detailed in Chapter

4. The reduction in the background of the total sample is of the order of 40% and the

reduction in the signal of the total sample is around 5%, most of the effect being visible

at low values of pT of the D∗ meson.
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Chapter 4: Cross Section Determination and

Systematic Uncertainties

In this chapter the determination of the cross section is explained and the
cross section results are shown. Also, the sources of systematic uncertainties
are presented, together with the additional corrections applied to the cross
section calculation.

4.1. Determination of the Cross Section

The visible D∗ production cross section is calculated as follows:

σvis =
N(D∗)(1− r)

L B(D∗ → Kππs) εrec εtrig(1 + δr)
(4.1)

where

• N(D∗) is the number of D∗,

• r is the contribution from decays other than D∗ → πsD
0 → πsKπ (also

called ’reflections’),

• L = 47.66± 0.71 pb−1 is the integrated luminosity,

• B = 2.63 ± 0.04% [N+10] is the branching ratio for the studied decay
mode,

• εrec is the total reconstruction efficiency,

• εtrig is the trigger efficiency,

• 1 + δr are the radiative corrections.

In the following, determination of the cross section is described in details.

4.1.1. Signal Extraction

The number of D∗ mesons is determined using the fit to the ∆M distribu-
tions. A sum of two functions, one for the signal and one for the background,
is used.

The shape of the signal is asymmetric, as it can be seen in Figure 3.13.
The parametrisation used for fitting is the Crystal Ball function (CB) [Gai82],
which is given by:
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f(m) = N ·







exp
(

−1
2

(

m−µ
σ

))2
, if m−µ

σ
≤ −α

( n
|α|)

n
exp(− 1

2
α2)

( n
|α|

−|α|−m−µ
σ )

n , if m−µ
σ

> −α
(4.2)

In the context of previous analyses [Boe07] of D∗ meson production in
DIS, extensive studies have been performed, which concluded that the CB
function is suitable for describing the ∆M distribution.

The function used for the background description is the Granet parametri-
sation [G+78]:

f(m) = (δm)p1 · exp(−p2δm− (−p3(δm)2)) (4.3)

where δm = m − mπ is the difference between the reconstructed m = ∆M
and the pion mass mπ, whereas p1, p2 and p3 are parameters left free for the
fit procedure.

The fit is performed simultaneously on the right charge and on the wrong
charge distributions. The normalization of the background function is not
constrained in the right charge fit. For the minimisation procedure, the fit
is performed as an unbinned negative log-likelihood fit, where the likelihood
is defined as:

L(a) =
n
∏

i=1

f(xi|a) (4.4)

The likelihood gives the probability for a certain measured value xi with
a previously defined choice of the parameter a. The quantity f(xi|a) is nor-
malised to 1 with respect to parameter a. As fitting tools, the RooFit package
[VK05] is used. RooFit is based on the MINUIT package [Jam] and provides
additional numerical integration for every step of the optimisation procedure.
RooFit allows to compose fit functions in a short and computational efficient
way via the definition of probability density functions which are positive
defined and normalized to unity.

The events forming the fitted distributions were selected according to
the procedures described in Chapter 3. The same cuts were applied to the
simulated and reconstructed Monte Carlo events and to the data events. The
fit of the total data set analyzed yields 3493 events for the signal and 23352
events for the background and it is shown in Figure 4.1 for both right charge
and wrong charge distributions.

The right charge and the wrong charge are fitted simultaneously. The
number of background events found by the fit to the right charge sample is
lower than the number found by the fit to the right charge sample, by about
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Figure 4.1: The ∆M distribution in data for the right charge sample (above) and for the

wrong charge sample (below). On the right charge plot, the data points are with black

points, the combined fit is with a solid blue line, the background contribution is drawn as

a blue dashed line and the signal contribution is shown with a red dashed line. On the

wrong charge plot the background fit is drawn with a solid blue line. The parameters for

each fit are in the respective boxes.

6%. This difference is taken into account when making the control distri-
butions, by reweighting the wrong charge distributions accordingly before
subtracting them from the right charge distributions. The ∆M distribution
is fitted after applying the analysis cuts, as presented in the previous chapter.
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4.1.2. Reconstruction Efficiencies

The reconstruction efficiency εrec is estimated for each kinematic bin by
using the Monte Carlo simulation RAPGAP. The efficiency is determined
using:

εrec =
Nrec

Ngen
, (4.5)

where Ngen is the number of generated events in the visible phase space
obtained after applying the restrictions for the visible phase space, given
in Table 3.3. The generated events without any phase space cuts applied
are passed through the same reconstruction algorithm as the data and the
number obtained after all the analysis cuts have been applied is Nrec. There
are two signal Monte Carlo sets used, one for the direct contribution and
one for the resolved contribution, as described in Sections 1.3 and 3.4. The
reconstruction efficiency is evaluated for each of these Monte Carlo samples
using the formula 4.5. The total reconstruction efficiency is obtained by
using:

εrec =
L1 · εrec,1 + L2 · εrec,2

L1 + L2
(4.6)

where index 1 is for the direct contribution, index 2 is for the resolved con-
tribution and L is the luminosity of the respective contribution.

