Kalibration des H1 Flüssig-Argon Kalorimeters unter Berücksichtigung der Gewichtungsmethode für Teilchenjets

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Physik
der Universität Hamburg

Vorgelegt von
Peter Loch
aus Westerholt bei Recklinghausen

Hamburg
1992
Kurzfassung

Über die Forderung nach identischen rekonstruierten Energien für simulierter und experimenteller Signale von Elektronen einer bestimmten Einschussenergie wird eine elektromagnetische Skala definiert. Der abgeschätzte systematische Fehler dieser Skala beträgt etwa 1.6%, wobei Abweichungen von der Energielinearität für Elektronen mit Energien zwischen 5 bis 50 GeV etwa 1% beitragen. Die Energieauflösung des Kalorimeters für gemessene Elektronen beträgt \(\sigma/E \approx 13.3\% \sqrt{\text{GeV}/E} + 200 \text{ MeV}/E \).

Die beste Schätzung für die durch Pionen im Kalorimeter deponierte Energie wird durch Signalgewichtung erreicht, die als Funktion direkt messbarer Variablen unter Verwendung der simulierten Pionsignale parametrisiert wird. Die Abweichungen von der Energielinearität zwischen 5 und 205 GeV sind für diese Simulationen nach Signalgewichtung kleiner als 1%; die Übertragung der Gewichtungsfunktionen auf experimentelle Pionen ist mit einem Fehler von etwa 3% bei 5 – 50 GeV und etwa 1% bei 80 – 205 GeV möglich. Für experimentelle Signale wird eine Auflösung von \(\sigma/E \approx 49.7\% \sqrt{\text{GeV}/E} + 1.6\% \) erreicht.

Die Anwendung der aus hadronischen Einzelteilcheneignissen bestimmten Gewichtungsfunktionen auf simulierte Teilchenjets mit Energien zwischen 20 und 100 GeV ist bei zusätzlicher Verwendung eines Filters zur Selektion der Signale aus der elektromagnetischen Jetkomponente innerhalb einer Abweichung von der Energielinearität von weniger als 2% möglich.

Abstract

In this thesis a calibration model for signals from particle jets in the H1 liquid Argon calorimeter is introduced. This model is based on the calibration of a calorimeter module for electrons and pions. The experimental data were taken in a test beam at the CERN SPS; simulated data were calculated using GHEISHA in GEANT 3.14.

From the constraint of identical reconstructed energies for experimental and simulated signals from electrons of a certain beam energy an electromagnetic scale is defined. The estimated systematic error of this scale is around 1.9% including deviations from linearity of ca. 1% for electrons in the energy range from 5 to 50 GeV. The energy resolution for measured electrons was found to be \(\sigma/E \approx 13.3\% \sqrt{\text{GeV}/E} + 200 \text{ MeV}/E \).

The best estimation of the energy deposited by pions in the calorimeter is obtained by signal weighting, which is parametrized as a function of directly measurable variables, using simulated pion signals. After signal weighting the deviation from linearity is smaller than 1% between 5 and 205 GeV for these simulations. The transfer of the weighting functions to experimental pions is possible within an error of 3% at 5 – 50 GeV down to 1% for 80 – 205 GeV. The resolution for experimental signals is \(\sigma/E \approx 49.7\% \sqrt{\text{GeV}/E} + 1.6\% \).

The application of the weighting functions determined from single hadron events to simulated particle jets with energies between 20 and 100 GeV is possible within a deviation from linearity of less than 2% if a filter algorithm for the selection of signals originated from the primary electromagnetic jet component is applied in addition.
Inhaltsverzeichnis

Einleitung

1 Messungen der Protonstruktur bei HERA
 1.1 Tief-inelastische Lepton-Nukleon Streuung 7
 1.1.1 Die kinematischen Variablen 7
 1.1.2 Strukturfunktionen des Protons 9
 1.2 Energiekalibration und Strukturfunktionsmessung 14
 1.2.1 Die Messung des gestreuten Elektrons 15
 1.2.2 Rekonstruktion der Kinematik aus dem hadronischen Endzustand 16

2 Einführung in die Kalorimetrie 19
 2.1 Absorptionsverhalten verschiedener Teilchenarten in Materie 19
 2.1.1 Elektromagnetischer Energieverlust 20
 2.1.2 Ausbildung des elektromagnetischen Schauers 23
 2.1.3 Grundlegende Prozesse in hadronischen Schauern 25
 2.1.4 Strukturen hadronischer Schauer 27
 2.2 Kalorimetrische Energiemessung 29
 2.2.1 Prinzip des Sampling Kalorimeters 29
 2.2.2 Elektromagnetische Signale 30
 2.2.3 Hadronische Signale 33
 2.3 Flüssig Argon Kalorimetrie in H1 35
 2.3.1 Aufbau des Kalorimeters 36
 2.3.2 Hadronen im H1 Kalorimeter 38

3 Grundlagen der Kalibration 43
 3.1 Bedeutung von Kalibrationskonstanten 43
 3.1.1 Ladungssammlung im Argon 44
 3.1.2 Beziehungen zwischen Kalibrationen für verschiedene Teilchenarten 45
 3.2 Ideale elektromagnetische Kalibration 46
 3.2.1 Experimentelle Kalibration für Elektronen 47
 3.2.2 Energieverluste im inaktiven Material 47
 3.2.3 Korrektur der experimentellen Skala 49

4 Durchführung der Kalibrationsmessungen 50
 4.1 Die Kalibrationsmodule 50
 4.1.1 Elektromagnetisches Viertelstack 50
 4.1.2 Hadronisches Prototypkolorimeter 53
4.2 Aufbau der Kalibrationsmessungen 55
4.2.1 Aufbau in der Testregion 55
4.2.2 Strahlführung .. 57
4.2.3 Trigger und Teilchenselektion 57
4.3 Elektronische Kalibration 60
4.3.1 Elektronische Signalauslese 60
4.3.2 Ladungseichung des digitalen Signals 61
4.4 Ladungskorrektur ... 62
4.4.1 Elektronische Korrekturen 63
4.4.2 Effizienz der Ladungssammlung 66

5 Energierekonstruktion auf der elektromagnetischen Skala .. 70
5.1 Bestimmung der elektromagnetischen Skala 70
5.1.1 Die ideale Monte Carlo Skala 70
5.1.2 Die Kalibration für reale Elektronen 73
5.1.3 Systematische Unsicherheiten der elektromagnetischen Skala 75
5.1.4 Rekonstruktion der deponierten Energie 77
5.2 Elektronsignale in IFE 79
5.2.1 Energieauflösung .. 79
5.2.2 Schauerstrukturen .. 82
5.3 Signale von Pionen ... 83
5.3.1 Ereignisselektion .. 83
5.3.2 Vergleichbarkeit mit Simulationen 86

6 Energierekonstruktion für Hadronen und Teilchenjets mit Signalgewichtung .. 95
6.1 Bestimmung der Gewichtsfunktionen 95
6.1.1 Beziehungen zwischen Signal und deponierter Energie in einzelnen Kanälen .. 95
6.1.2 Berücksichtigung von Korrelationen zwischen Signalen in einzelnen Kanälen .. 99
6.1.3 Bestimmung der Parameter der Gewichtsfunktion 101
6.1.4 Berücksichtigung des elektronischen Rauschens 105
6.1.5 Ergebnisse der Anpassungen 105
6.2 Linearität und Auflösung 106
6.2.1 Güte der Parameterbestimmung 107
6.2.2 Vergleichbarkeit mit realen Pionen 107
6.2.3 Gewichtete Energieauflösung 111
6.3 Rekonstruktion von Teilchenjets 112
6.3.1 Ein Modell zur Energierekonstruktion von Jets 112
6.3.2 Selektion von Clustern 113
6.3.3 Rekonstruktion mit Clusterfilter 117
6.3.4 Abschätzung systematischer Unsicherheiten 122

Zusammenfassung .. 128
Einleitung

Die aufgrund der vielfältigen physikalischen Fragestellungen an die beiden Detektoren H1 und ZEUS bezüglich absoluter Energiekalibrierung, Spurrekonstruktion und Streuwirkungsmessung sowie Elektronidentifikation gestellten Forderungen sind sehr hoch. In beiden Detektoren kommen neben Driftkammern zur Rekonstruktion geladener Spuren große Kolorimeter zur Energiemessung von geladenen und neutralen Teilchen zum Einsatz.

In das H1 Experiment (Abbildung 1) ist ein Flüssig Argon/Blei- bzw. Stahlfrequimeter hoher Granularität eingebaut. Dieses Kolorimeter ist insbesondere nicht kompensierend, d.h. ein hochenergetisches Hadron erzeugt eine kleinere Signal als ein Elektron, welches die gleiche Energie deponiert. Unter Ausnutzung der feinen Granularität kann durch Gewichtung der Signale in einzelnen Kolorimeterzellen bei der Rekonstruktion hadronischer Schauer Kompensation und damit eine zuverlässige hadronische Energieauflösung erreicht werden. Daneben zeichnet sich das H1 Flüssig Argon Kolorimeter durch eine gute elektromagnetische Energieauflösung und Elektron-Hadron-Separation aus.

HERA Experiment H1

1. Beam pipe and beam magnets
 Strahlrohr und Strahlmagnete

2. Central tracking chambers
 Zentrale Sperrkammern

3. Forward tracking chambers and Transition radiators
 Vorwärtskamern und Übergangsstrahlungsmodul

4. Electromagnetic Calorimeter (lead)
 Elektronenförmiges Kalorimeter (Blei)

5. Hadronic Calorimeter (stainless steel)
 Hadronisches Kalorimeter (Edelstahl)

6. Superconducting coil (1.2 T)
 Superleitende Spule (1,2 T)

7. Compensating magnet
 Kompensationsmagnet

8. Helium cryogenics
 Helium Kältetechnik

9. Muon chambers
 Myon-Kamern

10. Instrumented iron
 Instrumentiertes Eisen (Eisenplatten + Strahlnicht-Detektoren)

11. Liquid Argon
 Flüssig-Argon

12. Muon toroid magnet
 Myon-Toroid-Magnet

13. Warm electromagnetic calorimeter
 Warmes elektromagnetisches Kalorimeter

14. Plug calorimeter (Cu, Si)
 Vorwärts-Kalorimeter

15. Concrete shielding
 Betonschirmung

16. Liquid Argon cryostat
 Flüssig-Argon Kryostat

Abbildung 1: Der H1 Detektor am HERA Ring in Hamburg.
getestet. Schließlich wird ein Weg zur Kalibrierung des H1 Kalorimeters für Teilchenjets mit Hilfe der aus hadronischen Einzelteilcheneignissen bestimmten Gewichtungsfunktionen und einem Filter zur Selektion der durch Photonen im Jet deponierten Energie vorgeschlagen.

