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Introduction

This document aims at giving an overview of the fast and precise Fabry-Perot Compton
polarimeter which has been installed in 2003 in the tunnel of HERA [1]. HERA is an
electron(positron)-proton collider located at the DESY laboratory in Hamburg where,
since 2001, leptons are longitudinally polarised around the two experiments H1 [2, 3] and
ZEUS [4]. The lepton polarisation at HERA ring reaches about 50%. This longitudinal
polarisation allows some quantities of the standard model in the electroweak sector (as the
right charged current cross sections, the mass of the W propagator, or the vectorial and
axial couplings of the quarks u and d to the Z boson) to be measured or constrained. To
cover accurately the physics program [5], a project to upgrade the longitudinal polarimeter
was proposed and accepted in 2000. This new polarimeter is devoted to increase the
accuracy of the lepton polarisation measurement to reach a stastitical uncertainty of 1%
per bunch and per minute and a systematic uncertainty below the percent. This precision
is necessary to achieve precise cross section measurements in H1 and ZEUS.

In the first chapter, basic principles of the polarisation build up in storage rings are
described and polarisation measurement principles at HERA are presented. The second
chapter is devoted to describe the whole Fabry-Perot polarimeter system and to present
the main results of its functionment in the HERA tunnel up to the end of the HERA
experiment in summer 2007.

One essential point to reach the per mill level on the systematic uncertainties on the
lepton polarisation is the precise control of the optical system, and more precisely the
precise knowledge of the laser beam polarisation. The characterisation of our optical
setup is the main subject of this document and is described in Chapters 3, 4, 5 and 6.

In Chapter 3, the ellipsometer, i.e. the optical system used to characterise the light
polarisation state, is presented. Some precise and dedicated studies performed with this
ellipsometer in the laboratory environment at Orsay are described in Chapter 4. The
characterisation of the optical system and the measurement of the laser beam polarisation
in the HERA tunnel are presented in Chapter 5. Chapter 6 is devoted to check the global
coherence of the light polarisation along the optical line.

Finally, in the annex, the formalism of a wave propagating in an anisotropic medium
is developped to obtain the expression of the field transmitted by such a medium. Indeed,
one of the most critical components of our optical system being a quartz quater wave plate,
a model as complete as possible has been used to simulate our ellipsometer measurements
described in Chapters 4 and 5 and to extract the main parameters of our optical system.
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Chapter 1

Polarisation at HERA

HERA is a high energy electron(positron)-proton collider of the Deutsches Elektronen-
Synchrotron Laboratory (DESY) in Hamburg [1]. The machine has provided luminosity
since 1992. The electron(positron) beam is accelerated to an energy of 27.5 GeV and since
1998 the proton beam energy is 920 GeV. HERA has four experimental regions: the detec-
tors H1 [2, 3] and ZEUS [4] (located at North and South interaction points respectively)
where the unpolarised lepton and proton beams collide head-on, the HERMES detector
6] located at the East straight section of the ring which uses since 1995 the longitudinally
polarised electron(position) beam in collision with a polarised gas fixed target, and the
HERA B detector [7] which is located in the West straight section which use the proton
beam halo interacting with a wire target (HERA B has taken data from 1998 to 2001).

Since 1992 the transverse polarisation of the lepton beam is measured with the trans-
verse polarimeter TPOL located in the West area. Before the year 2000, HERA operated
with two spin rotators around the HERMES experiment where the longitudinal polari-
sation was measured with the longitudinal polarimeter LPOL. Since 2001, HERA has
started its second phase: HERA II. During the machine upgrade [5, 8, 9], two pairs of
spin rotators have been installed, one around H1 and one around ZEUS, providing a lon-
gitudinally polarised lepton beam at the two interaction point (IP) regions. Also, du-
ring the machine upgrade, a second longitudinal polarimeter using a Fabry-Perot cavity
(POLCA) has been tested and installed in the HERMES area during the summer 2003.
A schematic view of the HERA collider showing the four experiment areas and the three
polarimeters is presented in Figure 1.1.

This chapter is devoted to a description of the lepton beam polarisation build up in
storage rings and to polarisation measurements with the different HERA polarimeters.
We will also see why it was decided to build another longitudinal polarimeter (the Fabry-
Perot cavity) during the upgrade of the year 2000.

1.1 Lepton beam polarisation

1.1.1 Definition and description of polarisation

The spin of a particle is represented by the quantum vectorial operator S:
S — {SX,Sy,SZ} .
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Figure 1.1: Drawing of HERA showing the four experiment locations H1, ZEUS, HERMES
and HERA B, and the three polarimeter (TPOL, LPOL and POLCA) areas. The spin
rotators located around H1, HERMES and ZEUS to turn the transverse polarisation of
the electron beam into a longitudinal polarisation are aslo shown.

Considering a quantum system at one single particle characterised by its quantum state
| ¢k >, the polarisation vector is the quantum average of the spin operator S [10]:

P:<¢k|§|¢k>;

and, in the semi-classical description of the spin dynamics, P is by convention named the
spin vector S.

For a quantum system containing a large number k of identical particles, the proba-
bility dP to have a single particle in the state | ¢, > is defined by:

dP = P(¢x) dk = px dk

and the polarisation vector is the statistical average of individual spin vectors, i.e. the
statistical and quantum average of the spin quantum operator S. It is written as:

P:Zpk<¢k|§|¢k> :
K

The value P of the polarisation (or the degree of polarisation) is the modulus of the vector
P. A beam is unpolarised (P = 0) if the spin vectors point to all directions isotropically.
It is fully polarised (P = 41) if all the particles are in the same spin state.
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Although spin effects are necessarily quantum mechanical, it is possible to derive most
of the equations and results semi-classically by starting with an effective Hamiltonian that
includes a term describing the interaction between the spin and the electromagnetic field.
According to the general rules of quantum mechanics, polarisation of electrons (i.e. the
quantum average of S) behaves classically (Ehrenfest theorem [11]). Although polarisation
can be described in terms of spinors, Schrodinger equation for spinors is equivalent to a
classical equation for the polarisation vector P [12]. Thus, there is no need for use of such
spinors and a classical description of polarisation is exact and allows a concrete motion
to be shown.

1.1.2 Time evolution of the polarisation

The spin of a particle interacts with an electromagnetic field through the magnetic moment
associated with the spin. For non-relativistic and non-radiating particles, the motion of
the spin of a particle in a static magnetic field B is established by applying the kinetic
moment theorem of the fundamental law of classical mechanics:
dS e
_geg

— =uxB , with pu

= (1.1)

_2m0

i is the magnetic moment vector of the particle associated to the spining particle and
proportional to its spin vector S. e and my are respectively the electric charge and the
mass of the particle. g is the gyromagnetic ratio. Equation (1.1) can be rewritten as:

ds . g €
— =0 S with QL==—B. 1.2
dt L X ’ ! L 21110 ( )

(1.2) is the equation of a rotation (precession) of the spin vector around the direction
defined by the rotation vector €y, collinear to B. The modulus of €2y, is the Larmor
frequency.

Equation (1.2) describes the precession for a stationary electron and we need now
an equation for a relativistic electron moving in an electromagnetic field E and B. When
particles are accelerated and are relativistic, electromagnetic fields have to be transformed
from the laboratory to the accelerated rest frame of the particles. After applying the
appropriated Lorentz transformations [13, 14], the spin evolution time follows the same
law than (1.2) but with a different rotation vector [10]:

dS
a = QBMT xS (13)
with e a —1
Qpur = ——— [ (1+ay) B- M (v-B)v
mpy \%

1.4)
1 (
+lat+ —— Z EXV] .

v+1) c?
a = (g — 2)/2 is the gyromagnetic anomaly, v is the lorentz factor, and v is the particle
velocity. Equation (1.3) is known as the Bargmann-Michel-Telegdi (BMT) equation [15].

Let us note from the BMT equation that spin rotation in an electric field of 3 x 10® V/m
or in a magnetic field of 1 Tesla is of the same order of magnitude. Supplied electric
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fields in accelerators are in general smaller and their effect on the spin negligible [10]. We
therefore assume E = 0 in the following.

In Figure 1.2, a naive drawing illustrates the spin precession described by (1.4). In
case the magnetic field is a purely transverse field perpendicular to the plane of motion
(v.-B = 0 and B = B, ), the direction of the spin vector changes but not its projection
along the transverse direction y (Figure 1.2(a)), whilst when the magnetic field is a purely
longitudinal field (vxB = 0 and B = Bj), the projection of S along the transverse
direction varies in time (Figure 1.2(b)).

b)
r,\“
|r 51
' 1
B b |
X < L .
| ] ™,
TZERS
4 ] ] 2
LAY [
‘\1’ z
v
¥

Figure 1.2: Basic scheme illustrating the precession of the spin vector. (a): the magnetic
field B is normal to the particle plane of motion. (b): B is in the plane of motion and
perpendicular to the particle direction. S; and Sg schematize two positions of the spin
vector that precesses around B.

According to (1.4), in the coordinate system that rotates with the ideal electron
with z along the electron velocity, x the horizontal direction, and the precession axis
along the vertical axis y, the difference in frequency of spin and velocity precessions in a
transverse magnetic field B, is ya times larger than the relativistic cyclotron frequency
Q. = eB, /(mgyy): as the electron completes one revolution of a ring, the coordinate sys-
tem rotates by 27 and the spin has precessed around y by an angle 2ma~y. The spin tune
is defined by:

spin tune = ay (1.5)

For electrons, a = 1.159652 x 1073, and thus at HERA for 27 GeV electrons, the spin
tune is around 60.

1.1.3 Spin dependence synchrotron radiation and spontaneous
polarisation build up

Because of their small mass, electrons and positrons, subject in storage rings to the central
acceleration of the guide field, radiate energy. The probability for an electron to emit a
photon depends slightly on the initial spin state of the electron [16]. Sokolov and Ternov
[17] have calculated the rate of photon emission for a given electron with a given initial
and final spin states in the direction of the magnetic field. By introducing the parameter
S specifying the initial spin state of the electron (S =1 or S = —1 corresponding to the
spin being parallel or anti-parallel respectively to the magnetic field), the no-spin-flip rate
Wyt (i-e. the photon emission rate where the spin state of the initial electron is identical
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to the spin state of the final electron) and the spin-flip rate wg (i.e. the photon emission
rate where the initial and final electron spin states are different) are written as [10, 14]:

wor = (%) (B35) [1- () e (e -5 (- 2% ]
v = (58) (1) e (1-5%8)]

where 7 = E/m, is the electron Lorentz factor, p is the storage ring bending radius, ry is
the classical electron radius:

(1.6)

e? —15
I =2.8179 x 10”’m ,

" 4n €p M, C2
Ac is the reduced electron Compton wavelength:

h
Ae = = 3.8616 x 10 *’m ,
meC

and & is the critical photon energy divided by the electron energy:

fwe 3 A s
me027_2p7'

The parameter £ is usually very small. For instance, an electron storage ring of 25 GeV
energy with a bending radius p of 700 m would have £ ~ 2 x 1075, Formula (1.6) shows
that there are quantum emission asymmetries related to the initial and final spin states
of the electron. Second formula of (1.6) is the spin-flip contribution leading to the famous
Sokolov-Ternov effect. wyg being of first order in & and wg of second order in &, the
majority of photon emissions does not involve spin flip.

By noting wq, (w)4) the rate wy for S = 1 (respectively for S = —1), i.e. the
probability for a spin flip from a parallel (respectively anti-parallel) state to an anti-
parallel (respectively parallel) state, wy of formula (1.6) can be rewritten as:

5
wio= 5 (Lha)ean
(1.7)

5
Wit = % (1—%>C)\Cro%

This implies that starting from an unpolarised beam, after a certain time, synchrotron
radiation induces a transverse polarisation: electrons are polarised anti-parallel to the
guide magnetic field, whereas positrons are polarised parallel to the guide magnetic field
(Figure 1.3).

In a uniform magnetic field and provided the very small electron(positron) recoil is
neglected, the dynamics of the polarisation build up may thus be calculated: considering
for instance electrons, if at a given time there are respectively ny and n| electrons in each
spin state, the polarisation level of the beam and its time derivative are defined by:

pP— IlT —Ili dP B l dIlT dﬂi
B dt dt )’

n dt o \dt dt
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B Figure 1.3: Scheme of the Sokolov-
PN + P“ Ternov effect responsible for the build
up of electron polarisation in a sto-
rage ring: Py (respectively P4) is the
¢ 28 Busibenioee probabi.lity of the transit.ion of an elec-
= radiation tron spin down (respectively spin up)
in an electron spin up (respectively spin

down).

where n = ny +n; is the total number of electrons. The time derivative of the rates ny
and n| can be expressed as function of the transition probabilities wy and w4 as:

dIlT dIl¢
— =N Wi+ — I+ W s — = N4 W4 — 11| W .
dt L Wit T WAl dt T Wl 4 Wit

These equations lead to:

dP

T = Wi —wy) = (Wi twy) Py (1.8)

where wy; and w+ are given by (1.7). The time integration of (1.8) leads to:

—(t — to)
P(t) == PST + (PO - PST) 1—e Tp , (]_9)
( Pep — =W o s
wy twyp o SV
. -1
with ¢ 1 (M ¢t 7_5> (1.10)
W)+ W ’ i
L PO — P(t :tg)

Pgr is the asymptotic polarisation of Sokolov-Ternov and is equal to 92.4%. The charac-
teristic time 7p [s] = 2.83 10 (p*/+°) is a constant characteristic of the polarisation rise.
At HERA where E ~ 27 GeV and p ~ 700 m, 7p is around 40 min. This very long time
compared to the time interval between two photon emissions (~ pA./cyry ~ 1072 sec) is
due to the very small spin-flip probability. This time decreases very rapidly as the energy
increases due to the very fast increase of radiation rate that counteracts the small spin
flip probability in photon emission.

1.1.4 Depolarisation effects

The previous expressions (1.10) of 7 and Pgp are valid for an ideal machine, i.e. if the
magnetic field is homogeneous and if leptons follow the designed trajectory exactly and
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stay on their perfect circular orbit (named the closed orbit) after some radiation emission.
In that case, as discussed in Section 1.1.2, each spin precess around the vertical direction
y and the net beam polarisation direction n is along y. The rate of spin precession is equal
to a7y (see (1.5)) and corresponds to the number of rotations in a single turn around the
ring on the closed orbit. The assumption that all electrons follow the designed trajectory
is of course never fulfilled because the beam distribution has a finite spatial size and a non
zero energy width, and also because accelerator error fields (i.e. magnet misalignments)
cause excursions in particle motions. Thus, in reality, there are several depolarising effects
which contribute to the deterioration of the lepton beam polarisation.

Integer and sidebands resonances

One of the depolarising processes is due to “integer resonances”: if, for instance, an
electron sees a perturbing horizontal magnetic field, it can easily be shown [18] that a
cosine factor n-y between the vertical axis y and the net beam polarisation axis appears.
This factor is proportional to sin(7ay) and it follows that the beam polarisation vanishes
(n-y = 0) when the spin tune ay is equal to an integer. With typical magnet misalignments
(few hundred micrometers at HERA), the width of such a resonance being much narrower
than the spacing between the integer resonances, integer depolarisation resonances are
easy to avoid.

Other depolarising processes (called “sidebands resonance depolarisations”) arise when
a particle undergoes betatron and/or synchrotron oscillations [19, 20]. Betatron oscilla-
tions are lateral (radial and vertical) motions executed by electrons due to focussing fields
driving all electrons toward the ideal closed orbit. Individual electrons oscillate also in
longitudinal position and in energy (relative to an ideal reference particle at the bunch
centre) due to the periodic accelerating field. These motions are called synchrotron os-
cillations. Because of these particle oscillation motions, the spin precession angle 2may
acquires an additional term proportional to the betatron and/or synchrotron amplitudes
and oscillating with the betatron and/or synchrotron tune of the machine [10]. By calling
v and v, the horizontal and vertical betatron tunes, and v the synchrotron tune, the
spin motion is seriously influenced by the perturbation if ay £ v, and/or ay &+ v, and/or
ay £ vg are equal to an integer [21].

Once the system deviates from the ideal case, the situation rapidly becomes compli-
cated and the study of these effects case by case is impossible [22]. The knowledge of the
storage ring fields including the error fields and the associated closed-orbit distortions are
needed to obtain a formal description and calculate the expected polarisation [23, 24, 26].

Synchrotron radiation emission

Whereas the synchrotron radiation emission is responsible for the build up of the polarisa-
tion, it can also enhance the depolarisation resonance effect. Indeed, after a synchrotron
photon is emitted, a particle deviates from its orbit and jumps to another. A spin is then
sensitive to a magnetic field component in the quadrupole to which it would not have
been sensitive in the absence of photon emission, and according to (1.4) its precession is
changed. Let us give the order of magnitude of the time scales of the process: we consider
an electron following the closed orbit with its spin polarised along a unit vector n, as
schematized by the first line in Figure 1.4. The second line in Figure 1.4 represents the
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state just after the photon emission: the phase space coordinates of the particles change
due to the photon emission and the particle starts to execute betatron and synchrotron
oscillations (typical periods in the HERA collider are ~ 107% sec and ~ 107* sec for
betatron and synchrotron oscillations respectively [14, 25]). Along the new trajectory,
the spin motion is slightly different, precessing about a new axis n tilted with respect
to the initial spin direction with a polar angle |dn|. The third line in Figure 1.4 shows
the evolution of the particle motion within a few transverse damping times (~ 3p%/croy?
(14, 19], i.e. a few miliseconds at HERA): the excited orbital oscillations are damped by
the well-known damping mechanism [19]. Damping is a slow process compared to spin
precession. Therefore the initial spin closed solution is restored but spin continues to pre-
cess around it with the polar angle |[dn| when the orbital coordinates have been restored.
The horizontal component of the spin precesses in a stochastic way as photon are emitted
and its average over all particles of the beam vanishes. The remaining polarisation is
the projection of the initial polarisation vector onto the spin axis tilted by the photon
emission of an angle |dn].
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This simple scheme of depolarisation due to quantum photon emission arises because
of the very large difference between time constants of the relevant processes: around
1077 sec for one spin precession (~ 2mp/cya), a few milliseconds for the damping of
the orbital coordinate and the gradual change of n, and several tens of minutes for the
Sokolov-Ternov polarising mechanism. All these times have also to be compared to the
time scale for synchrotron emission ~ 107% s. Photons are thus constantly emitted in
a stochastic way and an electron bunch is in fact made up of a superposition of a large
number of orbits. The asymptotic polarisation of a given bunch is thus reduced with
respect to the asymptotic value Pgr of formula (1.10). To guarantee a good polarisation,
the depolarisation time must be smaller than the polarisation time. For this one must stay
far away from the sideband resonances so that synchrotron radiation does not enhance
sideband depolarisation resonances.
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Beam-beam effect

Beam-beam collisions are also a cause of particle orbit deviations leading to depolarisa-
tion effect. This is due to the effect of the proton beam charge which can be viewed as
a quadrupole magnet by the electron beam. In addition, the electromagnetic field of one
beam causes a precession of the spins of the particles in the second beam. The Lumi-
nosity Upgrade design for HERA IT has been optimised for the highest improvement in
luminosity but is not optimal for polarisation. Since the beam-beam force is highly non-
linear, it is very difficult to make analytical calculations on its effect for the lepton beams,
and even more difficult to make analytical estimations of the effect on the polarisation.
Calculations on depolarisation due to beam-beam effects [27] could not deliver convincing
results for the upgraded optics and there is no clear statement about the importance of
this depolarisation effect. They can nevertheless be estimated on the basis of the pre-
Upgrade observations to be around 10% [28].

Polarisation predictions can be made using machine simulation (PETROS code [29])
and spin tracking simulation (SITROS code [26]). However, since the polarisation is
very sensitive to the exact distortion of the machine and since this distortion cannot be
measured with sufficient accuracy, theoretical predictions serve rather as a guide when
setting up the machine and in correcting the orbit to minimise the depolarising effects.
Let us make finally an important remark: the polarisation build up characteristic time
(~ 40 min at HERA) being much larger than all other depolarising process time scales,
the polarisation is varying very slowly and is the same in absolute value all over the ring.

1.1.5 Spin rotators

Spin rotators are special ensembles of magnets which allow the n vector to be rotated
(25, 30]. As it was described previously, the Sokolov-Ternov effect polarises the beam
vertically. Thus to obtain a longitudinal polarisation around the H1 and ZEUS areas,
two pairs of spin rotators have been installed on both sides of the two experiments. The
principle of a spin rotator is to use a set of magnetic fields to transform a transverse
polarisation to a longitudinal polarisation. Because the requirement of a longitudinal
spin is incompatible with the Sokolov-Ternov polarising mechanism, the polarisation must
remain vertical in the arcs, where most of the synchrotron radiation is emitted. Therefore,
in order not to depolarise the beam, longitudinal polarisation has to be transformed back
to transverse polarisation before reaching the arcs of HERA. This is why spin rotators are
always used in pairs. The rotators installed at HERA are the so-called “Mini-Rotators”,
whose design was developed by Buon and Steffen [31]. A single mini-rotator consists of a
sandwich of horizontally and vertically bending magnets, as schematized in Figure 1.5.

Spin diffusion can be strong in a ring containing spin rotators. The reason is that
between a pair of rotators, the average spin direction n can be considered to be maxi-
mally tilted with respect to the vertical direction since the spin precesses around the axis
perpendicular to the vertical natural equilibrium direction. In this configuration, the ver-
tical quadrupole fields may cause a large spin diffusion. Also, when spin is longitudinal,
synchrotron radiation emitted in the rotators excite vertical orbital oscillations which are
sources of depolarisation.
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Figure 1.5: Spin rotator installed at HERA. From [25]. Horizontal and vertical orbital
motions are shown on the two top drawings and spin direction on the bottom drawing.
“V” and “H” refer to vertical and horizontal bending magnets respectively. The length
of the device is approximately 56 m.

1.2 Polarisation measurement principles

Several methods exist for measuring electron beam polarisation [32] (the Mott polarimetry
133, 34|, the Mgller polarimetry [35], the Compton polarimetry [36]). At the HERA energy,
the most accurate is Compton polarimetry because it gives a non destructive measurement
and thus polarisation measurements can be done simultaneously with the experimental
data taking. In this section the principle of Compton polarimetry is presented.

1.2.1 Compton scattering cross section

The principle of Compton polarimetry is the Compton scattering process e v — e 7y
(37, 38, 39]. At HERA, the lepton beam interacts with a circularly polarised laser beam
and the scattered Compton photons detected in a calorimeter allow the lepton beam
polarisation to be determined. A basic drawing of the Compton process is presented in
Figure 1.6.

0 a8 e,"‘ﬁ

€ (276 6ev) % Figure 1.6: Basic drawing
detector

of the Compton scattering
process.

We won’t enter in the details of the kinematics and angular distribution of the scattered
photons. They are described in detail in [40, 41]. The main point is that with a high energy
electron beam, the photons are scattered within a cone of a few hundred of microradians
in the direction of the electron beam. Therefore the energy of an ensemble of scattered
photons coming from interactions with a laser beam can be measured completely within
a small calorimeter.

Let us consider now a polarised electron beam interacting with a circularly polarised
laser beam under the assumption that the crossing angle is null. In the laboratory rest
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frame, electrons and photons propagate along the z direction in opposite direction as
schematized in Figure 1.7.

Y

¢ Figure 1.7: Interaction between a
/_<e photon (S,) polarised electron and a circular
2VAVAVAVAVAV polarised photon schematized in

electron
the laboratory rest frame.

In this Figure, 13e represents the polarisation vector of electrons and is oriented by an
angle 0 with respect to the z axis. S, is the circular polarisation of the laser beam. With:

e E and m the energy and the mass of the incident electron,

e k., the energy of the incident photon (i.e of the laser beam),

e 0., the polar angle of the scattered photon,

e ¢, the azimuthal angle of the scattered photon with respect to the (yOz) plane,

e [, the energy of the scattered photon,
the differential Compton cross section can be written as [39]:
o d%oy
dp, dg, — dpy dg,
where the parameter p, is defined by:

1 0.E\>
1 Y
+<1+k—~5><m>

m

d20'L Cl2UT )
— P. S, | cos§ ——— + sinf cospp, ———— 1.11
! < dpy do, 7 dp, do, (1.11)

E, B
E’r;lax

py =

EX® being the maximal energy of the scattered photon (reached for ¢, = 0). In (1.11),
0y, o, and op are respectively the non-polarised, the the longitudinal and the transverse
Compton cross sections. oy, op, and oy are three functions of p, (i.e. of the energy of
the scattered photon), of the incident lepton energy and mass E and m respectively, and
of the incident laser photon energy k, (the complete expressions of these three functions
can be found in [41]). The differential Compton cross section after integration over the

variable ¢, is written as:

dof d d

Je = S0 _pys, (S (1.12)
dp, dp, dp,

where P = Pe cosf is the longitudinal component of the electron beam polarisation.

The transverse cross section appears in (1.11) through the term (cos¢,). Indeed, the
transverse component of the electron polarisation breaks the azimuthal symmetry in the
scattering process. Therefore, to determine the transverse polarisation, both the energy
and the azimuth angle ¢, of scattered photons have to be measured [42, 43]. The electron
longitudinal polarisation can be determined from the scattered photon energy only, after
integrating over the azimuth angle ¢,. An accurate measurement of the longitudinal
polarisation is therefore easier to perform.
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1.2.2 HERA polarimeter measurement modes

At HERA, three polarimeters are used to measure the polarisation of the 27.5 GeV elec-
tron or positron beams [44]. All instruments are laser scattering Compton devices. The
first is the transverse polarimeter TPOL located in the west area of HERA. It measures
the transverse beam polarisation by detecting the angular asymmetry of the scattered
Compton photons with respect to the orbital plane of the lepton beam [36, 45]. The
second is the longitudinal polarimeter LPOL which measures the longitudinal lepton po-
larisation between the two spin rotators located around the HERMES experiment (see
Figure 1.1). The longitudinal polarisation component along the beam direction is mea-
sured by detecting an asymmetry in the energy spectra of the Compton photons [46, 47].
Up to the year 2001, only the TPOL and the LPOL were in operation. During the up-
grade of 2001, a third longitudinal polarimeter, the cavity polarimeter POLCA, has been
constructed and installed on the HERA ring between the HERMES spin rotators just
behind the LPOL. Because they have the same scattered Compton photon beam line,
both longitudinal polarimeters LPOL and POLCA were used in turn during the HERA
IT phase.

The number of scattered photons

The HERA polarimeters do not have the same measurement mode: the average numbers
of scattered photons n, per laser-electron bunch crossing may be different by several
orders of magnitude. n, firstly depends on the laser beam-electron beam crossing rate
which is determined by the laser choice (pulsed laser or continuous wave laser) and the
HERA frequency (in the HERA ring, 220 bunches of electrons/positrons are stored, each
one time spaced by 96 nsec). n, depends also on the laser beam-electron beam luminosity
Ley. Assuming a gaussian shape for the electron beam and the laser beam intensities, the
expression of L., (calculated in [40] for instance) integrated over the space variables is

written as: 1 L P . )
+ cos
Lo, = A (1.13)
V2r ec he o2 + o5 sina

where o and o, are the transverse electron and laser beam radius along the x axis (the
z dependance of the sigmas has been neglected and the the plane of interaction of the
electron and laser beams is assumed to be vertical), P, is the light power at the Compton
IP, A is the laser wavelength, I, is the electron beam current, and «, is the electron-laser
beam crossing angle. Therefore, in a storage ring where lepton bunches are separated by
At in time, the number of scattered photons per bunch can be written as:

n,/bunch = At L0, . (1.14)

n, for TPOL and LPOL

Table 1.1 gives the main parameters of the TPOL and the LPOL devices and in particu-
lar the number of scattered photons resulting from Compton interactions. The TPOL
employs an Ar-ion laser delivering a 10 W continuous-wave beam at a wavelength of 515.5
nm. The frequency of the electron beam-laser beam crossing is 10 MHz (corresponding
to the HERA bunch spacing frequency). The number of scattered photon per bunch is
small (around 0.001). This measurement mode where n, < 1 is called “single photon
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H LPOL H TPOL

Laser 10 W pulsed (100 mJ/pulse, 100 Hz) 10 W CW laser
e—7y crossing 100 Hz 10 MHz
ny ~1000 v/pulse ~0.001 y/bunch [45] !
APe(stat) 3%/bunch/20min [47] 1%—4% /allbunches/min [48]

Table 1.1: Main parameters of the transverse and longitudinal polarimeters TPOL and
LPOL.

mode”. The LPOL employs a frequency-doubled pulsed YAG laser which produces 3 ns
long pulses and which can be operated with variable repetition rate from single shot up
to 100 Hz, and with pulse energies from 1 to 250 mJ. To minimise pulse-to-pulse intensity
fluctuations, the LPOL laser is operated at a fixed energy of 100 mJ per pulse. A large
number of Compton photons (about 1000 photons) is produced each time a laser pulse
interacts with an electron bunch. This mode is called the “multi photon mode”.

For the TPOL, because of the single photon measurement mode, the average of all
the HERA bunches is necessary to obtain a statistical uncertainty of 1% up to 4% per
minute (1% at the beginning of a HERA fill when electron current is maximum, and 4%
at the end of the fill). An example of TPOL lepton polarisation measurements and the
corresponding statistical uncertainties is presented in Figure 1.8.

For the LPOL running in the multi photon mode, twenty minutes are necessary to
obtain a statistical uncertainty on the lepton polarisation of 3% per bunch. The LPOL
could also run in the single photon mode if the laser pulse intensity is drastically reduced.
But in this case a beam polarisation measurement with a statistical accuracy of 1% should
take about 2.5 hours. In multi photon mode, the LPOL laser pulses are very energetic but
the repetition rate of 100 Hz does not allow a better statistical accuracy to be obtained.
To illustrate the muti photon and the single photon modes, experimental distributions
taken by the LPOL are shown in Figures 1.9 and 1.10.

In the single photon mode, the energy of each individual Compton photon is analysed.
The advantage of this mode is that one can calibrate absolutely the calorimeter by using
the shape of the photon distribution. The disadvantage of this mode is the low statistics.
In the case of large background levels, the signal may also be too diluted and thereby the
polarisation measurement accuracy deteriorated.

In the multi photon mode one measures the total energy deposited in the detector.
When the background level is large, or when the polarisation needs to be known after
a single bunch crossing (as linear colliders for instance), high energy pulsed lasers are
used. The longitudinal polarisation is linearly proportional to the difference between the
two distributions (such as those in Figure 1.9) obtained with a left and right circularly
polarised laser beam. The disadvantage of this mode is the very high energy (a total energy
up to 10 TeV [49]) seen by the calorimeter. Since the energy calibration of the calorimeter
is done using low energy beam electrons, the polarisation measurement is affected by a
large systematic uncertainty difficult to control. Another difference between this mode
and the single mode is that one cannot extract the polarisation without combining the

Lthis number 0.001 comes from a rescaling of the number in [45] taking into account the upgrade of
the HERA luminosity
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Figure 1.8: HERA-TPOL polarisation measurements (left plot) and statistical errors
(right plot). From [48].
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two photon energy spectra corresponding to the two laser helicities. Finally, the statistic
is also limited by the laser pulse frequency.

For all these reasons, the “few photon mode”, i.e. a measurement mode where the
number of scattered photons n.,, is around the unity, appears to be a good compromise be-
tween the single and the multi photon modes. The cavity polarimeter instrument POLCA
has been designed to operate in this mode in order to reach the few per mill level on the
statistical and systematic accuracies on the longitudinal lepton polarisation measurement.
Before describing the instrument itself, let us give a more precise description of the few
photon mode measurement procedure and an estimation of the expected statistical accu-
racy.

1.3 Polarisation extraction in the few photon mode

1.3.1 Principle

For a longitudinal polarised electron beam, the Compton scattering cross section in the
laboratory rest frame as a function of the scattered photon energy is given by (1.12).
By replacing the dimensionless variable p, by the scattering photon energy E, and the
longitudinal lepton polarisation P by P, (1.12) is written as:

do* dog doy,
£ = — — P.S — 1.15
dE, dE, 7 (dE7> ( )

In the few photon mode, the signal consists of about one scattered photon per electron
bunch (220 bunches turn in HERA, with an electron beam current of 40 mA). Sources
of background are the following. We just give the list of the background sources without
too much details. This subject has been largely treated in [50].

e Bremsstrahlung photons: photons are produced by the electron beam hitting
the residual gas in the vacuum pipe. The expression of the differential cross section
do(e+g — e+g+) (where g stands for the residual gas) can be found in [51, 52].
The Bremsstrahlung background rate is expected to be of order of 0.1 photons per
bunch.

e Blackbody photons: these photons are produced by collisions between electrons
and photons emitted from the 310 K hot beam pipe walls [53]. The rate is expected
to be ~ 0.06 photon per bunch and the maximum energy to amount ~ 3 GeV.

e Synchrotron radiation: the calorimeter is illuminating by synchrotron radiation
from a bending magnets (BH90 magnet) located between the Compton IP and the
calorimeter. Synchrotron background from this magnet is made of a large number of
low energy photons and the total reaches ~ 2 TeV per bunch [49]. A lead shielding is
located in front of the calorimeter so that only 100 MeV is expected in the detector.