The reconstruction efficiency is affected by events migrating inside and
outside the visible phase space and by bib-to-bin migrations within the visible
phase space. These effects can be estimated by considering the purities. The
purity Pi in bin i is given by:

Pi =
N rec&gen

i

N rec
i

(4.7)

where N rec&gen
i is the number of events reconstructed and generated in bin

i and N rec
i is the number of events reconstructed in bin i regardless where

they were generated. The events reconstructed in bin i can be generated
in the same bin, in a neighbouring bin, somewhere else in the visible phase
space (PS) or outside the visible phase space (oPS). The contributions from
each of these sources is shown for the kinematical variables in Figure 4.2.
The largest contribution from events not generated in the same bin as the
reconstructed events comes from the events generated in a neighbouring bin.
The contributions from oPS are quite small and they come mainly from low
Q2 and low pT (D

∗). The migrations from somewhere else in the visible phase
space are negligible.

62



Cross Section Determination and Systematic Uncertainties

 (D*) [GeV]
T

p
2 3 4 5 6 7 8 9 10

R
aw

 P
ur

ity
 [%

]

0

20

40

60

80

100

Signal

neighbouring bins
Contribution from

other bins in the PS
Contribution from

outside PS
Contribution from

 (D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

R
aw

 P
ur

ity
 [%

]

0

20

40

60

80

100

Signal

neighbouring bins
Contribution from

other bins in the PS
Contribution from

outside PS
Contribution from

x

-510×3 -410 -410×2 -310 -310×2 -210

R
aw

 P
ur

ity
 [%

]

0

20

40

60

80

100

Signal

neighbouring bins
Contribution from

other bins in the PS
Contribution from

outside PS
Contribution from
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Figure 4.3: Modified purities for pT (D
∗), η(D∗), Q2, x and y. The purity is given in

fractions of unity. The black line is at 80%.
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Q2 [GeV2] y Purity

2.0, 4.22

0.02, 0.1 0.80
0.1, 0.2 0.81
0.2, 0.4 0.91
0.4, 0.7 0.97

4.22, 10.0

0.02, 0.1 0.82
0.1, 0.2 0.82
0.2, 0.4 0.90
0.4, 0.7 0.95

10.0, 17.8
0.02, 0.1 0.81
0.1, 0.25 0.86
0.25, 0.7 0.95

17.8, 31.6
0.02, 0.15 0.86
0.15, 0.7 0.95

31.6, 100.0
0.02, 0.15 0.87
0.15, 0.7 0.96

Table 4.1: Modified purities for Q2 − y bins. Migrations from outside and within visible

phase space are small. Purities are well above 64%.

pT [GeV] η Purity [fractions of unity]

1.25, 2.0
-1.8, -0.6 0.96
-0.6, 0.6 0.94
0.6, 1.8 0.95

2.0, 2.5
-1.8, -0.6 0.92
-0.6, 0.6 0.92
0.6, 1.8 0.92

2.5, 3.5
-1.8, -0.6 0.95
-0.6, 0.6 0.95
0.6, 1.8 0.94

3.5, 5.0
-1.8, -0.6 0.95
-0.6, 0.6 0.95
0.6, 1.8 0.95

5.0, 15.0
-1.8, -0.6 0.96
-0.6, 0.6 0.97
0.6, 1.8 0.96

Table 4.2: Modified purities for pT − η(D∗) bins. Migrations from outside and within

visible phase space are small. Purities are well above 64%.
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The migrations outside the visible phase space are accounted for in εmodified
rec ,

after subtracting the number of these migrating events from the number of
reconstructed events:

εmodified
rec =

Nrec −Nmig

Ngen
(4.8)

As long as the modified purity

Pij =
N rec&gen

ij

N rec
ij −Nmig

(4.9)

is greater than (0.8)d in all bins, where d is the dimension of the binning,
’improved bin-by-bin’ correction 4.8 of the cross section is sufficient and no
full unfolding is necessary [Sch]. This is the case for most single differential
distributions, shown in 4.3, and for all the double differential ones, given in
Table 4.1 and Table 4.2.

The reconstruction efficiencies are recalculated and the yields used in
the cross section determination are given in Figure 4.4 for the kinematical
observables.
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4.1.3. Radiative Corrections

In order to correct the measured cross section to the Born level (one-
photon exchange), virtual and real NLO QED contributions are taken into
account. These contributions are given by event topologies where a photon
is radiated prior to the interaction (Initial State Radiation - ISR) or after
the interaction (Final State Radiation - FSR).