Das dritte Kapitel beschäftigt sich mit der Definition der idealen elektromagnetischen Kalibrierung, die die Basis zur Übertragung der Ergebnisse der Kalibrationsmessungen auf das H1 Kalorimeter bildet. Im vierten Kapitel wird zunächst der Aufbau der Messungen am CERN SPS beschrieben. Danach folgt eine etwas detailliertere Diskussion der notwendigen, an die gemessenen Ladungen anzubringenden Korrekturen.

Im sechsten und letzten Kapitel schließlich werden die Gewichtungsfunktionen zur vollständigen Rekonstruktion hadronisch deponierter Energie angegeben und auf Signale aus simulierten und realen Pionereignissen angewendet. Im letzten Abschnitt dieses Kapitels wird das Modell zur Rekonstruktion der durch Teilchenjets deponierten Energie anhand von Simulationsrechnungen überprüft.

In Anhang sind einige Bemerkungen über die verwendeten Simulationsprogrammen und eine Übersicht über die Zahl der zur Verfügung stehenden experimentellen und simulierten Ereignisse zu finden.
Kapitel 1

Messungen der Protonstruktur bei HERA

In diesem Kapitel werden einige Aspekte der Bestimmung der Strukturfunktionen des Protons in der tief-inelastischen Lepton-Nukleonstreuung aufgezeigt. Der Einfluß der Güte der Energiemessung in den HERA Detektoren auf die Genauigkeit dieser Messungen wird diskutiert.

1.1 Tief-inelastische Lepton-Nukleon Streuung

Mit der HERA Maschine werden kinematische Bereiche zugänglich, die mit bisherigen Experimenten der Lepton-Nukleon-Streuung mit festen Targets (*Fixed Target Experiments*) nicht erreichbar waren. Das Spektrum der physikalischen Fragestellungen umfaßt zum Beispiel das Verhalten der Strukturfunktionen in diesen Bereichen aber auch Messungen zu Parametern des Standardmodells und der Quantenchromodynamik. Im folgenden werden die kinematischen Variablen eingeführt und der totale Wechselwirkungsquerschnitt für Prozesse des neutralen Stroms vorgestellt.

1.1.1 Die kinematischen Variablen

Die Kinematik der Lepton-Nukleon-Streuung kann mit Hilfe verschiedener Variablen beschrieben werden. Die Lorentz-Invarianten dieses Prozesses sind unter Vernachlässigung der Leptonmasse (siehe auch Abbildung 1.1):

\[q^2 = (k - k')^2 = - Q^2, \quad (Q^2 > 0) \] \hspace{1cm} (1.1)

\[s = (p + k)^2 \] \hspace{1cm} (1.2)

\[W^2 = p_{\mu}^2 \] \hspace{1cm} (1.3)

\[\nu = \frac{p \cdot q}{M} = \frac{1}{2M} (W^2 + Q^2 - M^2) \] \hspace{1cm} (1.4)

Dabei sind
Abbildung 1.1: Zur Definition der Viererimpulse am Beispiel der tief-inelastischen Lepton-Nukleon-Streuung $l + N \rightarrow l' + X$ in der niedrigsten Ordnung

k, k': Die Viererimpulse des Leptons vor bzw. nach der Reaktion.

p, p_H: Der Viererimpuls des Nukleons vor der Reaktion bzw. der Gesamtviererimpuls des hadronischen Endzustandes.

q^2: Der Viererimpulsübertrag.

s: Das Quadrat der Schwerpunktsenergie.

W^2: Das Quadrat der invarianten Masse des hadronischen Endzustandes.

ν: Der Energieübertrag.

M: Die Nukleonmasse.

Neben den oben vorgestellten Größen werden zwei Variablen aus dem Quark-Parton-Modell zur Beschreibung des inelastischen Streuprozesses benutzt. Zum einen das Bjorken-x, das den Anteil des mit dem Lepton wechselwirkenden Partons am Gesamtimpuls des Nukleons beschreibt, zum anderen die Größe y, die ein Maß für die Inelastizität der Reaktion ist ($0 \leq x \leq 1, 0 \leq y \leq 1$):

$$
x = - \frac{(k - k')^2}{2p \cdot (k - k')}, \quad y = \frac{p \cdot (k - k')}{p \cdot k}
$$

(1.5)

Unter Verwendung der Gleichungen (1.1) bis (1.4) werden (1.5) zu:

$$
x = \frac{Q^2}{2M \nu} = \frac{Q^2}{W^2 + Q^2 - M^2}, \quad y = \frac{2M \nu}{s - M^2} = \frac{W^2 + Q^2 - M^2}{s - M^2}
$$

(1.6)

Daraus folgt, daß bei tief-inelastischer Lepton-Nukleonstreuung ($y > 0$) stets zwei linear unabhängige Größen zu messen sind, um die Kinematik zu beschreiben. Damit ist auch der totale Wirkungsquerschnitt bei festem s von zwei Variablen abhängig, z.B. x und Q^2.

8
Abbildung 1.2: Die Akzeptanzregionen in der \((x, Q^2)\)-Ebene für die Elektronen- und Hadronmessungen bei HERA im Vergleich zu der bisher zugänglichen Region (aus [Eis90]). Die eingezeichneten Begrenzungen sind durch die geringe Akzeptanz der Detektoren um das Strahlrohr \((\theta_e < 172^\circ \text{ für Elektronen, } \theta_j \leq 5^\circ \text{ für den Jet, jeweils bezogen auf die Richtung des Protons})\) und die relativ schlechte Auflösung für niedrige hadronische Energien \((E_h < 5 \text{ GeV})\) bedingt.

1.1.2 Strukturfunktionen des Protons

Bei genügend großen Schwerpunktsenergien kann mittels der tief-inelastischen Lepton-Nukleonstreuung die Struktur des Nukleons, d.h. die Verteilung der Valenz- und Seequarks und der Gluonen im Nukleon, gemessen werden. Bisher stehen für diese Messungen nur Daten von Experimenten der \(eN\), \(\mu N\) und \(\nu N\)-Streuung mit festem Target zur Verfügung. Mit der HERA \(ep\) Maschine wird es möglich sein, den meßbaren kinetischen Bereich deutlich zu höheren \(Q^2\) und kleineren \(x\) zu verschieben. In Abbildung 1.2 sind die Regionen gezeigt, in der das Auflösungsvermögen der HERA Detektoren eine Messung des inklusiven Wirkungsquerschnittes mit mehr als zehnprozentiger Genauigkeit erlaubt. Über die Elektronenmessung allein wird der Bereich von etwa \(10^{-4} < x < 0.6\), \(Q^2 > 5 \text{ GeV}^2\) und \(y > 0.1\) abgedeckt; die Messung des hadronischen Endzustandes deckt die Region \(0.01 < x < 0.5\), \(Q^2 > 100 \text{ GeV}^2\) und \(y > 0.03\) ab [Fel88,Eis90]. Durch Kombination beider Messungen kann der insgesamt erreichbare Bereich noch vergrößert werden. Für große \(Q^2\) lassen sich dann Strukturen kleiner als \(10^{-3} \text{ fm}\) auflösen; außerdem wird es für kleine \(x\) möglich sein, mehr über die Verteilung der Gluonen im Proton zu erfahren.

Betrachtet man den Streuvorgang in niedrigster Ordnung, so ergeben sich folgende
Abbildung 1.3: Schematische Darstellung des neutralen (a) und des geladenen Stroms (b).

Neutrale Ströme

Im Standardmodell der elektroschwachen Wechselwirkung ist der differentielle Wirkungsquerschnitt für neutrale Ströme in der tief-inelastischen Elektron-Proton-Streuung bei nicht polarisierten Teilchen in führender Ordnung gegeben durch: (z.B. in [Ing88])

\[\frac{d^2\sigma(e^- p)}{dxdQ^2} = \frac{4\pi\alpha^2}{2Q^4} \left\{ y^2zF_1(x, Q^2) + (1-y)F_2(x, Q^2) + \left(y - \frac{y^2}{2} \right) zF_3(x, Q^2) \right\} \] (1.7)

Zwei der drei Strukturfunktionen \(F_1, F_2, F_3 \) sind unter Vernachlässigung der Quarkmassen und der intrinsischen Transversalimpulse über die Callan-Gross-Beziehung [Cal69]

\[2zF_1(x, Q^2) = F_3(x, Q^2) \] (1.8)

miteinander verknüpft. Die Strukturfunktionen \(F_2, F_3 \) sind im Quark-Parton-Modell abhängig von der Wahrscheinlichkeit, daß ein Quark (Antiquark) den Impulsanteil \(x \) des Protons trägt, und der Art der Kopplung dieses Partons an das Lepton. Der Zusammenhang zwischen der Strukturfunktion und den Quark- bzw. Antiquarkdichteverteilungen \(q_f, \bar{q}_f \) ist:

\[F_2(x, Q^2) = \sum_{f = u, d, s, c} A_f(Q^2) \left\{ xq_f(x, Q^2) + x\bar{q}_f(x, Q^2) \right\} \] (1.9)
\[zF_3(x, Q^2) = \sum_{f = u, d, s} B_f(Q^2) \left\{ xq_f(x, Q^2) - x\bar{q}_f(x, Q^2) \right\} \]