The energy spectra of the scattered photons for left and right circular polarised laser pho-

tons are shown in Figure 1.11 where the dominant background spectra from bremsstrahlung
photons and blackbody photons are also represented.
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Calorimeter signals are measured by setting alternalively S, = +1 (right circularly po-
larised photons) and S, = —1 (left circularly polarised photons). One calorimeter ac-
quisition is made for each electron bunch turning in HERA. To extract the longitudinal
polarisation of a lepton bunch, an adjustment is performed with the two measured energy
spectra (S, = £1). Contrary to the multi photon mode measurement, in the single or few
photon modes the shape of the energy distribution is exploited to determine the numbers
of signal and background events in the same time with the detector parameters. Because
physical processes which produce photons are independent, the adjustment is performed to
the sum of bremsstrahlung, blackbody, synchrotron radiation and Compton photon spec-
tra: after one period of acquisition with the calorimeter (which lasts typically 20 seconds,
corresponding to ~ 400.000 entries in each one of the two energy spectrum histograms),
average numbers of events of energy between E and E + AE are computed according
to the theoretical energy distributions of synchrotron radiation, Bremsstrahlung, black-
body background and Compton processes. A statistical estimator is then constructed and
a minimisation is performed to extract the numbers of signal and background photons
per bunch and then the lepton bunch polarisation. All mathematical expressions of this
procedure are given in [55, 50].

1.3.2 Numerical studies

To get an idea of the statistical uncertainty of the lepton polarisation expected in the few
photon mode, a set of Monte Carlo studies have been performed by varying the number
of scattered photons n,. For this study, the laser is a continuous wave laser of wavelength
A = 1.064 nm, the lepton beam energy is 27.5 GeV, the lepton beam polarisation is
0.5, the crossing angle between the lepton beam and the laser beam is 58 mrad and the
acquisition time per histogram is 6 seconds. The absolute statistical accuracy obtained
from this analysis is presented in Figure 1.12 for two bremsstrahlung background rates
describing the range presently observed in the HERA-LPOL area.

For n, ~ 1 one sees that a statistical accuracy of a few per mill per bunch and per
minute is reached. From the expression (1.13) of the electron beam-laser beam luminosity,
one finds that for a crossing angle of 58 mrad, one scattered photon corresponds to a laser
power of ~ 70 KW for an electron beam current of 1 mA (or a laser power of ~ 1.8 KW
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for the HERA lepton beam current of 40 mA). The technical solution to obtain such a
power with a continuous wave laser is then to use an optical amplifier. This is the idea
of the Fabry-Perot cavity polarimeter.
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Chapter 2

The Fabry-Perot polarimeter setup

In Chapter 1, the lepton beam polarisation build up and the basic principles of its mea-
surement at HERA have been described. We have also seen why it has been decided
to build a new polarimeter using a Fabry-Perot cavity and why this instrument can im-
prove significantly the accuracy of the lepton polarisation measurements. This chapter
describes the Fabry-Perot cavity installed in the HERA tunnel. Firstly, basic principles
of a Fabry-Perot resonator will be introduced. Then, the cavity system itself and the pho-
ton detection system will be described. Finally, we will show some results concerning the
laser/cavity coupling and some measured photon energy spectra with their corresponding
theoretical distributions used to extract the lepton beam polarisation.

2.1 Basic principles

2.1.1 Fabry-Perot resonator principle

In its simplest version, a Fabry-Perot cavity consists of two mirrors located opposite to
each other. By applying the energy conservation principle and by taking into account the
losses, a mirror (supposed to be flat!) is characterised by:

e its reflection coefficient in field amplitude r,
e its transmission coefficient in field amplitude t,
e its losses P (i.e. absorbed and scattered energy in ppm).
The corresponding energy reflection and transmission coefficients are written as: R = |r|?

and T = |t|? respectively. Only two of the three parameters P, R and T are independent
and they are related by:

P+R+T=1. (2.1)

When an incident wave of amplitude A;,. arrives at a mirror interface, the relations
between the incident wave amplitude Aj,., the reflected wave amplitude A and the

LIf the mirror is not flat but has a radius of curvature very large relative to a light beam size, it can
be still considered as a plane mirror.
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transmitted wave amplitude Ay are (by convention) written as:

Aref =T Ainc
(2.2)
Atr =1t Ainc

Let us consider the cavity schematized in Figure 2.1 where L is the distance between two
identical mirrors of reflection and transmission coefficients r and t respectively.

M, M,
Ainc Acire Figure 2.1: Basic drawing of
; A, an optical Fabry-Perot cavity
> made of two plane mirrors M;
Aret Acire and M, separated by a dis-
tance L.
L

When an incident wave arrives on the cavity, the amplitudes Ao, Acire and Ay, of the
fields reflected by the cavity, circulating inside the cavity and transmitted by the cavity
in stationary regime can be obtained from (2.2):

Aref =T Ainc —+ 1t AI

circ

Acirc =1t Ainc +r A::irc

(2.3)
Atr =1t e_iqu Acirc

with: AL =r1e 2180 A, .

circ

A¢ is the phase shift induced during the passage of the light from one cavity mirror to
the other. These amplitudes are then written as:

o—2iA0
Aref =T (1_t2 W) Ainc )
1t
Acirc - m Ainc ) (24)
_ (2 omil
1 _ 12 o 2iAg ~nC

Atr =

2.1.2 Gaussian laser beam

In practice, laser beams are usually almost Gaussian beams. Their intensity distributions
are concentrated near the axis of propagation, and their wave fronts are curved. Let us
consider a gaussian field E of a coherent laser light travelling along the z axis. By calling
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Eo the laser field intensity, this field, solution of the Maxwell equations, can be written
in the paraxial approximation? as:

E = Ey 'Q/)(Xa Y, Z) eiikz ) (25)
where 1) satisfies the paraxiale wave equation:
Fy oY
— — — 2tk — =0. 2.6
0x? + Oy? R (2:6)

¥ is a complex function which could represent the difference between a laser beam and a
plane wave (the non-uniformity of the intensity distribution and the curvature of the wave
fronts). The eigensolutions to (2.6) can be given as a complete set of functions called the
Hermite-Gauss functions and have the form [57, 58, 59]:

1 ik
, —r? +
77br1m(X7y:Z) - Hn (f ;) Hm (f )y> ez<I>nm(z) e [W2(Z) 2R(Z):| (27)

where:

e H, is the Hermite polynomial® of order n,
e n and m are the transverse mode numbers,
o 12 =x2ty2

e w(z) is the transverse radius of the field and is written as:

1+ <:—V:%>2] : (2.8)

where wy = w(0) is the laser beam waist and A the laser wavelength. For the
fundamental mode (n = m = 0), at a given position z, w is the distance at which
the field amplitude is 1/e times that on the z axis.

w?(z) = wi

e R(z) is the radius of curvature of the wavefront:

R(z) = 2 [1 + <WA—V§>2] . (2.9)

e &, is the phase shift which depends on the mode numbers m and n and of the
Guoy phase ¢guoy (2):
Py (2) = (n+m+ 1) Pguoy(2)

(2.10)
Pcuoy(z) = arctan (A—Z2>

W}

Equation (2.10) expresses the fact that the phase velocity of a wave increases with
the mode number.

2The paraxial approximation supposes a small divergence (< 30°) of the beam with respect to its
propagation axis.
3Hermite polynomials of low orders are: Hy(x) = 1, H; (x) = x, Ha(x) = 4x? — 2, H3(x) = 8x% — 12x.
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Figure 2.2 shows the expansion of a beam in its fundamental mode according to (2.8)
and (2.9). The beam contour w(z) is a hyperbola with asymptotes inclined to the axis
at an angle # = A\/(mwp). The gaussian beam “contracts” and, in a certain plane of the
propagation axis, it passes by a minimum size wy (the waist).

Figure 2.2: Profile and main
characteristics of a gaussian
beam. From [57].

/ PHASE FRONT

From the field expression (2.7), the intensity pattern in a cross section of a beam of order
(n,m) can be derived. It is described by the product of Hermite and Gaussian functions.
Pictures of intensity patterns of lowest order modes are shown in Figure 2.3.

TEMpz TEM, 4 TEM;5 TEM,

Figure 2.3: Intensity profiles
of the lowest order Hermite-
TEMpy TEM;; TEM; TEMz, Gaussian modes. The num-
ber of zeros in one direction
is equal to the corresponding

e otk ey e mode number. From [60].
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In the fundamental mode (obtained by taking n = m = 0), equation (2.5) has a pure
gaussian form: the intensity distribution is then gaussian in every beam cross section and
the width of that gaussian intensity profile changes as the beam propagates along its axis.

2.1.3 Laser/cavity resonance conditions

A mode resonator is defined as a self-consistent field configuration: if a mode can be
represented by a wave propagating between the mirrors, the beam parameters must be
the same after one complete round trip of the beam in order to propagate inside the
cavity. Hence, for a cavity of length L and made of two identical spherical mirrors (whose
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sizes are large compared to the spot size of the beam), the waist of the beam must be
in the centre of the cavity, and the beam radius of curvature on the mirror M and the
mirror radius of curvature must be the same in order to conserve the same waist size after
a reflection by this mirror. Taking z = 0 at the cavity centre, this boundary condition

leads to: L

R(z=3)=Ru , (2.11)
where Ry is the radius of curvature of the cavity mirrors. Using formula (2.9) results in
a condition on the waist: wy has to be matched to the parameters L and Ry of the cavity
by the relation [57]:

A
2
= — vL(2Ry—-1L). 2.12
wy = 5 VL(2Ru - L) (2.12)

This resonant condition is independent of the mode number and thus is the same for all
the laser modes.

In addition to the waist condition, a phase condition has to be fulfilled to keep the cavi-
ty at a resonance. Indeed a resonance occurs when the amplitude of the field circulating
inside the cavity is maximal. From (2.4), one sees that A, is maximal when 2A¢ = 2qr
(where ¢ is an integer called the longitudinal mode number), i.e. when the phase shift
of a wave from one cavity mirror to the other is an integer multiple of 7. From formula

(2.5) and (2.10) of the phase of a Hermite-Gaussian wave, this condition leads to:

ok o ()] [k ()] car e

From (2.10) and (2.12) and after a small calculation, the resonance frequency vy, of a
mode of order (n,m) is given by:

1 L
Vam = FSR {q+— (n+m+ 1) arccos (1——) } : (2.14)
T Rum
where FSR = ¢/(2L) is the free spectral range of the cavity, i.e. the frequency distance
between two longitudinal modes of the cavity.
So, in order to propagate a Hermite-Gaussian mode of order (n,m) in a cavity of length
L with two mirrors of equal radius of curvature Ry, the laser frequency must satisfy the
condition (2.14) and the laser waist wy must be located at the centre of the cavity and
satisfy the condition (2.12).

2.1.4 Cavity geometry

The principle of the implementation of a cavity around an electron beam pipe is to
introduce the cavity mirrors near the electron beam pipe and put the laser and all other
optical components on an optical table under the cavity, as schematized in Figure 2.4. To
avoid synchrotron radiation which is focused in the electron orbit plane, the laser beam
must cross the electron beam in the vertical plane, i.e. along the y axis. Since the mirrors
are located inside an ultra high vacuum region, it would not have been convenient to
use actuators to adjust the cavity length. A monolithic cavity design has therefore been
chosen (in this case the laser frequency must be adjusted on a resonant cavity frequency).
This experimental setup had already been operated successfully at Jefferson Laboratory
on the CEBAF accelerator [62, 63, 64, 65].
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D beam analysis
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Figure 2.4: Simplified scheme of the Fabry-Perot cavity implemented in an electron beam
pipe. From [61]. “qwp” is a quater wave plate which turn the polarisation of the laser
light (see Section 2.2.2).

The exact geometry of the cavity is determined by the distance of the two mirrors, the
radius of curvature of the mirrors and the crossing angle o, between the laser beam and
the lepton beam. This angle has to be minimal to maximise the laser beam-lepton beam
luminosity (see equation (1.13)). At HERA, the minimum distance d;, between the
electron beam axis and the edge of the mirror is 4.5 cm (2 cm for machine requirements
and 2.5 cm for mechanical reasons).

Hence, in the same way as in Section 1.3.2, numerical studies has been performed to
estimate the Compton event rate as function of the cavity geometry parameters. The
distance d;, being fixed, the Compton event rate can be determined as function of the
cavity length (or in an equivalent way of the crossing angle «.) and of the light power
inside the cavity. This rate is shown in Figure 2.5 for an 1 mA electron beam current.
The yellow hatched area indicates the scattered photon rate of 0.025 to 0.05 photons per
bunch (i.e. the rate of 1 to 2 photon per bunch for the HERA lepton beam currents of
40 mA). One sees in this figure that the required scattered photon rate is obtained with
a 2 m long cavity in which the light power is of a few kW, or with a 30 m long cavity in
which the light power is around of 500 W. Obviously the first solution has been adopted.
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Figure 2.5: Scattered photon event rate per bunch for an electron current of 1 mA as
a function of the cavity length L (bottom scale) and equivalently as a function of the
laser-electron crossing angle «. (top scale), for a fixed distance dp;, = 4.5 cm between
the electron beam axis and the cavity mirror edges, and for different light power inside
the cavity. The arrow indicates the adopted solution.
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Hence, our cavity is an almost 2 m long monolithic cavity, made of two spherical
mirrors with a radius of curvature of 2 m. The choice of a confocal cavity design (L ~ Ry)
has been made because of its better mechanical stability as schematized in Figure 2.6.

R=L) R,=L) Figure 2.6: Two examples
cavity axis confocal of two-mirror optical cav-
ities illustrating the stabi-

N lity of a confocal cavity: a
laser axis small Mzmisalignmen‘r\/ confocal scheme (up) and
a concentric scheme (bot-

L tom). C; and Cy are the

mirror centres. In the confo-

M, cal scheme, a little misalign-
/2) (R.= L/2)

concentric ment leads to a small mis-

f %cavi‘ry axis j) matching between the ca-
2

vity axis and the laser axis,

C. . .

' . whereas in the concentric

|qser‘ axis small M, misalignment —_ .
scheme it leads to a large

L mismatching.

In fact, the cavity length is not exactly equal to the radius of curvature of the mirrors
in order to avoid degeneracy in the transverse mode frequencies (see Section 2.1.5). Hence,
the ratio L/Ry is a little larger than the unity, and is written as:

L
— =1 - Ap with AL = —0.0075 . (2.15)
Rum

This value AL = — 0.0075 (which has been arbitrarly choosen) corresponds to a cavity

lenght L = 2.015 m and allows the transverse mode frequencies to be sufficently spaced.
The spherical cavity mirrors have been coated at the SMA/IN2P3 Laboratory of Lyon.
They are dielectric mirrors made of a pure silica substrate (SiOs, of optical indice n = 1.47
and absorption coefficient 1 ppm/cm) of a 6 mm tickness and of diameter 2.5 cm. The
mirror coating is made of dielectric SiOs/TayO5 (n = 1.47) quater wave stacks. The size of
the coating on the substrate is 10 mm. The loss is & 40 ppm (absorption plus scattering)
and the transmission ~ 100 ppm, leading to a reflectivity larger than 99.98%. The laser
injected in the cavity is a continuous wave Nd:YAG laser (A = 1.064 pm) of power 0.7
W and tunable frequency [66]. We will see in Section 2.1.5 that these mirror parameters
associated with the laser power are sufficient to obtain the few kilowatts required inside
the cavity.

2.1.5 Mode structure and resonance: orders of magnitude
Cavity mode pattern

Because the phase shift depends on the Hermite-Gaussian mode number, the transverse
modes may have different resonant frequencies. The choice of not using an exact confocal
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scheme but a nearly confocal scheme was made to avoid a degeneracy of these resonant
frequencies. Indeed, in an exact confocal scheme, one sees from (2.14) where L = Ry that
all the even mode frequencies (i.e. when n+m is even) coincide exactly with a TEM,
frequency vg == qFSR, and all the odd modes (i.e. when n+m is odd) are halfway between
two longitudinal modes, i.e. have frequencies which coincide with a vy + FSR/2 4+ qFSR
(where q is an integer). This degeneracy is suppressed using a nearly confocal cavity.
Using our design cavity described above, from formula (2.14) and (2.15) the resonant
frequency spectra becomes:

1+9 2A
Vam = FSR| q+ (n+m+1) % , with =21 (2.16)
m

and determines the transverse mode pattern illustrated in Figure 2.7:

e The modes TEM,,,,, with n+m = 2 are located at § x FSR ~ 360 KHz from a TEMj,
mode and all other even modes are shifted from each other by ¢ x FSR.

e The modes TEM,,, with n+m = 1 are located at (1—4§) X FSR/2 ~ 37.32 MHz from
a TEMgy mode and all other odd modes are shifted from each other by J x FSR.

FSRi1_35
FSR (75 MHz) 2 (1-2)

3
>

A
¥
A

1
I
I
I
I
I
I
I
1

5
I
I
I
1

e = ————t

P g+l
—)» (— o FSR

Figure 2.7: Transverse mode frequencies of a nearly confocal cavity. Numbers 0,1,2 ...
correspond to the n+m mode number. In our design: FSR = 75 MHz and ¢ = 0.0048.

Frequency matching

The beam intensity inside the cavity can be written from the expression of the anplitude
field Ay circulating inside the cavity as: P = Ao Acire Where A% - is the complex
conjugate of Ag.. Considering a laser beam of frequency v propagating in a two mirror
cavity, the power inside the cavity in the stationary regime can be calculated from (2.4)

and is written as:

T 1

Pcirc =
(1-R)?* 1 + (%)2 sin? (2L Av)

Pinc = Pinc x G , (217)
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where

™ VR

F=1R

(2.18)

is the finesse of the cavity, Av = v — v, is the difference between the laser frequency
and a cavity mode frequency vnm, Pinc is the incident laser power coupled with the cavity,
R and T are the intensity reflection and transmission cavity mirror coefficients and G is
the gain of the cavity. In Figure 2.33, the gain is represented as a function of Av for the
cavity described in Section 2.1.4. At the resonance, the gain value is around 10* and leads
to a power inside the cavity of the order of a few kW. The full width at half maximum
FWHM of the resonance peak (i.e. the bandwidth of the cavity) calculated from (2.17) is
~ 3 KHz. Thus for a Nd:YAG laser (A = 1.064 pm) entering in such a cavity, one gets:

FWHM 3 KHz
v (¢/1.064 pm)

~ 10711

In consequence, to keep such a cavity at the resonance condition, the laser frequency and
the cavity length should be matched at the 107! level. A fast feedback system is required
in order to ensure this condition.

Gain
-
=)

-
T

Figure 2.8: Gain of a 2 m long
cavity made of two mirrors having
reflection and transmission coeffi-
ik cients of ~ 0.9998 and 100 ppm
respectively, as a function of the
difference between the laser fre-
quency and a cavity resonance
frequency.

103

The finesse (2.18) can be also expressed as the ratio between the free spectral range and
the bandwidth of the cavity:
FSR

F = . (2.19)
FWMH

2.2 Description of the system installed in the HERA
tunnel

The overall system is shown in Figure 2.9. The lepton beam line crosses the laser beam and
scattered Compton photons reach a calorimeter at about 60 m from the cavity interaction
point. In this section we will describe the system both in its technical aspects and in its
experimental ones once installed in the HERA tunnel.
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Figure 2.9: Overview of the area of the cavity polarimeter installed in the HERA tunnel.

2.2.1 Mechanical design for the HERA tunnel environment
The cavity and the beam pipe

The mechanical scheme of the cavity is shown in Figure 2.10. All components are made
of stainless-steel. The cavity consists of a cylindrical vacuum vessel surrounding a beam
pipe section. The propagation of the wake-field [68, 69] inside the cavity (i.e. high
frequency modes from the passing electron beam) is suppressed by the introduction of a
15 mm diameter tube (soldered to the beam pipe) around the laser beam. The design of
this tube, conceived at the Laboratoire de I’Accélérateur Linéaire (LAL) is shown in the
bottom sketch in Figure 2.10. To reduce the vibrations coming from the beam pipe, the
beam pipe inside the cavity, attached to the two cavity end flanges, is isolated from the
rest of the HERA beam pipe by two standard HERA bellows, and from the cavity vessel
by two other big bellows. The vessel is mounted on the table via two pairs of passive
absorbers. Finally, the optical table is isolated from the ground with passive absorbers:
the feet are equipped with elastomer isolators cutting vibrations from the tunnel ground.
Main dimensions of this mechanical design are visible in Figure 2.11. Inside the cavity,
the vacuum is maintained by two 160 ¢ ion pumps (the two blue cubes in Figure 2.10)
isolated from the optical table by passive absorbers. Pressure is measured by a vacuum
gauge located on the top of the cavity vessel. The residual pressure is of 10~ Torr and
fits the HERA requirements. Pictures of the cavity and of the beam pipe with its soldered
tube for wake-field reduction are shown in Figures 2.12 and 2.13 respectively.
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Figure 2.10: Three dimensional technical drawings of the cavity (top sketch) and of the
beam pipe inside the cavity (bottom sketch where half is shown). From [67].
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Figure 2.11: Technical design of the cavity system installed in the HERA tunnel with
main dimensions. From [67].
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Figure 2.12: Picture of the cavity taken during the installation in the tunnel. The laser
and the optical components before the cavity entrance are located on a rail parallel to the
cavity vessel.

Figure 2.13: Picture of the beam pipe inside the cavity (half is shown). Above the elliptic
electron beam pipe, a circular tube is soldered to reduce wake-field excitations. The small
holes visible on the picture have been implemented for vacuum conductance purposes
between the cavity and the beam pipe.
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The mirror mounts

The mirrors also have to be in the vacuum vessel but they cannot be mounted rigidly on
the vessel because of heat effects and possible vibrations propagating along the beam pipe
during HERA operation. The solution adopted is to mount the mirrors in a post holder
fixed to a plate resting on two big cylindrical legs clipped on the optical table, as shown
in Figure 2.14. Each mirror is attached to a plate which is moved via three screws by
the technique named ‘gimbal mount’ [70]: with this technique, the axes of rotation of the
mirror are othogonal and fixed in space, and the centre of the mirror stays at the same
position during alignment operations, as schematized in igure 2.15.

Figure 2.14: Three dimensional technical drawings of the cavity mirror mounts (entrance
and exit mirror mounts on the left and right sketches respectively). The cylinder around
the mirror is the cavity vessel. The bellows used to isolate the mirror mount from the
cavity vessel are visible on the right sketch (below the vessel). From [67].

> h Figure 2.15: Principle of
a the gimbal mount tech-
nique. The centre of the
mirror stays at the same
position during alignment
operations (only one rota-
tion direction is shown).
From [71].
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Housing and shielding

Thermal expansions of all mechanical elements must be controlled. Indeed, once turned
on, the laser can perform a frequency change over tens of gigahertz with a relatively slow
time constant (approximately 1 to 10 seconds). This frequency range induces a constraint
on the variation of the distance between the two mirrors once the cavity is locked. This
variation must not exceed 100 pym (AL ~ 100 pm leads to Av ~ 15 GHz) to avoid causing
perturbation on the feedback system operation. The whole system is therefore surrounded
by an isotherm house. Inside the house the temperature is controlled within 1° via heating
lamps and sensors. This is enough with regard to the range of the laser frequency change
since all mechanical components are made of stainless-steel of which thermal dilatation is
36 pm per degree.

Another purpose of the cavity housing is the radiation protection. Because the elec-
tronic elements located on the optical table are sensitive to radiation, the original design
was to put a 3 mm lead shielding all around the cavity house.

The picture in Figure 2.16 shows the isotherm and lead shielding houses installed
around the cavity.

Figure 2.16: Picture of the cavity isotherm and lead shielding house installed in the HERA
tunnel in summer 2003.

Nevertheless, even with this lead protection, synchrotron radiation coming from the
HERMES area has proved to be much larger than anticipated [49, 72]. And, once installed
in summer 2003, electronic devices such as laser controler, motorised mirror controler or
photodiodes, have begun to suffer serious damage and/or dysfunctionments [72]. Figure
2.17 shows the LPOL beam line configuration and the radiation rate coming from the
HERMES experiment. Also the calorimeter area located at 60 m downstream the cavity
area has been damaged by radiation synchrotron as shown in pictures of Figure 2.18 taken
during the year 2004. Therefore in addition to the 3 mm lead shielding, the most sensitive
elements have also been protected as shown in Figure 2.19.
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Figure 2.17: LPOL beam line configuration and synchrotron radiation with HERMES
transverse target magnet T for an electron beam of 27.5 GeV and 30 mA [73]. Each color
corresponds to synchrotron radiation coming from dipoles T, BH39 and BH90.

Figure 2.18: Pictures of radiation damages observed in the year 2004: a hole on lead sheet
located in front of the LPOL calorimeter (left picture), calorimeter crystal NaBi(WOy),
cracks or breaks (top right picture), damage of scintillation plates (SCSN-38) of the sam-
pling calorimeter (bottom right picture).
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Figure 2.19: Picture of the shielding of the laser controller (top picture), of the controller of
the entrance quater wave plate rotating mount (bottom left picture), and of the controllers
of the motorised cavity alignment mirrors (bottom right picture).

All these shieldings in addition to the construction and the installation of a beam
scraper between HERMES and our cavity area have been essential to preserve our material
after damages and repairs that we have conducted in year 2004. These problems have
nevertheless generated many months of delay in the startup of the polarimeter and they
have cost us nearly two years of data taking.
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2.2.2 Optical scheme

A set of optical elements are used to inject adequately the laser beam inside the cavity and
to control the light polarisation at the exit of the cavity. A three dimensional overview
of the cavity and of the optical scheme is presented in Figure 2.20 where the entrance
beam line, the laser beam alignment system and the exit beam line are clearly visible.
The main distances separating the optical components are indicated in Figure 2.21.
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4 flat 45° mirrors
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Figure 2.20: Three dimensional technical drawing of the cavity and the optical scheme.
From [67].
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Figure 2.21: Schematic view of the optical scheme with main distances. From [74].
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The entrance beam line

Optical elements of the entrance beam line have to create a circular left/right circularly
polarised laser beam, match the laser/cavity modes and extract the signal reflected by
the cavity for the feedback procedure. A technical drawing of the entrance beam line is
shown in Figure 2.22.
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Figure 2.22: Three dimensional technical drawing of the entrance beam line (from [67]).
From the right are visible the laser, two Faraday isolators, a lens, a Glan-Thomson prism,
a rotating quater wave plate, two other lenses and an assembly of two 6° wedge glass
plates.

Starting from the laser box we have the following elements:

e The laser is a finely frequency tunable Nd:YAG laser delivering a ~ 700 mW light
beam with a wavelength of 1064 nm (Lightwave 126-1064-700 [66]). There are two
ways to modify the laser beam frequency. The first is a fast and fine tuning: the
laser beam frequency can change by 3.4 MHz per Volt applied on the actuator of a
piezo-electric transducer. The second is a slow frequency variation: the laser beam
frequency can change by a temperature variation. The frequency change is by 5
GHz per Volt applied on a Peltier module.

e Two Faraday isolators insure that no reflected beam enters the laser. Indeed this
would perturb the laser and then the cavity feedback.

e A first lens (f; = 400 mm) allows the size of the laser beam to be adjusted.

e A Glan-Thomson prism allows the linear polarisation of the laser beam to be rein-
forced. It consists of two right-angled calcite prisms glued together. Its principle is
the same as a Wollaston prism (see Section 3.3.3) with a different orientation of the
optical axes of the prisms.

e An anti-reflected coated quartz quater wave plate is mounted in a motorised rotat-
ing stage. It allows the linearly polarised beam to be transformed into a circularly
polarised beam (or, depending on the azimuthal angle of the mount, into a ellipti-
cally polarised beam). The principle of a quater wave plate is explained in Section
3.3.4.
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e Two other lenses (fs = —100 mm, f5 = 250 mm) provide the spatial mode matching
of the laser beam to the cavity. The size and the position of the laser waist are
adjusted by putting these lenses at a proper distance from each other. The second
lens is mounted on a linear translation stage.

e An assembly of two 6° wedge glass plates allows for the pickup of a part of the beam
reflected by the cavity*. A silicon photodiode (model S1233 of bandwidth 20 MHz
[75]) located in front of the two glass plates reads this reflected cavity signal which
is used for the feedback procedure. A picture of these devices is shown in Figure
2.23.

Figure 2.23: Picture of
Ll the two 6° wedge plates
/ d.ffum q "/ - system (located in a
black tube), the silicon
feedback photodiode and
-y (] B | its readout electronic box
La (with a diffuser in front),
the motorised mirror M;
and a CCD camera (in
white in the right up-
per corner), the latter
two being used for the
laser/cavity alignment.

phetodiode
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A second silicon photodiode [75], named entrance photodiode in Figure 2.21, measures
the reflected cavity signal after passing the Glan-Thomson prism and is used for dedicated
characterisation measurements® (see Section 6.4).

The alignment system

The alignment of the cavity mirrors MC; and MC, (see Figure 2.21) onto the geometrical
cavity axis is done using a red HeNe laser diode. This laser is visible in Figure 2.12
(between the entrance optical rail and the cavity vessel, mounted on a post holder at a
higher height). It is injected inside the cavity through the exit vacuum window by two
mirrors rigidly mounted on a movable rail (this two mirrors are visible in Figure 2.25).
By moving the cavity mirrors, the reflections of the red laser light on the cavity mirrors
are matched to the incident laser beam. We typically achieved an 1 mrad, 1 mm precision
after this procedure.

4We have used two available wedges but it would have been as simple to use a one face anti-reflection
coated parallel plate.

5 At the origin, the signal of this photodiode should be used for the cavity feedback, but we finally use
the two 6° wedges scheme described above to extract the reflected beam independently of its polarisation.
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Once the cavity mirrors are geometrically aligned, a system of four SiO,/Ta,Oj5 dielec-
tric mirrors (named M; — My in Figure 2.21) is used for the geometrical alignment of the
infrared Nd:YAG laser beam on the optical axis of the cavity. The two mirrors M; and
My are motorised using four Micro-Control stepper motors (CMA-12PP stepper actuator
[76]). The travel range is 12.5 mm, the minimum incrementation motion is 0.3 pm and
the repeatability is 4 pm.

In principle two mirrors would be sufficient for an alignment of the impact point and
of the angle of the laser beam at the entrance cavity window. But we use four mirrors
to reduce a birefringence effect due to the small change of the polarisation of the beam
after its reflection in a mirror: indeed, the portion of the light reflected from the surface
of a dielectric is different for light polarised parralel to the plane of incidence (s-polarised
wave) and for light polarised perpendicular to the plane of incidence (p-polarised wave)
(77, 78], as schematized in Figure 2.24.

E (s-wave) i

E (p-wave)

Figure 2.24: Reflection and transmission of the s and p wave components by a dielectric
mirror. Left: the electric filed of the wave is inside the incident plane. Right: the electric
field is perpendicular to the incident plane. From [79].

Therefore by associating the mirrors by pairs used with the same incident angle but
with perpendicaular incident plane, the s-polarised component for the first one becomes
the p-polarised component for the second one. This configuration allows the reflectivity
difference between the two wave components s and p to be cancelled and the incident
polarisation to be conserved.

In order to control the effect of the motorised mirror movements on the beam align-
ment, an infrared CCD camera (named CCD; in Figure 2.21) is located in front of the
mirror M;. It allows the matching of the incident and reflected laser beam spots to be
visualised. The mirror M; and the camera CCD; are visible in Figure 2.23. The principle
of the alignment procedure will be described in Section 2.3.1.

The exit beam line

A technical drawing of the optical elements located at the exit of the cavity is shown in
Figure 2.25. All elements (excepted the mirrors used for injection of the red HeNe laser
diode into the cavity) are also visible in Figure 2.21. We just give here a brief description
of these elements and their respective role since they are the object of Chapters 3, 4 and
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Figure 2.25: Three dimen-
sional technical drawing of the
exit beam line. From [67]. The
two mirrors used for injection
of the red HeNe laser diode
into the cavity are also visible.

5. The beam emitted from the cavity is guided with two flat 45° dielectric mirrors (Mol
and Mo2 in Figure 2.21) to reach an holographic beam sampler (HBS, see Section 3.3.1)
which separates spatially the beam into three different beams: a main beam emitted at
0° and two diffracted first order beams emitted at 10° from the main beam. One of the
two first order beams enters an infrared CCD camera (named CCD, in Figure 2.21) to
visualise the modes of the cavity. The second first order beam and the main beam enter
an ellipsometer which consists of a quater wave plate (qwp) (see Section 3.3.4 and Chapter
4), a Wollaston prism (see Section 3.3.3) and three InGaAs photodiodes [80] located in
a thermalized box (see Section 3.3.2). The main HBS beam enters the Wollaston prism
and two of the photodiodes read the light intensity of the two beams emerging from the
Wollaston prism. The third photodiode (named the reference diode in the following) reads
the light intensity of the second first order beam diffracted by the HBS. The ellipsometer
is devoted to the measurement of the polarisation state of the incident light as described
in Chapter 5. A picture of this device is shown in Figure 2.26 ©.