The radiative correction is expressed in the form:

σBorn+NLO = (1 + δrad) · σBorn (4.10)

The correction factor crad = (1 + δrad)
−1 is determined by using a radiative

Monte Carlo sample, generated by interfacing RapGap with HERACLES
[KSM92] which is also used for estimating εrec. Alternatively, RapGap was
used in a non-radiative mode. The correction was estimated for the visible
phase space:

crad =
σnon−rad
gen

σrad
gen

(4.11)

by using cross sections at hadron level. The average correction factor in the
visible phase space amounts to 4%. This correction is also determined for
each bin of the cross sections. The actual values are shown in Figure 4.5
as a function of investigated variables. The correction factor is estimated
only for the direct contribution. The Monte Carlo generator doesn’t allow
the estimation of this correction for the resolved processes, which can be
generated only with a non-radiative setup.
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Figure 4.5: Radiative corrections as a function of pT (D
∗), η(D∗), Q2, Bjørken-x and

inelasticity y.
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4.1.4. Contribution from Reflections

The D0 meson has several decay modes with kaons and pions in the final
state, summarised in Table 4.3, which can contribute to the signal in the
∆M distribution.

Decay Branching Ratio

D0 → K−K+ (0.39 ± 0.007)%

D0 → π−π+ (0.14 ± 0.0026)%

D0 → π−π+π0 (1.44 ± 0.06)%

D0 → π−π+π−π+ (0.74 ± 0.021)%

D0 → K−e+νe (3.55 ± 0.05)%

D0 → K−µ+νµ (3.31 ± 0.13)%

D0 → π−e+νe (0.29 ± 0.008)%

D0 → π−µ+νµ (0.24 ± 0.024)%

Table 4.3: Other decay modes with kaons and pions, other than the channel used in this

analysis. Branching ratios quoted according to [N+10].

In a previous study [A+11], these contributions were estimated to be
around 3.8% for a narrowerQ2 range. As these contributions are not expected
to depend on Q2, this value is used in the current work as well, together with
its systematic uncertainty.

4.1.5. Trigger Efficiencies

The trigger efficiency is evaluated by using a set of monitor triggers, s00
and s09. Monitor triggers don’t contain a zvertex part, a SpaCal part or a
DCRPh THig part. The mentioned parts are the ones defining the trigger
used in this analysis. A set of triggers is necessary, while those completely
independent have very small rates or are heavily prescaled. The efficiency is
defined:

ε =
Ntriggered

Nall

(4.12)

where Nall is the number of events selected by the monitor triggers and
Ntriggered is the number of events which are selected by both the analysis
trigger and the monitor triggers. The efficiency is plotted in bins of Q2

e,
xe, yeΣ, pT (D

∗±) and η(D∗±) and is flat within a few percents. The overall
trigger efficiency is 91%. The trigger efficiencies in data are used in the cross
section determination. In the first and last bins of the η(D∗±), the trigger
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efficiency used in the cross section determination is the average between the
efficiencies determined in data and in the Monte Carlo simulation.
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Figure 4.6: Trigger efficiency as a function of pT (D
∗), η(D∗), Q2, Bjørken-x and inelas-

ticity y.

71



Experimental Systematic Uncertainties

4.2. Experimental Systematic Uncertainties

In this section, the experimental systematic uncertainties will be dis-
cussed. The sources considered and their contributions to the total cross
section are summarised in Table 4.4.

Source Contribution

Uncorrelated

Trigger 1%

Signal extraction 3%

Reflections 1%

Correlated

D0 mass cut 2%

Tracking 3.4 %

Luminosity 1.5%

Branching ratio 1.5%

Fragmentation 1%

Electron energy scale 0.2%

Electron θ angle 1.3%

Hadronic energy scale 0.4%

Sum 5.83%

Table 4.4: Summary of the considered sources of systematic uncertainty. All contributions

are added in quadrature.

The uncertainties are grouped into a bin-to-bin correlated and an uncor-
related part and each of these uncertainty sources will be discussed in the
following subsections. The dominant uncertainties are the tracking uncer-
tainty and the signal extraction uncertainty. For the latter, the larger value
is correlated to the low statistics in data.

4.2.1. Uncorrelated Uncertainties

Trigger Uncertainty. It is not possible to relax or restrict the trig-
ger conditions in order to evaluate the possible systematic uncertainties.
Therefore, the statistical uncertainty on the trigger efficiency determination
is taken as systematic uncertainty. Because the events in the monitor sam-
ple and the events in the triggered sample used for estimating the trigger
efficiency are correlated, the statistical uncertainty is calculated by:
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σ(εtrig) =

√

Ntriggered · (1− εtrig)

Nmonitored
(4.13)

It amounts to about 1% for the total sample and it is estimated also differ-
entially.

Signal Extraction. The method for the estimation of a signal extrac-
tion uncertainty has previously been used in [Jun09]. The main idea is to
check the stability of the fit to the ∆M distribution against using different
parametrisations. For signal, the Crystal Ball function is replaced with the
Bukin function:

fBukin(x) = A · exp
(

−1

2

ln2(1 + Λτ(x− x0))

τ 2
+ τ 2

)

(4.14)

and for background the Granet parametrisation is replaced with a polynomial
shape:

(x−m0)
2 · (1− b · x2) (4.15)

The differences are evaluated for full data and Monte Carlo samples, in
order to minimise the dependence of the fit on the statistical effects. The
maximum difference is found to be around 3% in data and less than 1% in
Monte Carlo. A summary of the numbers of D∗ given by each combination
is in Table 4.5.