Die Koeffizienten \(A_f, B_f \) sind von der Quarkflavour \(f \), der Stärke der Kopplung an das Photon und das \(Z^0 \) Boson, und dem Verhältnis des \(Z^0 \)- und des Photonpropagators \(P_Z = Q^2/(Q^2 + M_Z^2) \) abhängig:

\[A_f(x, Q^2) = \epsilon_f^2 - 2e_f v_f v_f P_Z + (v_f^2 + a_f^2)(v_f^2 + a_f^2)P_Z^2 \]
\[B_f(x, Q^2) = -2e_f a_f a_f P_Z + (v_f^2 + a_f^2)(v_f^2 + a_f^2)P_Z^2 \]

(1.10)

Die Parameter \(v_f \) und \(a_f \) sind die Vektor- und Axialvektorkopplungen der Quarks bzw. Antiquarks an das \(Z^0 \). Sie können als Funktionen der dritten Komponente des schwachen Isospins \(T_3 \) und des Weinbergwinkels \(\theta_W \) ausgedrückt werden:

\[v_f = \frac{T_{3f} - 2e_f v_f \sin^2 \theta_W}{\sin 2\theta_W}, \quad a_f = \frac{T_{3f}}{\sin 2\theta_W} \]

(1.11)

Die Kopplung an das Photon wird in Gleichung (1.9) durch das Quadrat der elektrischen Ladung \(e^2 \) beschrieben. Die Größen \(v_f, a_f \) in Gleichungen (1.10) beschreiben die Kopplung des \(Z^0 \) an das Elektron und sind durch Einsetzen der entsprechenden Größen in (1.11) zu berechnen.

Für \(Q^2 \ll M_Z^2 \) folgt \(P_Z \to 0 \) und damit auch \(F_3 \to 0 \); der Wirkungsquerschnitt in Gleichung (1.7) wird durch den rein elektromagnetischen Photonaustausch dominiert:

\[\frac{d^2 \sigma(e^-p)}{dxdQ^2} \bigg|_{em} = \frac{4\pi\alpha^2}{xQ^4} \left\{ y^2 z F_1^{em}(x, Q^2) + (1 - y) F_2^{em}(x, Q^2) \right\} \]

Unter Verwendung der Callan-Gross-Beziehung aus Gleichung (1.8) ergibt sich der differentielle Wirkungsquerschnitt für den elektromagnetischen Strom zu:

\[\frac{d^2 \sigma(e^-p)}{dxdQ^2} \bigg|_{em} = \frac{2\pi\alpha^2}{xQ^4} \left(1 + (1 - y)^2 \right) F_2^{em}(x, Q^2) \]

Die elektromagnetische Strukturfunktion \(F_2^{em} \) ist dann durch

\[F_2^{em}(x, Q^2) = \sum_{f = u, d, s} \epsilon_f^2 \left\{ xq_f(x, Q^2) + x\bar{q}_f(x, Q^2) \right\} \]

gegeben (vgl. Gleichung (1.10)).

Mit wachsendem \(Q^2 \) gewinnt zuerst der \(\gamma/Z^0 \)-Interferenzterm (linear in \(P_Z \)) und schließlich der reine \(Z^0 \)-Term (quadratisch in \(P_Z \)) an Bedeutung. Für sehr große \(Q^2 \) wird der Wirkungsquerschnitt durch den schwachen Übergang dominiert. Abbildung 1.4 zeigt die relativen Beiträge der drei Terme zum Gesamtwirkungsquerschnitt – normiert auf den rein elektromagnetischen Querschnitt \(\sigma \), – als Funktion von \(Q^2 \).
Einflüsse der starken Wechselwirkung

Bjorken hat 1969 errechnet, daß für \((\nu, Q^2) \to \infty\) bei festem \(Q^2/\nu\) die Strukturfunktion \(F_2\) eine alleinige Funktion von \(x\), nicht aber von \(Q^2\) ist: [Bjo69]

\[F_2(x, Q^2) \to F_2(x). \]

Dieses Skalenverhalten wurde durch Streuexperimenten z.B. beim SLAC bestätigt. Es spiegelt die Streuung des Leptons an einem quasi-freien Parton wieder. Mit der Vergrößerung des für die Messungen zugänglichen kinematischen Bereichs sind bei späteren Fixed Target Experimenten Abweichungen vom Skalenverhalten gefunden worden, die ebenso wie ein weiteres experimentelles Ergebnis, nämlich die nicht verschwindende longitudinale Strukturfunktion \(F_L = F_2 - 2xF_1\), nicht durch das Modell des quasi-freien Partons allein erklärt werden können. Beide Resultate deuten auf eine Wechselwirkung der Partonen untereinander hin.

Wenn das Nukleon nur aus punktförmigen, quasi-freien Valenzquarks besteht, ist auch mit wachsendem Auflösungsvermögen, also wachsendem \(Q^2\), keine Änderung der Struktur zu erwarten. Die Dichteverteilungen \(q_f(x)\) der Quarks und damit auch \(F_2\) sind dann eine alleinige Funktion von \(x\). Andererseits sagt die Theorie der starken Wechselwirkung, die Quantenchromodynamik (QCD), daß bei größerer Auflösung eine Wolke von Partonen um die Quarks sichtbar wird. Die Zahl der aufgelösten Partonen und damit auch die Partondichte nimmt mit wachsendem \(Q^2\) zu, die Dichteverteilungen sind somit auch vom Impulsübertrag abhängig. Zudem wächst die Wahrscheinlichkeit, an einem Parton mit kleinem Impulsanteil \(x\) im Nukleon zu streuen. Dagegen sinkt die Wahrscheinlichkeit, ein Parton mit großem \(x\) zu finden, da Quarks mit großem Impuls durch Gluonbremssstrahlung an Impuls verlieren. In Abbildung 1.5a ist der Feynmangraph für Gluonbremssstrahlung durch das primäre Quark in führenden Ordnung gezeigt.

Gluonbremssstrahlung trägt in Ordnung \(O(\alpha_s)\) zu \(F_2\) bei. Von der selben Ordnung sind auch die Boson-Gluon-Fusionsprozesse, die von der Gluondichteverteilung im Nukleon abhängen und somit weitere Strukturen in \(F_2\) einfließen (Abbildung 1.5b). Qualitativ läßt sich der Einfluß dieser Kanäle bei reinem Photonaustausch nach einer Darstellung in [Hal84] wie folgt zusammenfassen:
\[
\frac{F_L(x, Q^2)}{x} = \left[\begin{array}{c}
\sum_f e_f^2 \times \left\{ q_f(x) + \int_x^1 \frac{d\xi}{\xi} \frac{\alpha_s}{2\pi} P_{\text{uu}}(x/\xi) \log \frac{Q^2}{\mu^2} \right. \\
+ \int_x^1 \frac{d\xi}{\xi} g(\xi) \frac{\alpha_s}{2\pi} P_{\text{uu}}(x/\xi) \log \frac{Q^2}{\mu^2} \right\} \\
\end{array} \right]
\]

Quark-Parton-Modell \hspace{1cm} Gluonbremsstrahlung \hspace{1cm} Photon-Gluon-Fusion

Neben den Dichtevertellungen \(q_f(x)\) der Quarks und der Gluonen \((g(\xi))\) werden die \textit{Splitting-Funktionen} \(P_{\text{uu}}(z)\) und \(P_{\text{qq}}(z)\) eingeführt. Sie repräsentieren die Wahrscheinlichkeit dafür, daß ein Quark ein Gluon mit dem Anteil \(z = x/\xi\) seines Impulses emittiert \((P_{\text{qq}}(z))\) bzw. daß ein Gluon ein Quark-Antiquarkpaar erzeugt, indem das Quark den Anteil \(z\) des Gluons übernimmt \((P_{\text{uu}}(z))\). Die Gluonbremsstrahlung gewinnt bei großem \(Q^2\) an Bedeutung, während die bei kleinem \(x\) dominante Boson-Gluon-Fusion prinzipiell das Studium der Gluonenverteilung im Nukleon ermöglicht. Außerdem können in diesem Kanal noch offene oder gebundene Zustände der schweren Quarks untersucht werden.

Die insbesondere bei kleinem \(x\) nicht verschwindende longitudinale Strukturfunktion \(F_L\) ist ein Hinweis auf einen intrinsischen Transversalimpuls der Partonen im Nukleon, ebenfalls hervorgerufen durch Wechselwirkungen mit Gluonen.

Dieser Beitrag ist von \textit{Next-to-Leading Order} der QCD und in [Mar88] berechnet worden. Abbildung 1.6 zeigt \(F_L\) und das Verhältnis \(F_L/(2xF_1)\) als Funktion von \(x\), wie sie von der CDHSW Kollaboration in \(\nu N\) Streuung gemessen wurden [Ber91]. Die durchgezogenen Kurven zeigen das aus \(F_2\) der Gluonstrukturfunktion \(G\) berechnete \(F_L\). Bei HERA wird es möglich sein, den kinematischen Bereich sehr kleiner \(x\) auszumessen, in dem der Beitrag von \(F_2\) an der longitudinalen Strukturfunktion vernachlässigbar klein gegen den Beitrag der Gluonen wird. \(F_L\) ist dann direkt ein Maß für die Verteilung der Gluonen \(G(x, Q^2)\) im Nukleon in dieser \(x\)-Region (aus [Sti88]):

\[
F_L(x, Q^2) \approx \frac{\alpha_s(Q^2)}{4\pi} \left(\sum_f e_f^2 \right) \int_x^1 \frac{d\xi}{\xi} \left(\frac{x}{\xi} \right)^2 \left(1 - \frac{x}{\xi} \right) G(\xi, Q^2)
\]
Geladene Ströme