Since the ellipsometer quater wave plate (qwp) will be the subject of Chapter 4, let
us give here some details on its mounting system: the qwp is mounted on a mirror mount
fixed in the centre of a rotating stage (model PR50 [81]) which is used to rotate azimuthally
the ellipsometer quater wave plate. The stage travel range is 360° and the repeatability
is 0.05°. Two screws allow the parallelism between the plate and the rotating stage to
be adjusted. The rotating stage is then mounted on a two axes horizontal stage, a two
angles tilted stage and a vertical translation stage. Linear and tilted stages are controlled
manually with micro-metric screws. A picture of the whole qwp mounting system is shown
Figure 2.27. We will see in Chapter 4 and 5 that this complete control of the horizontal,
vertical and angular qwp positions allows a very precise alignment of the plate (at the
level of hundredths of micrometer) to be performed, as required for its characterisation
and for accurate measurements of the laser beam polarisation.

6 After some tests, we have decided that it would be more convenient to have three different photodiode
thermal boxes. This explains the different photodiode schemes in Figures 2.25 and 2.26.
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Figure 2.26: Picture
of the cavity ellipso-
meter located at the
exit of the cavity.

rotation stage
mirror mount

QWP mount

titled stage

horizontal stage

vertical stage

Figure 2.27: Picture of the whole qwp mount system.

2.2.3 Feedback system
Principle

The feedback system between the laser and the cavity is based on the analysis of the
phase of the reflected field. The detuning parameter € is defined as the difference between
the laser frequency and the nearest resonance cavity frequency in FSR units:
Av
= — 2.20

‘ FSR ’ (2.20)
where Av is the difference between the laser frequency and a cavity mode frequency, and
FSR is the cavity free spectral range (see Section 2.1.3). One can show [62, 61] that, for a
small detuning parameter, the phase of the reflected field is proportional to the detuning
parameter and varies very rapidly around a resonance. This is illustrated in Figure 2.28
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where the phase of the reflected field is shown as a function of the detuning parameter *.
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Near a resonance (or more quantitatively when Arv < FWMH), the expression of the
reflected field phase as a function of € can be written as [62]:

tangg (€) ~ 2me {ﬁ] : (2.21)
The measurement of this phase may be used to correct for detuning. As there is no
detector sensitive to the phase of a laser wave, there is no direct way to measure this
phase. Hence, the phase information must be transformed into an intensity information.
To do this, the frequency of the laser beam is modulated at a frequency €2 (this wave
frequency modulation is equivalent to a phase modulation of the wave [85]). In that way
the phase information of the beam reflected by the cavity can be found in the reflected
intensity signal measured in a photodiode. This is the idea of the ‘Pound-Drever’ technique
(82, 83, 84] that we use for the cavity feedback.

The feedback procedure

The method is illustrated in Figure 2.29. The frequency of the laser is modulated at a
frequency 2 = 930 KHz by applying a sinusoidal voltage of 20 — 40 mV on the laser
piezoelectric actuator (which provides the fast control of the laser frequency). Beside the
central laser beam frequency vj,ser, two side bands of frequencies v 5. €2 are generated by
this modulation. When such a modulated wave arrives in the cavity, and if the frequencies
of the system satisfy the following conditions:

1> FWMH , (2.22)
Vres — FWMH S Vpser S Vies + FWMH | (2.23)

then the reflected field contains the two side bands simply reflected without phase shift
(because far from the resonance) and the phase shifted central band. Resulting from the
interference between the central and the side bands, the reflected signal measured in a
photodiode contains an amplitude modulated component at the frequency €2 depending
on the detuning parameter € [61]. It can be written as:

Viiode ~ f(€) sin(Qt+v) . (2.24)

"The curve in Figure 2.28 is computed from a symmetric 80 cm cavity made of two mirrors with
reflection and transmission coefficients of 99.99% and 100 ppm respectively [62].
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Figure 2.29: Simplified view of the Pound Driver feedback technique.

M

correction signal (ramp of f)

To extract the term f(e) containing the frequency shift information Av, the signal Vgioge
is demodulated with a sinusoidal signal sin (2t + ¥demod) With gemoa = ¥. A band pass
filter is used to remove the harmonics of the frequency {2 and keeps only a term propor-
tional to f(e) independent on 2 and . The resulting signal V iy is called the error signal.
An electronic system (noted ‘servo’ in Figure 2.29) then determines from the error signal
the correction that must be done on the laser frequency. This correction signal is added
to the modulation signal and applied on the laser frequency control system.

Of course the correction signals must be applied only when the laser beam frequency
is close to a cavity resonance frequency (i.e. if the condition (2.23) is fulfilled). To reach
this situation, a 20 V peak to peak triangular ramp at a frequency of a few Hertz (noted
‘ramp’ in Figure 2.29) is supplied to the laser piezo transducer (fast laser control channel)
together with the sinusoidal 930 KHz modulation mentioned above. The ramp signal
allows a laser frequency scanning of about 90 MHz to be performed and thus a cavity
resonance frequency to be crossed regularly. Far from a cavity resonance frequency a wave
is completely reflected, whereas near a resonance a wave enters the cavity and the current
measured in the photodiode decreases, as schematized in Figure 2.30.

Hence, to decide when the corrections must be applied, the reflected signal is also
sent to an electronic module (noted ‘accrochage’ in Figure 2.29) where, according to its
amplitude, the system is switched between the ‘closed loop’ and the ‘open loop’ modes. In
the ‘open loop’ mode, the corrections of the laser beam frequency are not applied, whereas
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in the ‘closed loop’ mode, the correction signals are sent to the laser. Both the search for
resonant frequency and the closing of the feedback loop are automatic procedures. They
are schematized in Figure 2.31. The mode locking system is fully self-governing to react
in a few seconds to an untimely unlock of the cavity.
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Figure 2.31: Schematic illustration of the automatic locking procedure: during a scanning
frequency, when the laser frequency crosses a resonance frequency, Vgioqe sees a voltage
drop (top drawing). When Vgiode < Vinres (Vinres being a tunable trigger threshold) the
‘accrochage’ card (see Figure 2.29) sends a ‘closed loop’ order to the system (middle
drawing). During the ‘closed loop’ mode, if Vgjoqe > Vec, an ‘open loop’ mode order is
sent to the system (bottom drawing). Vgec — Vinres is around 100 mV.
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2.2.4 The photon detection system

The calorimeter used to measure the energy of the Compton scattered photons is located
at sixty meters upstream the cavity area (see Figure 2.9). The photon detector is a
sampling calorimeter made of a sandwich of 24 tungsten plates of 3 mm thickness and 24
SCSN38 scintillator plates of thickness 2.6 mm. The SCSN38 is a plastic scintillator doped
with butyl-PBD and BDB. The plate dimension is of 40 x 40 mm? and are optically coupled
on all sides to wavelength shifter plates that bring light to one photomultiplier placed at
the back of the calorimeter after a 27 mm W shielding plate. A technical drawing of the
calorimeter is presented in Figure 2.32. The calorimeter is used both by the HERMES-
LPOL group and the cavity polarimeter group. It rests on a movable table to put it in or
out the scattered photon beam.
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Figure 2.32: Top view of the tungsten/scintillator sampling calorimeter used from the
detection of the Compton scattered photons. From [86].

DESY and CERN beam tests has been performed on this calorimeter in the energy
range 1-20 GeV [87] to characterise its resolution and its ADC (Analog to Digital Con-
verter) to energy conversion parameter. Results of the calorimeter resolution are shown
in Figure 2.33. The resolution is proportional to the inverse of the square root of the

energy as:

@ _ <%>2+52 , (2.25)

where the coefficients o and ( are equal to 25.9% and 1.28% respectively [87]. ADC
to energy conversion results are shown in Figure 2.34 in the energy range 1-20 GeV.
Deviations from linearity are smaller than 1%.
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2.2.5 Control and readout

The control and the readout of the system is divided into three parts: a slow control at
a frequency of the order of a few Hertz to operate the devices located in the cavity area,
the control (at the Hertz level) of the feedback system, and a fast control at 10 MHz
to record the calorimeter signals at each bunch crossing (see Figure 2.9). All systems
are connected to a personal computer (PC). The slow control system is monitored by a
PC connected to a PXI chassis [88] and located in the trailer about 100 m away from
the cavity area. It controls all the electronic elements of the cavity area excepted the
feedback electronics. Feedback operations are controlled by a second PC located in the
tunnel under a concrete slab near the cavity area. These two PC’s use LabView software
[89] and are accessed from anywhere thanks to Remote-Anything software [90] based on
a client-server architecture. The calorimeter DAQ operations are controlled and driven
by a third PC located in the trailer and using the PVSS [91] software.

Cavity control in the trailer

On the cavity optical table, several electronic elements are controlled from the PC-PXI
located in the trailer: the laser controller (to switch on/off the laser beam, to drive
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and control the laser temperature and the laser power), two ESP300 three axes motion
controllers [92] (to drive and control the two motorised alignment mirror mounts M; and
My and the ellipsometer quater wave plate rotating mount), the MoCo controller [93] (to
control and drive the azimuthal rotation of the entrance beam line quater wave plate), the
heating lamps and eight AD580 temperature sensors [94] (to keep the cavity housing at
a constant temperature within 1°), two CCD cameras (to control visually the alignment
and the locking of the cavity), five photodiodes signals (the three of the ellipsometer
to measure transmitted cavity signals and the two of the optical entrance beam line to
measure reflected cavity signals) which are transported from the tunnel to the trailer by
individual 100 m long shielded twisted pair cables to reduce the electromagnetic pickup
background. On the PXI rack the following devices are read out:

e A multi-function card (PXI-6025E [95]) containing 16 single analogue inputs digi-
tised by a 12 bits 200 KHz ADC, two 12 bits DAC (Digital to Analog Converter),
and 24 I/O (Input/Output) lines. Analogue inputs are used to read out the tem-
perature sensors. [/O lines are used to switch on/off the controller power supplies
of the ESP300, the MoCo and the laser, to switch on/off the power supply of the
CCD and the PC located in the tunnel and to turn on/off the heating lamps.

e Two multi-channel ADC cards (PXI-2010 [96]), each one containing four indepen-
dent 14 bit 2 MHz ADC’s used for the differential read out of the five photodiode
signals.

e A serial RS485 connection device (PXI-8421 [97]) used to drive the controllers of
the laser, the two ESP300 stepper motor controllers and the MoCo rotating mount
controller.

e A monochrome four channel video board (PXI-1409 [98]) to read out the two CCD
cameras.

Examples of control and readout panels using LabView software are shown in Figures
2.35, 2.36, and 2.37.
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Figure 2.35:
Command + Parameter LabView panel
Diode On/Off (Standby) : Turn Parameter Off - of the laser con-
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Figure 2.36: LabView
panel for the control of
the heating regulation
system.

Figure 2.37: LabView panel of one photodiode readout control.
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Feedback control in the tunnel

All feedback electronics are located in the tunnel under a concrete slab in front of the
cavity housing®. The system has been designed and built by the Service d’Instrumentation
Génerale (SIG) of Saclay and is a copy of the system used for the CEBAF cavity [63, 61],
itself inspired by the PVLAS (Polarizzazione del Vuoto con LASer) experiment system
[99]. A functional view of the feedback system whose principle has been described in
Section 2.2.3 is presented in Figure 2.38. The operation of the system is as follows:

Figure 2.38: View of the feedback electronics. From [61].
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8Feedback electronics was located in the trailer until the end of the year 2006 where, for unknown
reasons, the locking procedure has started to have some instability problems. Hence we have decided to
transport all the feedback electronics near the cavity.
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Three waveform generators (Agilent 33120A [100]) provide the ramp, the modulation and
the demodulation signals. The ‘PREAMP’ card transforms the current from the photodiode
into a voltage signal. The ‘ACQSIGN’ card constructs the error signal from the photodiode
signal mixed with the demodulation signal, filtered and amplified with a gain Sy. The
‘SERVO’ card then determines from this error signal the correction to be done on the
laser frequency. The ‘ACCROCHAGE’ card, which is connected to the ‘SERVO’ and the
‘ACQSIGN’ cards, decides to apply the correction (‘closed loop’ mode) or not (‘open loop’
mode). The ‘Controle Commande’ allows all the following feedback parameters to be
adjusted automatically: the generator parameters (amplitude, frequency and phase of
the ramp, the modulation and the demodulation signals), the mode of the feedback loop
(‘open loop’ or ‘closed loop’), the threshold voltage Vines (see Figure 2.31) and the gain
So of the ‘ACQSIGN’ card. The status of the locking can also be visualised. LabView
control screens of the feedback procedure is shown in Figure 2.309.
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Figure 2.39: LabView panels of the feedback control and driving. Up: three generators
command panel. Bottom: driving of the threshold (in hexadecimal unit), the gain (in
hexadecimal unit), the locking mode (‘Start/Stop locking’ button), the demodulation
phase ¥gemod, and control of the locking status (by the eight green buttons).
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Calorimeter acquisition system
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Figure 2.40: Scheme of the calorimeter DAQ front-end hardware electronics.

The principle of the acquisition system is schematized in Figure 2.40 and is as follows:
the DAQ system is synchronised to the first HERA electron bunch by the module named
‘Service Module’ and a dedicated bus (the ‘Lumi Bus’) is used for the data flow. Starting
from the calorimeter, a photo-multiplier (PM) signal is first amplified in a driver board
(see Figure 2.9) with a gain of ten. Signals then reach the trailer through two 100 m long
50 Q coaxial cables (one for the calorimeter signal, one without signal to subtract the
base line made of electromagnetic pickup background) and pass in a shaper board which
compensates for the skin effect [101] due to cable length and adapts the analogue signal
level to the ADC range. A signal pulse is then digitised in a 12 bit ADC card (8 channels,
0—2 V) at a rate of 40 MHz (i.e. four times the HERA clock frequency) providing
four samples (every 24 ns) per bunch crossing: the first sample s; is a measurement of the
baseline. To get a signal proportional to the energy deposit on the calorimeter, the second
sample s, is performed on the analogue signal at its maximum. For this, a tunable delay
between the HERA clock and the ADC is used for the tuning of the sampling position of
the ADC with respect to the peak value of the analogue pulse. The third and the fourth
samples s3 and s, are performed 24 ns and 48 ns after the second sample. Figure 2.41
shows an example of a calorimeter signal where the ADC sampling is indicated.

Figure 2.41: Calorimeter
- PM signal after passing
\sl ™ through the Shaper. The

b X i | ADC samplings (s; to sy)
ot i S g e perormed at times t; to t4

| are indicated by the crosses.
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The digitised data are written in a buffer memory of the ADC board and are con-
tinuously added to the FiFo of the MFCC2. The baseline is subtracted from the second
sample by the Power-PC. The corrected signal are next transfered to the L2 cache of the
Power-PC of the MFCC which fills and stores the energy histograms of the 220 electron
bunches. Histograms from the L2 cache are then saved in the Power-PC of the RIO2
board and the memory is refreshed. The transfer of these data is done each 10 sec dur-
ing the time necessary to change the laser beam polarisation. A detailed description of
these DAQ operations can be found in [102]. This DAQ system is similar to the one used
for the the H1l-luminosity monitor [103, 104]. The essential difference is for us the high
acquisition rate of 10 MHz with no trigger which involves a real-time system.

The synchronisation between the laser polarisation switching and the histogram filling
and transfer is done thanks the TCP/IP connection [105] between the DAQ-PC and the
cavity PC-PXI. TCP/IP transmission functions are built with LabView software. Every
10 seconds, ~ 400000 entries are stored per histogram and per bunch. The time necessary
to switch the laser beam polarisation is around 0.5 second (the time to turn the entrance
quater wave plate rotating mount, to wait the stabilisation of the cavity power after the
change of the laser polarisation, to record the position of the qwp and to send a start
signal to the DAQ) and can be considered as our typical ‘dead time’.

2.3 Results of the cavity in functionment

In September 2001 and during one year, a test cavity was successfully operated at Orsay.
The final cavity was tested and operated at Orsay from December 2002 to February
2003 and was installed in the HERA tunnel during the spring 2003. In this section, the
main experimental results concerning the performances of the final cavity operated in the
HERA tunnel and the lepton beam polarisation extraction from calorimeter spectra are
described.

2.3.1 Laser beam/cavity coupling
Alignment procedure and locking stability

Once the cavity mirrors are geometrically aligned with typical precision of 1 mrad, 1 mm
(see Section 2.2.2), the two motorised mirrors M; and M, the lenses, the photodiode in
reflection and the two CCD cameras are used to align the laser beam axis on the optical
cavity axis. A scheme showing the principle of the alignment procedure is presented in
Figure 2.42.

reference
plane

; (x.y., 0., o)
M- M, 5 /"
¥, ccb: Figure 2.42: Scheme

B Y [ — showing all the ele-
ments involved in the
laser beam /cavity axis

— U El alignment.
M, - M, 2 wedges ' A4

lenses

motorized
mirrors




Using matrix algebra for the calculation of the effects of lens on a gaussian beam
(57, 59], the lens positions are first adjusted in order to put the laser waist at the centre
of the cavity. Then the alignment procedure is the following:

e A LabView procedure [106] has been written in order to transform the four mirror
M; — M, displacements into the four degrees of freedom of the laser beam axis
displacements in a given reference plane along the axis z attached to the laser beam
propagation. These degrees of freedom are the positions x and y of the laser impact
point on the reference plane and the angular inclinations oy and oy of the beam
with respect to the reference plane. The plane of reference is chosen at the entrance
cavity mirror MC; (see Figure 2.42).

e For a given laser impact position (x,y), using the entrance CCD; camera looking
at the light diffusion on the mirror M;, the angles (o, ay) are varied such that the
incident beam and the reflected beam are spatially matched. The accuracy of this
matching is given by the laser beam spot outlines on M; and by the distance of M;
from MC; (~ 1 mm and ~ 1 m respectively) and is about 0.5 mrad.

e The 20 V peak to peak triangular ramp used to cross cavity resonance frequencies
(see Section 2.2.3) is supplied on the laser fast channel. The level and the number
of excited cavity modes (see Section 2.1.2) are controlled with the reflected signal
measured by the feedback photodiode® and with the CCD, camera at the exit of
the cavity. A typical LabView acquisition is presented in Figure 2.43 where both
the ramp and the reflected photodiode signals are shown. A camera measurement
example is presented in Figure 2.44. In Figure 2.43, odd and even cavity high order
modes are present, whereas in Figure 2.44 only a TEMy; mode is visible.

e The x and y positions are then changed (and also the angles a, and «, to recover
the normal incidence) in order to minimise the number of resonant modes, i.e. the
number of high intensity peaks in Figure 2.43.

e Once the alignment is such that the main resonant modes are the TEMyy and TEM,
modes, the positions x, y, ayx and « are finely adjusted to maximise the reflected
peak intensity of the fundamental TEMyy mode and minimise the TEMy; mode
intensity. The cavity is then locked automatically on the fundamental mode using
the ‘Pound-Drever-Hall’ technique described in Section 2.2.3.

When the cavity is strongly missaligned, this alignment procedure takes about one
hour. Thanks to the thermalized cavity housing, once the cavity is aligned, the stability
of the system is very good. The only times where we had to realign the laser beam were
due to hardware problems during which the motorised mirror positions had been lost.

An example of the stability of the locking is shown in Figure 2.45. During twelve
hours, only a few delocking periods have happened after which the feedback system has
recovered the resonance conditions automatically.

9The control of the level and the number of modes should have been done also using the signal
transmitted by the cavity measured by one of the ellipsometer photodiode.
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Figure 2.45: Transmitted cavity power measured in the reference ellipsometer photodiode
during 12 hours of data taking.
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Cavity gain and power

To estimate the gain of the cavity, a simple method is to measure the decay time of the
cavity [107, 108]: the power P inside a cavity locked in stationary regime is given by
equation (2.17). If the laser is suddenly switched off, the circulating power then decreases
from the stationary level P, to the zero level. The measurement of this decreasing time
allows the cavity characteristics to be determined.

Indeed, taking the time t = 0 when the laser is switched off, after a number n of back
and forth trips in the cavity, the decreasing power Pge. circulating in the cavity in this
transient regime can be written as:

Paec [t = 20(L/c)] = Pure (R e*2%)" [(R e¥29)"]" (2.26)

where R is the reflection mirror coefficient, A¢ is the phase shift induced during a light
trip from one mirror to another, and “x” stands for the complex conjugate operation.
After some calculation, equation (2.26) can be written as a function of the decay time Ty
of the cavity as:

L/c)

Pgec(t) = Peire —t/Ta ith T4 = —(— . 2.27
dec (1) e wi d R (2.27)
By expending InR to the first order in R for R ~ 1, the finesse F defined in equation
(2.18) and the maximal gain G = Ga,—0) defined in equation (2.17) can be expressed
as a function of this decay time as:

s Td
F g (2.28)
Ty Ty
G~ <1 - P ) /o) (2:29)

where P &~ 40 ppm are the mirror losses. Of course we cannot measure Py, directly since
we do not have access to the inside of the cavity, but a measurement of the cavity transmit-
ted power which has obviously the same decay time than Pge. allows T4 to be determined.

Figure 2.46 shows a transmitted power measurement performed on our cavity where
the laser power has been switched off during a cavity locking period. In the Figure 2.46(a),
two curves are shown: the decrease of the cavity transmitted intensity and the decrease
of the laser intensity after the laser power switch off. Indeed, once the laser is stopped,
its power does not fall to zero instantaneously and the decay time of the laser has to be
taken into account in the determination of the cavity decay time. The decrease of the
laser intensity is then convoluted with the exponential cavity decay time. Figure 2.46(b)
shows the results of this convolution which leads from an exponential fit to:

F =~ 29000
Ty~ 62 us = Gmax ~ 5800

FWMH = 2.6 kHz
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With this estimation of G,.y, the power P, inside the cavity at the resonance can now
be estimated:

Pc - Pinc X Gmax ) (230)

where Pj,. is the incident power which is coupled into the cavity. Because of the laser
beam linewidth of the order of 5 KHz [66], P, of formula (2.30) may be smaller than
the incident laser power Pj,5. Indeed in this high finesse cavity, FWMH is narrower than
the laser linewidth and thus a part of the laser beam cannot be coupled to the cavity
if the feedback gain is not high enough [109]. This coupling loss has been estimated by
measuring the power reflected by the cavity as described now.

The field of the beam reflected by the locked (respectively unlocked) cavity is called

A (respectively Aﬁk)) and the part of the laser beam coupled in the cavity is called

ref

Ay and is defined by:

Acpl = CcplAlaS )

where cp is a coefficient to be determined and Ay, is the laser incident field. The reflected
and circulating fields of equation (2.3) can be rewritten as function of Aj,s and Ay as:

Acirc =1t Acpl +r A’

circ

Al — Aps+i t Al with :

ref circ

li _ —2iA
cire — L€ ¢ Acirc

Hence, using the expression of the field reflected by the unlocked cavity:

A(UIk) =r Alas )

ref
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the ratio r.¢ of the locked cavity reflected power to the unlocked cavity reflected power

1s written as: () )
T . |Aref |2 ~ 1 — ¢ 1 _ fP
ref — A(ulk) 9 Cpl T
| ref |

Our different power measurements in the feedback photodiode have provided values of 1.
around 0.47 which leads to ¢z, ~ 0.25. With our laser power functionment P, = 0.66 W,
the power P, inside the cavity can then be estimated:

P, ~ Pus X2 X Guax ~ 0.96 KW . 2.31
cpl

As it has been shown in Figure 1.12, this value is enough to reach the statistical uncertainty
on the lepton polarisation of order of 1% per bunch and per minute.

2.3.2 Compton photon detection spectra
Bunch structure in the HERA ring

At HERA, 220 bunches circulate in the ring each one spaced by 96 ns. Among these 220
bunches, 40 are empty bunches, 172 are bunches in collision with proton bunches, and 8
are not colliding bunches. A “clean” bunch is defined as a bunch preceeded by at least an
empty bunch and therefore leading to a calorimeter signal free of any leakage coming from
the previous bunch signal: indeed, after the Shaper, a calorimeter signal remains a little
longer than the bunch spacing time!?. In addition, when the calorimeter data acquisition
system starts to operate, a mismatch sometimes occurs between the DAQ time and the
HERA clock time. In consequence, the signal baseline is no longer the sample measured
at the time t; (see Figure 2.41) but the one measured at the time t4. Signals from two
consecutive bunches are schematized in Figure 2.47. If a DAQ time mismatch occurs,
the signal of the bunch n + 1 after baseline substraction is no longer s2,,,; — sl,4; but is
s2n4+1 — s4, and is thus underestimated since bunch signals are a little longer than 96 ns.

52n+1

Figure 2.47: 'Two consecu-
tive bunch signals after passing
through the Shaper. The ADC
samplings are indicated by the
crosses and the little red arrow
indicates the magnitude of the
leakage.

Polarisation extraction

From the background and Compton differential cross sections, statistical calculations are
performed and adjustments using calorimeter energy spectra are done to extract the lepton

10This longer time is due to the fact that during a large part of the POLCA data taking, calorimeter
signals passed through HERMES electronics [47] before reaching the Shaper leading to signals a little
more stretched in time than the one in Figure 2.41.
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beam polarisation (see Section 1.3). For each bunch, an adjustment is performed using
the data of two consecutive calorimeter spectra, one taken with a right circularly polarised
laser beam, the other with a left circularly polarised laser beam. The acquisition time of
such a doublet is 2 x 10 sec (see Section 2.2.5). For a given doublet, the average number of
photons per bunch and the lepton polarisation per bunch are determined from the energy
distribution probabilities of background and signal processes smeared by the calorimeter
response.

One experimental energy spectrum and the corresponding theoretical spectrum resul-
ting from the adjustment are shown in Figure 2.48 for one given bunch. The whole photon
energy spectra is presented (a) and also zooms on the synchrotron radiation peak (b), on
the Compton photon peak (c¢) and on the Bremsstrahlung photon edge (d). Figure 2.49
shows the Compton edge spectra for one doublet of histograms. The different amount of
Compton photons according to S, £ 1 is clearly visible.
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BRLE S 104 Figure 2.48:  Measured
1k F (black) and fitted (red)
E -J_ P PR | I Calorimeter energy SpeC_

trum of one acquisition his-
togram: whole distribution
(a), synchrotron radiation
peak (b), Compton peak
(¢) and Bremsstrahlung
edge (d).
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Figure 2.49: Compton edges of two
calorimeter energy spectra, each one
corresponding to an acquisition of 10
seconds where the laser helicity was
left and right respectively. Calorime-
ter data measurements are in black and
blue, the two corresponding fitted dis-
tributions are in green and red.

nb. of events
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For each spectrum doublet, theoretical distributions shown in Figures 2.48 and 2.49 have
been obtained as follows:

e The synchrotron radiation energy (E,.q) is extracted firstly at the beginning from a
parabolic fit around the position of the radiation synchrotron peak. The synchrotron
radiation peak energy is visible in Figure 2.48(b) where E .4 is determined with a
precision of around 50 MeV. In one histogram, this synchrotron peak contains the
largest amount of events and the knowledge of its energy position with a good
precision is very important in order not to induce an energy shift which should
bias in turn the lepton polarisation determination. Then, once E..,q is determined,
a grouping of channels around the E,,q channel is done to avoid to describe the
radiation peak with too much precision. Most of the events of a histogram belongs
to the radiation peak channels and including all these channels in the minimisation
would give too much weight to these events to the detriment to the Compton events.
To perform the grouping of channels, the energy channels closest to the channel E .4
are then merged to form a ‘big channel’. The number of channels entering in this
‘big channel’ is chosen as follows: calling N,,q the number of events in the channel
Eiaq, all the channels containing more than cys X Npag events are regrouped in the
unique ‘big channel’. ¢y, (< 1) is a parameter to choose before starting the whole
adjustment.

e The adjustment of all the following free parameters is then performed, always for
each histogram doublet :

1. The average number nyj,q of black body photons.

2. The average numbers npey and Gprem X Nprerm 0f Bremsstrahlung photons in the
histograms recorded respectively with the right and the left circularly polarised
laser beam. The flux parameter ¢p.m takes into account the possible changes
of the lepton beam condition between the two acqusition times of the doublet.

3. The average numbers ny and ¢¢omp X ng of Compton photons coming from the
unpolarised Compton cross section oy (see formula (1.15)) in the histograms
recorded respectively with the right and the left circularly polarised laser beam.
The flux parameter ¢.,mp has been introduced to reflect the small difference
observed between the cavity power for the right and the left circularly polarised
beams. This effect is due to a small misalignment of the entrance beam line
quater wave plate (see Section 2.2.2) leading to laser power change of few
percent when the plate is rotated.

4. The average numbers P, X n;, and —¢¢omp X Pe X 1y, of Compton photons
coming from the polarised Compton cross section oy, in the histograms recorded
respectively with the right and the left circularly polarised laser beam.

All the above variables (Npjack; Dbrem, Pbrems 1o; LL, Peomp and Pe) are determined
at the same time by the adjustment. To show the importance of the two flow
parameters Qprem and @eomp, an example of adjustment is presented in Figure 2.50:
the blue curve is the result of an adjustment where the two flow parameters have
been fixed to the unity and the red one where ¢prem and ¢eomp were free parameters
and have been adjusted. The better agreement between the experimental data and
the theory is clearly visible on the red curve.
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Figure 2.50: Compton edges of one
calorimeter energy spectrum: experi-
mental data in black, theory for
®brem = @comp = 1 in blue and theory
after adjusting ¢prem and ¢eomp in red.
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From the two spectra on Figure 2.49, the quality of the adjustment has been estimated
by calculating the value of the x? in the Compton areas. x? is defined as:

1 H —T;\”
2 2: 1 i
X Ng, — O, . ( VHi ) 7
= IE,

where ng, and ng, are the first and the last energy bin numbers of the considered region
(E; =2 GeV and Ey = 16.5 GeV), and H; (respectively T;) is the number of data (respec-
tively theoretical) entries in the i*" bin. The calculation gives x? = 1.06 and x? = 0.99 for
the spectra recorded during a right and a left circularly polarised laser state respectively.
These x? values are satisfactory since the lepton polarisation is determined essentially
from these Compton edges.

The spectrum of Figure 2.48 comes from a ‘clean’ bunch. For bunches which are not
preceeded by an empty bunch, an additionnal correction is applied to take into account
the leakage signal coming from previous bunches (Figure 2.47). The effect of this correc-
tion is illustrated in Figure 2.51 where the energy distribution of a bunch preceeded by a
non-empty bunch is shown. As shown in Figure 2.51(b), the agreement between the data
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Figure 2.51: Calorimeter energy spectrum of a bunch preceeded by a non-empty bunch:
(a) whole distribution, (b) zoom at low energy. Experimental spectra are in black, theo-
retical ones with and without leakage correction are respectively in red and green.
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and the theory at low energy is clearly improved by the leakage correction. The leakage
parameter is not a free parameter of the fit but is optimized and fixed at the beginning
of the adjustment.

The detector response is also determined, every six or seven minutes, from real data
themselves. Indeed, since the acquisition mode is the ‘few photon’ mode, calorimeter gain
and resolution can be extracted from the shape of the photon energy distributions. The
calorimeter resolution is parametrised as:

o*(E) = ¢§ + *E + B2 E? | (2.32)

where ¢y represents the width of the electronic noise. The ADC-energy conversion is
parametrised as:

E
E— ¢

= ST
1+ — E
+E£+SZ 0

, with Eg = gr X €3dc X Nadc R (233)

where E; is the ADC-energy conversion in case there is no non-linearity response effect in
the calorimeter, s; and s, are two coefficients taking into account a possible non-linearity in
the calorimeter response respectively at low and high energy, e,q. is the energy range of one
ADC channel (eyqe ~ 70 MeV) and N4 is the ADC channel number. The parametrisation
(2.33) leads to asymptotic shapes of the ADC-energy curve at low and high energy and a
linear behaviour in the middle energy range.

For one doublet of histograms, the parameter ¢y is first determined from the width
of the empty bunch energy distributions. An example of the energy spectra of such an
empty bunch is shown in Figure 2.52 and leads to ¢y ~ 120 MeV. This value can vary a
little in time.

x10
. E RMS ~ 120 MeV
£ 10000 E
. 3 Figure 2.52: Energy spectra of
5 —— an HERA empty bunch. The
g E RMS of the distribution deter-

2308 3 | | | mines the parameter cg.

D 1 1 1 1 1 1 1 1 1
-0.5 Q .5
Energy (GeV)

Once ¢y is determined, only ‘clean’ bunches are selected to determine the calorimeter
response. An adjustment is then performed where the free parameters are the calorimeter
parameters gy, s, So, @ and [ and the parameters described before (i.e. Npjack, Nbrem, Pbrem,
Erad, Do, D, Peomp and Pe for each one of the ‘clean’ bunches). Calorimeter resolution,
gain and non-linearity parameters obtained from an adjustment are the following:

cop = 119 MeV g, = 1.07
o = 23.4% s; = 83 MeV
B =0.75% Sy = 3.4 MeV~!
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Let us make some comments on these detector parameters. Parameters o and 3 are
comparable to those determined by the test beam results (see Section 2.2.4). Concerning
the ADC to energy conversion, the order of magnitude of the gain non-linearity coming
from the parameters s; and s, are ~ 1% and ~ 4% at 2 GeV and 10 GeV respectively.
Depending of the size and the alignment of the calorimeter, electron beam movements
could induce a variation of the calorimeter response. Also, the calorimeter can be deterio-
rated over time because of hard radiation. This is why detector parameters have been
determined regularly from the data themselves during the data taking. The polarisation
of each doublet as described above is determined using the set of calorimeter parameters
closest to this doublet.