Function Data MC direct MC resolved

CB+Garnet 3493 167138 130485

CB+Poly 3506 167404 130435

Bukin+Garnet 3540 168884 131612

Table 4.5: The number of D∗ mesons, obtained by using different fit parametrisations.

4.2.2. Correlated Uncertainties

Uncertainty of the D0 mass cut. The efficiency of restricting the
reconstructed mass of the D0 candidate within 80 MeV around the PDG
value was studied on a larger data and Monte Carlo sample [Jun09]. The
uncertainty of this cut was estimated to be 2%.

Tracking Reconstruction Uncertainty. The uncertainty on the re-
construction of the kaon and pion tracks in the CJC has several sources:
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• Fitting the tracks to the primary vertex presents some differences be-
tween data and Monte Carlo. This was evaluated for the D∗ analysis
[Sch04] and found to be 1% per D∗ candidate.

• The algorithm of finding charged tracks with low transverse momenta
has an uncertainty of 1% per track. There were dedicated studies
[Beh05], performed using charged pions coming from the K0

s decay,
as described in [Erd96].

• The nuclear interactions of the particles with the detector material are
not included in the detector simulation. Therefore, investigations were
made [Bri10, Dau10] to quantify the effects of these interactions and
subsequently correct the detector simulation. The remaining uncer-
tainties are 1% for the slow pion and 0.5% for the kaon and the pion.

All these sources are added in quadrature, resulting in a 3.4% total tracking
reconstruction uncertainty.

Fragmentation Uncertainty. The RapGap Monte Carlo samples used
for the data correction were generated with a Bowler fragmentation function
with the parameters a = 0.437 and b = 0.850. The fragmentation variable
is defined in the center-of-mass system of e+e− interaction as:

zfrag =
(E + pL)D∗

(E + p)parent quark
(4.16)

where pL is the component of the hadron momentum which is parallel to the
momentum of the parent c quark. It represents the momentum fraction of
the parton’s momentum which is transferred to the resulting hadron. The
H1 measurement [A+09] of the fragmentation variable has shown that the
hardness of the fragmentation function is different in different regions of the
partonic center-of-mass system ŝ. The parameters were determined for two
regions, defined by the photon-gluon centre of mass energy ŝ: ŝ < 70 GeV
and ŝ > 70 GeV. The zfrag distribution was reweighted to the Kartvelishvili
function with the respective parameters taken from [A+09] and shown in
Table 4.6. The reweighted zfrag distribution is shown in Figure 4.7.

In order to estimate the fragmentation uncertainty, two variations were
made. First, the ŝ threshold ŝ = 70 GeV between the two regions was
shifted up and down by 20 GeV simultaneously for both regions in the same
direction. Second, the Kartvelishvili parameter α was shifted up and down
by the errors given in the publication, again, simultaneously for both regions
in the same direction. The effect on the number of events at hadron level
was estimated in each cross section bin, with respect to the number of events
obtained when reweighting to the Kartvelishvili function with the ŝ threshold
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Region Parameter Value Uncertainty

ŝ < 70 GeV 4.4
+0.6

-0.5

ŝ > 70 GeV 10.3
+1.9

-1.6

Table 4.6: Values of the Kartvelishvili parameter for the two ŝ regions.
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Figure 4.7: The distribution of the fragmentation variable zfrag reweighted to the

Kartvelishvili function with parameter α = 4.4 for the events with ŝ < 70 GeV (dot-

ted line) and α = 10.3 for the events with ŝ > 70 GeV (dashed line). The total number of

reweighted events is given by the full line.

at 70 GeV and the nominal values of the parameters. The effect of the
varying of the threshold is shown in Figure 4.8 as a function of the kinematical
variables. The reweighting procedure described in this section was performed
solely for the purpose of evaluating the fragmentation uncertainty and the
reweighting factors are not used for data corrections or in the cross section
comparisons.
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Figure 4.8: The obtained uncertainties when varying the value of ŝ threshold up (blue)

and down (red) with 20 GeV. The effect on the cross section is below 1%, in most cases

even less than 0.5%.
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Figure 4.9: The obtained uncertainties when varying the value of the fragmentation

function parameter up (blue) and down (red) with the respective errors. The effect on the

cross section is in most cases below or around 0.5%.
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The variation of the fragmentation function parameters up and down
within the respective errors was also performed. A graphical representation
of the effect is shown in Figure 4.9. While most kinematical variables shown
are rather insensitive to the fragmentation, provided that the variation is
small, the effect on the pT distribution is more visible. This is explained by
the dependence of the meson’s momentum on the charm quark’s momentum.