Die Struktur des Protons kann natürlich auch über den bei großem \(Q^2 \gg M_W^2 \approx 6400\) GeV\(^2\) dominant zum totalen Wirkungsquerschnitt beiträgenden Kanal des geladenen Stroms ausgemessen werden. Die elektrische Ladung der Austauscheilchen führt zu einer Unterdrückung der Kopplung an Quarks mit gleichem Ladungsvorzeichen. Dieses drückt sich im Wirkungsquerschnitt des geladenen Stroms für unpolarierte \(ep\)-Streuung aus (nach [Ing89]):

\[
\frac{d\sigma_{CC}(e^-p)}{dzdQ^2} = \frac{\pi a^2}{4\sin^4\theta_W(Q^2 + M_W^2)^2} \left\{ \sum_{f=u,c} q_f(x, Q^2) + (1 - y)^2 \sum_{f=d,s} \bar{q}_f(x, Q^2) \right\}
\]

Bemerkenswert ist, daß über die Messung des Wirkungsquerschnittes des geladenen Stroms und im Vergleich mit dem des neutralen Stroms einige Parameter des Standardmodells wie z.B. Elemente der Kobayashi-Maskawa-Matrix bestimmt werden können (aus [Ing88]):

\[
\frac{d\sigma_{CC}(e^-p)}{dzdQ^2} = \frac{(1 - \lambda)\pi a^2}{4\sin^4\theta_W(Q^2 + M_W^2)^2} \sum_{i,j} \left\{ \left| V_{ud_i} \right|^2 u_i(x, Q^2) + (1 - y)^2 \left| V_{ud_i} \right|^2 \bar{u}_i(x, Q^2) \right\}
\]

Dabei sind \(u_i, d_j\) die Bezeichnungen für die Quarkflavour und die Dichteverteilungen der entsprechenden Quarks \((u_i = u, c, \ldots; d_j = d, s, b)\). \(V_{ud_i}\) ist das entsprechende Element der Kobayashi-Maskawa-Matrix.

1.2 Energiekalibration und Strukturfunktionsmessung

Die Genauigkeit der Messung des inklusiven Wechselwirkungsquerschnitts in den beiden HERA Detektoren ist bestimmt durch die Güte der Kalibration und der möglichen Auflösung der einzelnen Detektorkomponenten. Der kinematische Bereich in \((x, Q^2)\) oder \((y, Q^2)\), der von der Maschine her abgedeckt wird und somit ausmessbar wäre, wird durch die Detektoreigenschaften eingeschränkt und ist abhängig von der geforderten Genauigkeit in der Messung des Wirkungsquerschnitts. Der Zusammenhang zwischen der wahren, dem Wirkungsquerschnitt entsprechenden Zählerate \(\sigma_w(x, Q^2)\) in einem \((x, Q^2)\)-Bin und der tatsächlichen gemessenen Rate \(\sigma_m(x, Q^2)\) ist durch die Akzeptanzfunktion \(A(z, Q^2)\) gegeben [Fel88]:

\[
\sigma_w(x, Q^2) = \frac{\sigma_m(x, Q^2)}{A(z, Q^2)}
\]

Abbildung 1.7: Die Akzeptanzfunktion A aus Gleichung 1.12 in der (x, Q^2)-Ebene für die Elektronenmessung. Der eingezeichnete maximale Elektronenstreuwinkel wird mit $\theta = 176^\circ$ angegeben. [Fel88]

sind und hier nicht weiter diskutiert werden. Abbildung 1.7 zeigt den kinematischen Bereich, in dem bei einer Bestimmung des Wirkungsquerschnittes allein aus der Messung des gestreuten Elektrons das Verhältnis $\sigma_m(x, Q^2)/\sigma_w(x, Q^2)$ um nicht mehr als 10% von eins abweicht. Zum Vergleich ist auch der Bereich gezeigt, in dem dieses Verhältnis um nicht mehr als 50% streut. Dabei wurde die für Elektronen im H1 Detektor realistische Energieauflösung von

$$\frac{\sigma(E_e)}{E_e} = 0.13 \sqrt{E_e}$$

angenommen.

1.2.1 Die Messung des gestreuten Elektrons

Prinzipiell kann der differentielle Wirkungsquerschnitt für Prozesse des neutralen Stroms allein aus der Energie und dem Streuwinkel des Elektrons bestimmt werden. Die Rekonstruktion der kinematischen Variablen ist im Laborsystem bei Vernachlässigung der Elektronenmasse durch

$$x = \frac{E'_e E_e \cos^2 \frac{\theta}{2}}{E_e \left(E_e - E'_e \sin^2 \frac{\theta}{2}\right)}$$

15
\[Q^2 = 4E_r E_c \cos^2 \frac{\theta}{2} \]

\[y = 1 - \frac{E_r}{E_c} \sin^2 \frac{\theta}{2} \]

gegeben. Dabei sind \(E_r \) und \(E_c \) die Energie des Protons und des Elektrons, \(E_r' \) und \(\theta \) die Energie und der Winkel des gestreuten Elektrons im Laborsystem, d.h. gemessen relativ zur Protonflugrichtung. Die Unsicherheit, mit der die kinematischen Variablen \(x \) und \(Q^2 \) aufgrund des Fehlers in der Energie- und Winkelmessung behaftet sind, stellt sich dann als

\[\frac{dQ^2}{Q^2} = \frac{\delta Q^2}{Q^2} \left(E \right) \oplus \frac{\delta Q^2}{Q^2} \left(\theta \right) = \frac{dE}{E} \oplus \left(-\tan \frac{\theta}{2} \right) d\theta \quad (1.13) \]

\[\frac{dx}{x} = \frac{\delta x}{x} \left(E \right) \oplus \frac{\delta x}{x} \left(\theta \right) = \frac{1}{y} \frac{dE}{E} \oplus \left(\frac{E_r}{E} \right) \left(E_r - 1 \right) d\theta \quad (1.14) \]

dar. Es zeigt sich, daß der Fehler in \(Q^2 \) außer bei sehr kleinen Auslenkungen des Elektrons, also bei großen Winkeln \(\theta \), durch die Güte der Energiemessung dominiert wird. Für Elektronen kann hier ein Fehler von nur 1 - 2\% erreicht werden. Der Fehler in \(x \) wird bei kleinem \(y \) sehr groß. Mit der erreichbaren Genauigkeit in der Energiemessung ist \(dx/x \leq 10\% \) nur für \(y > 0.1 \) möglich. Der Fehler in der Winkelmessung trägt nur für große \(x \) und kleine \(Q^2 \) signifikant zum Fehler in \(x \) bei. Der kinematische Bereich, in dem der Wechselwirkungsquerschnitt um weniger als 10\% vom wahren Wert abweicht, ist für einen einprozentigen und einen zweiprozentigen Fehler in der Energiekalibration für Elektronen in Abbildung 1.8 gezeigt.

1.2.2 Rekonstruktion der Kinematik aus dem hadronischen Endzustand

Die Methode von Jacquet-Blondel [Jac79] erlaubt eine modellunabhängige Rekonstruktion der Kinematik, ohne von der Definition eines Teilchenjets abhängig zu sein. Die grundlegenden Beziehungen sind in [Fel88] zusammengefaßt:

\[y = \frac{P \cdot (P_H - P)}{P \cdot k} = \frac{1}{2E_c} \sum_{h} (E_h - p_{z,h}) \quad (1.15) \]

\(P \) ist der Viererimpuls des Protons, \(k \) der des einfliegenden Elektrons; \(P_H \) ist die Summe aller Vierervektoren des hadronischen Endzustandes:

\[P_H = \sum_{h}(E_h,p_{x,h},p_{y,h},p_{z,h}) \]

Der Impulsübertrag ist auf der Hadronenseite gegeben als:

\[Q^2 = \frac{p_{z}^2}{1-y} = \frac{(\sum_{h} p_{z,h})^2}{1-y} \quad (1.16) \]
Abbildung 1.8: Einfluß der Energiekalibration für Elektronen auf den zugängigen kinematischen Bereich. [Fel88]

Damit kann z unter Verwendung der Beziehungen in den Gleichungen (1.5,1.6) aus

$$z = \frac{Q^2}{2(P \cdot k)y} = \frac{Q^2}{4E_pE_y}$$

berechnet werden. Bemerkenswert ist, daß es zur Rekonstruktion der Kinematik nicht notwendig ist, den Currentjet zu identifizieren. Lediglich der totale hadronische Energiefluß muß gemessen werden. Ein weiterer Vorteil dieser Methode ist, daß bei genügend großem Winkel θ_H des Currentjet nur gering ausgelenkte Hadronen ($p_{z,A} \approx E_h$), die im wesentlichen das Strahlrohr entlangliegen und damit nicht zu messen sind, nicht signifikant zu y oder Q^2 beitragen, siehe Gleichung (1.15). Falls allerdings θ_H sehr klein wird ($\leq 10^\circ$), ist durch die Teilchenverluste im Strahlrohr die Rekonstruktion der kinematischen Größen aus den Hadronen praktisch nicht mehr möglich. Eine weitere Schranke für die hadronische Messung der kinematischen Variablen ist $z > 10^{-2}$, bei kleineren z sind die Hadronenergien E_h zu klein, um noch verläßlich gemessen werden zu können.

Der Fehler in z und Q^2 durch Unsicherheiten in der Energie- und Winkelmessung ist für den hadronischen Endzustand gegeben durch:

$$\frac{dQ^2}{Q^2} = \frac{2 - y dE_H}{1 - y E_H} \oplus \left\{ 2 \cot \theta_H + \frac{y}{1 - y} \cot \frac{\theta_H}{2} \right\} d\theta_H$$

$$\frac{dz}{z} = \frac{1}{1 - y E_H} \oplus \left\{ -2 \cot \theta_H + \frac{1 - 2y}{1 - y} \cot \frac{\theta_H}{2} \right\} d\theta_H$$

17
Abbildung 1.9: Die Akzeptanzregion für Hadronen, in der der gemessene Wirkungsquerschnitt um nicht mehr als 20% vom wahren abweicht (a). Die gepunktete Linie zeigt die Akzeptanz für eine Simulation des H1 Detektors, die gestrichelte Linie für eine des ZEUS Detektors. In Bild (b) ist der kinematische Bereich, in dem für die beiden angegebenen Kalibrierungsfehler der Wirkungsquerschnitt auf 10% genau aus der Messung des hadronischen Endzustandes bestimmt werden kann, dargestellt. [Fel88]

Der Fehler in x wird für große y groß. Die Bestimmung von Q^2 aus dem hadronischen Endzustand ist im Gegensatz zur Messung des Elektrons von y abhängig und zeigt eine schlechtere Auflösung als dx/x. Bei einer Kombination beider Messungen bei Ereignissen des neutralen Stroms zur optimalen Ausnutzung des kinematischen Bereichs in (x, Q^2) sollte die Bestimmung von Q^2 über das gestreute Elektron erfolgen.