Results

An example of polarisation measurements with the cavity polarimeter during ten hours is
shown in Figure 2.53. The TPOL polarimeter have been taken data at the same time and
the measurements are also visible in the Figure. In Figure 2.53(a) and Figure 2.53(b),
each measurement is the average polarisation of the 172 colliding bunches and the 8 non
colliding bunches respectively. Each cavity measurement is the average of six doublets
(i.e. 6 x 10 sec). The TPOL measurements are performed every minute. For the cavity
polarimeter, the statistical precision of the polarisation measurements averaged over all
the colliding bunches is of the order of 0.2 percent per minute (error bars are invisible in
the figure) and, as expected, is much better than the TPOL uncertainties.
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wfE® ¢ TPOL e Cavity and of the 8 not colliding

bunches (b), as a function
of time during about ten
hours.

s

It
Il 'l ‘-‘|[| I;
Ul !ll L

04 3
¥

o (UL

polarisation (not colliding bunches)

a1

0

time (hours)

71



Several data sets have also been recorded with the cavity polarimeter during polarisa-
tion build up time. Figure 2.54 shows an example of such polarisation rise time curve. The
fit of these data with the polarisation build up formula (1.9) leads to an asymptotic polari-
sation Pgr = 60.63% and a characteristic time 7 = 24.42 min. The differences between
these values and the ones of formula (1.10) in the case of an ideal machine (Pgp = 92.4%
and 7p ~ 40 min) are due to depolarisation effects described in Section 1.1.4.
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Figure 2.54: Polarisation mea-
surements during a polarisa-
tion build up (black points)
and rise time curve resulting
from a fit with formula (1.9).
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These depolarisation effects are visible in Figure 2.55 where the polarisation of the
colliding bunches is shown as a function of the proton beam current: as described in
Section 1.1.4, more the proton beam current is important, more the leptons are submitted
to depolarisation beam-beam effects.
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Average number of Compton photons and uncertainties

Let us now make some comments on experimental average numbers of Compton and
backgrounds photons and the comparison with the order of magnitude obtained in the
simulations described in Section 1.3.2. Figure 2.56 shows the lepton beam current (a)
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and the statistical uncertainty per bunch and per 20 sec (b) as a function of the average
number of Compton photons per bunch obtained from the fits. This figure has been done
using around 2 hours of data taking where the electron beam current was 32 mA at the
beginning and 17 mA after the 2 hours. Histogram (c) in Figure 2.56 shows the average
number of Bremsstrahlung photons per bunch during this data taking period. For a typical
e-beam current value [, ~ 25 mA, the average number of Compton photons per bunch is
n, ~ 0.17 and the statistical uncertainty is 2% per doublet and per bunch. By averaging
over a minute (i.e. over 3 doublets), the uncertainty is AP / bunch / min ~ 1.15%.
Let us remark that the order of magnitude of this uncertainty is in good agreement
with the simulated prediction (see Figure 1.12), and that the simulated Bremsstrahlung
background level npem ~ 0.1 used to obtain this prediction and the experimental one
Nprem ~ 0.3 are also of the same order of magnitude.
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Figure 2.56: Lepton beam current (a) and statistical uncertainty per doublet and per
bunch (b) as a function of the average number of scattered Compton photons per bunch
resulting from adjustments. (c): histogram of the average number of Bremsstrahlung
photons per bunch. All plots correspond to about 2 hours of calorimeter data taking
where the electron beam current was 32 mA at the beginning and 17 mA after the 2
hours.

With our estimated cavity power P, ~ 0.96 KW of formula (2.31) and for a lepton
beam current I, ~ 25 mA, one expects from Figure 1.12 a number of scattered photons
n, ~ 0.5 per bunch. The smaller present rate n, ~ 0.17 could be explained by the
fact that the simulation in Figure 1.12 has been done in an ideal case, ¢.e. for an ideal
horizontal laser beam / lepton beam alignment. A change in position of the electron beam
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has been intentionally generated during a polarimeter data taking. Figure 2.57 shows the
average number of Compton photons for several horizontal positions of the lepton beam
and illustrates the dependance of the Compton luminosity with respect to the matching
of the laser and lepton beams.
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Anyway, the statistical uncertainty on the lepton beam polarisation measurement
per bunch and per minute is of the order of the percent and thus reaches the design
requirements.

2.4 Conclusion

In this chapter, after having introduced basic principles of a gaussian beam coupled to a
Fabry-Perot resonator, we have described the whole cavity system installed in the HERA
tunnel. The main mechanical constraints and the difficulties encountered in such environ-
ment have been reported. Then the optical components, the cavity feedback procedure
and the photon detection system have been described and the performances and the main
results obtained during its operation in the accelerator have been reported. The cavity
running was very robust and once aligned, the locking remained very stable. The gain
and the power have allowed an average number of scattered Compton photon per bunch
of the order of the unity to be reached. The acquisition system at 10 MHz worked very
well: one histogram of 400.000 entries was recorded each 10 seconds and a measurement
of the polarisation of each of the 180 HERA lepton bunches is performed each 20 secon-
des. Exploiting the shape of the energy distributions, the sandwich calorimeter has been
calibrated on the data themselves and the lepton beam polarisation has been extracted
with a statistical uncertainty of order of the percent per bunch and per minute.

Most of the systematic uncertainties can be estimated from the data themselves. These
systematics errors come from the choice of certain parameters used in the adjustments or
from their uncertainty. These parameters are as follows:

e the gain parametrisation of the photon detector,

e the frequency of the calorimeter calibration,
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the blackbody temperature,

the merging bin parameter cpyg,

the leakage correction,

the lepton beam current,

the lepton beam position,
e the laser power.

All these sources of systematics have been the subject of preliminary studies that will not
be described here. The main point is that the addition of all these effects leads to a total
systematic of the order of the percent [110].

A last source of systematic error and perhaps the most difficult to control is the
knowledge of the Degree Of Circular Polarisation (DOCP) of the light. This quantity,
noted S, in equation 1.15, is directly involved in the Compton cross section and the level of
ignorance of S, is transmitted unchanged to the lepton beam polarisation. This quantity
S, and its uncertainty cannot be determined from the data themselves and dedicated
measurements have to be performed in order to decrease the total systematic uncertainty
of the lepton polarisation. This is the object of the next chapters which describe the
procedure to measure precisely the Degree Of Circular Polarisation of the laser light inside
the cavity and to estimate the related uncertainty.
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Chapter 3

The ellipsometer

3.1 Introduction

A precise knowledge of the polarisation value of the photon beam inside the cavity is
necessary to obtain a good measurement of the HERA lepton polarisation P.. Indeed the
Compton scattering cross section:

do/dE, = doy/dE, — P¢ S, doy,/dE, (3.1)

contains a term directly proportional to the light circular polarisation S,. To conserve an
uncertainty below the percent per bunch per minute level for the measurement of P,, we
intend to measure S, with an uncertainty of a few per mill.

To characterise a polarisation state of light, we use a dielectric anisotropic crystal.
Indeed, because of their crystalline structure, these materials interact in different way
according to the electric field: either they may absorb or reject certain components of the
electric field (these materials are called polarisers), or they may delay one field component
with respect to the other one, introducing a phase shift between the components (these
materials are called delay plates). The anisotropic character of the dielectric leads to the
existence in the medium of refraction indices depending on the propagation direction of
the wave: two waves, called ordinary and extraordinary, then propagate in the medium
with linear orthogonal polarisations. In the general situation, these two waves have two
different propagation directions: it is possible in this case to separate the two different
orthogonal polarisations. In the particular situation where the two waves propagate in
the same direction, a phase velocity leads to a phase shift of a linear polarisation in
relation to the other which is orthogonal. The consequence is a change of the incident
wave polarisation at the exit of the material. In particular, when this phase shift is equal
to 7/2 the dielectric is called a half-wave plate, when it is equal to 7/4 the dielectric is
called a quater wave plate.

In order to characterise the polarisation of a light beam, a system called an ellipsometer
is used. It allows the transversality of the wave to be characterised. The principle of an
ellipsometer is to send a light beam, of any unknown polarisation, through a quater
wave plate followed by a Wollaston prism which separates spatially the beam into two
orthogonal linear polarised states. By varying the azimuthal angle of the quater wave
plate and by analysing the intensities obtained in photodiodes for these different angles,
one can infer the polarisation of the incident beam.
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This chapter is devoted to describe the ellipsometer located at the exit beam line of
our Fabry-Perot cavity. After a brief description of the mathematic description of the
light polarisation states, the optical components of the ellipsometer will be described and
their precision characterised.

3.2 Jones and Stokes formalism

Before going through the details of the ellipsometer, a mathematic representation of the
polarisation states and of the optical components must be defined. From Maxwell’s equa-
tions and boundary conditions, the expression of an electric field vector associated to
an electromagnetic wave can be obtained. In an isotropic medium of optical indice n, a
monochromatic plane wave with frequency w and wave vector k propagating along the
axis 0z, is described by its associated field vector:

E(z,t) = Eexp|i(wt—k-z)] ,

where k = |k| = nw/c and where E is a complex vector normal to the vector k which
characterises the polarisation state of the field £. The electric field is given by the real
part of the complex expression of £. The polarisation vector E can be written as:

E = AX eid”‘x + Ay eid)yy )

where A, and A, are real quantities. The projections of £ along the two transverse
directions ox and oy are then written as:

Ex = A cos(wt —kz + o)

E, = Ay cos(wt — kz + ¢y)

The time evolution of the extremity of £ describes a trajectory in the transverse plane
oxy and is called the wave polarisation state.

The most general polarisation state is an elliptic polarisation: the polarisation vector
describes an ellipse in the transverse plane as a function of time. When the two projections
Ex and & evolve in phase (¢x = ¢y), the wave field trajectory oscillates along a straight
line. The wave is then linearly polarised in a direction which depends on the quantity ¢,
and on the two amplitudes A, and Ay. When the two projections have the same amplitude
(Ax = Ay) and when their phase shift ¢x — ¢, is equal to £7/2, the wave is circularly
polarised and the vector £ describes a circle in the transverse plane as a function of time.

3.2.1 The Jones representation

The vectorial nature of the polarisation state suggests using a matrix representation to
describe it. The Jones representation is a simple way to characterise the polarisation
states of a wave [77]. The state is described by a two dimensional complex unitary vector,
called the Jones vector J. The electric field can be written as a function of J as:

A, eldx

78



e If the polarisation is linear, then J = < COSXP )
S xp

C 1
e If the polarisation is circular, then J = % ( ny )
Note that any circularly polarised wave is the superposition of two linearly polarised
waves according to two orthogonal directions and dephased by +7/2. In the same
way, any linearly polarised wave is the superposition of two circular right and left
waves.

e If the polarisation is elliptic and by calling ¢p = ¢, — ¢y, then

J = <C°SXP ) . (3.3)

sinyp e'??

The light intensity is written as a function of the Jones vector as: I = J* - J, where J* is
the complex conjugate of J.

The effect of an optical element on the state of polarisation of the light passing through
can be described in the Jones representation by a complex two-by-two Jones matrix M;
[111]. The electric field E" after passing through the optical element can be written as:

E = M, E ,

where E is the electric fields before the optical element which is described by Mj and can
be a delay plates, a polariser or a rotator.

3.2.2 The Stokes representation

The light polarisation can be described in another way, called the Stokes representation
[77]. In this representation, a polarisation state is characterised by four parameters:
the Stokes parameters. In a light wave, the fraction of the light horizontally, vertically,
right and left circularly polarised can be quantified. The parameters allowing for such a
description are called S¢, S;, S, and S, :

o Sy = Ii+I (the total intensity) is the sum of the intensities of the linear polarisation
components along ox (Ix) and oy (Iy),

e S5, = I —I, is the difference of the intensities of the linear polarisation components
along ox and oy,

o Sy = liy50 — I 450 is the difference of the intensities of the linear polarisation
components along the ox and oy axes rotated by £45°,

e S, = Ig — Ip is the difference of the intensities of the left circular polarisation
component (Ig) and the right one (Ip).
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Mathematically the Stokes parameter expressions are written as:
((So=Al+ A7
Sy =A2 - Ag

(3.4)
So =2 A, Ay cosgp

[ Sy =2 A Ay singp

where ¢p = ¢y — ¢y, and where Ay, Ay, ¢ and ¢, are the parameters introduced in (3.2).
The Stokes parameters are therefore expressed simply and only as function of intensities.
For a fully polarised light, these four coefficients are connected by the following relation:

Sg=S7 +S; + 8

S, is called the Degree Of Circular Polarisation of the light (noted also DOCP in the fol-
lowing). If S, = +1 (S, = —1), the light is 100% right (left) polarised. This quantity S,
is the variable of equation (3.1) and has to be determined very precisely. In the same way
as the Jones description, the effect of an optical component on the polarisation state can
be described by a four-by-four matrix.

The Jones and the Stokes formalisms are equivalent but are more or less appropriate
depending to the calculation to be done. For instance in a model where the multiple
reflections inside a medium together with the gaussian nature of the wave behaviour are
taken into account, the Stokes formalism is more appropriate [50]. For other more simple
cases, the Jones formalism can be used as well.

3.3 Experimental setup and precision requirements

A drawing of the ellipsometer device used to characterise the laser light polarisation (as
well as some optical components as we shall see in the following) is shown in Figure 3.1.
The beam to be analysed passes first through a holographic beam sampler (HBS) in order
to extract a small part of the entrance power (about 1%, exact replica of the incident
beam). This part of the beam is used as a reference intensity to compensate the effects
due to possible laser power variations. Next, the beam passes through a quater wave
plate, then through a Wollaston prism which separates spatially the beam in two linear
and orthogonal polarisation components. Finally the transmitted beams are detected in
two photodiodes. Diffusers are located in front of each photodiode, in order not to be
sensitive to the beam pointing instabilities and to be able to decrease or increase the
power entering the photodiodes.

The measurement of the Degree Of Circular Polarisation of the light beam with an
uncertainty of a few per mill requires a precise control of the characteristics of the el-
lipsometer optical components (HBS, Wollaston prism and quater wave plate) as well as
the response of the photodiodes. In the following, we review these different devices and
characterise their degree of precision.
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Figure 3.1: Schematic drawing of the ellipsometer used for the photon polarisation mea-
surement: the entrance light to be analysed passes through an holographic beam sampler
(HBS), then through a quater wave plate (qwp) and through a Wollaston prism, before
being recorded in photodiodes (pd).

3.3.1 The holographic beam sampler (HBS)

The holographic sampler is a hologram in relief engraved on a transparent substrate
(silica) inducing forward diffraction. Some precise spatial samplers, from one percent to
10~® percent of the incident power are obtained after passing in a HBS. These samplers
have the same polarisation as the incident beam. The schematic of an HBS is shown in
Figure 3.2. The first sampler A contains 1% of the incident power and is deviated by ten
degrees to the transmitted principal beam.

HBS c
B
A Figure 3.2: Principle
ent . — of a holographic beam
mciien ransmitie
heam — T beam sampler (HBS)

3.3.2 The photodiodes

The detection system consists in three photodiodes called pdy, pd; and pdy in Figure 3.1
and a fourth one pdg, for spare. The photodiodes (Hamamatsu, model G8370-02) are
constituted by a gallium arseniure and indium alloy (InGaAs). They are low noise photo-
diodes and are particularly appropriated for the near infrared detection. The associated
readout electronics are standard, composed of pre-amplifiers and resistances [112]. These
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elements have been chosen to be as stable as possible with respect to temperature va-
riations. In addition, each photodiode and their electronics are thermalized with a Peltier
module. Indeed, the temperature variations in the HERA experiment environment might
be of a few degrees and could induce a variation of the photodiode readout larger than
the required precision. With a Peltier module, a stability level of tenth of a degree is
achieved. As shown in Figure 3.3, the photodiodes work in a linear regime if the incident
power is below 6 mW [80]. We have to operate them in this regime. The readout of the
photodiodes is done with 12 bit analogue digital converters at a maximum sample rate of
2 MHz.
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Figure 3.3: Linearity area of the
InGaAs photodiodes as a function
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” W width 4 MHz.
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The photodiode test device with which the photodiodes has been characterised at the
Orsay laboratory is drawn in Figure 3.4. Photodiodes are tested two by two: a 100 mW
power infrared beam delivered by a high quality ND:YAG laser (A = 1064 nm)[113] is
sent through a beam shutter followed by the HBS. In order to stay in the linear working
regime, the two tested photodiodes are located so as to receive only one percent of the
laser incident power.

pd;
beam 1 . 1
peam HBS Figure 3.4: Schematic

I | drawing of the optical de-
vice used to characterise

laser % d,
I L\ pee the photodiodes (laser,
> beam shutter, beam sam-
/‘. pler, two InGaAs photo-
difuser diodes).

For each measurement, the value of the mean of ten thousand events is recorded. The
pedestal of each photodiode is first measured, then the signal with the laser on is measured
and the two are subtracted. For this, a beam shutter is located in the beam line, and
is opened (“laser on” state) or closed (“laser off” state). An example of pedestal and
intensity measurements is shown in Figure 3.5. The total duration of the data taking is
a few hours. The plots (a) and (b) show the pedestals of the two photodiodes pd, and
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pd; (called respectively brg and bry). The flat part corresponds to the data taken during
the night, the irregular parts reflect the variations of light during the day time. The plots
(c) and (d) show the “laser on” signals recorded respectively by the photodiodes 0 (sigp)
and 1 (sigy). Figures (e) and (f) show the differences (sigy — bry) and (sig; — bry). The
residual dispersion observed on the two plots (e) and (f) is due to laser power variation
and is of one to two percents.
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Figure 3.5: Pedestals bry (a) and br; (b), signals sigy (¢) and sig; (d), and differences
(sigo — brp) (e) and (sigy; —bry) (f) for the photodiodes pdy and pd; as a function of time.

To obtain a measurement of the light polarisation in the cavity with a precision at
the per mill level, it is necessary to compensate for these laser power variations. For
this, one of the diodes is used as a reference and each diode signal is divided by the
reference diode. Figure 3.6(a) shows the ratio (sigy — bry)/(sig; — bry) as a function of
time, and Figure 3.6(b) the histogram of this ratio. The histogram in Figure 3.6(b) has
a gaussian behaviour and its width at half height leads to o/M ~ 0.06% where M is its
mean value. The use of the reference diode to correct the laser power variation then leads
to a good stability of the measurements in time. Signals after pedestal subtractions and
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intensity ratio constructions are shown for the other two photodiodes in Figure 3.7 where
/M ~ 0.07% for the histogram (d).
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Figure 3.6: Ratio (sig; — bry)/(sigyo — brp) as a function of time (a) and histogram of this
ratio (b).
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Figure 3.7: Intensities of the two photodiodes pdy (a) and pdy, (b) and ratio of these two
intensities (c), as a function of time. Histogram of the ratio (d).

It is interesting to see the effect of a room temperature variation on a photodiode
intensity. Figure 3.8 shows the correlation between the intensity and the temperature
variation which has been intentionally generated by varying the room air temperature.
The gain in temperature variation obtained by the regulation with the Peltier module is
illustrated in Figure 3.9. The temperature inside the photodiode boxes (Figure 3.9(a))
and the corresponding room temperature (Figure 3.9(b)) are shown. The Peltier gain is
of the order of 1/10.
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Figure 3.8: Effect of a temperature variation on the photodiode measurements: intensity
(a) and room temperature (b), as a function of time.
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Figure 3.9: Temperature inside a photodiode box cooled by a Peltier module (a) and room
temperature (b), as a function of time.

The study of the photodiodes shows that after temperature regulation, pedestal sub-
tractions and intensity ratio constructions, the obtained measurements are controlled at
the per mill level.

3.3.3 The Wollaston prism

A Wollaston prism spatially separates the incident laser beam into two orthogonal linear
polarised beams. It consists of two prisms cut in the same birefringent calcite crystal.
The two prisms are cut and joined so that the optical axes are perpendicular to each
other. At the interface between the two prisms, taking into account the orientations of
the optical axes, the ordinary and extraordinary rays of a wave are refracted with different
angles, making it possible to separate them spatially at the exit interface. The angular
separation can reach 30° if the half-prism angles are optimised in order to increase the
separation due to the double refraction. A principle schematic of a Wollaston prism is
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presented in Figure 3.10 showing the spatial separation of the beam into two orthogonal
linear polarised beams.

optical axis (@)

R

e Figure 3.10: Principle
schematic of a Wollaston

\& prism.

1 optical axis

The main characteristic of the Wollaston is its extinction rate. This rate is given by
the manufacturer as less than a few 107° and has been checked with our photodiodes
by rotating a prism in order to cancel one of the two emergent beams for an incident
linearly polarised beam. Taking into account a small Wollaston ellipticity (and assuming
an extinction rate equal to zero), the Jones matrices associated to the two transmitted
states are written in a frame of reference where the cube axes are those of the laboratory

[114] as:
Wx 1 —7;61; Wy 0 —7;€y
M= i 0 MW= ey, 1 ’ (3.5)

where €, and €, are two Wollaston ellipticity parameters supposed to be very small
(ex, € < 1).

3.3.4 The quater wave plate

Quater wave plates most often used are parallel sided quartz plates of thickness e. The
quartz is an anisotropic uniaxial medium. When an incident plane wave enters such
a medium under normal incidence, two waves then travel inside, linearly polarised and
orthogonal to each other. These waves have different phase velocities or in an equivalent
way see two different optical indices. These indices are called the ordinary index n, and
the extraordinary index n,. The difference n, — n, is the plate birefringence. For uniaxial
medium, the eigenvector corresponding to the eigenvalue n? of the dielectric tensor defines
the optical axis of the plate. A more complete formalism of the propagation of a wave
through an uniaxial medium is detailed in Appendix A. For a standard quartz quater
wave plate, the optical axis is usually located in the plane of the interface.

When a plane wave passes through a quartz plate, a phase shift ¢, is induced between
the projection of E on the optical axis and the projection of E on the perpendicular to
the optical axis. For a plate of thickness e, the plane wave expression E exp [ i(wt — k.z)]

leads to the phase shift:

27

¢sh - T (no_ne)e )

where A is the wave length of the incident wave. The plate is supposed to be sufficiently
thin and the beam sufficiently wide to neglect the spatial transverse shift of the emergent
beams. Figure 3.11 shows the passage of a wave through an anisotropic uniaxial medium.
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Figure 3.11: Passage of a plane wave through an uniaxial medium: the two components
Ej and E; of E acquire a phase shift the one with respect to the other of an angle ¢y,
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The two linear and orthogonal polarisation states are simply dephased. Therefore the
Jones matrix associated to this dephaser can be written in a frame of reference where one
axis coincides with the (ox) axis as:

1 0
My = (0 e_wsl]) . (3.6)

It is easy to verify that when ¢y, = 7/2 + 2kr (k = 0,1/2,1,3/2...), an incident wave
linearly polarised will emerge from the plate with a circular polarisation. The plate is
called in that case a quater wave plate and its thickness is given by:

4k + 1
e = )\m . (37)

Equation (3.6) represents the Jones matrix of a perfect plate [115] and does not take into
account the following effects:

e the gaussian character of the light beam [116],

e the internal multiple reflections inside the plate [116],

the geometric imperfections of the plate (thickness, misalignments),

the tilt of the plate in case the incidence is not normal.

the crystal optical activity [117].

Some of these effects may have non negligible consequences on the polarisation measure-
ments with the ellipsometer. A precise characterisation of the quater wave plate with
a more complete model is therefore necessary if we want to keep a good measurement
precision of the light polarisation in the cavity. This characterisation will be covered in
Section 4.

87



88



Chapter 4

The quater wave plate
characterisation

To reach the per mill level in the measurement precision of the light polarisation, we have
to calculate the transmission of a wave through a quater wave quartz plate. The charac-
teristics of a multi-layers anti-reflective coating is difficult to model and the uncertainty
in the accuracy of the modelisation is larger than those obtained with an uncoated plate.
We have therefore decided to use an uncoated plate. The aim is to determine the plate
characteristics such as the thickness (which is not necessarily equal at a few micrometers
close to the thickness given by the manufacturer), the refraction indices (to be compared
to the textbook values), as well as some possible plate misalignment parameters. We will
see for instance that an error of a few micrometers on the plate thickness leads to an error
of a few per mill on the light polarisation measurement.

4.1 The simulation model

The model used for the simulation has to take into account the multiple reflections of
the wave inside a plate of a given thickness, as well as some possible plate misalignments
relatively to the other optical components. The simulation also has to model the passage
of the wave at a non zero incident angle since data will be recorded in such a configuration
to characterise our plate. The light beam will be treated as a plane wave since at small
incident angle (i.e. less than 0.1 rad as it will be the case for us), the comparison between
a plane wave treatment and a gaussian wave treatment shows that the gaussian character
of the wave can be neglected [116]. Also, the effect of the optical activity of the crystal
[117] has been studied and found to be negligible (less than 107°%). Intensities measured
by the photodiodes after the Wollaston prism will be simulated in this model and the
comparison of the theoretical intensities with the experimental ones will allow effects due
to optical misalignments to be separated from effects due to thickness plate defects or
effects due to the value of the light polarisation state.

By using the Jones matrices of the different ellipsometer components, the expression
of the transmitted field can be determined as a function of one of the initial field. The
calculation of the field transmitted by a quartz quater wave plate of a given thickness
is detailed in Appendix A, where a non zero incident angle and the presence of multiple
reflections inside the anisotropic uniaxial crystal are taken into account.
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4.1.1 Ellipsometer transmission matrix

The framework of our calculations is the basis Bjap = (Xjab, ¥Y1ab, Z1ap) associated to the
Wollaston prism axes: the x and y axes are the optical axes of the Wollaston cube and
the basis is orthonormal. In this basis, the two rotating axes of the ellipsometer quater
wave plate are the zj,, axis (corresponding to an azimuthal rotation of the plate by an
angle ¢) and the xj, axis (corresponding to a non zero incident angle of the light in the
quater wave plate, this rotation around xj,,, rather than around y,, has been arbitrarily
chosen). As schematized in Figure 4.1, a wave of wave vector k;, can enter the crystal
surface of normal n with a small incident angle 6;,,. defined as:

COSQinC = (kin . n)/|kin| .

Wollaston
P LT LT TP POTTPPPRPrPrS
-t . . -
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Figure 4.1: Laboratory reference axes (Xjap, Yiab, Z1ab)- 1 is the normal to the plate, ki, is
the wave vector and 6;,. is the angle of incidence of the wave on the plate.

In Appendix A, the calculation of the transmitted wave amplitude passing through a
quartz plate is performed. The expression of the transmission matrix of the quater wave
plate, called My, is given by the expression (A.33) of Appendix A and is expressed in
an orthonormal basis (s, p, ki,) attached to the crystal plate and to the incident wave
such as:

_kin X n d kin XS
= — an =
—Kin X 1] P Tl

s (4.1)

In Figure 4.1, the plate is perfectly aligned and the two bases (Xjab, Y1ab, Z1ab) and (s, p, Kin)
are merged.

A realistic description of the optical system must take into account some experimental
misalignments. Two types of misalignment are considered: a misalignment of the quater
wave plate plane with respect to the Wollaston prism axes, and a misalignment due to
the fact that the laser beam may not enter the quartz exactly at the centre of the rotating
mount of the plate.

¢ Quater wave plate plane misalignment :

When the plate is perfectly aligned, the normal n to the plate for a small inci-
dent angle 6, is written in the basis By, as:
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. 0
n=—— | e . (4.2)

V 1+0i2nc —1

Biab

A small misalignment of the plane plate can be modeled by a small rotation of n
around the y axis of an angle dy, as schematized in Figure 4.2. The normal to the
plate ngesar then acquires a small component along x and is written in the basis By,
as:

Ox

1 1+ 62
Oinc : (4.3)

Ndesal = \/ﬁ ‘
R \ 1+ 5’2‘ Biab

Projection of n Xiab a)
in (x,.2.4) plane
\ Figure 4.2: Projection of the nor-
mal to the quater wave plate
in the (Xppb,2ap) plane: perfect
OYIqb alignment of the plane of the
plate with respect to Wollaston

Projection of n,., axes (a), and misalignment of the

in (X,,,2,,) plane Xab b) plane plate coming from a small
\ tilt o, of the plate plane around
o, —3 the ypb axis (b).

The transfer matrix Mjup_qesal between the base By, and the new (s, p,k;i,) basis
attached to the misaligned crystal plate can be determined from the relations (4.1)
and, assuming §? < 1, is written as:

ginc _6)(
0
VO +2 O+
Mlab%desal - 5X einc 0 . (44)
VO +2 O+
0 0 1
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e Misalignment of the quater wave plate mechanical centre

If the laser beam does not enter at the centre of the plate mount, because the
two sides of the plate may not be perfectly parallel, the thickness crossed by the
light can vary during the azimuthal rotation of the plate. To take into account this
effect, this misalignment is modeled with two parameters d.,, and ¢, and the plate
thickness is written as:

e = e ( 1+ derm cos(¢ — ¢Cm)> : (4.5)

€o

ep is the plate thickness at the level of the azimuthal rotation axis and ¢ is the
plate azimuthal angle in the laboratory framework. ¢, is an arbitrary angle to
be determined and translating the fact that the azimuthal position ¢ = 0 is not
a priori the position which maximizes the plate thickness. Such a misalignment is
schematized in Figure 4.3.

plate
otation axis & Figurg 4.3: Schematic view of a
of the plate — © T misalignment between the quater
i e wave plate mechanical centre and
/ the impact point of the laser
beam — —p — —p = — beam.

We now want to find the expression of the field transmitted by the ellipsometer. In the
(Xjab, Yiab, Z1ab) basis of the laboratory, which is our reference, the most general elliptical
initial polarisation state E™ is written as function of two angles (see (3.3)) as:

in _ CoSXp
oo (). »
By using the transfer matrix Mjap_qesar defined in expression (4.4), the thickness plate
formula (4.5) and the two transmitted Wollaston matrices MW* and MWY defined in
(3.5), the two transmitted fields E; and Ey emerging from the Wollaston prism can be
written as:

_ W, -1 i
El - Mlab—>desal MY Mlab%desal qup Mlab—>desal E™" )
(4.7)
_ W, -1 i
E2 — Mlabadesal MWy Mlab%desal qup Mlab%desal E™" )

and the intensities I; and I, received in the photodiodes pd; and pd, are written as a
function of the fields as'. :

Il - |E1|2 y :[2 - |:E)2|2 . (48)

Formula (4.8) will be used in the following to simulate signals emerging from the Wollaston
prism and detected in the photodiodes.

1Ty and I, refer in fact to ratios I; /Ip and I /Iy (see Section 3.3.2 and Figure 3.1) but for more clarity,
the writting of reference signal Iy will be omitted.
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4.1.2 Some comparisons between the complete and the simple
models

To estimate quantitatively the effects of the model described above, some examples have
been chosen and the intensities have been simulated and compared using the complete
model and a model which does not include internal multiple reflections or possible mis-
alignments of the plate.

Internal multiple reflections inside the plate

To illustrate the effect of the multiple reflections calculated in Appendix A, Figures 4.4, 4.5
and 4.6 show some simulated intensities I, and I, of a wave transmitted by the ellipsometer
as a function of the azimuthal angle of the quater wave plate. In Figure 4.4, the incident
wave has been simulated with a linear polarisation, in Figures 4.5 and 4.6 with a circular
and elliptical polarisation respectively. For each plot, two simulations have been used:
one using a simple model without taking into account internal multiple reflections and
one using the complete model of Appendix A. In these simulations, the Wollaston prism
is considered as perfect, the quater wave plate is perfectly aligned and the incidence
is normal. These simulations show that there are differences of more than 15% in the
transmitted intensities according to the model used for the simulation and that it is

therefore very important to use a realistic model.
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Figure 4.4: (a) and (b): signals I; and I, normalised to the unity and generated with a
linear incident polarisation, versus the azimuthal quater wave plate angle. Black (respec-
tively red) curves: simulation without (respectively with) taking into account internal
multiple reflections. (d) and (e): differences of the two models for I and I, versus ¢.
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Figure 4.5: (a) and (b): signals I; and I, normalised to the unity and generated with a
circular incident polarisation, versus the azimuthal quater wave plate angle. Black (res-
pectively red) curves: simulation without (respectively with) taking into account internal
multiple reflections. (d) and (e): differences of the two models for I; and I, versus ¢.
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Figure 4.6: (a) and (b): signals I; and I, normalised to the unity and generated with
a elliptical incident polarisation (with xp = 45° and ¢p = 30°, see formula (4.6)), ver-
sus the azimuthal quater wave plate angle. Black (respectively red) curves: simulation
without (respectively with) taking into account internal multiple reflections. (d) and (e):
differences of the two models for Iy and Iy versus ¢.