Electromagnetic Energy Scale Uncertainty. The systematic uncer-
tainty on the measurement of the energy scale of the scattered electron is
estimated by comparing the electron and the double angle methods for the
reconstructed scattered electron four-vector. The uncertainty varies linearly
from 1% at 2 GeV to 0.2% at 27.5 GeV. The energy of the scattered electron
is shifted up and down by this function and the changes are propagated to
the 4-vector of the electron and the kinematical variables. The uncertainty
of the electromagnetic energy scale variation on the cross section is estimated
by:

δ =
σnominal − σshifted

σnominal
(4.17)

where σnominal is the cross section determined with the nominal Monte Carlo
samples and σshifted is the cross section determined with the shifted Monte
Carlo samples. The effect of this shift is exemplified graphically in Figure
4.10. An uncertainty of 0.5% covers the variations in most distributions. The
x distribution is more sensitive to this variation, because x is reconstructed
using the electron energy. This uncertainty is completely covered by the
statistical uncertainty in the respective bins. The uncertainty on the total
sample is 0.2%.

Electron Polar Angle Measurement Uncertainty. The systematic
uncertainty on the measurement of the polar angle of the scattered electron
is estimated to be 2 mrad by comparing the electron and the double angle
methods for the reconstructed scattered electron four-vector. The value of
this angle is shifted up and down by 2 mrad and the changes are propagated
to the 4-vector of the electron and the kinematical variables. The effect is
around 1.3% on the total sample. The x and Q2 are more influenced by this
variation, as they are reconstructed using the polar angle of the scattered
electron.
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Figure 4.10: The electromagnetic scale uncertainty. The up variation (blue dots) and the

down variation (red bricks) are well covered by the statistical uncertainty in the respective

bins. The relative uncertainty for each variable is given in fractions of unity.
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Figure 4.11: The electron polar angle uncertainty. The effect on the cross section by

measuring a larger polar angle is shown in blue dots, and the effect of measuring a lower

polar angle is shown in red bricks. The relative uncertainty for each variable is given in

fractions of unity.
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Figure 4.12: The hadronic energy scale uncertainty. A larger effect is seen at large η(D∗),

but it still covered by the statistical uncertainty in that bin. The relative uncertainty for

each variable is given in fractions of unity.
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Hadronic Energy Scale Uncertainty. The procedure for calibrating
the hadronic energy scale is described in detail in [Kog10]. The calibration
was redone for this data period and the uncertainty of the hadronic energy
scale is 1% [Kog12]. The E − pz and yeΣ are recalculated accordingly and
the effect on the cross sections is investigated. As expected, there is a visible
effect at small y and in very forward direction (large η(D∗)), but this effect
is completely covered by the statistical uncertainty in those bins. The overall
effect for the up variation is about 0.5 %, while for the down variation, the
effect is 0.9 %. The variation is plotted as a function of the kinematical
variables and shown in 4.12.

4.3. Cross Sections

4.3.1. Total Cross Section

The total measured cross section is determined using the formula 4.1 in
the visible phase space defined by 2 < Q2 < 100 GeV2, 0.02 < y < 0.7,
pT (D

∗) > 1.25 GeV2 and |η(D∗)| < 1.8. The total measured cross section is:

σtot
vis = 13.68± 0.38(stat)± 0.79(syst) nb (4.18)

The total cross sections predicted by the RapGap Monte Carlo program
and the HVQDIS calculation are given in Table 4.3.1. The prediction for the
total cross section is lower than the measured cross section.

Prediction Cross Section (nb)

RapGap Direct 7.47

RapGap Resolved 4.31

Total 11.78

HVQDIS 9.07

Table 4.7: Total cross section predictions in the visible phase space.

4.3.2. Single Differential Cross Sections

Single differential cross sections are measured as a function of kinematical
variables Q2, x, y and as a function of D∗ kinematics pT and η. The measured
cross sections are compared to a leading order Monte Carlo prediction and the
results are shown in Figures 4.13, 4.15, 4.17, 4.19 and 4.21. The experimental
values obtained for the cross section as a function of Q2, x, y and as a
function of D∗ kinematics pT and η is given in Tables 4.8, 4.9, 4.10, 4.11 and
4.12 together with the breakdown of the total uncertainty in statistical and
systematical uncertainties.
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The differential cross section as a function of Q2 shows a good agreement
between the measurement and the prediction within the uncertainties of the
measurement. The shape and the normalization are well described.

The predicted differential cross section as a function of x shows a small
deficit at very low x, which doesn’t look significant when considering the cross
section at high y. Overall, the description of the measured cross sections is
reasonable, with no significant deviations.

The shape of the cross section as a function of D∗ kinematics, pT and
η, are in agreement with the Monte Carlo prediction. There is some under-
shooting of the data in the forward direction and at high pT , effect also seen
in an analysis [A+11] with higher statistics performed on the HERA 2 data
(between 2004 and 2007).