Der innerhalb einer 20 prozentigen Unsicherheit zugängliche kinematische Bereich für rein hadronische Messungen ist in Abbildung 1.9a dargestellt. Die für den H1 Detektor erreichbare Region ist unter der für kleine θ_H sehr optimistischen Annahme einer hadronischen Energieauflösung von

$$\frac{\sigma(E_H)}{E_H} = \frac{1.00}{\sqrt{E_H}} \oplus 0.02 \quad \theta_H < 4^\circ$$
$$\frac{\sigma(E_H)}{E_H} = \frac{0.50}{\sqrt{E_H}} \oplus 0.02 \quad \theta_H > 4^\circ$$

bei einer totalen Winkelakzeptanz von $0.6^\circ < \theta_H < 135^\circ$ gezeigt. Eine Begrenzung durch $p_\perp > 10$ GeV kommt durch Triggeranforderungen zustande.

Der Bereich, indem der aus dem hadronischen Endzustand rekonstruierte Wirkungsquerschnitt um nicht mehr als 10% vom wahren abweicht, ist für zwei verschiedene Fehler in der Energiekalibrierung für Hadronen ($dE/E = 0.02$ und $dE/E = 0.04$) in Abbildung 1.9b dargestellt.
Kapitel 2

Einführung in die Kalorimetrie

In diesem Kapitel werden die Grundlagen der Schauerphysik und Signalerscheinung in Kalorimetern in Anlehnung an die Eigenschaften des am Ende des Kapitels vorgestellten H1 Kalorimeters diskutiert.

2.1 Absorptionsverhalten verschiedener Teilchenarten in Materie

(i) der elektromagnetische Schauer wird durch hochenergetische Elektronen, Positronen und Photonen ausgelöst und ist durch eine regelmäßige, von Ereignis zu Ereignis nur wenig variierende Struktur und Kompaktheit ausgezeichnet.

(ii) der hadronische Schauer wird durch schnelle Hadronen induziert. Seine räumliche Struktur unterliegt von Ereignis zu Ereignis relativ großen Fluktuationen; im Ver-

\footnote{Schwache Prozesse tragen erst bei Schauerenergien im TeV-Bereich bei \cite{Fab89}}
Abbildung 2.1: Energieverlust des Elektrons durch Bremsstrahlung und Ionisationen in Kupfer. Zum Vergleich ist der Ionisationsverlust von Protonen im selben Medium dargestellt [Leo87].

gleich zu elektromagnetischen Schauern des gleichen Energiegehalts sind hadronische Schauer meistens sehr viel breiter und tiefer.

(iii) Energieverluste durch Ionisationen entlang der Teilchenspur ohne Ausbildung eines Schauers treten für Myonen und geladene Hadronen, welche ein Medium ohne inelastische Wechselwirkung durchqueren, auf.

Zunächst werden die den in den Punkten (i) und (iii) beschriebenen Strukturen der Energiedeposition zugrunde liegenden elektromagnetischen Prozesse beschrieben.

2.1.1 Elektromagnetischer Energieverlust

Bei geladenen, massiven hochenergetischen Teilchen kann sich die Wechselwirkung mit dem Coulombfeld der Atomkerne als Bremsstrahlung, Ionisation oder atomare Anregung darstellen; Photonen können je nach ihrer Energie in Elektron-Positron-Paare konvertieren oder ebenfalls Ionisation und Anregung durch Compton- oder Photoeffekt induzieren.

Bremsstrahlung

Bremsstrahlung tritt hauptsächlich beim Durchgang hochenergetischer Elektronen und Positronen durch Materie auf. Schon bei den nächst-schwereren Myonen ist die Produktion von Bremsstrahlungsphotonen bei Teilchenenergien bis zu etwa 100 GeV um mehr
Abbildung 2.2: Energieverlust geladener Teilchen durch Ionisation in Blei (entnommen aus [Leo87]).

als vier Größenordnungen gegenüber den Elektronen unterdrückt, da sich die Bremsstrahlungswahrscheinlichkeit ungefähr proportional zum Quadrat der Teilchenmasse verhältnis [Tsa74]. Damit werden auch geladene Hadronen nur mit geringer Wahrscheinlichkeit Bremsstrahlung photonon emittieren.

Die Energie der Bremsstrahlung photonon entlang der Bahn eines hochenergetischen Elektrons folgt einem differentiellen Spektrum \(dE_x/E_x \); die meisten dieser Photonon haben also eine kleine Energie \(E_x \) [Fab89,Loh86]. Der mittlere relative Energieverlust durch Bremsstrahlung in der Tiefe zwischen \(x \) und \(x + dx \) in Materie läßt sich dann in der Strahlungsformel (z.B. aus [Loh86])

\[
\frac{dE_x}{dx}(x) |_{\text{brem,}} = - \frac{E(x)}{X_0}
\]

in guter Näherung ausdrücken. Dabei ist \(X_0 \) die Strahlungslänge, deren statistische Bedeutung durch die Lösung der Gleichung (2.1) ersichtlich ist:

\[
E(x) = E_0 \cdot e^{-x/X_0}
\]

\(E(x) \) ist die mittlere Energie von Elektronen der Anfangsenergie \(E_0 \) nach Durchlaufen der Strecke \(x \) in Materie. Somit ist die Strahlungslänge \(X_0 \) gerade die Strecke, auf dem ein Elektron im Mittel \((1-1/e)\) seiner Energie durch Bremsstrahlung verloren hat. In ihr sind alle Materialabhängigkeiten vereinigt; für viele Medien \((13 \leq Z \leq 92)\) gilt mit \(dX_0/X_0 < \pm 0.2; [Fab85] \)

\[
X_0 \approx 180 \frac{A}{Z^2} \left[\frac{g}{\text{cm}^2} \right]
\]

21
A ist dabei die Massen- und Z die Kernladungszahl des Mediums. Der in Abbildung 2.1 dargestellte Energieverlust von Elektronen in Kupfer zeigt die Dominanz des Bremsstrahlungsverlustes gegenüber dem Ionisationsverlust für große Elektronenergien.

Ionisationsverluste

Energieverlustmechanismen des Photons

Photonen geben ihre Energie in Materie vorwiegend entweder indirekt durch Elektron-Positron-Paarbildung oder direkt durch Comptonstreuung oder Absorption (Photoeffekt) ab. Die Wirkungsschichten für die einzelnen Prozesse sind als Funktion der Photonenenergie in Abbildung 2.3 dargestellt. Die einzelnen Beiträge sind:[Hub80]

- σ_P atomarer Photoeffekt;
- σ_R Rayleigh-Streuung;
- σ_C Compton-Streuung;
- σ_N Paarbildung im Kernfeld;
- σ_E Paarbildung im Feld der Elektronen;
- σ_A photonuklearer Effekt.

Photonen mit Energien größer als einige zehn MeV werden dominant in Elektron-Positron-Paare konvertieren, bei kleineren Energien bis hinab zu einigen hundert keV überwiegen Ionisationen durch den Compton-Effekt. Für kleinere Photonenenergien treten hauptsächlich Ionisationen durch den Photoeffekt auf.

Abbildung 2.3: Der totale Wechselwirkungsschmitt für Photonen in Blei und die einzelnen Beiträge der möglichen Prozesse als Funktion der Photonenenergie E_γ [Hub80].
2.1.2 Ausbildung des elektromagnetischen Schauers

Das Zusammenspiel der oben beschriebenen elementaren Prozesse führt bei Eintritt eines hochenergetischen Elektrons, Positrons oder Photons in Materie zur Ausbildung einer elektromagnetischen Teilchenkaskade\(^2\). Ein einfallendes hochenergetisches Elektron zum Beispiel wird zunächst mit großer Wahrscheinlichkeit Bremsstrahlungspotonen emittieren, die wiederum, falls ihre Energie groß genug ist, in Elektron-Positronpaare konvertieren. Die so produzierten sekundären Teilchen können wieder Photonen emittieren, die dann weitere Paare erzeugen können. Die Zahl der Schauerteilchen erreicht ihr Maximum in der Tiefe \(t_{\text{max}}\), ab der der Wirkungsquerschnitt für Ionisationsverluste über den für Bremsstrahlung dominiert. Die Energie, bei der beide Querschnitte gleich groß sind, ist die kritische Energie \(E_c\), die näherungsweise durch [Fab85]

\[
E_c \approx \frac{550 \text{ MeV}}{Z}
\]

gesagt ist. Dieser Zusammenhang ist für Materialien mit \(13 \leq Z \leq 92\) genauer als ±10%.