Misalignment of the quater wave plate plane

To estimate the effect of a misalignment of the quater wave plate with respect to the
Wollaston axis, some intensities have been simulated with the complete model and at the
four following different alignment parameters:
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where 6, is the angle of incidence of the plate and ¢, is the misalignment parameter
schematized in Figure 4.2 and defined in equation (4.3). Figure 4.7 shows the quantity
Aly = [ Iy6.=0) — Ix(sc=5-10") | / Iy6.=0) for the two different angles of incidence. A plane
tilt &, of 0.5 mrad leads to a bias AL, of 1% to 2%2.

ooz Ol v v v b v v b v v v b v v v b v a s
o s0 100 150 200 250 300 350

Figure 4.7: Al = [ L(6.=0) — [(5.=5-10-%) | / I5(6.=0) as a function of the quater wave plate
azimuthal angle ¢ (in degrees), for 6;,. = 4.211° in black and 6;,, = 2.245° in red.

Misalignment of the quater wave plate mechanical centre

The effect of such a misalignment is illustrated in Figure 4.8. This figure shows the
difference between the generated intensity I, in the case of a perfect alignment of the
plate mechanical centre with respect to the laser beam impact, and the intensity I, in
the case of a small misalignment as defined in equation (4.5). A misalignment parameter
dem =0.05 pm has been chosen for these simulations, which for instance corresponds to a
non parallelism of the plate sides of 1 mrad and a misalignment of the centre of the plate
of 0.5 mm. The angle ¢, has been simulated at 20° for the black curve and at 340° for
the red curve. Figure 4.8 shows that the effect of such a misalignment may be of several
per mill on the intensities received by the photodiodes.

-0.002

-0.504

-0.008 [

=0.008

[P S R R R RV B U AR B

o s0 100 150 200 250 300 350

Figure 4.8: Aly = [ Io(dew=0) — I(dew=0.05 pm , ¢em) | / Io(dem=0) fOr ¢pey = 20° in black and
Gem = 340° in red, as a function of the quater wave plate azimuthal angle ¢ (in degrees).

2The quantity Al is a function of §2 /62
Figure 4.7.

. that explains its larger value for smaller ¢;,. as shown in
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These examples of simulation show that taking into account all the characteristics
of the system such as the quater wave plate characteristics or the optical component
misalignments is necessary to model the intensities transmitted by the ellipsometer with
a precision of a few per mill. With this model it is now possible to determine precisely
the experimental parameters involved in the light polarisation measurement.

4.2 Principle of parameter determination

4.2.1 Experimental setup and data taking procedure

The ellipsometer used for the determination of the quater wave plate parameters is the one
in Figure 3.1. For this purpose, what is called “beam to be analysed” is a 100 mW power
infrared beam delivered by a high quality ND:YAG laser [113] passing first through a beam
shutter and then through a high quality Glan-Thomson prism to provide a purely linear
polarisation (the extinction ratio of the Glan-Thomson prism given by the manufacturer
is around 107° [118]). The beam then passes into the ellipsometer to be analysed. Before
mounting the HBS and the quater wave plate in the ellipsometer, the Glan-Thomson
prism and the Wollaston prism have been azimuthally aligned by minimising one of the
intensities measured after the Wollaston and maximising the other. In that way, one of
the Wollaston axes is along the beam polarisation direction. This pre-alignment is useful
to know that the value of the polarisation angle xp of the incident wave (defined in (4.6))
is near 0° or 90°.

As shown in Figure 4.9, data are then taken in the following way: for various azimuth
orientations of the quater wave plate optical axis (i.e. for various rotations around its
normal axis of an angle ¢) and for various angles of incidence (i.e. for various rotations
of the plate around the x axis of an angle 6;,.), signals sigy, sig; and sigs are measured in
the photodiodes pdy, pd; and pdy and the ratios sig; /sigy and sigy/sigy (called I; and I
respectively) are computed as described in Section 3.3.2. In order to adjust the various
angles of incidence 6, and azimuthal angles ¢, the quater wave plate is mounted on a
mirror mount fixed at the centre of a motorised rotating stage. The rotating stage is itself
mounted on two linear stages (vertical and horizontal) and on a two angle tilting stage.
The linear and tilting stages are manually controlled with micro-metric screws (see Figure
2.27).

We will see in the following that to avoid degeneracy in the determination of the quater
wave plate parameters, we must use two different quartz plates of different thicknesses.
These plates, manufactured by FICHOU Company, have the following characteristics:

nom

e pl; is a plate of order 1/2 (k=1/2 in expression (3.7)), of thickness e]°™ = 91.2 um
with a delay tolerance of 1/300. According to the manufacturer, the parallelism
between the two faces of the plate is of the order of 10 seconds of arc. Once
calibrated, this plate is the one which is used for the measurement of the light
polarisation during the lepton-laser interactions at HERA.

nom

e ply is a plate of order 5 and of thickness e5°™ = 639.9 pm, which is used only for
the calibration procedure of the plate pl;.
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Each plate is mounted one after the other in the ellipsometer and, for each one, the
number of 6, tilts per plate is called Ny (N tilts for the plate pl; and Ny tilts for the
plate ply). For one given 6,., each plate is azimuthally rotated through one full turn
(360°) in steps of 1°.

100 mW laser

— | HBS

quarter wave plate

Figure 4.9: Schematic drawing of the ellipsometer used to calibrate the quater wave plate.
The plate is rotated azumuthally of an angle ¢, and the laser beam enters the plate with
an angle of incidence ;.

4.2.2 The y?

Using all sets of data, the minimisation of a x? is performed to determine the characteristic
parameters of the quater wave plate as well as the initial state polarisation. Explicitly,
the expression of the x? is:

X =+ X, (4.9)

where xp1, and xp1, are the x? of each plate, i.e.:

. . . 2 . .. . 2
Rk T — I Ry Tox = Iox
DY ( ) s () | e

j=1,Nj i=1,360 01k 051

° Tilj’k and T;j’k are the theoretical intensities I; and I, calculated at the i*" value of ¢
and the j* value of 6, for the plate ply.

° Iiljyk and Iiljyk are the intensities I; and I, measured in the photodiodes at the i" value
of ¢ and the j*™ value of 6, for the plate ply.
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e 0/, and o}, are the uncertainties associated to the measured intensities I; and I,

respectively.

° le . and Rjzk are two normalisation factors which are easily determined since the
solve of Ox?/OR = 0 leads to analytic expressions for R.

The two theoretical intensities T}, and T, are some functions of parameters to be
determined with the minimisation, and are written as:

Ti(j172)1 (Anoa 9turn; XP, ¢P7 €x, Aela ¢017 6)(17 ¢Cm17 dcmj) )
Ti(1172)2 (Anoa eturna XP, ¢P7 €x, Ae?) ¢027 6X27 ¢sz: dcml) )

where j = 1,N; and 1 = N; + 1, N; + N,. The meaning of these parameters is as follows:

e An, measures the difference between the fitted ordinary index n, and the textbook
one N, and is defined by:

n, = No(1 + An,) .

Because the constraints are not sufficient to fit the two quartz indices n, and n, at
the same time, the extraordinary index n, stays fixed (the quantity which is in fact
determined by the fit is the birefringence n, —n,). The quartz indices being already
determined at a few 107 level by previous studies [119, 120, 121], the fit of n, will
provide a good test of the validity of our model. The values of N, and N, which
will be used in the fit are extrapolated from the measurements of [119] and [120]
at room temperature (18°). Figure 4.10 shows these measurements in the infra-red
region and the straight line fit which leads to N, = 1.542866 and N, = 1.534129 at
our wavelength A = 1064 nm.

i 1.544 - m-
c -
© 1542 B
o - m-
< ® N, Ghosh
%
N o N, Carvallo
Q
O N, Ghosh
=

g G
o >
T ‘ T ‘ LI ‘ T T ‘ T ‘ T ‘ T r T

o N, Carvallo

1.536 _ straight line fit

1.534 O

1.532

Figure 4.10: Quartz ordinary and extraordinary indices at room temperature as a function
of the wavelength from the references [119] and [120]. The dashed line is a simple fit with
a straight line. The index values extrapolated at A = 1.064 pym are N, = 1.54286 and
N, = 1.53412.
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® O is the angle corresponding to one turn of the rotating stage screw around the x
axis (this rotation allows the plate to be rotated to have a non zero incident angle).
One turn contains 50 divisions and the corresponding angle value given by the
manufacturer [122] is around 20 arcsec per division with an unknown uncertainty.
This parameter has therefore to be fitted. #;,. being the angle of incidence when
the plane of the plate is well aligned with respect to the Wollaston prism axes, we
have:

ginc = gturn X Nturn ) (411)

where Ny, is the number of screw turns done to generate the incidence angle ;..
Taking into account some misalignement of the plate plane, the expression of the
real incident angle @, defined as function of the normal to the plate ngesa; and the
initial wave vector kiy, is determined from equations (4.3) and (4.11) and is written

as.
kin * INdesal o 1

|kin| a \/]- + (gturn X Nturn)Z\/l + 63{

cost) = —

e xp and ¢p are the two angles defined in equation (4.6) characterising the initial
polarisation state of the wave.

e ¢, is the Wollaston prism ellipticity parameter defined in equation (3.5). Because
we have chosen to rotate the plate around the x axis to generate a non zero incident
angle, the x? is only sensitive to the parameter ¢, and not to the parameter €,.

e Ae; and Aey are the thickness variations of the quater wave plates with respect to

the manufacturer values /™ = 91.2 ym and e}°™ = 639.9 pm.

e ¢y, and ¢y, are two azimuthal reference angles translating the fact that the azy-
muthal orientations of the optical axes in the planes of the plates are not a priori
at the position ¢ = 0.

e 0., and Jy, are the misalignment parameters of the first and second quater wave
plate respectively which have been defined in equation (4.3).

® Gem, and ¢y, are the angles defined in equation (4.5) for the first and the second
quater wave plate respectively.

e dey; and dey, (where j = 1,N; and 1 = N; + 1,N; + Ny are the misalignment
parameters defined in equation (4.5). Each dew; (respectively dem,) corresponds to
a misalignment in a given incident angle configuration of the plate pl; (respectively

Pl2)-

4.2.3 Data samples

To characterise our optical system and particulary the quater wave plate used to measure
the polarisation of the light, the following sets of data have been recorded:

e four data sets called Dq, Do, D3, D4 where the thiner plate was used and the incident
angle 6;,. was equal to 0.55°, 2.20°, 3.30° and 4.125° respectively. These angles of
incidence corresponded to N,m = 2, 8, 12, 15 respectively.
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e two data sets called D5, Dg where the thicker plate was used and 6;,. = 0.55°, 3.30°
respectively (corresponding to Ny, = 2, 12 respectively).

A 360° azimuthal turn is done for each one of the six Dj files. Twenty measurements are
recorded at each of these 360 azimuthal positions in order to have higher precision on
each measurement and a better estimation of experimental errors. Figure 4.11 shows the
experimental measured intensities [; and I, as a function of the azimuthal angle ¢, for
the six data samples D;.

To be able to check the minimisation procedure, a set of six Monte Carlo samples have
been simulated with formula (4.8) and with parameter values of Table 4.1.

Aep (pm) 0.6700 Oturn (rad) 4.90x1073
Aey (pm) 0.5700 dem; (nm) 30.00
$o0, (deg) 115.00 dem, (nm) 15.00
do, (deg) 158.00 demy (nm) —15.00
Ox, 5.0x1074 dem, (nm) 65.00
Oxs —3.0x1074 dems (nm) 20.00
An, —3.0x1076 demg (nm) —40.00
xp (deg) 89.50 ¢em; (deg) —98.00
#p (deg) 10.00 bemy (deg) —4.00
€x —6.0x10~4

Table 4.1: Parameters used in the simulation of the six D; data sets.

Generated uncertainties have to be simulated as near as possible to experimental ones
and for this, we have first to estimate the uncertainties of the data measurements and,
once determined, use them to generate our Monte Carlo samples. Let us estimate the
experimental errors of our measurements: to take into account some long term effect (of
about one minute) due to possible temperature drift or any other unknown cause, the
error associated to the j®® measurement has been taken as the dispersion of the set of the
twenty measurements. These dispersions, called o have then been parametrised by a

straight line fit as: '
O'Ij1 ) - A1,2 I']1,2 + B1,2 , (412)

where subscripts 1 and 2 refer to intensities I; and I, respectively, and the superscript j to
the j'" measurement. The straight line fits of the six data samples lead to the parameters
A, and B; o of Table 4.2.

Dy Ds D3 Dy Ds Ds
A; | 0.00965 | 0.00769 0.00793 | 0.00719 | 0.0268 0.0291
B1 | 0.00037 | 0.00208 0.00195 0.0010 | —0.0218 | 0.0184
As | 0.00662 | 0.00666 0.00701 | 0.00633 | 0.0198 0.0252
B2 | 0.00197 | —0.00267 | —0.01131 | 0.00083 | 0.0670 | —0.0226

Table 4.2: Parameters A, 5 and B; 5 coming from the adjustments (4.12).
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Figure 4.11: Experimental intensities [; and Iy measured in the photodiodes pd; and pdy
as a function of the plate azimuthal angle ¢ and at different angles of incidence and with
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Then, for the six Monte Carlo files simulated with the parameters of Table 4.1, the
errors of measurement are simulated using these simple parametrisations with the same
(Ay9,B2) values as for the real data. Experimental and simulated errors on I; and I,
intensities as function of intensities Iy and Iy are shown in Figures 4.12, 4.13, 4.14, 4.15,
4.16 and 4.17 for the six data samples D; to Dg. Experimental measurements are shown
in plots (a) and (b) of these figures, simulated data in plots (c¢) and (d). Straight line
fits coming from the parametrisation (4.12) are also visible on the six experimental data
plots.
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Figure 4.12: Errors oy, (a) (respectively (c¢)) and oy, (b) (respectively (d)) as a function
of Iy and I for the data (respectively MC) sample D;. The red straight line in the data
plots is the result of the adjustment (4.12).
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Figure 4.13: Errors o, (a) (respectively (c¢)) and oy, (b) (respectively (d)) as a function
of I} and I, for the data (respectively MC) sample Dy. The red straight line in the data
plots is the result of the adjustment (4.12).
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Figure 4.14: Errors oy, (a) (respectively (c¢)) and oy, (b) (respectively (d)) as a function
of I; and I, for the data (respectively MC) sample D3. The red straight line in the data
plots is the result of the adjustment (4.12).
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Figure 4.15: Errors oy, (a) (respectively (c¢)) and oy, (b) (respectively (d)) as a function
of I} and I, for the data (respectively MC) sample Dy. The red straight line in the data
plots is the result of the adjustment (4.12).
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Figure 4.16: Errors o1, (a) (respectively (c¢)) and oy, (b) (respectively (d)) as a function
of I} and I, for the data (respectively MC) sample Ds. The red straight line in the data
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Figure 4.17: Errors oy, (a) (respectively (c)) and o1, (b) (respectively (d)) as a function
of I and I, for the data (respectively MC) sample Dg. The red straight line in the data
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It is visible in these figures that measurements and errors of the six experimental data
samples are similar to measurements and errors of the six Monte Carlo samples.
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4.3 Preliminary Monte Carlo studies

4.3.1 Necessity of a second quater wave plate

As it is mentioned in Section 4.2 an additional quater wave plate is necessary to resolve
the degeneracy in the determination of some parameters. To illustrate this point, Figure
4.18 shows the value of the x? as function of the thickness variation Ae; and the index
variation Ang, in two situations: plot a) shows the x? calculated using the six simulated
data samples D; to Dg of Table 4.13 and plot b) shows the x? calculated using only the
four simulated data samples D; to D, of the plate pl;. For this study, the simulated
uncertainties were such that o/I = 0.5% and were generated with a gaussian shape. To
draw the x?(Ae;, Ang) function, all other parameters (G, €x, A€z, Do, Doy Oxys Oxys
Gemy > Pem, and dep,) have been fixed to their generated value. Figure 4.18(b) shows that
the determination of the true values of Ae; and Ang is not possible when only the data
of one plate are used. Indeed, several different pairs (Ae;,Any) minimise the y* (on the
plot, only 2 pairs are shown for clarity). In plot a) the degeneracy is resolved by the
addition of the data samples of the second quater wave plate. We have checked that
even by simulating more data sets (at other angles of incidence for instance) with typical
uncertainties of 0.5%, the degeneracy cannot be resolved by using data set coming from
only one plate.

a) Two plate of different thicknesses b Cnly one plate

-order 3 ePm =012 pm (order 3 &M =012 pm )

-order 5 efem = 6300 pm

Loy .

7 as !

o8

Croot o0e Y o
: fay W

Figure 4.18: x? as a function of the thickness variation Ae; of the plate pl; and as a
function of the ordinary index variation Ang x 10%. a): the x? contains the generated
data samples of the two plates pl; and ply. b): the y? contains only the generated data
samples of the plate pl;.

3The generated value of the parameter An, is 0.1 x 10~* in this study, and not the value of Table 4.1.
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This degeneracy is illustrated more quantitatively in Figure 4.19 where the x? is plotted
as a function of Ae; (a) and as a function of Anyx 10* (b) separately (all other parameters
remaining fixed at their generated value). Here, only points corresponding to local minima
have been drawn (between these minima, the x? values are very large). Even by staying
in physical ranges for Ae; (a few pum) and for Ang x 10* (a few 107!), the degeneracies
are clearly visible.
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Figure 4.19: x? per degree of freedom (pdf) as a function of the thickness variation Ae;
of the plate pl; (a) and as a function of the ordinary index variation Ang x 10* (b). Red
circle: the y? contains the generated data samples of the two plates. Blue triangle: the
x? contains only the generated data samples of the plate pl;.

4.3.2 Correlation between the thickness plate and the DOCP
determination

Let us come back to the only important quantity involved in the lepton polarisation
measurement: the Degree Of Circular Polarisation of the light (DOCP or S,) which appears
directly in the Compton cross section formula (3.1). To estimate the effect of the quater
wave plate thickness value on the determination of the DOCP, a data sample has been si-
mulated with only one quater wave plate and using the complete model taking into account
multiple reflections inside the quartz. The sample contains 360 points corresponding
to one turn of the quater wave plate and has been generated with an arbitrary initial
polarisation, an incident angle of 4° and a plate thickness eze,. By using this sample and
the x? previously defined, the DOCP has been adjusted by several fits by fixing for each fit
the plate thickness to a value e slightly different from the simulated one and by fixing all
the others parameters of the y? to their generated value. The curve in Figure 4.20 shows
the relative error on the DOCP determination as a function of the quantity e — ege,. In
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this figure, we can see that an ignorance of one micometer on the plate thickness leads to
a systematic error of about 0.5% on the DOCP determination.

Figure 4.20: Relative error on
the DOCP determination as a
w0 function of e — egen, €gen being
g the generated plate thickness
value.
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Therefore it is necessary to determine the plate thickness very precisely to keep a sys-
tematic error at the per mill level on the measurement of the photon circular degree of
polarisation. It is only possible to reach this per mill level by using the model described
previously, including a correct treatment of the quartz medium properties and taking into
account small misalignments in our optical system.

4.3.3 x? sensitivity to the the different parameters

Before going into details of the whole fit using the data samples, let see how the x? is
sensitive to the parameters to be determined. For this, the six simulated data samples
D; to Dg described in Section 4.2.3 are used* and the x? defined in (4.9) and (4.10) is
constructed. Figures 4.21, 4.22 and 4.23 show the value of the x? as a function of each
one of the simulated parameters. All these minimisations are done with only one free
parameter, all the others being fixed to their generated value.

ol v b gy 1_|||||||||||||||

9.4 835 EOE —20 o 20 40
¥ (deg) e (deg)
o T .F v F
amE A qpE o s
© r © E o 102 E
s F = C > E
L ne 10
L - :
E 1 | 1 | 1 | 1 1 E_I | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 E_l 1 11 1 | 1 1 1 1 | 1 1 1 1
4B 485 ) 405 5 —0omd -ooo2 @ 0002 -05 o 05 1
By, (mrad) £, A 10*

Figure 4.21: Value of the x? per degree of freedom (pdf) as a function of xp, @p, Orum, €«
and An, (see Section 4.2.2 for the meaning of these parameters).

4With two differences: the generated value of the parameter An, is 107° instead of —3 x 107¢ and
the simulated data have been generated with an error of 0.5% on each signal.
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Figure 4.22: Value of the x? per degree of freedom (pdf) as a function of Ay, Ae,, dy,,
B0y Ox1y Oxzs Pemyy Pemy (S€€ Section 4.2.2 for the meaning of these parameters).
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Figure 4.23: Value of the x? per degree of freedom (pdf) as a function of dey, (i = 1,6)
(see Section 4.2.2 for the meaning of these parameters).
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These functions show that the y? is sensitive to each one of the parameters which has
to be determined in the whole fit. Because these minimisations are performed with only
one free parameter, these plots are just a way to have an idea of the shapes of the y?
functions.

4.4 Results

4.4.1 Minimisation of the x?

Using first the six simulated data sample files, the minimisation procedure is tested in
order to be sure that the minimum of the x? leads to the generated parameter values and
this, when all the parameters are now fitted at the same time. As shown by the shapes of
the x?(Ae;) and x?(Aey) functions of Figure 4.22; several fits have to be made to find the
minimum of the x? with different starting values for Ae; and Ae, spaced by about 0.3 pm.

The result of the best fit is summarised in Table 4.3 where the fitted parameters
leading to the smaller x? are compared to the generated ones. Table 4.3 gives also the
errors on the fitted parameters coming from the minimisation.

generated fitted error
Ae; (pm) 0.67 0.67100 0.00023
Aes (pm) 0.57 0.56913 0.00073
An, x 108 -3.0 —1.810 0.304
$o, (deg) 115.0 114.990 0.004
do, (deg) 158.0 157.990 0.004
xp (deg) 89.50 89.514 0.00676
ép (deg) 10.0 10.892 0.49893
Oturn x 103 (rad) 4.90 4.9017 0.0062
€xx 104 —6.0 —6.936 0.585
bx, x10% 5.0 4.9988 0.0084
By X 10% —3.0 —3.0029 0.0057
dem; (nm) —30.0 —30.325 0.34620
demy (nm) 15.0 14.916 0.30257
demg (nm) —15.0 —14.954 0.31568
dem, (nm) 65.0 65.093 0.45259
demy (nm) 20.0 20.593 1.0827
demg (nm) —40.0 —41.142 0.95668
$em, (deg) —98.0 —98.33 0.24269
Pemy (deg) —4.0 —3.972 1.1663

Table 4.3: Parameters resulting from the fit using the generated data files D; (i=1,6)
defined in Section 4.2.3 and errors on these fitted parameters.

Figure 4.24 (respectively 4.25) shows the good agreement between the simulated intensities
I; (respectively I) and the theoretical ones resulting from the fit, as a function of the
azimuthal quater wave plate angle ¢, for the six independent Monte Carlo samples.
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Figure 4.24: Simulated
and theoretical intensi-
ties I; as a function of the
quater wave plate angle ¢
for the six Monte Carlo
samples.

Figure 4.25: Simulated
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ties I, as a function of the
quater wave plate angle ¢
for the six Monte Carlo
samples.



The pull distribution: pull = > @ is presented for the whole simulated sample in
Figures 4.26 and for the six simulated samples D; to Dy independently in Figure 4.27.
The sum in the pull definition is over each datum entering the y? fit, and the quantities
I, R and T are the ones defined in (4.10) where subscipts and superscripts have been
omitted. With these tests using simulated files generated with errors comparable to the
experimental data ones, we have checked that all the parameters can be determined at
the same time and at a few per mill level. Note that the choice to use four different
angles of incidence for the plates pl; and two for the plate pl, results from a simulation
study in which it has been shown that this number of files is sufficient to determine all
the parameters of the problem.
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Figure 4.27: Distribution of the pull (I-R T)/o for the six independent simulated samples
D1 to D6.
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Experimental data have been treated in the same way as generated ones, i.e. with
exactly the same fit procedure. Numerical results coming from the minimisation are
presented in Table 4.4.

fitted error
Ae; (pm) 0.35084 0.00029
Aes (pm) 0.67159 0.00134
An, x108 5.1299 0.3491
$o, (deg) 99.004 0.0085
do, (deg) 155.32 0.0141
xp (deg) 90.365 0.0167
¢p (deg) —6.4002 1.0921
Oturn X103 (rad) 5.4764 0.0073
€xx 104 —7.903 1.019
O, X104 0.03325 0.00588
By X 10% 0.00379 0.02165
dem, (nm) —0.652 0.351
dem, (nm) 1.381 0.304
demg (nm) —1.677 0.303
dem, (nm) 6.980 0.363
demy (nm) 6.489 0.521
demg (nm) —0.412 1.085
$em; (deg) —83.402 2.615
$emy (deg) —22.598 4.785

Table 4.4: Parameters resulting from the fit using the real data files D; (i=1,6) defined in
Section 4.2.3.

In Figure 4.28 (respectively 4.29) are presented experimental intensities I; (respectively
I,) compared with theoretical ones coming from the fit, as a function of the angle ¢, for
the six independent data samples D; (i=1,6). These figures show a very good agreement
between measurements and theoretical intensities.

The fit quality is better visualised in Figures 4.30 and 4.31 which show the pull distri-
butions for the whole data sample and for the six data files independently. A gaussian fit
on the whole data pull histogram leads to a standard deviation of the order of 0.7. This
is no doubt due to the fact that we have slightly overestimated our measurement errors
by using in the fit the dispersion of the twenty points of measurements (see Section 4.2.3)
instead of taking their standard deviation in order to be more conservative for the long
term photodiode measurement variations. Compared to Monte Carlo pull distributions
in Figure 4.27, some slightly non-gaussian components are present on experimental data
distributions (see for instance the pull of files Dy, D3 and D, in Figure 4.31), but these
effects are very “light”.
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Figure 4.28: Experimen-
tal data and theoretical
intensities I; as a func-
tion of ¢ for the six data
samples.

Figure 4.29: Experimen-
tal data and theoretical
intensities I, as a func-
tion of ¢ for the six data
samples.
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Figure 4.31: Distribution of the pull (I — R T)/o for the six independent data samples

D1 to DG-

4.4.2 Coherence of fitted parameters

In this section, some comments are made on the parameters of Table 4.4 coming from the
fit of the experimental data samples.

Birefringence

The value of An, of Table 4.4 obtained from the data fit corresponds to a quartz bire-

fringence of 8.729 x 1073.
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previously determined in [120] and [121]. In [121], the measurements have been done at
a temperature of 22°, in [120] at a temperature of 18°. For our measurements, the tem-
perature of the room was 25°. The variations of optical indices with temperature have
been measured as a function of the wavelength in [123] and the values extracted from this
reference at A =1064 nm are:

dn,/dT = —7.7x1076 K-! |

dng/dT = —9.3 x 106 K-! (4.13)

Taking these formula, birefringences n,—n, of [120] and [121] rescaled at T = 25°, together
with the value of the birefringence coming from our quater wave plate calibration, are
shown in Figure 4.32. Our value is thoroughly consistent with the ones tabulated in
references.

8.8
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Figure 4.32: Quartz birefringence values at T = 25° as a function of the wavelength. The
two black circles come from [120] rescaled from T = 18° to T = 25° with formula (4.13),
the two black squares come from [121] rescaled from T = 22° to T = 25°. The dashed
line is a straight line fit using these four points. Our birefringence value coming from the
plate calibration is indicated by the open circle.

Thicknesses

In Table 4.4, thickness differences Ae; and Aey are small with respect to values and
tolerances given by the manufacturer (i.e. 91.4 pm thickness for plate ply, 639.9 pm for
plate ply, with a tolerance for a non-parallelism of the sides of 10 arcsec and a tolerance
of delay of 1/300). They are well determined and compatible with the specifications of
the plates.

Misalignment of the centres of the plates

With a non-parallelism of the plate sides of the order of 10 arcsec given by the manu-
facturer, misalignment parameters d,,, of Table 4.4 correspond to misalignments of the
centre of the plate mounts (related to the impact laser point) of the order of few tens
micrometers. These values are realistic since the plate has been very precisely aligned
before taking the data. To do this alignment, each plate had been displaced transversally
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in all directions with the micro-metric screws, and for each position, one azimuthal plate
turn had been done and corresponding data recorded in ellipsometer photodiodes. Then,
the best alignment was the one which best equalised the height of all maxima separated
by 180°. This is illustrated in Figure 4.33 which shows the intensity I of two sets of data
simulated with d.,, = 65 nm (in black) and with dey, = 0 nm (in red).

19 turn thiekd Figure 4.33: Simulated I,
intensities as a function
of the azimuthal plate
angle ¢ (in degrees), for
misalignment parameters
dem = 65 nm (black line)
and de, = 0 nm (red
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The height of two peaks separated by 180° are equal for the perfect aligned data sample,
while for d.,, = 65 nm it is not the case. In this latter case, taking a mis-parallelism plate
sides of 10 arcsec, the difference between the centre of the plate mount and the impact
point of the laser is around one millimeter.

Wollaston ellipticity

The Wollaston prism ellipticity €, is found to be less than one per mill.

Degree Of Circular Polarisation

Concerning the DOCP, its expression and its standard deviation are derived from the two
angles xp and ¢p describing the light polarisation state. According to (3.2), (3.3) and
(3.4), they are written as:

DOCP = 2 cosyp sinxp singp ,

4.14
opocp = 2 \/(sin¢p O'XP)2 + (cosxp sinxp cosgp U¢P)2 ( )

Fit results for xp, ¢p, 0, and oy, in the simulated sample (which we recall have been
generated as near as possible to the data, and in particular with simulated uncertainties
similar to the experimental ones) and in the data sample lead to:

DOCPHC 3.031 x 1073 £1.6 x 107,
DOCPRA™ = 1.420 x 1072 £ 2.50 x 10~* .

For the simulated sample, the difference between the generated DOCP and the fitted DOCP
is equal to 1.75 x 10~ Note that for the data sample, the DOCP value of 1.420 x 1073 is
a reasonable value as the incidence wave is supposed to be linearly polarised. This is of
course also the case of the simulated sample since the initial state polarisation has been
generated in an almost completely linearly polarised state.
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4.5 Conclusion

As a conclusion, we can say that with a 100 mW stable infra-red laser, we were able
to determine at the per mill level all the parameters of our ellipsometer system in the
environment of a laboratory. This can only be performed by using a model as complete
as possible for the description of the propagation of the light inside our quartz quater
wave plate, and by taking into account the possible experimental misalignments of the
ellipsometer optical components. By simulating data samples as close as possible to
experimental ones, we have checked that we can really rely on our simulation model and
our fitting procedure.
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Chapter 5

Degree Of Circular Polarisation
measurement in the HERA tunnel

The calibration of the ellipsometer in a laboratory environment has provided the main
characteristics of the quater wave plates pl; and ply: their real thickness, in addition
to some non negligible misalignment parameters of the plates with respect to the other
optical devices of the system, and has also provided the characteristics of the Wollaston
prism. This calibration has made it possible to prove the validity of the fitting model. The
ellipsometer, where from now only the plate pl; is used, is now located in the accelerator
to measure the degree of polarisation of the light.

5.1 Experimental setup

The ellipsometer located in the HERA tunnel is the one shown in Figure 3.1 where so-
called “beam to be analysed” is now the light coming from the cavity (and no longer the
light coming directly from a laser as it was the case in the calibration procedure described
in Section 4.2). A simple overview of the optical schematic is presented in Figure 5.1.

(—‘ }LC cavity (
2 mirrors

motorized

mirrors
/ Entrance =D P nt
beamllne qup
Ellipso
5 B’ Iaser* p

glan

I |

I

Figure 5.1: Basic optical schematic of the cavity system installed in the HERA tunnel.
The box called “ellipso” is the ellipsometer in Figure 3.1.

The laser beam passes first through a Glan-Thomson prism (aligned along the direction
of the laser beam polarisation) to provide a purely linear polarisation and also to let
pass the beam which goes back after its reflection by the cavity entrance mirror when
the cavity is unlocked. This return beam is analysed in the photodiode pdey; behind the
Glan to determine the azimuthal angles of the entrance quater wave plate for which the
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light is circularly polarised (Section 5.5). This entrance plate is called “moco qwp”lin
the following and in Figure 5.1. The return beam is also used to determine the transfer
matrix of the entrance optics (Section 6.4). After the Glan, the beam passes through the
“moco qwp” where it acquires an elliptical polarisation depending on the azimuthal angle
of the plate, and then enters the optical entrance beam line. The entrance beam line is
composed of lenses (to put the waist of the beam at the centre of the cavity) and of a glass
plate to pick up a part of the beam used for the locking procedure. After that, the beam
is precisely aligned with four motorised mirrors before entering the cavity. At the exit
of the cavity, the beam is aligned with two mirrors to enter the ellipsometer. Of course
if the cavity is not locked, almost no light enters the cavity. Therefore all the following
studies using ellipsometer data are done when the cavity is locked and stable.