The measured cross sections are compared to the next-to-leading order
calculation HVQDIS and the results are shown in Figures 4.14, 4.16, 4.18,
4.20 and 4.22. The HVQDIS calculation is described in Chapter 1, Section
1.5. The calculation gives a reasonable description of the shape of the cross
section in most cases, but the normalization is lower. The underestimation
of the cross section at large η(D∗) is present also in the HVQDIS calculation.

Q2 range [GeV2] dσ
dQ2 ( nb

GeV 2 ) δstat (%) δ+syst (%) δ−syst (%)

2.0, 4.22 1.859 4.93 7.97 5.31

4.22, 10.0 0.681 5.04 5.18 5.26

10.0, 17.8 0.261 6.22 5.18 5.22

17.8, 31.7 0.0896 7.35 5.17 5.21

31.7, 100.0 0.022 9.49 5.17 5.22

Table 4.8: Single differential cross section as a function of Q2. The cross section is given

in nb/GeV2 and the uncertainties are given in percents.
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Figure 4.13: Single differential cross section as a function Q2. The black points represent

the experimental cross section and the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.14: Single differential cross section as a function Q2. The black points represent

the experimental cross section and the blue dashed line is the theoretical cross section.

The vertical error bars represent the total uncertainty on the measurement and the shaded

area represents the theoretical uncertainty.
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Figure 4.15: Single differential cross section as a function of x. The black dots represent

the experimental cross section and the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.16: Single differential cross section as a function of x. The black dots represent

the experimental cross section and the blue dashed line is the theoretical cross section.

The vertical error bars represent the total uncertainty on the measurement and the shaded

area represents the total theoretical uncertainty.
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x range dσ
dx (nb) δstat (%) δ+syst (%) δ−syst (%)

2.8·10−5, 2·10−4 22270.7 5.48 7.71 6.95

2·10−4, 5·10−4 9879.25 5.36 5.13 5.23

5·10−4, 1.3·10−3 3886.31 5.16 5.15 5.27

1.3·10−3, 3.2·10−3 931.71 7.12 5.22 5.27

3.2·10−3, 0.02 60.87 9.15 5.77 5.39

Table 4.9: Single differential cross section as a function of x. The cross section is given

in nb and the uncertainties are given in percents.

y range dσ
dy (nb) δstat (%) δ+syst (%) δ−syst (%)

0.02, 0.1 46.40 4.68 5.74 5.44

0.1, 0.17 31.31 6.29 5.28 5.19

0.17, 0.25 26.93 5.91 5.45 5.40

0.25, 0.37 16.57 9.30 5.61 5.63

0.37, 0.7 8.63 7.86 5.59 5.57

Table 4.10: Single differential cross section as a function of y. The cross section is given

in nb and the uncertainties are given in percents.
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Figure 4.17: Single differential cross section as a function of y. The black dots represent

the experimental cross section, the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.18: Single differential cross section as a function of y. The black dots represent

the experimental cross section, the blue dashed line is the theoretical cross section. The

vertical error bars represent the total uncertainty on the measurement and the shaded

area represents the total theoretical uncertainty.
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Figure 4.19: Single differential cross section as a function of pT (D∗). The black dots

represent the experimental cross section and the red line is the theoretical cross section.

The vertical error bars represent the total uncertainty on the measurement and the inner

bars represent the statistical uncertainty.
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Figure 4.20: Single differential cross section as a function of pT (D∗). The black dots

represent the experimental cross section and the blue dashed line is the theoretical cross

section. The vertical error bars represent the total uncertainty on the measurement and

the shaded area represents the total theoretical uncertainty.
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pT range dσ
dpT

( nb
GeV ) δstat (%) δ+syst (%) δ−syst (%)

1.25, 2.0 6.18 6.51 5.78 5.80

2.0, 2.5 4.37 6.78 5.44 5.29

2.5, 3.5 2.90 4.60 5.58 5.69

3.5, 5.0 1.17 4.81 6.32 7.39

5.0, 15.0 0.082 6.48 7.18 10.16

Table 4.11: Single differential cross section as a function of pT (D
∗). The cross section is

given in nb/GeV and the uncertainties are given in percents.

η range dσ
dη (nb) δstat (%) δ+syst (%) δ−syst (%)

-1.8, -1.2 2.89 8.40 5.67 6.01

-1.2, -0.6 3.20 5.70 5.50 5.59

-0.6, 0.0 3.49 5.33 5.37 5.41

0.0, 0.6 3.78 6.10 5.34 5.31

0.6, 1.2 4.26 6.06 5.18 5.22

1.2, 1.8 4.00 10.37 8.37 5.24

Table 4.12: Single differential cross section as a function of η(D∗). The cross section is

given in nb and the uncertainties are given in percents.
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Figure 4.21: Single differential cross section as a function η(D∗). The black dots represent
the experimental cross section and the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.22: Single differential cross section as a function η(D∗). The black dots represent
the experimental cross section and the blue dashed line is the theoretical cross section.