Die Ausbreitung der Kaskade in Richtung des Primärpartikels – und damit die Eindringtiefe des Schauers – wird durch die Strahlungsprozesse in der Anfangsphase bestimmt. Die Skala \(t\) ist zur Beschreibung der longitudinalen Schauerentwicklung geeignet:

\[
t = \frac{x}{X_0}, \quad [x] = [X_0].
\]

Genauer Betrachtungen der longitudinalen Schauerentwicklung wurden bereits 1952 von Rossi [Ros52] durchgeführt. In seiner Approximation \(B\) ergeben sich unter den Annahmen, daß

- der Wirkungsquerschnitt für Ionenionen unabhängig von der Energie ist;
- Vielfachstreuung vernachlässigt wird (eindimensionale Schauerentwicklung);
- und die Compton-Streuung der Photonen vernachlässigt wird

die in Tabelle 2.1 [Fab85] dargestellten Parameter für elektromagnetische Schauer. Beachtenswert ist, daß die Tiefe des Schauermaximums \(t_{\text{max}}\) nur logarithmisch mit der Einfallsenergie \(E_0\) wächst. Die in der Tabelle genannte mittlere totale Spurlänge \(T\) ist ein geeignetes Maß für die Energieverteilung in der Phase der Schauerausbildung, da die proportional zu den Ionsationsverlusten geladener Schauerteilchen ist. In Rossis Modell kann \(T\) durch Integration über alle Spuren geladener Teilchen, deren Energie \(E \gg E_c\) ist, berechnet werden:

\[
T = \frac{2}{3} \int_0^{t_{\text{max}}} N(t)dt \approx \frac{2}{3 \ln 2} \frac{E_0}{E_c} |x| \approx \frac{E_0}{E_c} [X_0]
\] (2.2)

Die Zahl der Schauerteilchen \(N(t)\) in der Schauertiefe \(t\) ist dabei durch \(N(t) = 2^t\) gegeben; der Faktor 2/3 berücksichtigt, daß Photonen mit \(E \gg E_c\) nicht ionisieren.

\(^2\)Wegen der schon erwähnten starken Massenabhängigkeit der Wahrscheinlichkeit für das Auftreten von Bremsstrahlung werden schwere geladene Teilchen im allgemeinen keine elektromagnetischen Schauer induzieren.
<table>
<thead>
<tr>
<th>einfallendes Elektron</th>
<th>einfallendes Photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schauermaximum</td>
<td>$t_{\text{max}} = 1.0 \times \left(\ln \frac{E_0}{E_c} - 1 \right)$</td>
</tr>
<tr>
<td></td>
<td>$t_{\text{max}} = 1.0 \times \left(\ln \frac{E_0}{E_c} - 0.5 \right)$</td>
</tr>
<tr>
<td>Schauerschwerpunkt</td>
<td>$t_{\text{cog}} = t_{\text{max}} + 1.4$</td>
</tr>
<tr>
<td></td>
<td>$t_{\text{cog}} = t_{\text{max}} + 1.7$</td>
</tr>
<tr>
<td>Totale Spurlänge</td>
<td>$T = \frac{E_0}{E_c} \cdot \mathcal{F}(\rho)$</td>
</tr>
<tr>
<td></td>
<td>$T = \frac{E_0}{E_c} \cdot \mathcal{F}(\rho)$</td>
</tr>
</tbody>
</table>

Tabelle 2.1: *Einige Parameter der longitudinalen Entwicklung elektromagnetischer Schauer, nach [Fab85] mit einer Modifikation $\mathcal{F}(\rho)$ der totalen Spurlänge nach [Ama81], siehe Text.*

Die Annahme in Approximation B, daß alle Schauer teilchen bei Unterschreiten der kritischen Energie E_c diese vollständig in Ionisationen einbringen können, bedarf in einem realen Detektor einer Modifikation in Form einer Funktion $\mathcal{F}(\rho)$ [Ama81]. Diese Funktion berücksichtigt eine Ansprechschwelle des Detektors (E_{thr}) und daß für Materialien mit großen Ladungszahlen Z die Annahmen in Approximation B weniger gerechtfertigt sind als bei Materialien mit mittleren Z:

$$\mathcal{F}(\rho) = e^\rho \cdot \left(1 + \rho \ln \frac{\rho}{1.53} \right)$$ \hspace{1cm} (2.3)

Die Variable ρ beinhaltet den Schwelleneffekt und die Materialabhängigkeit:

$$\rho = 4.58 \frac{Z}{A} \frac{E_{\text{thr}}}{E_c}$$

Longo et al. [Lon75] haben den Energieverlust als Funktion der Schauertiefe anhand von Simulationen von Photon-induzierten elektromagnetischen Schauern studiert und die qualitative Beschreibung für das longitudinal Schauerprofil angegeben. Der folgende Ausdruck gibt das Profil unter Verwendung dieser Ergebnisse in differentieller Form an: [Par88]

$$\frac{dN(t)}{dt} = \frac{N_0 b^{a+1}}{\Gamma(a + 1)} t^a e^{-bt}$$ \hspace{1cm} (2.4)

d$N(t)/dt$ ist die Zahl der Schauer teilchen in der Tiefe zwischen t und $t+dt$. Die Energie- und Materialabhängigkeiten von a, b und N_0 werden mit [Par88]

$$N_0 = 5.51 \sqrt{Z} \frac{E_0}{1 \text{ GeV}}$$

$$b = 0.634 - 0.0021Z$$

$$a = 2.0 - Z/340 + (0.664 - Z/340) \ln \frac{E_0}{1 \text{ GeV}}$$
parametrisiert. Z ist die Kernladungszahl des Mediums und E_0 die in GeV gemessene Primärenergie. Die Tiefe des Schauermaximums ist in dieser Darstellung dann:

$$t_{\text{max}} = \frac{a}{b} \left[X_0 \right].$$

$$R_m \simeq \frac{21.2 \text{ MeV}}{E_0} X_0 \simeq 7 \frac{A}{Z} \frac{g}{\text{cm}^2}$$

bestimmt werden. Die Genauigkeit für diese Abschätzung ist $\Delta R_m/R_m < \pm 0.1$ für $13 \leq Z \leq 92$.

2.1.3 Grundlegende Prozesse in hadronischen Schauern

Die Ausbildung von hadronischen Teilchenkaskaden in Materie erfolgt im wesentlichen durch die starke Wechselwirkung zwischen den primären und sekundären Hadronen und den Nukleonen in den Atomkernen. Aufgrund des großen Spektrums an möglichen Prozessen ist die hadronische Schauerentwicklung sehr viel unregelmäßig als die elektromagnetische. Dennoch läßt sich auch für Hadronen eine räumliche Ausbreitungsskala, die Kernabsorptionslänge λ, angeben, die in ihrer Bedeutung der bereits eingeführten Strahlungslänge X_0 entspricht.

Anhand eines von Wigmanns [Wig87] ausführlich diskutierten Modells werden im nachfolgenden einige Merkmale hadronischer Schauer beschrieben.

Spalationsmodell

In diesem Modell wird die Ausbildung der Kaskade durch das Aufbrechen (Spallation) von Kernen durch Hadronen unter Produktion sekundärer Teilchen hervorgerufen. Induziert wird dieser Prozess durch quasi freie Stoße zwischen einem in einen Kern eindringenden Hadron und den Nukleonen. Das angestoßene Nukleon kann, ebenso wie das primäre Hadron, seine Energie an weitere Nukleonen übertragen; es kommt zu einer schnellen intranuklearen Kaskade (charakteristische Zeit 10^{-22} sec [Fab88]).

Wenn der Energieübertrag bei einem Hadron-Nukleon-Stoß groß genug ist, können Pionen und andere Hadronen im Verlauf des intranuklearen Schauers produziert werden. Einige der Schauerteilchen können aufgrund ihrer Energie das Kernpotential verlassen.
Abbildung 2.4: Schematische Darstellung einer inelastischen Hadron-Kern Wechselwirkung (aus [Zei91]).

Intrinsische elektromagnetische Schauerkomponente

Besondere Aufmerksamkeit bei der Betrachtung hadronischer Schauer verdienen die nur während der intranuklearen Kaskade erzeugten und aus dem Kern austretenden neutralen und geladenen Pionen. Während die geladenen Pionen aufgrund ihrer relativ langen Lebensdauer ihre Energie häufig in weitere Hadron-Nukleon-Reaktionen einbringen, zerfällt das neutrale Pion mit seiner um einen Faktor von etwa 3×10^{-9} kleineren Lebensdauer spontan in etwa 98.8% Prozent aller Fälle in zwei Photonen und in etwa 1.2% der Fälle in ein Photon und ein Elektron-Positron-Paar (andere Zerfallskanäle sind statistisch irrelevant [Par88]). Das führt zur Induktion intrinsischer elektromagnetischer Schauer in hadronischen Kaskaden, die wichtige Konsequenzen für die Absorptionseigenschaften und damit für die Signalbildung in Kalorimetern haben.
Im Mittel sind ein Drittel der in einer inelastischen Hadron-Nukleon Reaktion erzeugten Pionen neutral; ihr mittlerer Anteil f_{em} an der total deponierten Energie E läßt sich nach [Fab85] mit

$$f_{em} \approx 0.1 \ln \frac{E}{1 \text{ GeV}}$$

angeben.

2.1.4 Strukturen hadronischer Schauer

Ergebnisse detaillierter Simulationsrechnungen in [Wig87] zeigen, daß etwa 300 verschiedenen Reaktionen mit annähernd gleicher Wahrscheinlichkeit > 0.1% zum totalen Spallationsquerschnitt beitragen. Die größten Wirkungsquerschnitte für eine bestimmte Reaktion machen dabei nicht mehr als etwa zwei Prozent des Gesamtquerschnitts aus. Somit gibt es für ein in Materie eindringendes Hadron eine große Auswahl von Möglichkeiten, seine Energie zu deponieren. Dieses führt bei stets gleicher Primärenergie zu Fluktuationen sowohl in der Dichte der in der Schauerreibung deponierter Energien als auch in der tatsächlichen in einem endlichen Volumen deponierter Energie. Tabelle 2.2 faßt die verschiedenen Komponenten der hadronischen Wechselwirkung zusammen (nach [Fab85,Ama81]). Die intranukleare Kaskade ist charakterisiert durch M die mittlere Multiplizität der in der intranuklearen Kaskade erzeugten und aus dem Kern freigesetzten Sekundärteilchen.

n die mittlere Inelastizität der Hadron-Kern-Reaktion, d.h. der mittlere bei einer Reaktion in die Produktion neuer Teilchen investierte Anteil der Energie des primären Hadrons.

p_{t} der mittlere Transversalimpuls der Sekundärteilchen.

Die über viele Hadron-Kern-Reaktionen gemittelten jeweiligen Energieanteile der verschiedenen Reaktionskanäle in der Evaporationsphase des Kerns sind:

f_{eqy} ist der durch langsame Nukleonen und Kernfragmente ($E_{kin} < 150$ MeV) übernommene Energieanteil.

f_{sind} ist der in das Aufbrechen nuklearer Bindungen investierte Anteil.