5.2 Photodiode behaviour on the accelerator envi-
ronment

Because the environment has changed between the Orsay Hall and the HERA accelerator
(different temperatures, presence of quadrupole and dipole fields, of synchrotron radiation,
of accelerating cavities, of long cables and pickup), some additional noise could affect
the precision level of the photodiode measurements obtained in the Orsay laboratory
environment (see Section 3.3.2). Therefore, a new study of the errors of measurements
was performed when the ellipsometer system is put in the HERA tunnel.

Figure 5.2 shows the signal from one photodiode divided by the reference photodiode
signal. 200.000 points enter the histogram and the measurement lasted 0.1 sec. This short
time measurement distribution looks gaussian and the statistical uncertainty of the signal
o = 1.24 x 1073/4/200.000 is largely sufficient for the required per mill level.

Figure 5.2: Histogram of a ratio
of ellipsometer intensities, con-
taining 200.000 entries. The data
has been taken in the HERA tun-
nel (when cavity was locked) and
has lasted 0.1 sec. Artificial peaks
are due to the ADC resolution.

It is important to estimate some long term uncertainties, .e. some systematic effects
or random drift of photodiode signals during the time needed to take an ellipsometer data
set. This time corresponds to one turn of the ellipsometer quater wave plate during which
200.000 data are recorded at various azimuthal angles of the plate. To give an order of
magnitude, this time is about twenty minutes if data are recorded every one degree and
ten minutes if data are recorded every two degrees.

!The name “moco” refers to the MoCo controller [93] which controls and drives the azymuthal rotations
of this plate (Section 2.2.5).
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Therefore, to estimate these long term measurement errors, a set of data has been
recorded in the ellipsometer for approximately fifteen minutes each. Each data set cor-
responds to one particular azimuthal angle of the ellipsometer quater wave plate. The
choice of these angles was made in order to sweep all the intensity range of the two
photodiodes pd; and pd,. A characteristic example of such measurements is shown in
Figure 5.3 where two data samples (each one lasting fifteen minutes) are presented: left
histograms (a), (b) and (c) show a “good” situation measurement, while right histograms
(d), (e) and (f) show a “bad” one. In the figure, (a) and (d) are the distributions of the
reference intensity Iy, (b) and (e) the distributions of the intensity Iy and (c) and (f) are
the ratios ry = Iy/Ip. On the left side, one sees that the variations of Iy and I, are well
compensated by the ratio during the fifteen minutes of the data taking. The right side
plots show measurements recorded with the same quater wave plate azimuthal position
but at a different moment. One can see two populations in the ratio histogram (f).
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Figure 5.3: Histograms of Iy (a) and (d), I (b) and (e), ra = Iy /Iy (c) and (f) for two sets
of data taking during fifteen minutes each. Left histograms correspond to the first data
set, right ones correspond to the second data set. The red curve on (c) is the result of a
gaussian fit.

To take into account this kind of drift, the error o, , associated to a given intensity
ratio ry 2, will be equal to the standard deviation of the histogram whether it has a gaus-
sian shape or not. In that way, the unknown long term effects such as those illustrated
in Figure 5.3(f) are included as measurement errors. From now, as in Chapter 4, the
writting of the reference signal Iy is omitted and the notations r; and ry are replaced by
11 and 12.
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As in the case of the data taken in the Orsay laboratory (see Section (4.12)), the
standard deviations o have been parametrised as o1, , = Ao I1 o+ By . Figure 5.4 shows
the errors oy, and oy, as a function of I; and I, respectively and the corresponding fitted
straight line.
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Figure 5.4: (a): Errors oy, of the measurements I; as a function of I; for data sets recorded
at various azimuthal angles of the ellipsometer quater wave plate. (b): same for I,. The
fits 012 = A1 2 11 2 + By 2 are indicated by a red line.

Let us make a few remarks: firstly, Figure 5.4 is rather similar to Figures 4.12 to
4.15 concerning data errors estimated in the Orsay environment. Secondly, concerning
the time of measurement, i.e. the choice of the values of the plate azimuthal angle used
in one ellipsometer data acquisition, we could wonder whether this time could not be
decreased (by taking data not all the degrees or all the two degrees, but with larger
intervals) in order to reduce the systematic effects illustrated in Figure 5.3(f). This has
been investigated and this effect of data time measurement variations will be dealt with
in Section 5.5.

5.3 Optical system parameters in the HERA tunnel

Having now some realistic error functions, we are able to measure regularly the degree
of polarisation of the laser beam with the ellipsometer. But before this, as it has been
done in Section 4, the system should first be characterised again since all the optical
components have been dismounted to be installed in the tunnel. The compatibility of the
parameters we will obtain in the tunnel with those determined in Section 4 should also
be checked. In a similar way to what has been done in Section 4, each procedure, before
being applied on real data, will be tested on a simulated sample first.

5.3.1 Data and Monte Carlo files

In order to have enough constraints, three sets of data have been recorded, each one
with a different position of the azimuthal angle of the quater wave plate located in the
entrance beam line (called “moco qwp” on Figure 5.1). In that way, the light entering in
the ellipsometer has various polarisation states. For each one of these three polarisation
states, the ellipsometer quater wave plate has been turned azimuthally by steps of 1°
from 0° to 360°. For these data taking the incidence was normal, which means that the
parameter Ny, of equation (4.11) is null.

To be able to check the procedure and its results, three files (Dy, Do, D3) have been
simulated with the parameters of Table 5.1 where the polarisation states defined by yp
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and ¢p are denoted by the superscripts (1), (2) and (3) for Dy, Dy and Dy respectively. As
for the real data taking, each D; file contains 360 different values of the azimuthal angle ¢
separated by step of 1°. In addition, in order to have generated samples as close as possible
to the real data samples, the Monte Carlo data have been simulated with the same errors
functions as the ones coming from the data study described in Section 5.2. Experimental
photodiode signals I[; and I, recorded with the three different initial polarisation states
and simulated signals I; and I, generated at the three polarisation states of Table 5.1 are
presented in Figure 5.5 as a function of the ellipsometer plate azimuthal angle.

Ae 0.67 pm X&) —250
Ang 7.4 106 2 —30°
bo ~13.0° & 9o
ex —6.0 10~* o 102°
8x —3.0 10-° ) —420
dem 12.0 nm @) 165°
em —21.0°

Table 5.1: Parameters used for the simulation of the samples D, Dy and Ds.

The meaning of the parameters? of Table 5.1 has already been explained in Section
4.2.2. According to the generated values of Table 4.1, the Wollaston ellipticity parameter
€x must have the same value, the thickness plate Ae may only be slightly different because
of the positioning of the plate in its mount, while all the other parameters may change
because of their dependence on the alignment of the system, or because of a different
environment, or because of light polarisation states. Indeed:

e An, depends on the temperature,

o Ae, ¢p, 0y, dem and @, depend on the way the ellipsometer quater wave plate has
been positioned according to the optical system,

° XS) and ¢S’ (i=1,3) describe the different light polarisation states.

5.3.2 Fits

In the same way as in Section 4.2.2, a x? is constructed and minimised to determine all
the ellipsometer parameters. The explicit expression of the x? is:

. .. Lo\ 2 . . s\ 2
R} T) -1} R, T — I

j=1,Ng i=1,360 01 02

where the subscript Ny corresponds to the number of data files (Nq = 3), subscripts 1 and
2 refer to intensities I; and I, the superscript j refers to the j'" data file and the subscript
i to the i*" value of the azimuthal qwp angle ¢. The theoretical intensities T} and T} are
functions of all the parameters of Table 5.1 which are the free parameters of the y?. I}

2Subscripts 1 to 6 which refered to the different plates and the several incident angles in Table 4.1 are
removed from now since only the plate pl; at normal incidence is used in the ellipsometer.

123



QWP position 1 QWP position 1 (MC)

— - - r
1 E N = AY N
E 08 = H
0.75 ;7 06 | i % i
os | N
e E LA W ' \/J
Oﬁm‘/‘\{m”\‘fﬁ/‘w” o bt M N
0 100 200 300 0 100 200 300 400
4 4
QWP position 2 QWP position 2 (MC)
T LB N Tos [
075 . 06 —
05 E 04 |-
025 v\/ \/\/ 02 Vo L
o Bl N N P S VA B VA
0 100 200 300 400 0 100 200 300 400
4 4
QWP position 3 QWP position 3 (MC)
08 [ 08
C r Al
06 [ 8
C 04 -
04 | F
E 02 —
02 8 :
o bl MLV L ML o Ll v ML Vi M Y
0 100 200 300 400 0 100 200 300 400
¥ ¥
QWP position 1 QWP position 1 (MC)
=7 ,.\/'\ /\/\ o
T 1 b
u AV \V
o bl vl o bl
0 100 200 300 0 100 200 300 400
4 4
QWP position 2 QWP position 2 (MC)
3T 3 r
2 2
I ; F [
Y/ \Y r
S i A AT B B P v I B T B
0 100 200 300 400 o 100 200 300 400
4 4
QWP position 3 QWP position 3 (MC)
o F o3 r A Ia)
E 25 |
25 C
E 2 F
2 B L
5 £ ; v 15 i Y {
B v }/ C i \(‘
e b P b ol IV b Y
0 100 200 300 400 0 100 200 300 400
2 4

Figure 5.5: Intensities I; and I, measured (left plots) and simulated (right plots) in the
ellipsometer as a function of the azimuthal angle ¢ of the ellipsometer quater wave plate.
“ QWP position 1, 2, 37 denote three different azimuthal angles of the entrance quater
wave plate (“moco qwp” in Figure 5.1), i.e. three different light polarisation states.
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and Iin are the measured intensities, ailj and Uin are the associated uncertainties described
in Section 5.2. The quantities R} and R} are determined analytically.

Let us remark that the problem of the degeneracy of the doublet (Ae, An,) encoun-
tered in Section 4 does not arise here since the thickness of the ellipsometer quater wave
plate has already been determined. Compared to the Orsay calibration of Section 4, the
thickness plate may be slightly different only because of the quater wave plate positioning
which could be slightly different at Orsay and in the tunnel. But because of our very
carefully alignment, the impact point of the laser on the plate could have moved at most
of a few millimeters between the Orsay alignment and the HERA tunnel one. Therefore,
according to the plate side tolerance (a non-parallelism of the two sides smaller than 10
arcsec), the thickness range can be restricted here to the Ae; value of Table 4.4 (of Table
4.3 for the simulated plate) plus or minus some tenth of micrometers.

Parameters resulting from the minimisation of the x? are listed in Table 5.2 for the
Monte Carlo files, where they are compared to the generated ones. All parameters are
well recovered by the minimisation.

generated fitted error
Ae (pm) 0.67 0.6656 0.0004
An, x108 7.4 7.237 0.984
b0 (deg) ~13.0 —13.033 0.043
X (deg) —25.00 —24.991 0.007
() (deg) 102.0 102.03 0.022
X (deg) ~30.00 ~29.982 0.012
) (deg) —420 —42.030 0.019
X (deg) 9.00 8.9794 0.011
) (deg) 165.0 164.919 0.043
€xx 104 —6.0 —5.875 1.340
Jxx10% —-3.0 —2.166 3.509
dew (nm) 12.0 11.449 0.150
bem (deg) —21.0 ~20.195 0.713

Table 5.2: Parameters resulting from the fit using the three generated data samples defined
in Section 5.3.1, and errors on these fitted parameters.

Again here, the Monte Carlo study allows first to be sure that the minimum found by
the minimisation is the right one, and secondly, because the Monte Carlo data have been
generated as near as possible to the real data, we have also checked that the misalignment
parameters, the quater wave plate thickness and the polarisation states of the laser beam
can be determined at the per mill level in the tunnel environment with these three data
sets simulated with different polarisation states.

The fit using the experimental data has been performed in the same way as the Monte
Carlo fit and the results are summarised in Table 5.3. These results will be discussed in

Section 5.4.
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fitted

error

$em (deg)

0.31335 0.0002
0.12136 0.0031
—12.911 0.005
25.286 0.007
77.601 0.020
—30.604 0.011
42.334 0.019
—9.515 0.010
15.033 0.043
—1.180 0.128
—1.518 1.675
—15.294 0.149
—29.184 0.511

Table 5.3: Parameters resulting from the fit using the three experimental DESY data
samples described in Section 5.3.1, and errors on these fitted parameters.

Figure 5.6 (respectively 5.7) shows the good agreement between simulated (respectively
experimental) data samples and theoretical intensities, for the three D; files.
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Figure 5.6: Simulated
and theoretical intensi-
ties I; and I, as a func-
tion of ¢ for the three
Monte Carlo samples.
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In Figure 5.8 the inclusive pull distributions defined by pull = ) @ are presented
for the data (a) and the Monte Carlo (b) samples. The sum in the pull definition is
over each datum entering the x? fit, and the quantities R, T, I are defined in (5.1). Pull
distributions are shown for the three data and Monte Carlo samples independently in
Figure 5.9.
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Figure 5.9: Distribution of the pull Y [(I—R T)/o]| for the three independent DESY
experimental data (left side plots) and simulated (right side plots) samples Dy, Dy and
Ds.

The main points of these results are firstly that the agreement between the experimen-
tal data and the theoretical intensities of Figure 5.7 is extremely good, and secondly that
the shapes of the experimental data pull distributions shown in left plots of Figure 5.9
and in Figure 5.8(a) look gaussian enough (the standard deviations coming from gaussian
fits are between 1.05 and 1.56). This shows that our data are well understood and that
the fit providing the optical parameters of the ellipsometer in the HERA tunnel stays of
good quality.

5.4 Coherence and compatibility of the parameters

In this section, fit results of Table 5.3 are commented and comparisons are made with
the parameters of Table 4.4 resulting from the fit using experimental data taken at Orsay
and described in Section 4.

5.4.1 Thickness

The thickness values of Table 4.4 (Ae; = 0.35084 pm) and Table 5.3 (Ae = 0.31335 pm)
are in good agreement according to the fact that the plate can have a small non-parallelism
of less than 10 seconds of arc and that the plate could be positioned slightly differently
at Orsay and in the tunnel: when the plate is inserted in the optical system, the impact
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points of the laser on the plate at Orsay and in the tunnel may be different of about
a millimeter. As an indication, these two thickness values and the 10 seconds of arc
tolerance value lead to a plate position shift between the Orsay and the tunnel alignment
of 0.7 mm with respect to the laser beam.

Let us make two remarks about the temperature and the stress of the plate: the
possible quartz thermal dilatation [124, 118] because of the change of temperature between
the Orsay and the tunnel environments is negligible (< 0.5 nm). Also, the manufacturer
provided us with a plate mounting which does not include stress. We have therefore
neglected these two effects in the interpretation of our results.

5.4.2 Wollaston ellipticity

Whereas we have used the same Wollaston prism, the Wollaston ellipticity parameter of
Table 5.3 is noticeably different from the one of Table 4.4. Figure 5.10 shows the value
of the x? as a function of €, using our three D; Monte Carlo samples (a) or our three D;
experimental samples (b). The small sensitivity of the x? to the parameter €, is clearly
visible and is due to the fact that the incidence angles are null in the data taking of the
three D; in the HERA tunnel. This function x?(e,) can be compared to the one of Figure
4.21 in which the minimum is much more pronounced because of the non-null laser-plate
incidences. Nevertheless, the value of €, coming from the fit using the Orsay data samples
and the one coming from the present fit remain compatible. They are indicated in Figure

5.10(b).
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Figure 5.10: x? values per degree of freedom as a function of the parameter e, using the
three Monte Carlo (a) and the three experimental (b) samples described in Section 5.3.1.
In the right plot are also indicated the value of €, of Table 4.4 (open circle) and the value
of €, of Table 5.3 (black circle) coming from the present fit.

5.4.3 Birefringence

As was done in Section 4.4, the value of the birefringence obtained from the fitted value
An, of Table 5.3 can be compared with the textbook values. Figure 5.11 shows our
birefringence value and the quartz birefringence textbook values coming from [120] and
[121] as a function of the wavelength. In this figure, textbook points have been rescaled
at the tunnel temperature of 35° by using equations (4.13). The good agreement of our
birefringence value with the textbook ones gives again a good confidence of the model
used.
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Figure 5.11: Quartz birefringence values at 35° as a function of the wavelength. The two
black circles come from [120] rescaled from 18° to 35° with formula (4.13), the two black
squares come from [121] rescaled from 22° to 35°. The dashed line is a simple straight line
fit using these four points. Our birefringence value coming from the fit using the three
data samples D; is indicated by the open circle.

5.4.4 Misalignment of the plane of the plate

The shape of the function x*(d,) is drawn in Figure 5.12 for the Monte Carlo sample (a)
and for the data sample (b). This latter can be compared to the function x?(dy) of Figure
4.22: as for the Wollaston ellipticity, the x? here is not very sensitive to the misalignment
parameter d,. This is still due to the null incidence of the laser on the plate and therefore
to the cancellation of certain terms in the y2. This parameter is therefore compatible
with zero.
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Figure 5.12: x? values per degree of freedom as a function of the parameter d, using the
three Monte Carlo samples (a) or the three experimental data samples (b) described in
Section 5.3.1.

We have then checked that the ellipsometer parameters obtained in Chapter 4 in the
Orsay Laboratory are consistent with those determined later in the more noisy HERA
tunnel environment. These latter will be used in the measurements of the Degree Of
Circular Polarisation of the light performed regularly during the data taking at HERA.

5.5 Regular DOCP measurements and systematics

During the polarisation data taking, measurements of the light Degree Of Circular Polari-
sation have been performed, either as a simple check, or when the azimuthal position of
the entrance quater wave plate (“moco qwp” in Figure 5.1) has been optimised, or when
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a hardware problem has occurred. Such hardware problems can be a blocking of the
controller driving the rotating mount in which is placed the “moco qwp” which circularly
polarises the laser light. In that case, the reference “moco qwp” azimuthal position is lost
and the left and right circular azimuthal positions have to be determined again.

The Degree Of Circular Polarisation are measured by recording data with the ellip-
someter when the cavity system is in its running condition, ¢.e. when the cavity is locked
and when the azimuthal angle of the entrance quater wave plate is such as the light is
right or left circularly polarised.

5.5.1 Azimuthal circular positions of the “moco qwp”

A right (respectively a left) circularly polarised light corresponds to an azimuthal angle
of the “moco qwp” entrance quater wave plate which maximises the intensity recorded
after a round trip (cavity unlocked) in the photodiode pdey located behind the Glan (see
Figure 5.1). Indeed, as schematized in Figure 5.13, the Glan prism located just behind
the laser is aligned in order to let pass the component of the incident laser wave parallel
to the optical table. Passing through the quater wave plate, the wave becomes right (left)
circularly polarised if the quater wave plate axes are orientated at 45° (—45°) with respect
to the Glan axes. After the cavity mirror reflection, the phase of the wave is shifted of
7 and the beam becomes then left (right) circularly polarised. After passing through the
quater wave plate in the return direction, the wave becomes vertically polarised and is
reflected by the Glan at 90° and detected in the photodiode pdeps.
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Figure 5.13: Principle of extraction of the wave reflected by the entrance cavity mirror

when the cavity is unlocked. Red vectors represent the polarisation vector of the beam.

A typical example of experimental intensities recorded in the photodiode pde,; as a func-
tion of the azimuthal angle ¢, of the plate “moco qwp” is shown in Figure 5.14. In
this figure the four maxima of intensity around —1.7 a.u. give the four “moco qwp”
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azimuthal positions for which the laser beam is circularly polarised (¢moco ~ —160°, ~
—70°,~ 20° ~ 110° in the figure).

e °F Figure 5.14: Experimental intensities
g 05 recorded in the photodiode pd.,; when
e e the cavity is unlocked, as a function
e E ! u of the azimuthal angle of the entrance
I A A\ quater wave plate “moco qwp”.
-200 -100 0 100 200

Prroeo (d€9)

5.5.2 DOCP measurements

Some examples of pull distributions (pull = > [(I—R T)/ o]) are presented in Figure
5.15. The fourteen distributions are the results of fourteen independant fit using four-
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Figure 5.15: 14 pull distributions Y [(I— R T)/ o] coming from the x* minimisation of
14 independant data samples recorded in the ellipsometer from June 2006 to June 2007.
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teen independent data samples. These data have been taken when the “moco qwp” is
azimuthally positionned at a right or a left circular position, these positions being de-
termined from curves as the one in Figure 5.14. Each of these samples contains 180
measurements of the photodiode signals corresponding to one azimuthal turn of the ellip-
someter quater wave plate where one measurement is done every two degrees. The total
time of data taking is about eleven minutes for each sample. Each pull distribution of
Figure 5.15 come from the minimisation of the x? of expression (5.1) in which the free
parameters are the initial polarisation state parameters xp and ¢p.

From formula (4.14) and from the values of xp and ¢p returned by the minimisation,
the DOCP values and their errors have been determined. They are listed in Table 5.4.

moco position # date DOCP value

1L, 6 June 2006 —0.98159 £ 0.00026
Ir 0.99713 =+ 0.00011
1 13 October 2006 —0.98098 + 0.00037
1r 0.99771 £ 0.00014
21, 13 October 2006 —0.99621 £ 0.00012
2R 0.99480 £ 0.00028
3L 9 March 2007 —0.97731 £+ 0.00033
3R 0.99276 £ 0.00019
3L 4 May 2007 —0.97433 £+ 0.00038
3R 0.99242 4+ 0.00021
41, 4 May 2007 —0.99474 4+ 0.00016
4R 0.99765 £ 0.00008
41, 14 June 2007 —0.99388 + 0.00018
4R 0.99690 £ 0.00013

Table 5.4: Values of Degree Of Circular Polarisation (DOCP) coming from 14 independant
fits using 14 data samples taken from June 2006 to June 2007.

Let us make a few comments on the results of Table 5.4. Firstly, during one year
(from June 2006 to June 2007), the “moco qwp” left and right circular positions have
been changed only three times. Each time, a new curve of pdey signal as a function of
Omoco Was done to re-determine these circular positions. This was done after an hardware
problem on the “moco qwp” rotating mount controller or after a dedicated check work
involving the “moco qwp” or the photodiode pdey;. Secondly, as shown in Table 5.4, DOCP
measurements are very stable in the course of time: indeed ellipsometer measurements
performed at a given “moco qwp” position and at several months of interval are stable
at a few per mill level (see measurements # 1, 3, and 4 in Table 5.4). Over a one year
period, the value of the DOCP showed an uncertainty of around two percent for two days
only, due to a hardware problem detected too late.

5.5.3 Ellipsometer systematics

We have shown at the end of Section 5.2 that the data taking time of one set of ellipsome-
ter measurements can have an effect on the photodiode intensity distributions, because of
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long term random effects. This data taking time depends on the chosen interval between
two consecutive azimuthal angles of the ellipsometer quater wave plate. We recall that
for all the results of Table 5.4, data have been taken every two degrees which corresponds
to an acquisition time of about eleven minutes.

To study the effect of this time of measurement on the DOCP values, we have fixed the
“moco qwp” to a given position and several sets of measurements have been performed
by the ellipsometer with different times of measurement (i.e. with different intervals
between two consecutive azimuthal positions of the ellipsometer quater wave plate). Pull
distributions resulting from the fits using these sets of measurements are shown in Figures
5.16 and 5.17 for a left and a right “moco qwp” position respectively.
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In Figures 5.16, the pull distributions come from x? minimisations using three data
sets of which the time of acquisition was respectively three, twelve and twenty minutes.
The “moco qwp” was in a right circular position. The three pull distributions look correct
and the three values of the DOCP are compatible inside one and half per mill. In Figure
5.17, this systematic study is shown for a left circular “moco qwp” position and three
data samples. The acquisitions of the three data sets lasted respectively six, twelve and
twenty minutes. One sees that the differences of the three DOCP values are smaller than
two per mill.

This study shows that the choice of the time of measurement may change of a few per
mill the value of the DOCP. Having a large number of measurements and thus a larger
probability of being disturbed by some long term effects, or on the contrary having less
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measurements and less systematic effects, leads to a maximal shift of the DOCP values
around two per mill. To remain conservative, an error of three per mill associated to the
ellipsometer time of measurement will be considered as a systematic error for the final
uncertainty on the DOCP.
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Chapter 6

DOCP coherence and its total error

6.1 Introduction

The previous studies have provided precise values of the DOCP measured in the ellip-
someter. These Degrees Of Circular Polarisation are measured at the entrance of the
ellipsometer whereas the quantity involved for the determination of the HERA lepton
beam polarisation is the laser DOCP at the interaction point, ¢.e. at the centre of the
cavity. Therefore the main question is to deduce the DOCP at the centre of the cavity
from the DOCP measured at the entrance of the ellipsometer. A priori these two values
are the same, but because of the presence of optical components between the two points,
it is possible that a small shift light be induced. The transport of the DOCP between the
centre of the cavity and the entrance of the ellipsometer as well as the determination of
the systematic errors associated to this transport are the objects of Sections 6.2 and 6.3.
This chapter is also devoted to check the coherence of the values of the Degree Of Circular
Polarisation at different points of our optical system. As this idea to measure the DOCP
at various points was not envisaged at the beginning when the system was conceived, we
will use all the information available in our setup to try to determine the transport of
S, along the optical line and to check the coherence between several measurements at
different points of the system. This will be studied in Section 6.5.

A global view of the whole cavity system composed of the entrance optical line, the
cavity itself, the exit optical line and the ellipsometer is recalled in Figure 6.1.

docpeny docp,.

@ mirror
y mirror

Figure 6.1: Basic
optical schematic
docpi, of the whole cavity

entrance b glan System
beam line Ellipsometer
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The four different points used in the following to check the DOCP coherence are indicated
in Figure 6.1, as well as the entrance and the exit beam lines characterised by the transfer
matrices Mg and M+t to be determined.

6.2 Parasitic ellipticity in the optical system

The set of DOCP of Table 5.4 characterises the light which enters the ellipsometer. The
polarisation state of this light is not necessarily the same as the polarisation state of the
light inside the cavity. Indeed between the centre of the cavity and the entrance of the
ellipsometer, several optical elements can be a source of birefringence and may induce
parasitic ellipticity modifying the laser beam polarisation. This small birefringence could
introduce a systematic bias such that the DOCP measured by the ellipsometer would not
be the DOCP at the cavity centre. Between the centre of the cavity and the ellipsometer
itself, the following optical elements could induce some birefringence:

e the Fabry-Perot cavity mirror (substrate and its multi-layer coating) where pos-
sible birefringence effects can occur through thermoelastic deformation or during
the manufacture of the multi-layers, and the mirror mounting system which could
generate birefringence inside the substrate because of mechanical stress,

e the Fabry-Perot cavity exit vacuum window constituted of fused silica, where bire-
fringence could be induced because of mechanical strains (during the manufacture
of the window or because of air/vacuum pressure),

e the system constituted of the two 45° mirrors used to guide the light into the el-
lipsometer, and of the holographic beam sampler located at the entrance of the
ellipsometer.

A simplified schematic view of the exit cavity mirror and vacuum window is presented in
Figure 6.2.

vacuum
window
coating

silica

substrate Figure 6.2: Basic drawing
z of the Fabry-Perot vacuum
window and the exit mirror.

cavity mirror

(vacuum) {air)
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6.2.1 Birefringence in isotropic materials

Before estimating the possible parasitic birefringence caused by these optical elements, let
us give some basic principles of the behavior of isotropic materials. In isotropic materials,
birefringence occurs when the medium is deformed such that the isotropy is lost in one
direction. At normal incidence, the small birefringence of such a non-absorbing element
can simply be described by the Jones matrix of a delay plate:

1 0
M¢bir = <0 ei¢bir> )

where ¢y, is the birefringence. Assuming a light perfectly circular, the associated electric

field is then written as:
2
Ecirc — \/_ < 1 ) )
2 7

and the DOCP is equal to 1. The electric field E of the beam after passing though the
birefringent deformed element can then be written as a function of the birefringence ¢y;,
and as a function of an angle # defining the orientation of the neutral axes of the matrix
My,,. with respect to the laboratory frame:

E= Ra_l M¢>bir R0 Ecirc )

where Ry is a 2 X 2 rotation matrix. From this expression of E, a small calculation allows
the expression of the DOCP after passing through an optical element of birefringence
Opir < 1 to be obtained:

DOCP =1 — ¢5,./2 . (6.1)

In the following, the order of magnitude of the birefringences of the optical elements
located between the cavity centre and the ellipsometer is estimated in order to evaluate
the biases induced on the DOCP values.

6.2.2 Fabry-Perot exit mirror, its coating and its mount

A birefringence can occur in the cavity mirror silica substrate through thermoelastic
deformation due to the high circulating power [125] in the cavity. This effect is numerically
estimated in [50] (page 152) by considering a confocal cavity of 2 meter length, a laser
wavelength A = 1064 pum, a beam spot diameter of ~ 1.5 mm on the cavity mirrors, a
circulating power of 10 kW and a coating transmission coefficient of ~ 107¢. The result
is a birefringence below 1 mrad that leads according to (6.1) to a negligible DOCP bias of
the order of 107°.

A birefringence can also occur in the multi-layers coating of the cavity mirror and then
leads to parasitic ellipticity during the transmission of the beam through the exit mirror.
This birefringence has been measured for instance in [126], [127] and [128] for cavity
finesses of 6600, 86500 and 100000 respectively. In all these measurements the order of
magnitude of the mirror birefringence is ¢pi; ~ 107¢ rad. Our multi-layer coating mirrors
leading to a finess of about 30000, we can use this birefringence order of magnitude and
we conservatively take dpi, = 2.2 x 107° rad [127]. Of course, with such a birefringence
value, the difference @2, /2 of the Degree Of Circular Polarisation values in the cavity and
at the exit of the cavity is totally negligible.
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The last source of birefringence for the cavity mirror is the mounting system schema-
tized in Figure 6.3. It consists of a spring pushing a ring in contact with the cavity mirror.

Figure 6.3: Technical drawing of the ca-
vity mirror mount system. From [129].
: mirror holder,

. mirror,

. spacer,

. spacer,

. spring,

: stop screw.

CICICICICIC,

The force supplied by the spring on the mirror has been measured [130] and estimated
to be at most 2 N that leads to a birefringence of the order of 107! rad for our 6 mm
thickness mirror (see [50] page 122). This effect is negligible.

6.2.3 Fabry-Perot exit vacuum window

The two vacuum windows of the Fabry-Perot cavity are constituted of glass-metal solde-
ring from VERMETAL. The birefringence induced by the mechanical constraints due to
the air/vacuum pressure have been estimated in [50] (page 150) and found to be less than
1 mrad which leads to a negligible DOCP bias.

Although the glass is fused silica, mechanical constraints could appear during the
manufacturing process [131]. A special dedicated study was performed to measure the
induced birefringence. A robust method to determine the birefringence of an optical
element consists in turning it between two crossed polarisers and measuring the variations
of the transmitted intensities coming from a laser. These variations as a function of
the azimuthal rotation angle lead to the parameter ¢y of the element. This study on
the vacuum window has been done by M. Linz at the ENS laboratory in Paris [132].
The birefringence has been measured for the main part of the window by making a two
dimension spatial scan. Results are presented in Figure 6.4: the three curves correspond
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[83]

2; JWQ\ // /f — Figure 6.4: Results of the

.\ / /')‘;.W }( C contre vacuum window birefrin-

2 VW ,!" .\ ! H -5 gence measurements @pi;/2

15 as a function of the window
w v W position.

D T T T T T
0,00 5,00 10,00 1500 2000 25 (00

linear displacement in mm

140



to three different positions of the window (centre and £5 mm apart) with respect to the
laser beam, along an arbitrary direction. For each one of these positions, a scan has been
done in the other direction from 0 to 22 mm (the centre of the window corresponds to 11
mm). Within a few millimeters from the window centre, the birefringence remains inferior
to 5 mrad. This means that the parasitic ellipticity due to the small birefringence of the
window is, at the utmost, of the order of 25 x 10~% which is negligible compared to our
required precision.

6.2.4 The system of the two mirrors and the HBS

The dominant source of parasitic ellipticity is the 45° dielectric mirrors since the mirrors
have different reflection coefficients for the electric field component in the plane of inci-
dence and for the electric field component perpendicular to the plane of incidence (see
Figure 2.24). To determine this parasitic ellipticity, several dedicated sets of data have
been taken with the ellipsometer in order to determine the transfer matrix of this exit op-
tical system. The procedure allowing the determination of the characteristic parameters
of this exit transfer matrix is the object of the next section.

6.3 Exit transfer matrix

6.3.1 Experimental setup and data taking

Before dismounting the whole setup at the end of the HERA experiment in July 2007, we
have performed a dedicated experiment to characterise the optical system composed of
the two mirrors and the HBS, located at the exit of the cavity. The matrix of this system
is called M. To determine Mt elements, the configuration of the cavity system is the
one schematized in Figure 6.5: a linear Glan polariser has been added between the exit
window of the cavity and the first mirror used to guide the light in the ellipsometer. This
allows us to make sure that the beam, before going through the optical elements we want
to study, is completely linearly polarised. The DOCP at the entrance of the ellipsometer
is called DOCPe,.

docp=0

~

motorized
mirrors

\

mirror & Figure 6.5: Basic op-
tical schematic of the
cavity system used to
determine the transfer
matrix Mt between
the exit of the cavity
and the ellipsometer.

docp,
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The data taking procedure is the following: for one given azimuthal position ¢g of the
Glan, the ellipsometer quater wave plate has been rotated every 6° from 0° to 360°. This
was done for the several azimuthal Glan positions ¢g = 0°, —20°, —40°, —60°, —80°, 80°,
60°, 40°. All these data have been used together in a fit to determine the polarisation
states of the beam after the HBS, i.e. the (£°,¢°) doublets at each ¢g position. The 2
used for this minimisation procedure is the one of formula (5.1).