The vertical error bars represent the total uncertainty on the measurement and the shaded

area represents the total theoretical uncertainty.
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4.3.3. Double Differential Cross Sections

Two sets of double differential cross sections are shown: the cross section
as a function of the D∗ kinematics pT and η in Figure 4.24 (compared to the
leading order Monte Carlo prediction) and in Figure 4.25 (compared to the
next-to-leading order calculation), and the cross section as a function of Q2

and y in Figure 4.26 (compared to the leading order Monte Carlo prediction)
and in Figure 4.27 (compared to the next-to-leading order calculation).

The first set of cross sections was determined in order to investigate if
the undershooting of the data in the forward direction depends on the pT
of the D∗. The results are shown in Figure 4.24 and in Figure 4.25. When
comparing to the leading order prediction, no significant excess is observed,
though the prediction undershoots the data points in the higher pT region.

The second set of cross sections was determined in order to allow the
extraction of the charm contribution, F cc̄

2 , to the proton structure function
F2. For this purpose, the variables Q2 and y were chosen instead of Q2 and
x, the distribution being more uniform in Q2 − y than in Q2 − x, as it can
be seen in Figure 4.23. The agreement between data and the Monte Carlo
prediction is good, with no significant deviations.
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Figure 4.23: Phase space coverage within the visibility cuts as a function of Q2 and x

(left) and as a function of Q2 and y (right).
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pT range [GeV2] η range dσ
dpT dη ( nb

GeV ) δstat (%) δ+syst (%) δ−syst (%)

1.25, 2.0

-1.8, -0.6 1.55 10.17 5.89 6.06

-0.6, 0.6 1.71 13.50 5.86 5.85

0.6, 1.8 2.06 12.23 6.47 5.93

2.0, 2.5

-1.8, -0.6 1.06 11.74 5.75 5.68

-0.6, 0.6 1.14 10.79 5.44 5.34

0.6, 1.8 1.41 12.11 5.91 5.26

2.5, 3.5

-1.8, -0.6 0.62 7.84 5.92 6.29

-0.6, 0.6 0.85 6.88 5.58 5.68

0.6, 1.8 0.86 8.45 5.81 5.51

3.5, 5.0

-1.8, 0.6 0.24 8.86 7.00 8.66

-0.6, 0.6 0.36 6.57 6.22 7.13

0.6, 1.8 0.38 10.18 6.33 7.02

5.0, 15.0

-1.8, -0.6 0.012 13.98 8.29 12.42

-0.6, 0.6 0.028 9.27 7.15 9.91

0.6, 1.8 0.030 11.86 7.06 9.50

Table 4.13: Cross sections as a function of pT (D
∗) and η(D∗). The cross section is given

in nb/GeV and the uncertainties are given in percents.
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Figure 4.24: Double differential cross sections in pT − η. The black dots represent the

experimental cross section and the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.25: Double differential cross sections in pT − η. The black dots represent the

experimental cross section and the blue dashed line is the theoretical cross section. The

vertical error bars represent the total uncertainty on the measurement and the shaded

area represents the theoretical uncertainty.
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Q2 range [GeV2] y range dσ
dQ2dy ( nb

GeV 2 ) δstat (%) δ+syst (%) δ−syst (%)

2.0, 4.22

0.02, 0.1 6.71 9.08 6.46 5.93

0.1, 0.2 5.39 6.72 7.89 5.54

0.2, 0.4 3.00 12.14 10.26 5.46

0.4, 0.7 1.58 14.58 9.22 5.45

4.22, 10.0

0.02, 0.1 2.51 8.31 6.04 5.78

0.1, 0.2 1.83 11.82 5.31 5.41

0.2, 0.4 1.19 15.62 5.19 5.27

0.4, 0.7 0.403 15.32 5.39 5.40

10.0, 17.8

0.02, 0.1 1.19 10.12 5.99 5.67

0.1, 0.25 0.619 10.23 5.36 5.46

0.25, 0.7 0.226 10.79 5.26 5.33

17.8, 31.6
0.02, 0.15 0.318 10.53 5.54 5.50

0.15, 0.7 0.105 9.57 5.25 5.31

31.6, 100.0
0.02, 0.15 0.070 13.17 5.52 5.51

0.15, 0.7 0.028 13.95 5.24 5.31

Table 4.14: Cross Sections as a function of Q2 and y. The cross section is given in

nb/GeV2 and the uncertainties are given in percents.
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Figure 4.26: Double differential cross sections in Q2 − y. The black dots represent the

experimental cross section and the red line is the theoretical cross section. The vertical

error bars represent the total uncertainty on the measurement and the inner bars represent

the statistical uncertainty.
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Figure 4.27: Double differential cross sections in Q2 − y. The black dots represent the

experimental cross section and the blue dashed line is the theoretical cross section. The

vertical error bars represent the total uncertainty on the measurement and the shaded

area represents thetheoretical uncertainty.
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4.4. Comparison with Other Measurements

The analysis was previously performed on the same data set, but in a
phase space restricted in y and D∗ observables:

Observable Range

Q2 2.0, 100.0 GeV2

y 0.05, 0.7

pT (D
∗) > 1.5 GeV

η(D∗) -1.5, 1.5

Table 4.15: The phase space of the analysis published in [A+07].