$f_{n,p}$ gibt den durch schnelle Neutronen bzw. Protonen ($E_{kin} > 150$ MeV) fortgetragene Energieanteil an. Die Wechselwirkungslänge dieser Teilchen ist $\lambda_{n,p}$.

Schließlich wird ein geringer Teil der produzierten Pionen nicht in einer nuklearen Reaktion absorbiert, sondern zerfallen. Der durch die Zerfallsprodukte (Myon und Myon-Neutrino) übernommene Energieanteil f_{nu} ist klein und leicht energieabhängig.

Die in Tabelle 2.2 angegebenen Werte sind Ergebnisse von Simulationsrechnungen und natürlich modellabhängig – eine detaillierte Vorstellung der verwendeten Programme und der Ergebnisse ist in [Fab75,Scu75,Gab76,Ran72,Bar74] zu finden. Das hier wiedergegebene Bild kann nur sehr allgemein zum Verständnis der hadronischen Schauerentwicklung dienen.

27
<table>
<thead>
<tr>
<th>Reaktion</th>
<th>Charakteristische Größen</th>
<th>Fluktuationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zeit [s]</td>
<td>Länge [g/cm²]</td>
</tr>
<tr>
<td>Hadron-Produktion in der intranuklearen Kaskade</td>
<td>10^{-22}</td>
<td>$\lambda \approx 35 A^{1/3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukleare Rekombination</td>
<td>10^{-19}</td>
<td>$\lambda_n \approx 100$</td>
</tr>
<tr>
<td></td>
<td>-10^{-13}</td>
<td>$\lambda_p \approx 20$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pion und Myon Zerfälle</td>
<td>10^{-9}</td>
<td>$\gg \lambda$</td>
</tr>
<tr>
<td></td>
<td>-10^{-6}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.2: Charakteristische Merkmale hadronischer Schauer, nach [Ama81,Fab85]. Zur Bezeichnung der einzelnen Größen siehe Text.

Die longitudinale Entwicklung eines mittleren hadronischen Schauers bei einer festen Primärenergie ist mehrfach aus Daten bestimmt worden. Die natürliche Variable zur Beschreibung der longitudinalen Entwicklung ist s:

$$s = \frac{x}{\lambda} \quad [x] = [\lambda]$$

Die Kernabsorptionslänge λ ist als die mittlere freie Weglänge hochenergetischer Neutronen zwischen zwei inelastischen Wechselwirkungen definiert. Ihre statistische Bedeutung in der Beschreibung hadronischer Schauer entspricht der der Strahlungsänge X_0 bei elektromagnetischen Schauern. Typischerweise ist $X_0 \ll \lambda$. Hadronen haben oft eine sehr viel größere Eindringtiefe in ein Medium als Elektronen gleicher Energie. Das longitudinale Schauerprofil wird in [Cat87] in folgender Weise angegeben:

$$\frac{1}{E} \frac{dE}{ds} = \alpha \frac{\Gamma(a+1)}{(a+1)} \beta^{a+1} e^{-\beta x} + (1 - \alpha) e^{-\gamma x}$$

Die Schauertiefe s ist dabei stets vom Schauerstartpunkt zu messen. Der erste Term hat die selbe Form wie das longitudinale elektromagnetische Schauerprofil und beschreibt die relativ kompakt durch die intrinsische elektromagnetische Komponente deponierte Energie. Der zweite exponentiell abfallende Term zeigt den Einfluß der langreichweitigen hadronischen Komponente. Das Gewicht α zwischen beiden Termen ist abhängig vom Detektor. Auch bei hadronischen Schauern nimmt die Tiefe des Schauerm maximums im Mittel logarithmisch mit wachsender Energie zu.
Die laterale Breite hadronischer Schauer ist praktisch energie- und materialunabhängig. Die dem Molierradius \(R_m \) entsprechende Größe ist \(R_{95\%} \), der Radius eines Zylinders, in dem 95% der Energie deponiert wird (\(R_{95\%} \approx 1\lambda, \left[Fab85\right] \)).

2.2 Kalorimetrische Energiemessung

Die im vorherigen Abschnitt beschriebenen unterschiedlichen Energieverlustprozesse können zur Bestimmung der Primärenergie eines in Materie eindringenden Teilchens genutzt werden. Unabhängig von der Teilchenart ist das Prinzip kalorimetrischer Energiemessung stets die Umwandlung der eingestrahlten Energie in ein messbares Signal, wie elektrische Ladungen oder das Licht in Szintillatoren. Dieses Signal ist dann die Menge der entlang aller Spuren der Schauerteilchen freigesetzten Elektronen oder Photonen; es ist also direkt proportional zur im vorherigen Abschnitt bereits vorgestellten totalen Spurlänge \(T \) in einem Schauer. Im diesem Abschnitt wird nach der Vorstellung der prinzipiellen Arbeitsweise des sogenannten Sampling-Kalorimeters die Beziehung zwischen dem Signal und der deponierten Energie für den elektromagnetischen und den hadronischen Schauer diskutiert.

2.2.1 Prinzip des Sampling Kalorimeters

In einem idealen Kalorimeter wird die eingestrahlte Energie vollständig in ein messbares Signal konvertiert, d.h. alle Teilchen in einem Schauer tragen aktiv zum Signal bei. Um diesem Modell möglichst nahe zu kommen, muß ein reales Kalorimeter zunächst die einfallenden Teilchen möglichst vollständig absorbieren (diese Eigenschaft wird als Containment bezeichnet), aber auch eine hohe Signaleffizienz besitzen. Die erste Anforderung verlangt, daß die Primärenergie eines einfallenden Teilchens in einem endlich tiefen Detektor in möglichst hoher Dichte deponiert wird. Die zweite Forderung bedeutet im Fall von elektrischen Ladungen als Signalträger, daß das Material, aus dem das Kalorimeter aufgebaut werden soll, eine geringe Ionisationsenergie und einen kleinen Einfangsquerschnitt für die Ladungsträger hat. Diese kontroversen Anforderungen führen zu einem Kompromiß durch Verwendung zweier unterschiedlicher Materialien. Eine in der Tiefe regelmäßige Struktur aus einem Material mit guten Absorptionseigenschaften – dem (passiven) Absorber – und einem mit hoher Signalausbeute – dem aktiven Medium – erlaubt den Bau kompakter Detektoren und führt zu den kalorimetrischen Eigenschaften, die hier vorstellt werden. Natürlich hat ein solcher Aufbau zur Folge, daß nur der Anteil der im aktiven Medium deponierten Energie messbar ist; man sieht gewissermaßen nur eine Stichprobe aus der Teilchenkaskade (Sampling Kalorimeter). Die Größe der Stichprobe ist einer der wichtigsten Parameter eines solchen Detektors. Sie wird durch das Verhältnis \(S \) der sichtbar deponierten Energie \(E_{\text{on}} \) zur total deponierten Energie \(E_{\text{dep}} \) beschrieben und als Sampling Fraction bezeichnet. \(S \) ist abhängig von der Häufigkeit der Stichprobe, also der Zahl der aktiven Schichten, welche eine Teilchenkaskade kreuzen. Aufgrund der in Abschnitt 2.1 vorgestellten unterschiedlichen Absorptionseigenschaften für Elektronen, Hadronen und Myonen und den damit verbundenen charakteristischen Eindringtiefen dieser Teilchen ist auch \(S \) von der Art

\[\text{in dem Modell von Rossi mit der Annahme eines energieunabhängigen Ionisationsquerschnittes} \]
der Energiedeposition abhängig. Häufig wird die Sampling Fraction auf den Energieverlust eines nicht-schauerbildenden, minimal ionisierenden Teilchens im Absorber und im aktiven Medium normiert:

\[
S_{\text{mip}} = \frac{E_{\text{mip}}}{E_{d_{\text{mip}}}} = \frac{d_{\text{aktiv}} \cdot \frac{dE}{dx}_{\text{aktiv}}}{d_{\text{aktiv}} \cdot \frac{dE}{dx}_{\text{aktiv}} + d_{\text{passiv}} \cdot \frac{dE}{dx}_{\text{passiv}}} = \frac{\frac{dE}{dx}_{\text{mip}}}{\frac{dE}{dx}_{\text{aktiv}} + \frac{dE}{dx}_{\text{passiv}}} \tag{2.5}
\]

Dabei ist \(d_{\text{aktiv}}, d_{\text{passiv}}\) die Dicke einer aktiven bzw. passiven Schicht im Kalorimeter. Die pro Wegelement absorbierte Energie \(dE/dx\) ist allgemein vom Material und von der Teilchenart und -energie abhängig. Der Vorteil der hier zur Normierung des Energieverlustes gewählten Modelle des minimal ionisierenden Teilchens (\textit{minimal ionizing particle, mip}) ist, daß \(dE/dx\) unabhängig von der Teilchenenergie als konstant im Minimum der Bethe-Bloch Kurve (Abbildung 2.2 auf Seite 21) angenommen wird und somit als eine reine Materialeigenschaft darstellt. \(S_{\text{mip}}\) ist dann ebenfalls nur von dem Dickenverhältnis \(d_{\text{passiv}}/d_{\text{aktiv}}\), und den Materialien abhängig und kann durch geeignete Wahl dieser Parameter eingestellt werden.