Figure 6.6 (respectively Figure 6.7) shows the good agreement between the experimen-
tal data and the theoretical intensities I; (respectively I,) for the eight data samples. The
inclusive pull distribution (I—R T)/c including all the data samples is presented in Figure
6.8 and shows a good fit quality. Results of the Degrees Of Circular Polarisation DOCP,
and their associated errors opocp, coming from the fitted (£°, ¢¢) doublets are listed in
Table 6.1 for the eight ¢g positions. One sees from Table 6.1 that the DOCP, values are
not compatible with zero. This means that the polarisation states are not completely
linear as it would be the case if the system of the two mirrors and the HBS did not have
any parasitic birefringence. To be able to correct for the bias between the values of the
DOCP at the exit of the cavity and at the entrance of the ellipsometer, the system has to
be modeled with a transfer matrix Mr.
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Figure 6.6: Experimental and theoretical intensities I; as a function of the azimuthal angle
¢ of the ellipsometer quater wave plate, for the eight different azimuthal Glan positions
ba: o = —20° (a), p¢ = —40° (b), p¢ = —60° (¢), pc = —80° (d), ¢c = 80° (e),
¢g = 60° (f), o = 40° (g), ¢c = 0° (h).
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Figure 6.7: Experimental and theoretical intensities I as a function of the azimuthal angle
¢ of the ellipsometer quater wave plate, for the eight different azimuthal Glan positions
da: ¢ = —20° (a), o = —40° (b), g = —60° (¢), pc = —80° (d), ¢c = 80° (e),
¢a = 60° (f), o = 40° (g), ¢ = 0° (h).
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Eey ] N R w1
” - -~ - o ( \—cho )/ o 1 ’ ’ ‘ °
¢G (in °) 0 —20 —40 —60 —80 80 60 40
DOCP.x10? 1032 —0.362 —1.987 —2.880 2447 —0.962 0.894 2.109
TDOCPE X 102 0.153  0.153  0.165  0.172  0.182  0.192 0.176 0.162

Table 6.1: DOCP, values and their errors coming from fits using the experimental data
recorded at eight azimuthal angles ¢ of the Glan polariser.
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6.3.2 The matrix My

An optical theorem demonstrated by R. Clark Jones [133] states that any optical system
composed of any non-absorbing components may always be replaced by an optical system
composed of four elements: the four element system consists of a partial polariser placed
between two delay plates, with the addition of a rotator inserted at any position in the
system. The Jones matrix of a partial polariser is called P, that of a delay plate G,
and that of a rotator Ry. Under the assumption that no power is absorbed in optical
materials, they are written as [134]:

_(p1 O (e 0 _( cos® —sinf
Pp_<0 p2> ’ G7_<0 e‘”) ’ Ra_(sinH cosf ) - (6.2)

Following the Jones theorem [133] and starting with a completely linear polarisation
state E. at the exit of the cavity, the theoretical final state E¢, at the entrance of the
ellipsometer can be modeled as follows:

Eth - MT EC , with MT - Rgl G’n R92 Pp R93 G’YQ y (63)

where the two polarisation states E¢, and E. are written as:

[ cos€th i [ cosog
Eth - < Singth ei¢§,h ) Ec — Sin¢G . (64)

Expressions (6.2), (6.3) and (6.4) allow the expressions of ™, ¢ and ¢! to be obtained
as function of the parameters 6y, 0y, 05, 71, 72, p1 and pe of the matrix Mt and as a
function of the angle ¢¢ of the polarisation initial state. Then the minimisation of the y?

defined by: ’, _|
gth ge ¢th ¢e
v J:% [( o ) ( o5 )J e

leads to the parameters of the transfer matrix Mr. In expression (6.5), ¢'™ = ¢ — ", Ny
refers to the number of data files (Ng = 8 corresponding to our eight sets of measurement
described in the previous section), and & and ¢f are the polarisation state parameters
corresponding to the DOCP, values of Table 6.1.

A Monte Carlo study of this system has shown that some parameters of the matrix
M are completely correlated and that the system can be described only with one delay
plate and one partial polariser at one parameter p. Therefore we restrict the matrix M
at the following expression:

[ costhy —sinb, e 0 cosfly —sinfy p 0
My = < sinf;  cost; ) ( 0 e ™ ) ( sinf,  cosbs ) < 0 1) " (6.6)
Using our eight (€%, ¢°) doublets determined in Section 6.3.1, the minimisation of the y?

leads to the following results for the angle of the delay plate and the partial polariser

parameter:
{ 2y = 26.25 % 2.83 mrad

p = 1.0010 % 0.0009 . (6.7)
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6.3.3 DOCP,. at the exit of the cavity

Having determined the transfer matrix M with the addition of a Glan polariser in the
system, the DOCP at the exit of the cavity have now to be determined as a function of the
DOCP at the entrance of the ellipsometer, and this for any measurement we have made
with the ellipsometer. The polarisation state at the exit of the cavity is called E.. and is
determined by the relations:

i . COSXce €'9%
Ecc = 1\/IT Ein ) with Ecc - < SIHXEE ei¢y ) )

where the matrix M}l is the inverse of the transfer matrix Mt and where the field E;, is
the polarisation state at the entrance of the ellipsometer defined in (4.6). The development
of this expression and the definition of the DOCP (3.4) lead to the relation:

DOCPCC - DOCPin X F(ela 927 Y, P, Xp, ¢P) ) (68)

where yp, ¢p and DOCP;, are the polarisation state angles and the Degree Of Circular
Polarisation determined at the entrance of the ellipsometer (i.e. for instance the DOCP
values of Table 5.4). Values of F and DOCP,. are presented in Table 6.2 where we can
see that the parasitic birefringence due to the optical components between the exit of the
cavity and the entrance of the ellipsometer induces biases of at maximum five per mill and
sometimes less. Errors on DOCP,. in Table 6.2 have been calculated from the elements
of My and their uncertainties: for all possible combinations of My elements (v + o, and
p+o0p, or ¥ — 0o, and p+ oy, or v+ 0, and p — o, or ¥ — 0, and p — 0,,), calculations of

DOCP;, F CORpocp DOCPq,
—0.98159 1.0049 4.792x103 —0.97680:0.00036
0.99713 1.0017 —1.675%x103 0.99546::0.00019
—0.98098 1.0050 4.891x10-3 —0.97609-:0.00037
0.99771 1.0015 —1.522x1073 0.99618:0.00017
—0.99621 1.0019 1.884x10~3 —0.994330.00017
0.99480 1.0027 —2.634x103 0.99217:0.00030
—0.97731 1.0054 5.250x10~3 —0.97206::0.00040
0.99276 0.9981 1.910x10~3 0.994670.00032
—0.97433 1.0058 5.638x103 —0.96869:0.00042
0.99242 0.9980 1.988x10~3 0.99441:0.00033
—0.99474 1.0025 2.440x103 —0.99230:0.00020
0.99765 1.0016 —1.628x103 0.99602-:0.00018
—0.99388 1.0027 2.723x10-3 —0.99116::0.00022
0.99690 1.0019 —1.891x10-3 0.995010.00021

Table 6.2: Set of DOCP;, values measured at the ellipsometer entrance (i.e. values of
Table 5.4), corresponding values of the bias F defined in (6.8), differences CORpocp =
DOCP.. — DOCP;, (where DOCP,, is the DOCP values just after the exit of the cavity), and
DOCP,, values. The errors on DOCP. come from the Mt parameters uncertainties (see
text).
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DOCP,. have been performed and the error on one DOCP,. value is the maximum change
with respect to the central value (the central value being calculated with the values vy and
p of formula (6.7)).

Each bias is calculable for each ellipsometer measurement and does not enter as a
systematic error but is explicitly determined to correct each DOCP measurement.

6.3.4 Cross-check

Let us finish with a cross-check of this study. For this, a set of data have been recorded
with the additional linear Glan polariser located this time after the HBS (i.e. between
the HBS and the quater wave plate, see Figure 6.5). As previously, ellipsometer data sets
have been taken at several azimuthal angles of the Glan. Applying the same fit procedure
(described in Section 6.3.2) we expect the matrix My to be compatible with the identity
since there is no optical component between the Glan and the entrance of the ellipsometer.
And indeed, the result of the fit leads to an angle e for the delay plate compatible
with zero and a partial polariser parameter peeck compatible with the unity:

2Ycheck = 1.47 4+ 4.01 mrad
Peheck = 1.0040 £ 0.0050 .

Using these parameters, biases DOCP pe-DOCPy, for the twelve measurements of Table 5.4
are of the order of 7x 107> (more precisely all of them are between 3.0x 107> and 1.0x 107%)
which is compatible with zero taking into account the measurement uncertainties of Table
5.4.

6.3.5 Summary

The birefringence of the HBS alone had been measured before its utilisation in our cavity
system and the result had given a birefringence compatible with zero [132]. During these
measurements, the holographic beam sampler was not screwed in its mount. In order to
preserve this null birefringence, a “stress free” stick has been used to mount the HBS in
the optical line in the tunnel at HERA.

Therefore, the HBS being not the cause of parasitic ellipticity, the biases of a few
per mill coming from the exit cavity transfer matrix is due to the two mirrors system.
That confirms a measurement done at Saclay in 1999 for the TINAF Polarimeter [135],
in which the effect of the two mirrors on the DOCP had been measured and found to be
of the order of a few per mill.

6.4 The entrance transfer matrix Mg

Although the previous studies have provided a precise value of the DOCP and of its
systematics, here, we aim at characterising the entrance optical elements by a matrix Mg
(see Figure 6.1) to understand the DOCP transport between the entrance quater wave plate
(the “moco qwp” of Figure 6.1) and the ellipsometer and to verify that it is compatible
with our expectations. The entrance beam line, composed of lens and mirrors, will be
described using the R. Clark Jones optical theorem [133] already cited in the previous
section.
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6.4.1 Mg determination principle

To determine the parameters of the matrix Mg, one dedicated set of data have been
recorded with the photodiode pdey located just behind the Glan of the entrance beam
line (see Figure 6.1), when the cavity is not locked. In that way the beam linearly polarised
by the Glan passes through the “moco qwp” and through the entrance optical elements
Mg, then is reflected by the cavity entrance mirror, and then passes again through the
system Mg-moco-Glan in the other direction. The “moco qwp’ used to polarise the beam
is rotated azimuthally and data are taken every half degree. Data recorded at the various
“moco qwp” azimuthal angles in the photodiode pdey; are called 04 and will allow the
elements of the matrix Mg to be determined.

When the system was conceived, the photodiode pde,; was only devoted to determine
the azimuthal “moco qwp” positions leading to a right or a left circular polarisation of the
laser beam (by simply recording a curve as the one of Figure 5.14). Thus, there was no
particular study of the response and of the measurement uncertainties of this photodiode.
In order to have a better control on pdey (and since the ellipsometer is not used for this
special dedicated study), before taking data, we have replaced the photodiode pde, by a
photodiode belonging to the ellipsometer (in the following nevertheless we keep the same
name pdey)-

6.4.2 The model

To calculate the light path through the optical system and its return, it is not necessary
to make calculation for its passage in the back direction. Indeed a reversibility theorem
[133] states that for a given matrix M describing the light path through a given system,
the matrix corresponding to the light path in the opposite direction is the transposed of
the matrix M.

In this study, although the photodiode pdey is an ellipsometer photodiode (and then
precisely controlled), the measurement precision is not as good as the ellipsometer one
because of the absence of a reference photodiode to compensate the laser power variations.
Consequently, we will not develop a complete model to determine the entrance transfer
matrix: the Glan polariser, the “moco qwp” quater wave plate (which is a plate treated
with an anti-reflection coating) and the cavity mirror will be considered as perfect, and the
error associated to each pde,; measurement will be the width of each pde,; measurement
distribution without taking into account possible systematic effects and without seeking
to parametrise these errors. The order of magnitude of the pdey; errors is of one to two
percent.

In a frame attached to the horizontal and vertical axes of the Glan, and starting with
an assumed perfect horizontal linear polarisation state Eg.. just after the Glan:

1
Estart - < 0 ) )

the theoretical field E,q associated to the intensity detected in the photodiode can be

written as:
Epd = Gian M(T) Mmir Mentr Estart (69)

entr

where:
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o Gy,, is the matrix of the Glan polariser letting pass only the vertical component of
the field when the beam returns:

0 0
Gla,n—<0 1) ?

e M, is the Jones matrix of the cavity mirror:

10
Mmir—<0 0>7

® My is the transfer matrix of the system composed of the elements to be charac-
terised and of the rotating “moco qwp”:

Mener = Mg Rﬂa Mmoco Rﬂb
Expression of M is the same as My (see expression (6.3)). The “moco qwp” being
considered as perfect, i.e. without any defect and in which no multiple reflection
occur, the expression of the Jones matrix Moo 1S given by (3.6) where ¢y, = 7/2.
Ry, and Ry, are two 2 x 2 rotation matrices introduced to reflect the azimuthal
orientation of the “moco qwp” with respect to the Glan polariser axes.

o M)

enir 15 the transposed of Mepg,.

Theoretical intensities received by the photodiode are called Lo, and are written as
Liheo = |Epd|2. As before, a Monte Carlo sample has been simulated, as closely as possible
to the real data. Figure 6.9 shows the simulated and experimental intensities recorded in
the photodiode pd.y; as a function of the “moco qwp” azimuthal angle ¢pmoco-

_ Figure 6.9: Simulated inten-
"F 7 dam sities ITipeo (big red points)
and experimental data intensi-
g ties Igjode (small black points)
o recorded in the photodiode
-2 pdent located behind the Glan
: when the cavity is unlocked, as
A A B B I R a function of the azimuthal an-

P i R I
—200 -150 -100 -50 0 50 100 150 200

(deg) gle of the “moco qwp”.

(0.u)

[
moco

In order to determine the elements of the matrix My, the following x? is then constructed:

R I — Dioge )

2 theo diode

— . 6.10
X E < e ) , (6.10)

i=1,N

where N is the number of measurements (around 500), LI, are the theoretical intensities
calculated at the i*" value of the azimuthal “moco qwp” angle ¢oco, I}ioqe are the intensi-
ties measured in the photodiode pdey at the it value of dmeco, 0 are the errors associated
to the measured intensities lgioqe and are of the order of one to two percent, and R is a
normalisation factor which is easily determined since the resolution of dx?/0R = 0 leads
to analytic expressions for R.
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6.4.3 Fit and results

A short study of the simulated data has shown that the data are well described by using
only one delay plate and one polariser in the expression of Mg. The transfer matrix Mg
is therefore written as (6.6), and thus depends only on two parameters called v and pg,
and on two rotation angles called 0, and fg,. The x? has firstly been minimised by
using the simulated sample to check that the elements of My are well determined by the
minimisation procedure. Values of these elements are presented in Table 6.3.

parameter simulated fitted

yg (mrad) —-32.81 —33.04£0.14
PE 1.17 1.17940.004
0g, (deg) 6.50 6.46640.028
0g, (deg) ~12.50 —11.805+0.064

Table 6.3: Simulated elements of My and results of the fit using the simulated sample of
Figure 6.9.

On the real data, the minimisation leads to the following ¢ and pg parameters:

{ny = —-3283 +£ 0.51 mrad (6.11)

pg = 1167 + 0.013 ,

The good agreement between the experimental intensities and the theoretical ones is
presented in Figure 6.10 and the distributions of the pull > (Igiode — R lineo)/o for the
experimental and simulated data samples are presented in Figure 6.11.

5 0 = data
O r — theory
~— 05 —
=
R F
_©° O
-1.5
_ F 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1
—200 —-150 -100 -50 0 50 100 150 200

‘l'moco (deg)

Figure 6.10: Data measurements (black points) and theoretical intensities (red line), as a
function of the azimuthal angle of the “moco qwp”.
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Figure 6.11: Pull distributions > (Igiode — R lineo)/0 for the experimental (left) and si-
mulated (right) data samples.
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Effects of the matrix Mg are illustrated in Figures 6.12 and 6.13. Figure 6.12 shows
the ratio of the experimental intensities over the theoretical ones (Igiode/Itneo) When the
minimisation has been done (black dotted line) and when the matrix Mg has been fixed
to the identity (red full line). In Figure 6.13, intensities recorded in pdey; and normalised
to the unity have been simulated using two sets of parameters of the matrix Mg: the
one determined in the data fit (formula (6.11)) and a matrix Mg equal to the identity.
Whereas the intensity maxima are spaced of exactly 90° when Mg is the identity (red full
line), they are spaced two by two by 93.6° and 86.4° when Mg is the real entrance optical
matrix (black dotted line). It is interesting to remark that these two spacing values are
also observed on the experimental intensities as shown in Figure 6.10.

0 - N ::E:f_::dm"y Figure 6.12: Ratio Igiode/Iineo Of the mea-
— - E I . . . M
- " sured intensities over the theoretical ones
L Vo when the minimisation is done (black dot-
50 |- ted line) and when the matrix My is fixed to
- I the identity (red full line).
0 br L ol Y
0.9 0.95 1 1.05 11
lioae/ theo
e 0 B Me=identity
3 E -—- M fitted
S o-o2s B
T s
= -
‘wm —-0.75 —
a E
2 F
£ -1 =
el | 1 1 1 | 1 1 1 1 | 1 1 L 1 [ 1 1 1 1 i L 1 L L I L 11 L I L L 1 L I L L L1

=200 =150 =100 =50 a 50 o0 150 200

(Pmoco (deg)

Figure 6.13: Simulated intensities normalised to the unity recorded in the photodiode
pdeny after a round trip through the entrance beam line. The red full line has been
simulated with Mg equal to the identity, the black dotted line with the Mg elements
coming from the experimental data fit (formula (6.11)).

For this study, because no reference photodiode has been used during the data taking,
the results can be affected by a systematic drift of the laser power variation, which can
be of the order of the percent. This could explain the non gaussian behaviour of the data
pull distribution in Figure 6.11. Nevertheless, even if this data pull is not really gaussian,
its good behaviour as well as the effect of the correction presented in Figure 6.12 give a
good confidence of our simple model.

6.5 Coherence and total error of the DOCP

6.5.1 Coherence of the DOCP values

Having now obtained the transfer matrices My and M+ of the entrance and exit beam
lines, we can compare the values of the DOCP measured or estimated at different places
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of the cavity system, and check the coherence of these values in order to make sure that
there is no additional unknown large effect which could induce a bias on the DOCP at
the centre of the cavity. We recall that the different locations where the DOCP values are
determined (see Figure 6.1) are as follows:

® DOCP . is the value of the DOCP just after the entrance quater wave plate which is
considered as perfect. It is calculated from a perfect linear polarised beam passing
through a perfect quater wave plate of matrix Mj (expression (3.6) with ¢g, = 7/2)
turned at an azimuthal angle ¢n0c. The associated field Ep,oc is written as:

Emoc - MJ ( COS(bmoeo > . (612)

Sin¢mOCO

® DOCPgy; is the value of the DOCP before the cavity entrance mirror, i.e. the DOCP
of the beam after its passage through the entrance beam line characterised by the
matrix Mg determined in Section 6.4. The associated field Egy¢ is written as:

Eent = Mg Emoc - (6.13)

e DOCP,, is the DOCP of the light at the exit of the cavity and is calculated from the
polarisation measured by the ellipsometer and from the exit optical line transfer
matrix Mt determined in Section 6.2.4. The associated field E.. is written as:

Ec.. = M;! Eqy (6.14)

where Ej;, is the field associated to the light entering the ellipsometer.

e DOCP;, is the DOCP value at the entrance of the ellipsometer and is determined from
ellipsometer data samples with the fitting procedure described in Section 5.3.

To check the coherence of the DOCP values, the “moco qwp” has been positioned at
eleven different azimuthal angles near a right or a left circular position and for each one
of these positions a set of data have been recorded in the ellipsometer to measure the
corresponding DOCPy, value. We recall that a right or a left “moco qwp” position corres-
ponds to an azimuthal angle which maximises the intensity recorded after a round trip
(cavity unlocked) in the photodiode pdey located behind the Glan. From the ellipsometer
measurements, the eleven DOCP;, values have been derived, and from (6.12), (6.13) and
(6.14), the values of DOCPyo¢, DOCPey, and DOCP,, have been deduced. Figure 6.14 (a)
(respectively (b)) shows these four DOCP values for five (respectively six) “moco qwp”
azimuthal angles around a right (respectively a left) circular position. This figure allows
the evolution of the laser beam DOCP to be followed along the optical path through the
different optical elements of the setup.

For the measurement of the HERA lepton beam polarisation, the only relevant quan-
tity is the Degree Of Circular Polarisation inside the cavity, to which of course we do not
have access. But all the above studies allow us to know the DOCP before the entrance of
the cavity (DOCPy) and just at the exit of the cavity (DOCP,.), this for several points
around a right and a left circular “moco qwp” position. Figure 6.15 is similar to Figure
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Figure 6.14: Values of DOCP for five “moco qwp” azimuthal angle ¢,,., around a right
circular position (a) and for six angles ¢noc around a left circular position (b). The
meaning of the measurement is indicated in the figure.

6.14 but shows only the relevant values DOCPg,, and DOCP.. around the right (Figure
6.15(a)) and the left (Figure 6.15(b)) circular “moco qwp” positions with, in addition,
the associated errors coming from the determination of the transfer matrices Mg and Mr.
In this figure is also presented the difference between DOCP,; and DOCP.. around the
right position (c¢) and around the left one (d). The dotted lines indicate the positions
of the maxima of the theoretical curve Ipq,,, (Pmoco) (see Figure 6.13) simulated with the
fitted My parameters of formula (6.11).

a T (o T
] + ! 3 + . docp !
° | (a) ©° ent | (b)
1 = -096 — « docp,, |
L [ L I
| |
- | - |
| |
0.98 I -0.98 I
F ! . docp F !
| ent |
- : docp,, - :
r | r |
0.96 — : -1 — ‘
B | B |
‘ L Ll ‘ L ‘ L ‘ L ‘ L 1l ‘ L
-162 —-160 -158 -156 -70 -65
1|»m0c0 (deg) 1|»m0c0 (deg)
= 0.01 T = 0.01
a r | a r |
g . | © g i | @
° i B i
I r i ‘ L ‘
. 0.005 , 0,005 °
a F ! a F ! L4
S r | S B ‘ .
el r i hel r ¢‘
a I O~ I
- N - by
- | - |
L } . L }
—0.005 — | —0.005 — |
r | r |
L | L |
L | + + L I
—0.01 | 1 Ll | 1 | 1 1 | 1 —0.01 | I |
-162 -160 -158 -156 -70 —65

(deg) (deg)

¢ ¢
moco moco

Figure 6.15: DOCP,y; (black point) and DOCP,, (red triangles) around a right (a) and the
left (b) circular “moco qwp” position, and difference DOCPe,; — DOCP,. around the right
(c) and the left (d) position, as a function of the “moco qwp” azimuthal angle. Dotted
lines indicate the position of the “moco qwp” used during the HERA data taking.
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For each ¢p,0c0, the value of the Degree Of Circular Polarisation at the centre of the
cavity is located between the two corresponding DOCPgy and DOCP.. values. And as
shown in Figure 6.15, around the two circular positions indicated by dotted lines, the
differences DOCPg,; — DOCP,. are less than five per mill. A part of this few per mill shift
could be explained by the presence of the small birefringence due to multi-layers coating
cavity mirrors that we have mentioned in Section 6.2.2. We recall that the order of mag-
nitude of this mirror birefringence is ¢p; = 2.2 x 107% rad [127]. Because of the resonant
optical cavity, this phase shift due to a single passage of the light in the reflected coating
is amplified by a factor A = (1 +R)/(1 — R) [128]. If R & 1, the factor A can be written
as 2F /m where F is the finesse of the cavity. With our cavity finesse F =~ 30000, the
amplified phase shift is &~ 0.042 rad and according to (6.1) the effect on the Degree Of
Circular Polarisation is &~ 1073, Since we don’t know the exact value of our mirror coating
birefringence, the difference between DOCPg,; and DOCP.. could thus be explained. How-
ever, there could also be another source of systematic uncertainty because of the light
power variation not compensated by a reference diode measurement in the determination
of DOCPys.

Anyway, the above study of the entrance beam line does not claim to give a pre-
cise measurement of DOCP,,; but is devoted to check the coherence of the system and
particularly the coherence of measurements just before and just after the centre of the
cavity.

6.5.2 The total error on the DOCP

According to all the studies described in this document, we are now able to give a value for
the systematic uncertainty associated to each value of the DOCP at the laser beam /lepton
beam interaction point. The total systematic error ogy which are common to all mea-
surements of DOCP at the centre of the cavity is written as:

Osyst = Otrans + Otime 5 (615)

where oans < 3 % 107° is the uncertainty related to the transfer between the inner of the
cavity and the exit of the cavity (Sections 6.2.2 and 6.2.3), and oyme &~ 3 X 107 is the
uncertainty attached to the ellipsometer data taking time (Section 5.5.3). As shown in
the previous sections, either these errors have been estimated from previous works on the
subject, or they come from our own dedicated studies.

The value of the Degree Of Circular Polarisation of the laser beam inside the cavity is
therefore written as:

DOCP = DOCP;j;, — CORpocp £ Oexit £ Osyst (6.16)

where:

e DOCPj, is the Degree Of Circular Polarisation measured by the ellipsometer (Section
5.5.2),

e CORpocp is a correction factor determined for each ellipsometer measurement from
the expression (6.6) of the transfer matrix, from the parameters v and p of formula
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(6.7) and from a doublet (xp, ¢p) resulting from an adjustment using an ellipsometer
data sample as described in Section 5.5.2,

® Oy is the systematic error (6.15) and is & 3 x 1072,

® 0.t 1s the error related to the optics located at the exit of the cavity: it contains
an error such as those in Table 5.4 coming from the fits using ellipsometer data
samples, and a error such as those in Table 6.2 coming from the determination of
the exit transfer matrix Mt. This error oy is different for each measurement and
is of the order of a few 107,

6.6 summary

The precise and fast Fabry-Perot cavity polarimeter which was installed in the tunnel of
the HERA collider in 2003 has taken data until the end of HERA in summer 2007. Our
cavity system was very similar to the cavity installed in the CEBAF accelerator, and this
has proved to be a great benefit for us. The cavity has shown a very stable behavior during
all the data taking in term of locking and gain. The calorimeter acquisition system at 10
MHz and the intra-cavity power allowed a measurement of the lepton polarisation every
twenty seconds to be obtained with a statistical uncertainty of about 1% per lepton bunch
and per minute. Several dedicated studies, precise and often long, have been performed to
characterise optical components of the system, first at Orsay in the environment of a la-
boratory, and then in the HERA tunnel. The effect on the light polarisation state of each
one of these components has been studied and taken into account in the determination
of the Degree Of Circular Polarisation S, of the laser beam. These measurements made
it possible to determine the value of S, at the laser beam-lepton beam interaction point,
i.e. at the center of the Fabry-Perot cavity, with a total uncertainty of a few per mill.
This precision has never been reached in the hostile and noisy environment of a particle
collider, in which, in addition, we had only one short access per month. The quantity
S, being directly involved in the Compton process cross section, the passage from the
percent level to the per mill level in the precision of its measurement has proved difficult
but necessary to conserve a systematic error on the lepton polarisation below the percent.
By showing that it is possible to measure S, with this high precision in the environment
of a particle collider, these results also provide an evidence of feasibility for the current
studies of precise and fast Compton polarimeters to be installed in futur linear colliders
[44, 136, 137].

I would like to thank all the persons who have participated in this project and have
helped to carry out the design, the building and the installation of the system, and also
the polarimeter data taking, the data analyses and all the optical studies described in this
document.
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Outlook

The polarimeter which has been described in this document is based on the Compton
scattering process where the Compton photon gains energy after the scattering. This
process which converts electron kinetic energy into high energy photons is often called
Inverse Compton Scattering (ICS) process. ICS is involved in many scientific domains
and to conclude this document, let us give an overwiew of various ICS applications.

ICS in Astrophysics

In atrophysics, the detection of scattered Compton photons can provide informations on
the density perturbations of the universe. For instance, using the Sunyaev-Zel'dovich
effect (SZ effect) [138, 139] in which cosmic microwave backround (CMB) photons are
scattered by electrons in the hot gas surronding galaxies, clusters of galaxies can be ob-
served. The magnitude of the SZ effect is independent of redshift and depends only on
the characteristics of the cluster itself allowing very distant clusters to be detected. One
of the task of the Pranck satellite [140] is to measure the distortion of the black body
spectrum of the CMB [141] in order to constitute a catalog of galaxie clusters and then
provide some informations about the matter and energy content of the universe. Several
others phenomena in the universe might be explained by the Compton effect, as ~-ray
burst emissions [142, 143, 144], pulsar emissions [145, 146], or luminosity spectrum of ac-
creting black holes which is believed to come from the inverse Compton process [147, 148].

Polarimetry

In the particle accelerator domain, we have seen in this document that the inverse Comp-
ton process can be used to measure precisely the polarisation of electron and positron
beams, and that a Compton polarimeter has the advantage of a non destructive mea-
surement which can be performed continually while beams are in collision. Compton
polarimeter has been used for instance in the SLD experiment at SLAC [149], at the
electron stretcher ring ELSA of Bonn University [150], at the CEBAF accelerator [63]
and at the HERA collider. As shown in this document, the uncertainties on the lepton
polarisation measurements using a Compton polarimeter can be very well controlled and
remain below the per mill level. At futur linear TeV scale machines, polarised e~ and
et beams are forseen. The polarisation has an important impact in the physic program
[137] and high precision physics requires the knowledge of the polarisation with a relative
uncertainty around 0.1% [151]. Compton polarimetry would have the ability to reach such
a precision and the current design at futur linear colliders is to use Compton polarimeters
(152, 153].
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Polarised electron source

Another challenge at futur linear machines is the generation of polarised positron beams
with a high degree of polarisation. A method to generate polarised positrons consists
on Compton scattering of circularly polarised laser light off a relativistic electron beam,
followed by ete™ pair creation in a thin target. Using a few GeV energy electron beam,
Compton photon energy is of order of few tens of MeV. During the pair creation pro-
cess, the Compton photon polarisation is transmitted and positrons are longitudinally
polarised. This concept has been already tested at KEK [154] and the polarisation of the
positron beam produced by this method has been measured to be larger than 70% with
a conversion rate inside the target around 1073 [155]. Thus, to obtain a polarised photon
beam at the MeV energy scale for the generation of polarised positron sources, the inverse
Compton scattering method would be an alternative to the undulator schemes in futur
linear collider design projects [156, 157].

Photon Colliders

In addition to the eTe™ physics program, futur linear colliders give also the opportunities
to study 77 and ~ye interactions at the TeV scale. By using the ICS method (Compton
scattering of laser light off a TeV energy scale electron beam) for creating of high energy
~v beams, vy and e colliders can be obtained with luminosity and energy comparable to
the ones of the basic ete™ colliders [158, 159]. Some phenomena can be studied better
at photon colliders than at eTe™ colliders due to much larger cross sections or to higher
accessible masses [160]. In addition, in photon colliders, photons can be produced with
a high degree of circular polarisation as well as in a linearly polarised state by simply
changing the polarisation of the laser light [161, 162]. This allows in the Higgs sector
for instance to determine easily whether or not a neutral Higgs boson is CP eigenstate
by using the different types of Compton photon polarisations [163]. A photon collider
may provide a powerful means to understand electroweak symmetry breaking and physics
beyond the standard Model and, in some scenarios, is the best machine for the discovery
of new physics [164, 165, 167].

Nonlinear QED effect studies

An other application of high energy photons produced by the ICS process is the possibi-
lity to observe nonlinear quantum electrodynamic (QED) effects. In QED, the interaction
between photons (or in an equivalently way between photons and an external field) in-
troduces nonlinear corrections in the theory. By observing a photon in a strong magnetic
field, one can measure some of these nonlinear effects. For this purpose, an experiment
was proposed in 1991 (but not realised) to measure the vacuum birefringence by measu-
ring the phase shift acquired by photons propagating in a strong magnetic field (10 Tesla
over a 10 meter length) [168]. Because the birefringence induced by the magnetic field is
inversely proportional to the photon wavelenght, the use of high energy ICS photons at
the GeV energy scale allowed several orders of magnitude to be gained in the sensibility
of the measurement compared to the use of laser light photons. In this experiment, the
source of high energy photon was the scattered photons from ICS of a circularly polarised
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laser beam off the HERA electron beam. The measurement of the degree of polarisation
of ICS photons before and after the strong field allowed the induced vacuum birefringence
to be infered. Other nonlinear QED studies have been performed using the benefit of the
ICS process in high energy accelerator (see for instance [169]). Of course, one can imagine
to make this type of experiment at the next linear collider to increase the sensitivity of
measurements thanks to higher produced ICS photons.