The analysis was repeated in this phase space, using the Gauss function
for fitting the signal. The total cross section in this phase space is found to
be 7.03 ± 0.19 nb with this analysis, whereas the published cross section is
6.99 ± 0.20 nb. Only the statistical uncertainty was computed. The cross
sections as a function of Q2, x, pT (D

∗) and η(D∗) were also compared to the
published values. Agreement is reached within statistical uncertainty in the
differential distributions. Shown are the single differential cross sections as a
function of pT (D

∗) in Figure 4.28, as a function of η(D∗) in Figure 4.29 and
as a function of Q2 in Figure 4.30.

The most recent analysis of the D∗ production in DIS was published in
2011 [A+11] and it was performed on a different data set with an increase of
one order of magnitude in statistics, but on a phase space restricted in Q2

to the range 5-100 GeV2. The signal was fitted with a Crystal Ball function
and the total cross section obtained in this phase space is found to be 6.00
± 0.20 nb, whereas the published cross section for the same phase space is
6.44 ± 0.09 nb. Agreement is reached within statistical uncertainty in the
differential distributions. Shown are the single differential cross sections as a
function of pT (D

∗) in Figure 4.31, as a function of η(D∗) in Figure 4.32 and
as a function of Q2 in Figure 4.33.
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Figure 4.28: Cross section as a function of pT (D
∗). Black squares are the values obtained

with this analysis, green points are the values published. Vertical error bars represent the

statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Figure 4.29: Cross section as a function of η(D∗). Black squares are the values obtained

with this analysis, green points are the values published. Vertical error bars represent the

statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Figure 4.30: Cross section as a function of Q2
e. Black squares are the values obtained

with this analysis, green points are the values published. Vertical error bars represent the

statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Figure 4.31: Cross section as a function of pT (D
∗). Black squares are the values obtained

with this analysis, blue triangles are the values published. Vertical error bars represent

the statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Figure 4.32: Cross section as a function of η(D∗). Black squares are the values obtained

with this analysis, blue triangles are the values published. Vertical error bars represent

the statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Figure 4.33: Cross section as a function of Q2
e. Black squares are the values obtained

with this analysis, blue triangles are the values published. Vertical error bars represent

the statistical uncertainty. Agreement is achieved within statistical uncertainty.
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Conclusions

The cross section of the D∗ production in ep collisions in deep inelastic scat-
tering at a center of mass energy

√
s = 318 GeV is measured in the kine-

matic region of the photon virtuality 2 < Q2 < 100 GeV2 and inelasticity
0.02 < y < 0.7.

This measurement is based on a subset of the HERA 1 data taking period
corresponding to an integrated luminosity of 47.66 pb-1. In total, 3493± 97
events are reconstructed in the phase space defined by the photon virtual-
ity Q2, inelasticity y and the D∗ meson kinematics, transverse momentum
pT > 1.25 GeV and psudorapidity |η(D∗)| < 1.8. The number of recon-
structed events in data has increased by approximately 30% with respect to
the previous measurement [A+07] through extensions of the phase space in
inelasticity y and the kinematics of the D∗ meson, pT and η. The measure-
ment covers about 60% of the total phase space of the charm production.

For the reconstruction of DIS events the scattered electron is detected in
the SpaCal calorimeter, located in the backward region. The D∗ mesons are
reconstructed in the decay channel D∗± → D0π±

slow → (K∓π±)π±
slow. The

tracks of the charged decay particles, measured with the central tracking de-
tector, are used for the reconstruction of the (D∗) meson. The calorimeter
information is used for the selection of good quality DIS events. Improved of-
fline reconstruction, smaller uncertainties in the electromagnetic energy scale
and in the tracking had as a result a reduction in the systematic uncertainties.

Single and double differential cross sections have been measured. These
are compared to a leading order prediction in quantum chromodynamics and
an NLO calculation. The LO prediction is given by the Monte Carlo simu-
lation RapGap. The cross sections are well described by the LO prediction
both in shape and normalisation, proving a good detector knowledge. The
NLO calculation HVQDIS provides a reasonable shape description of the
cross sections, though the normalisation is lower than expected from the pre-
vious measurements. The results obtained were compared to two previous
measurements, the first one [A+11] having a narrower Q2 range, and the
second one [A+07] having the same Q2 range as the analysis in this work,
but more restricted ranges in inelasticity y and in the D∗ meson kinemat-
ics. Agreement with these two measurements was found within statistical
uncertainty.

Performing the analysis in the extended phase space was possible due to
the good knowledge of the detector. For the first time, it gives access to the
region defined by high x, low Q2 and low pT (D

∗). The good description of the
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cross sections in the low Q2 region demonstrates the validity of the leading
order perturbative QCD calculations for the charm production in this region.
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