Compact X-ray sources

Another domain of ICS application concerns the Compton based X-ray sources. X-ray
produced with conventional X-ray tubes are simple and robust but most of the power
generated by these tubes is converted into heat. In addition, tubes are not tunable
across a broad energy range. Hence, they cannot provide enough intense focusing quasi-
monochromatic beams required for specific studies in biology, chemistry or cultural he-
ritage sciences. Synchrotron sources which deliver high intensity beams are today the best
machines to perform ambitious searches using diffraction, absorption, diffusion, imaging
or spectroscopy and they are used with good results [170, 171, 172]. But synchrotron
machines are large, cannot be inserted in laboratory, and offer limit access time. Hence,
since the exceptional development of high power femtosecond lasers, the interest in com-
pact X-ray sources has became very important. These sources are in full development
over recent years. The principle of a compact X-ray source based on the inverse Compton
effect is to produce an intense X-ray beam by scattering a high power focused laser beam
off a high intensity focused electron beam of few tens MeV energy. Such a source has to
be designed and built in a small pratical form to be located in a laboratory, a museum
or a hospital. In addition to the compactness, the source should have the possibility to
adjust the ICS photon frequency by varying the electron beam energy and/or the laser
frequency. This makes possible a wide range of studies requiring intense monochromatic
beams at various X-ray energies.

Currently, most ambitious projects aim to produce 10'2-10' ph/sec of a few tens of
KeV energy in an energy bandwidth AE/E of order of 1-10%. Table 6.4 presents an
overview of Compton compact source projects and their main characteristics. Experi-
ments currently in operation (PLEIADES [173, 174), Vanderbilt [175, 176], SLAC [177],
Waseda [178, 179], AIST [180], Tsinghua [181], LUCX [182] and TERAS [189]) have al-
ready demonstrated the feasibility of X-ray production by inverse Compton scattering,
but the delivered X-ray beam intensity is not sufficient to carry out a large domain of
studies requiring more brightness. To enhance both the electron/laser interaction repeti-
tion frequency and the laser power at the Compton interaction point, a high power and
high repetition frequency laser can be coupled with a high-finesse optical cavity and this
device integrated in a low energy storage ring. This scheme based on multiple passages
of electrons is the one adopted in the Lycean Technology machine [190, 191}, and in the
Kharkov [192], TTX [193, 194] and ThomX [195] projects. Although the MIT project
is not a storage ring scheme, the design brightness value is very large and the source
size exceptionally small with moderate divergence [185]. In this project, a short super-
conducting linac produces a very low emittence (< 1 mm.mrad) electron beam with a
100 MHz repetition rate. Always in the linear scheme, the Japanese project “Quantum
Beam” is already approved and funded. In this machine, a multi-bunch electron linac
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and a pulsed amplified laser stacking in a cavity generate a high quality and high flux
X-ray beam [187, 188]. Currently, the only machine in operation delivering a photon flux
comparable to the flux from the first generation synchrotron facilities is the Lycean Tech-
nology project whose installation directed by R. Ruth began in 2002. Today the machine
provides a tunable energy X-ray beam of 10'? ph/sec in 2% energy bandwidth [196] and
the first phase contrast imaging have been obtained recently [197].

Experiment Type Energy Flux (10% bw) Source size
*PLEIADES (LLNL) [173, 174] linear 10—100 KeV 10 /pulse@10Hz 18 pm
*Vanderbilt [175, 176] linear 15—50 KeV 1010 /pulse@0.01Hz 30 pm
*SLAC [177] linear 20—85 KeV

*Waseda Univ. [178, 179] linear 0.25-0.5 KeV 5.10% /pulse@5Hz

*AIST, Japan [180] linear 10—-40 KeV 108 /sec 30 pm
*Tsinghua Univ. [181] linear 4.6 KeV 1.7 10%/sec

*LUCX (KEK) [182] linear 33 KeV 4.10% /pulse@12.5Hz 80 pum
*Japan (UTNL) [183, 184] linear 10—40 KeV 10° /sec

MIT project [185] linear 3—30 KeV 3.105 /pulse@100MHz 2 pm
MXI System [186] linear 8100 KeV 108 /pulse@10Hz

Quantum Beam (KEK) [187, 188] linear ~ 35 KeV 1013 /sec 3 um
*TERAS (AIST) [189] circular 1-40 MeV 5.10% /sec 2 mm
*Lycean Tech. [190, 191] circular 7-35 KeV 5.1012 /sec 30 pm
Kharkov (NSC KIPT) [192] circular 10—500 KeV 2.6 1013 /sec (25MHz) 35 pm
TTX (THU, China) [193, 194] circular 20—80 KeV 2.10%2 /sec 35 pm
ThomX (LAL) [195] circular 50 KeV ~ 10'2 (20MHz) 70 pm

Table 6.4: Compact X-ray source projects. Star symbol (*) refers to machine in operation
and symbol (1) to machine in construction.

Let us finish with a brief description of the ThomX project since the machine should
be constructed at the LAL laboratory. The project is going to be developed by LAL,
SOLEIL, CELIA, ILE, L.M.A. and Thales laboratories. The ThomX machine design is
presented in Figure 6.16 and the main parameters are described as follows. At nominal
operating point, a 1 nC electron bunch is accelerated in a 50 MeV linac and is injected
in a 15 meter circumerence storage ring with normalised emittance around 5 7mm.mrad.
A 100 W average power picosecond pulsed laser of wavelength 1 um and repetition rate
40 MHz (few pJ per pulse) is injected into a very high finesse optical cavity leading to an
increase of the pulse energy up to few mJ per pulse. Laser/electron interactions occur at
20 MHz, i.e. at each electron revolution. In order to maintain the electron beam quality,
electron bunches are re-injected periodically at a frequency of 50 Hz. About 10! ph/sec
in 10% energy bandwidth and with a maximum energy of 50 KeV in the forward direction
are expected from the ThomX source. As shown in Figure 6.16, the electron beam/laser
beam interaction point is located between dipoles. This design has the advantage to lo-
cate the optical cavity mirrors outside of the ring and to place X-ray optics closer to the
interaction point.
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This overview of Compact [CS source ambitious projects has shown that they are
much more powerful (flux, monochromaticity, directivity and tunability) than the exi-
sting laboratory X-ray sources such as X-tubes or rotating anodes. In Figure 6.17 the
performances of synchrotron machines, rotating anode tubes and the ThomX Compton
machine are presented by plotting their brightness as a function of the emitted X-ray
energy. The most efficient rotating anode (FR-E+SuperBright model [199]), providing a
brightness comparable to the first generation synchrotron machine, a 8.10° ph/sec ma-
ximum flux and a 200 gm beam size, does not allow nevertheless to develop ambitious
analysis techniques mentionned above. ICS sources cannot compete the third generation
of synchrotron in term of integrated emitted flux and brightness but can be placed near
the first generation radiation facilities with in addition the avantage of producing a much
harder X-ray beam and of course of being located in museum, laboratories or hospitals.
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Figure 6.17: Performances of different radiation sources. The ThomX Compton source
project is also visible. From [200].
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Appendix A

Propagation of a plane wave in an
uniaxial medium

This annex is devoted to describe the formalism of a wave propagating in an isotropic
medium and crossing an anisotropic medium of thickness . We will show how to obtain
the expression of the field transmitted by this uniaxial anisotropic medium, homogeneous,
non-magnetic and transparent. The incident wave is supposed to be plane and the uniaxial
medium without anti-reflected coating. Firstly, general solutions of a wave propagating
in such an uniaxial anisotropic medium are derived from Maxwell and medium equations
(Section A.1.1). Then, using boundary continuity conditions at the interface between the
two media, the amplitudes of the fields at the two interfaces will be calculated (Section
A.2). Finally, the expression of the total transmitted field taking into account the multiple
reflections inside the medium will be given (Section A.3).

A.1 Plane wave in an anisotropic homogeneous medium

References [201, 202, 203, 204] are constantly used in the formalism described in the
following.

A.1.1 Maxwell equations

Fundamental equations in electrodynamics are Maxwell’s equations:

( OB
ng%—a—o,
oD
VXH =5 =T (A1)
V-D =p,
| V-B=0.

& and H are respectively the electric field and the magnetic field, D, B, p and J are
respectively the electric displacement, the magnetic induction, the charge density and the
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current density. To obtain a unique solution of the field vectors, Maxwell’s equations have
to be completed with the following medium equations:

D=¢&=¢&+ P, (A.2)

B=pH=puwH+M, (A.3)

where € is the dielectric tensor, y the permeability tensor, P the electric polarisation
vector and M the magnetic polarisation vector. If the medium is isotropic, € and p are
scalar quantities.

A.1.2 Calculation in the principal system

In an optically anisotropic medium, the propagation of a plane wave is determined by
the dielectric tensor € which connects the displacement vector and the electric field vector
through equation (A.2). In a non-magnetic and transparent medium, this tensor e is real
and symmetric. Therefore it is possible to find three orthogonal axes (a, b, c) such as the
non diagonal terms of the tensor e are null. In such a frame, called the principal frame of
reference, € is written as:

€ 0 0 nz 0 0
€ = 0 e O = € 0 nf 0 ,
2
0 0 e 0 0 nZ
2 2 2
€a = €0 11, ; €, = € I, , €c = € I

€., €p and €. are the principal dielectric constants and n,, n, and n. are the principal
refracting indices. Typically, the directions of the axes of the principal frame of reference
correspond to the crystal axes of symmetry. We want to study the propagation of a plane
wave in such a non-magnetic transparent anisotropic medium.

The most general expression of an electric field £ and a magnetic field H associated
to a plane wave is written as:

E = Eexpli(wt—k-1)] ,
H = Hexp[i(wt—k-r)] ,

where k is the wave vector. By substituting £ and H in (A.1), (A.2) and (A.3), and by
eliminating the field H and the time, one obtains:

kx (kxE) + wucE = 0 . (A.4)
Equation (A.4) can also be written as:

E.
M| E | =0, (A.5)
Ee

where the matrix M in the system of principal coordinates is written as:
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w2 e, — k% — k§ k. ki, k. k.
M = kakb u)2/1,€b — kZ — kg kbkc . (A6)
kck, keki, w?pe. — k2 — ki

The determinant of M must be null so that a non-trivial solution exists. This condition
det(M) = 0 gives the following relation between w and k:

k2 ki ke

k? — w?ue, * k? — w?ue, * k2 — wlue, L (A7)
provided that the denominators are not null. Equation (A.7) being quadratic in k?, two
solutions k™ and k(® exist for the wave vector k, corresponding to two waves having
different phase velocities. The resolution of the propagation equation (A.5) gives the
directions e and e(® of the electric fields E associated to these two waves: in the most
general case, the directions of the field vectors associated to each of the two wave vectors
solution of (A.7) are:

e(172) N kgl,2) k£1,2) k((;l’Q)
(0D — e, " ()0 — e, (D)0 — wlue,

provided that the denominators are not null. In a non absorbing medium, € is real and
all the components of these fields are real.

A.1.3 Case of an uniaxial medium
In the general case, the three principal indices are different. But lots of optical materials
exist for which two of the principal refraction indices are equal and can be written as:

2 2
€a = €, = € N , €. =€ N . (A.8)

This type of crystal is known as uniaxial (as the quartz or the calcite). The ¢ axis of
the principal coordinate system in that case is called the optical axis. n, is called the
ordinary index, n, the extraordinary index. In such a uniaxial medium, equation (A.7)

can be simplified as:
k2 k2 k2 2 k2 2
( a+b+_c_w_><__w_>:0, (Ag)

2 2 2
n; n; ¢

The two terms of equation (A.9) give the relation between w and k for the two waves
solution of (A.5). These two waves are known respectively as the ordinary wave (O) and
the extraordinary wave (E).

The module of the wave vector ko of the ordinary wave is independent of the direction
of propagation; it is given by the relation:

k2 2
S Py, (A.10)

2 2
n ¢
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while the relation connecting the wave vector ke and w for the extraordinary wave is

written as: ) ) ) )
Kootk | Koo (A.11)

2 2 2
ng n; ¢

Direction of the ordinary field o

By using the relation (A.10), the matrix M of (A.6) for an ordinary wave of wave vector
ko = (Koa, Kob, Koc) s written as:

kga koa,kob koakoc
Mo = Koakob k(2>b KobKoc )
kockoau kockob %;(nz - n(2)) + k(2)c

and the resolution of (A.5) gives the direction of the field associated to the ordinary wave
in the system of principal axes:

o =N, (kob, —koa, 0) (A.12)

where N, is a factor of normalisation such as o-0 = 1.

Direction of the extraordinary field e

In the same way, by using the relation (A.11), the matrix M associated to the extraordi-
nary wave of wave vector ke = (Kea, Kep, Kec) is written as:

‘:;—211(2) - kz + kga ) kea,keb keakec
Mext - kea,keb f—zﬂg - kz + kzb kebkec )
2
keckea keckeb %ng - kg + kzc
and the direction of the associated extraordinary electric field in the system of the principal
axes is:
k k k
ifke(:;éUZ e:Ne(2 e2227 2e2227 5 eZ22>
ke — PR ke — PR ke — e (A.13)
if ke =0 : e=(0,0,1) ,

where N, is a normalisation factor such as e-e =1.

A.2 Passage of a plane wave through an anisotropic
uniaxial medium

The question is now to calculate, in a given reference frame, the transmission and reflection
coefficients of a wave passing through an anisotropic uniaxial crystal. For this, it is
necessary to calculate the amplitudes of the reflected and refracted electric fields at the
interface between the isotropic medium and the crystal, and at the interface between the
crystal and the isotropic medium. The uniaxial anisotropic crystal can for instance be
the quartz and the isotropic medium the air.
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A.2.1 Double refraction at the interface air-quartz

We consider an uniaxial crystal whose principal axes are called a, b and ¢ and the associa-
ted unit vectors a, b and c. The optical axis is the ¢ axis. We recall that for this crystal the
principal dielectric constants satisfy equation (A.8). The surface of the crystal is supposed
to be in the (xy) plane of an orthonomal (x,y,z) reference frame. The orientation of the
crystal ¢ axis in this reference frame is characterised by two angles 6. and ¢.: 6. is the
angle between ¢ and z, ¢, the angle between the projection of ¢ on the (xy) plane and the
vector X. b is chosen perpendicular to z and (a,b,c) is an orthonormal reference frame.
The crystal orientation and the frame vectors are schematised in figure A.1.

Figure A.1: Laboratory coordinate system
(x,y,2) and principal coordinate system
(a,b,c). The crystal optical axis is repre-
sented by the vector c.

In this framework, expressions of vectors X, y, z can be written as function of the principal
reference frame vectors a, b, c as:

x = (cosb. a + sinf, c ) cosp. — sing. b
y = (cosf, a+sinf, ¢ ) sing. + cosg. b (A.14)

z = — sinf. a + cosf. ¢ .

We consider now an incident plane wave of wave vector k;, arriving on the crystal
surface or emerging from the crystal, as shematised in figure A.2. kj, is such that the
incident plane (i.e. the plane formed by the normal to the crystal surface and k;,) is the
(yz) plane. Therefore, the tangential component of k;,, along the x axis is null. We call
the tangential component of the incident wave along y and k, its longitudinal component
along z. The incident wave can be in the air or in the crystal. k,, and ke, are the
longitudinal components of the ordinary and extraordinary wave vectors k, and ke of the
field refracted or reflected by the crystal. The reflected or refracted wave vector in the
air is called k’. Passages of a wave through the air-quartz and quartz-air interfaces are
schematised by the drawings (a) and (b) in figure A.2 respectively. Using the Snell low
and the following boundary conditions at the interface:

(kin'x)z:[] - (k"X)z:O - (ko'x)z:[] - (ke'x)zzo = 0 ’
(kin'y)zzo - (k"y)z:[] - (kO'Y)zZO - (ke'y)z:[] - ﬁ )
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allows the wave vectors to be written in the laboratory reference frame as:

0 0
kin = 5 ) k' = 5 ’
k, K
Xyz Xyz
(A.15)
0 0
kO — /B ) ke — /B
Koz Ke;
Xyz Xyz

From here, we have now to determine the wave vectors k, and ke as well as the ordinary
and extraordinary field directions o and e.

a) B ke

k z Figure A.2: Projection in the

e (yz) plane of the reflection and
k. B quartz refraction of a plane wave at
" the interface between an isotropic
medium and an anisotropic uni-
axial medium (a) and at the inter-
quartz face between an anisotropic uni-
e axial medium and an isotropic

b) p medium (b).

k

air

General case

Considering the ordinary and the extraordinary wave vectors k, and ke of (A.15) and a
given initial state defined by the values of g, k,, 6. and ¢, from (A.14) k, and k, are
written as:

B cost sing. — Koy(ez) Sind.
Ko(e) = B cospe , (A.16)
[ sinf. singe + Kog(es) c0sOe abe

where the only unknown quantities are k,, and ke,. By using equations (A.10), (A.11)
and (A.16), expressions of k,, and k., are written as:
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N, W) 2
k(2)z = ( OC ) - 62 )
(A.17)
K v £ VvE—duw
ez - 21_]_ )
where:
( sin%f,  cos?,
u =
ng ng

1

n2
ne

1

2
ng

v = [ sing. sin(26.) (

)

2 sing? cos*f, + [* cos? ¢, N

2
ng

3% sing? sin?6, 2

2
ng

W

c2

The directions o and e of the electric fields associated to k, and k. are obtained in the
principal reference frame (a, b, c) from equations (A.12), (A.13), (A.16) and (A.17).

We have thus determined the wave vectors and the directions of fields associated to
the refracted and reflected waves at a quartz-air interface in the most general case, i.e.
when the optical axis is tilted in any way with respect to the interface. But in most of
crystals this is not the case and the crystal is cut parallel to its optical axis.

Case where the optical axis belongs to the interface plane

If the optical axis c is in the interface plane (xy), one has §. = —x /2, the opposite sign
being arbitrarily chosen in order to have a = z. In this condition, calling N, and N, two
normalisation factors such as o-0 = 1 and e-e = 1, expressions of k,, ke, 0 and e in
the laboratory reference frame (x,y,z) and in the principal reference frame (a,b,c) can
be simplified as follows:

koz kez
k, = B coso, , ke = B cospe ,
— [ sing, abe — [ sing. abc
B cosee Ko, sing
o =N, ko, = N, — ko, coso, ,
0 abc ﬂ COS¢C Xyz
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( Key
K2 — «2 2
R k2 cosg.
B cosge
e = N e = N k? sin
e kg . (::;_22 ng e 0z ¢c
[3 sinqﬁc - 5 kez Sln¢c xyz
-
kg - ‘::J_Z Ilg abc
0 — COSQe
e = 0 = — sing, if (B sing.) =0
\ 1 abc 0 Xyz

with:
ko, = <n° w)2 i
C
Ne W\ 2 2
k2 = ( ) — B* | cos’¢ + — sin’¢ |
C (0]
k2 — ntz) w2
(6] C2
n? w? . n?
k? = ec2 + 3% sin’¢, <1——;) ,
(0]
and:
B = k;, sinf : ki, = o n
C

In the latter expressions, f is the incidence angle and n the optical index of the incident
isotropic medium.

Case where the incidence is normal and c is in the interface plane

When in addition the incidence is normal, by putting 8 = 0 in the previous equations,
expressions of the wave vectors of the ordinary and extraordinary fields can be again
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simplified as follows:

( Koz 0
k,=| 0 — | o ,
0 abc Ko Xyz
{ ke, 0 (A.18)
ke = 0 — 0 9
0 abc kez Xyz
with : koz(ez) = &+ g no(e) y
C

and the directions of the ordinary and extraordinary fields are simply written as:

K sing, K 0
o = o — €08, = > —1 ,
| koz | 0 | kOZ |
Xyz abc
(A.19)

— COSQ, 0

e = — sing, = 0
0 Xyz 1 abc

After having determined the direction of the electric field associated to the ordinary
and extraordinary waves at the interface, we now want to determine the amplitudes of
these fields. For this, it is necessary to involve the field continuity conditions at the
interface between the two mediums.

A.2.2 Electromagnetic propagation : air — quartz

As illustrated in figure A.3, the electric field and the wave vector associated to an incident
plane wave coming from the air are called respectively E; and k. The fields reflected and
refracted at the interface between the air and the quartz are called E, and E;. The
reference basis (x,y,z) is such as the normal to the crystal surface ng is the opposite of
the z axis, the x axis is orthogonal to the (k, ny) incident plane and (x,y,z) is orthonormal.
We have chosen z = 0 at the interface, z < 0 in the air and z > 0 inside the quartz. In
that framework the electric fields can be written as:

E; = (Ags + App) e kT et |
E, = (Bys + B,p') e kT et | (A.20)
E; = (Co0 e7keT 4+ (Coe emtheT) gt |

where s, p and p’ are three unit vectors defined by:

—k X ng kxs , —k'xs
) P=—17 ) P = )
K| K|

s (A.21)

~ |—k x ny|
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with:

k =py+kz , kK =pfy-kz , n=-z. (A.22)

s is equal to x and is perpendicular to the (kz) incident plane. p and p’ belong to the
incident plane. o and e are two unit vectors parallel to the electric field vectors of the
ordinary and extraordinary refracted waves. k, and k. are the two corresponding wave
vectors. ko, ke, 0 and e are given by equations (A.15), (A.16), (A.17), (A.12) and (A.13).
In that case of the propagation air-quartz, k,, and k., are positive.

4
— —_—
4
& L z > ﬁ:o)
X p
E) ﬁ'fe)

Figure A.3: Passage of a plane wave through an anisotropic uniaxial medium of thickness
¢. The normal to the crystal plane is ng and the reference frame (x,y,z) is indicated.

The magnetic field associated to the reflected and refracted incident waves are obtained
from (A.1) and (A.3):

H=- " VxE,

W
and by using (A.20), one obtains:
1 —ikr iwt
Hi:w—ﬂkx(Ass—i-App)e e’
1 / n —ik'-r iwt
Hr:w_uk x (Bgs + Bpp') e et |
1 —ikor —iker twt
Ht:—(COkoxoe ot + Cgke x € 7% )e )
wis

The tangential components of the fields E and H must be continuous at the interface
z = 0 between the isotropic medium and the crystal which leads to:
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(Es+E;)-x=E¢-x

(Ei+Er)'y:

) (Hi+Hr)'X:Ht'X )

E;-y ) (Hi+H,)-y=H -y

By using the following relations:

_kzy_ﬂz

= - ,
s-x=1 ,
s-y=0 ,
(k'xs)-x=0
(kxp)y=0

p,:kZY+6Z
k

p-x=0

(kxs)-x=0

(k' xp')-x=k

the four relations (A.23) are written as:

(A, + By

k (Bp - Ap)

kz (As - Bs)

\

General case

)

p-y=p-y=—
p-x=0
(kxs)-y=k,

= G, (x-0) + Ce (x-€)

k, (Ap+By,) = kCy(y-0) + kCe (y-e)

= Cox-(kox0) + Cox-(ke xe)

= GCoy-(koxo0) + Coy- (ke xe)

(A.23)

(A.24)

The resolution of the boundary equations (A.24) allows the four unknown quantities B,
B,, C, and C, to be obtained as function of the incident wave amplitudes Ay and A,.
The resolution of (A.24) leads to:

C0 - Astso+

Ce - Astse+

APtPO
Aptpe
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) Bs = Asrss +Aprps )

, B, = Agrgp + ApTpp ,

(A.25)



where:

2k,D —2k,C

"o~ AD-BC ' ™ T AD-BC
—2k,B 2k, A

bpo = AD — BC ’ bpe = AD — BC ’
Igs = (X-0)ty, + (x-€) tge — 1,

(A.26)
Ips = (X-0) tpo + (x-€) tpe

k
= = [00y) tw + (e0) tu]

k
Tpp = k_[(o'}’) tpo + (€-¥) tpe] — 1,
and where the quantities A, B, C, D are defined by:
A=o-(yxk)+o-(yxko) ,

B=e-(yxk)+e-(yxke) ,

(y x k) - (ko x 0)
k )

(y x k) - (ke X €)
k

C=k(o-y) —

D=k (e-y)—

We have introduced in (A.25) the so-called Fresnel coefficients describing the air-
quartz transmission of an s or a p wave component in an ordinary or an extraordinary
wave component, and the reflection in air of an s or a p wave component in an s or a p
reflected wave component:

e ty, : transmission of an s wave component in an ordinary wave component,

e t,, : transmission of a p wave component in an ordinary wave component,

e ts : transmission of an s wave component in an extraordinary wave component,

e t,. : transmission of a p wave component in an extraordinary wave component,

e 1 : reflection of an s wave component in an s wave component,

e 1, : reflection of a p wave component in an s wave component,

e 1, : reflection of an s wave component in a p wave component,

pp : reflection of a p wave component in a p wave component.
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Case where c belongs to the interface and the incident is normal

In the case of an incident wave of which the wave vector is perpendicular to the (xy)
crystal plane, and in the case where moreover the optical axis ¢ belongs to the interface
plane, using relations (A.18) and (A.19) allows the Fresnel coefficient of expression (A.26)
to be simplified as:

o 2 n ‘o o (n? — nene) — n (ne — n,) cos2¢,
SO (n + no) ) SS (n + no) (n + ne) )
. 21 n (ne — n,) sin2¢,
= _ N0 ) s I = — s
T tny) P ps (0 + 1my) (0 1)
2n
S Ermte o T T ,
o 2n boe A (n? — nene) +n (ne — ny) o829,
. (n + ne) , o (n+mno) (n+ ne) ,

where n is the index of the isotropic medium and n, and n, are the indices of the uniaxial
medium.

We now want to determine the Fresnel coefficients corresponding to the passage of the
wave at the interface between the anisotropic medium and the isotropic medium.

A.2.3 Electromagnetic propagation: quartz — air

To calculate the wave propagation at the second interface, we consider an incident wave
propagating inside the crystal and arriving at the interface. We choose again to take the
longitudinal coordinate z null at the interface. The electric field associated to this wave
is written as:

Ei — CE€+ efik:"-r eiwt ,

where C,, €™ and k" are quantities characteristic either of an ordinary wave (C,, o and
k1), or of an extraordinary wave (C,, e and k') propagating in the crystal, as shown
in figure A.3. The electric fields associated to the reflected and refracted waves at the
interface are called respectively E, and E;. They are written as:

E, = (Co0 e kT 4 Ce e tker) et |
E; = (Ass + A,p) e7kr et |

where, as for the case of the passage from air to quartz, s and p are two unit vectors
defined by equations (A.21) and (A.22). s is equal to x, p belongs to the (kz) plane, o~
and e~ are two unit vectors parallel to the electric field of the ordinary and extraordinary
reflected waves respectively.

The magnetic fields associated to the incident reflected and refracted waves are written
as:
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wit
1 _ —  _—ikZ-r — — —tke T 1wt
H, = — (Cxk, xo e ™7 + Cek, xe e ™T)e“ |
w
1 —ikr iwt
Hi= —k x (Ass + A,p) e e
Wit

General case

As for the calculation at the first interface, the continuity conditions of the tangential
components allow the four unknown quantities Ag, A, C,, and C,e involved in the field
expressions to be obtained as a function of the amplitude of the incident wave in the
crystal C, and as function of the wave vectors. Explicitly, the four continuity conditions
are written as:

([ Ay, = C.(x-€") + Cop (x:07) + Cpe (x-€7)

k, A, = kC.(y-¢") + kCpo(y-07) + kCpe (y-€e7)
(A.27)
-kA, = Cox-(kfxet) + Cox-(kg x0) + Crex-(ky xe)

k, Ay, = Ccy-(kf xe") + Coy- (kg x07) + Cey:-(k; xe7)

\

An initial wave inside the crystal which is composed of its two components of ordinary
and extraordinary fields is written as:

E; = (COOJr e~kiT 1 Ot e_iki'r) et (A.28)

We therefore have to resolve two systems of four equations (A.27) where C, e* and k
are replaced by the two sets of following coefficients:

CE - CO Ce - Ce
et = of and et = et
kt = kt kt = kit

The resolution of the continuity equations (A.27) leads to:

Cro - Coroo + Cereo ) As = Cotos + Cetes )
(A.29)
Cre = Coroe + Ceree ) Ap - Cotop + Cetep )

where:
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foo = "AD _BC T T TAD - BC ’
AR, -EC AR -EC
° " AD - BC ’ “ 7 AD - BC ’
tes = (x:0") + (x:07)Too + (X €7) I'oe ,

(A.30)

= (5) (e + o + e ]

A=o-(yxk, —yxk) , C=k(o-y)+

B:e_-(ka;—YXk) , D:k(e_y)+ i ,
C(kt % of

EO:0+‘[ka—kai] : FO:_k(0+y)_(ka) lEkOXO),
k) - (kF +

E.=et [yxk—yxk!] | Fe:—k(e+.y)_(yx ) - (ki xef)

In (A.29), Fresnel coeflicients describing the reflection in the quartz of an ordinary or an
extraordinary wave component in an ordinary or an extraordinary reflected wave com-
ponent, and Fresnel coefficients describing the quartz-air transmission of an ordinary or
an extraordinary wave component in an s or a p transmitted wave component have been
introduced:

® 1, : reflection of an ordinary wave component in an ordinary wave component,
e 1, : reflection of an extraordinary wave component in an ordinary wave component,

I'oe ¢ reflection of an ordinary wave component in an extraordinary wave component,

e 1., : reflection of an extraordinary wave component in an extraordinary wave com-
ponent,

e t,s : transmission of an ordinary wave component in an s wave component,

e t,, : transmission of an ordinary wave component in a p wave component,
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e tos : transmission of an extraordinary wave component in an s wave component,

e t., : transmission of an extraordinary wave component in a p wave component.

Case where c belongs to the interface and the incidence is normal

If the incident wave inside the crystal has its wave vector perpendicular to the crystal
plane and if moreover the optical axis c is in the interface plane, the Fresnel coefficient of
expression (A.30) can be simplified as:

- (EZIE) ot om . ty = <2+> ot s |
leo = 0 , tes = <n§ien> et s |
r'ee = 0 , top = <niion> 0+-p 7
N (2:;9 ooty = <2+> et p .

A.3 Calculation of the total transmitted field

Having determined all the transmission and reflection Fresnel coefficients at the air-quartz
and quartz-air interfaces, the total electric field emerging from the crystal can now be
calculated to obtain the expression of the total transmitted intensity. Introducing:

. . . t t
the air-quartz transmission matrix T,, = ( tso tpo >,
se pe

the air-quartz reflection matrix R,, =

the quartz-air reflection matrix Ry, =

Y

Iss  Tps
)
I'sp Ipp
rOO rOO
roe

. .. . t t
the quartz-air transmission matrix Tq, = ( e ),
top  tep

expressions (A.25) and (A.29) of the field amplitudes can be rewritten in matrix form.
For the air-quartz passage, (A.25) becomes:

(&)= m() mo (B)-na(d) .

and for the quartz-air passage (A.29) becomes:
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Cro \ _ Co Al Co
(&) =ra(c) ma (3)=tu(e) . @2

where A{ and A} are the quantities A; and A, of equation (A.29) whose names have been
changed to avoid confusion with the incident field. After only one passage of the wave
through the medium, the transmitted wave (Ag, Al) is the result of the incident wave
(A, Ap) refracted by the first interface at z = 0, then propagated through the medium
until the second interface at z = ¢ and refracted by the second face. Introducing the
matrix:

o—ilky -z 0
Py =
0 o—ilky -z

describing the wave propagation through the medium of thickness ¢, the amplitude (C!, C.)
of the field arriving at the second interface is written as:

C:) B Co
<0;>‘P*<ce>

Then, using (A.31) and (A.32), the amplitude of the field emerging from the crystal is
written as a function of the incident field amplitude as:

ALY A,
() =merona()

In the same way, the amplitude of the field transmitted after a double reflection on the
first and the second crystal faces is written as:

A _ Aq
<A/S>:Tqap+[RanquaP+]Taq<A >
p

p

After an infinity of internal reflections, the transmitted wave amplitude is written in the
form:

By using the fact that:
d M =[I-M]"
i=0

where I is the identity matrix, the amplitude of the total transmitted field through the
crystal is written as:
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(if)ZMT<iS> where :
P P (A.33)

Formula (A.33) provides the transmitted amplitude of a field passing through an anisotropic
uniaxial medium of a given thickness ¢, as a function of the amplitude of the initial field,
and this by taking into account the multiple reflections which occur inside the medium.
The calculation has been done in a (x,y, z) reference frame attached to the crystal and to
the incident wave, and whose unit vectors x, y and z are such as:

e z = —ng where ng is the normal of the crystal surface,

e x is perpendicular to the incident plane defined by (k;n, ng), ki, being the incident
wave vector,

e (x,y,z) is orthonormal.

In Chapters 4, 5 and 6, the generated ellipsometer intensity signals have been simulated
by using formula (A.33) for the quartz quater wave plate transmission. The transmitted
wave intensities simulated with this model and compared with experimental ellipsometer
data recorded in photodiodes allow some parameters characteristic of the anisotropic
uniaxial crystal as its thickness, its birefringence or some misalignments parameters, to
be determined.
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