2.2.2 Elektromagnetische Signale

Das Signal eines elektromagnetischen Schauers wird durch die über alle geladenen Spuren integrierten Ionisationen und damit durch die mittlere totale Spurlänge \(T\) in der Ausbreitungphase des Schauers bis zum Schauerausdehnung und durch die Ionisationen der niedrigenenergetischen Photononen und Elektronen am Schauerende bestimmt. In einem Sampling Kalorimeter wird das Signal nun nicht mehr durch Ionisationen entlang \(T\) gebildet, sondern entlang einer reduzierten, effektiven Spurlänge. Diese Größe ist proportional zur Zahl der Kreuzungen geladener Teilchen durch jeweils gleich tiefe aktive Schichten im Kalorimeter, die im folgenden zunächst im Rahmen von Rossi Modell diskutiert wird (nach Darstellungen in [Ros52, Ama81, Fab85] und in Anlehnung an die Diskussion in [Rud89]). Dabei wird die generelle Annahme gemacht, daß die Energie \(E_0\) des einfallenden Teilchens vollständig im Kalorimeter deponiert wird (\(E_{d_{\text{mip}}} = E_0\)) und somit die Energieauflösung frei von Fluktuationen durch ereignisabhängige transversale oder longitudinal Energieverluste ist. Anschließend werden die notwendigen Ergänzungen zum Rossi Modell – die Berücksichtigung der lateralen Schauerausdehnung und des Transitionseffekts – auf das Signal vorgestellt.

Signale in Rossi Modell

Das Signal eines elektromagnetischen Schauers in einem Sampling Kalorimeter kann im Rahmen von Rossi Approximation B in einem einfachen statistischen Modell verstanden werden. Unter der Annahme, daß das Signal proportional zur Zahl der Kreuzungen \(N_s\) geladener Teilchen durch aktive Schichten ist, welche wiederum mit \(T\) und der Dicke \(d = d_{\text{aktiv}}|X_0| + d_{\text{passiv}}|X_0|\) des kleinsten Samples – einer Absorber- und einer aktiven Schicht – zusammenhängt, gilt mit Gleichungen (2.2), (2.3) (Seite 28f):

\[
N_s = \frac{T}{d} = \frac{E_0 \cdot \mathcal{F}(\rho)}{E_c \cdot d |X_0|} \tag{2.6}
\]
Wenn bei jeder Kreuzung eines geladenen Teilchens durch eine aktive Schicht der Dicke d_{active} die Energie ΔE durch Ionisation deponiert wird (mit

$$\Delta E = \left. \frac{dE}{dx} \right|_{\text{active}} \cdot d_{\text{active}} \approx \left. \frac{dE}{dx} \right|_{\text{mip}} \cdot d_{\text{active}} = \text{const}$$

in Approximation B), so besteht eine direkte Proportionalität zwischen dem Signal im Sampling Kalorimeter – welches als sichtbar deponierte Energie E_{mip} interpretiert werden kann – und der totalen im elektromagnetischen Schauer deponierten Energie:

$$E_{\text{mip}} = N_x \cdot \Delta E = S_{\text{mip}} \cdot E_{\text{dep}}$$

Bei statistischer Unabhängigkeit der einzelnen Kreuzungen und einem normalverteilten N_x kann die relative Streuung dieser Größe mit

$$\frac{\sigma(N_x)}{N_x} = \frac{1}{\sqrt{N_x}} \Rightarrow \frac{\sigma(E_{\text{mip}})}{E_{\text{mip}}} \sim \frac{1}{\sqrt{E_{\text{dep}}}}$$

angegeben werden. Damit ist die typische Abhängigkeit der Energieauflösung eines Sampling Kalorimeters von der Teilchenenergie für Elektronen und Photonen eine direkte Folge der Stichprobenstatistik. Unter Verwendung der Gleichung (2.6) wird die Energieauflösung zu

$$\frac{\sigma(E_{\text{mip}})}{E_{\text{mip}}} \sim \sqrt{\frac{E_{\text{c}} \cdot d [X_0]}{E_{\text{dep}} \cdot F(\rho)}}. \quad (2.7)$$

Die intrinischen Fluktuationen in der Schauerentwicklung sind durch die Streuung $\sigma(\Delta E)$ gekennzeichnet und für elektromagnetische Schauer typischerweise klein verglichen mit $\sigma(N_x)$.

Einflüsse der Coulombstreuung

Die in Approximation B vernachlässigte Coulombstreuung im elektromagnetischen Schauer führt dazu, daß sich der Weg eines geladenen Teilchens durch eine Schicht der Dicke d im Mittel um eine Faktor $1/\langle \cos \theta \rangle$ verlängert. Der Winkel θ ist eine reine Materieeigenschaft: [Ama81]

$$\langle \cos \theta \rangle \approx \cos \frac{21.2 \text{ MeV}}{\pi E_{\text{c}}}$$

Der Einfluß auf die Sampling Fraction S aus Gleichung (2.5) führt zu:

$$S_x = \frac{\left. \frac{dE}{dx} \right|_{\text{mip}}}{\left. \frac{dE}{dx} \right|_{\text{active}} + \frac{d_{\text{passive}}}{d_{\text{active}}} \cdot \langle \cos \theta_{\text{active}} \rangle \cdot \frac{\left. \frac{dE}{dx} \right|_{\text{mip}}}{\left. \frac{dE}{dx} \right|_{\text{passive}}}}$$

Die Energieauflösung aus Gleichung (2.7) wird modifiziert zu [Fab85]

$$\frac{\sigma(E_{\text{mip}})}{E_{\text{mip}}} \sim \sqrt{\frac{E_{\text{c}} \cdot d [X_0]}{E_{\text{dep}} \cdot F(\rho) \cdot \langle \cos \theta_{\text{active}} \rangle}}. \quad (2.8)$$
Der Transitionseffekt

Die bekannte experimentelle Tatsache, daß Teilchen, die nur durch Ionisation Energie in einem Sampling Kalorimeter deponieren, dabei häufig ein größeres Signal erzeugen als z.B. Elektronen, die über eine Kaskade die gleiche Energie deponieren, wurde zunächst durch die Unterschiede in der kritischen Energie und die damit verbundenen Änderungen der Schauerstrukturen beim Übergang vom passiven zum aktiven Medium erklärt und dementsprechend als Transition-Effekt bezeichnet [Pin65]. Neuere Simulationsstudien in [Wig87] zeigen allerdings, daß in einem typischen Sampling Kalorimeter (\(d_{\text{aktiv}} \ll d_{\text{passiv}} \) in Einheiten von \(X_0 \)) der Übergang zwischen den Medien für die Schauerentwicklung nicht kritisch ist, da diese vollkommen von den Absorberlagen allein dominiert wird. Der Effekt hängt vielmehr damit zusammen, daß die sehr niederenenergetischen Photonen – deren Beitrag zu den Ionisationen mit zunehmendem Schaueralter immer größer wird – am Schauerende nicht mehr das aktive Medium erreichen, sondern im Absorber durch den Photoeffekt (proportional zu \(Z^4 \)) eingefangen werden. Die dabei freigesetzten Elektronen werden aufgrund ihrer ebenfalls sehr kleinen Energie praktisch spontan gestoppt. Dieses Phänomen führt zu einer Abhängigkeit des relativen sichtbaren Energieanteils (also der Sampling Fraction) von der Schauertiefe \(t: S_r \rightarrow S_r(t) \). In [Fla85] ist gezeigt, daß Variation der Sampling Fraction mit der Schauertiefe unabhängig von der Energie des Primärteilchens ist und von der Differenz der Ordnungszahlen des Absorbers und des aktiven Mediums abhängt. Damit bleibt die direkte Proportionalität zwischen dem über den gesamten elektromagnetischen Schauer integrierten Signal und \(E_{\text{dep}} \), erhalten und \(S_r \), bekommt die Bedeutung einer mittleren Sampling Fraction.

Realistische Energieauflösung

Die in der Gleichung (2.8) angegebene Energieauflösung für elektromagnetische Schauer wird durch die Fluktuationen in der Größe der Stichprobe \(N_x \), die Sampling Fluktuationen, dominiert. Die intrinsischen Fluktuationen in der Schauerentwicklung, die qualitativ die gleiche Energieabhängigkeit haben, spielen für die Genauigkeit der Energiemessung praktisch keine Rolle.

In einem realen Sampling Kalorimeter muß der Einfluß der lokalen Imperfektionen im Detektorvolumen (z.B. durch ausgefallene Auslesekanäle oder zusätzliches inaktives Material) und das Rauschverhalten der Ausleseelektronik auf das Auflösungsvermögen berücksichtigt werden. Ersteres ist unabhängig von der Teilchenergie und wird in Form eines Terms \(c \), welcher auch andere Interkalibrationsfehler zwischen individuellen Kanälen beinhaltet, die Grenze der relativen Auflösung bei hohen Energien bestimmen. Elektronisches Rauschen dominiert die Auflösung bei sehr kleinen Signalen und damit kleinen deponierten Energien (< 1 GeV) und liefert einen Beitrag \(b / E \). Insgesamt läßt sich die Energieauflösung dann schreiben als [Eng84]

\[
\frac{\sigma(E)}{E} = \sqrt{\frac{a^2}{E} + \frac{b^2}{E^2} + c^2}
\]

(2.9)

Der Anteil der Sampling und intrinsischen Fluktuationen an der totalen elektromagnetischen Energieauflösung wird durch \(a \) beschrieben.
2.2.3 Hadronische Signale

Charakteristisch für Signale aus Schauern, die durch hochenergetische Hadronen (≥ 1 GeV) induziert werden, ist, daß sich nicht alle in der Kaskadenentwicklung deponierte Energie in ein Signal umwandeln läßt. Abhängig von der Wahl des Absorbers und des aktiven Mediums gibt es einen Teil E_{int}, der von einem Hadron deponierten Energie E_{dep}, der kein Signal produziert. Die Beiträge an E_{int} kommen häufig von nicht-meßbaren Photonen aus Kernprozessen, Bindungsentnergieverlusten und Neutrinos aus Zerfällen. In Abbildung 2.5 ist das Verhältnis der Signale aus elektromagnetischer und hadronischer Energiedeposition für verschiedene Materialkombinationen als Funktion der Energie gezeigt [Fab89]. Mit abnehmender Energie nimmt auch die Wahrscheinlichkeit für inelastische Hadron-Nukleon-Wechselwirkungen ab; geladene Hadronen deponieren ihre Energie immer häufiger nur durch Ionsationen und erzeugen ein ähnliches Signal wie Myonen ($e/h \approx e/\mu \leq 1$). Bei großen Energien dagegen nimmt die intrinsische elektromagnetische Komponente zu und das hadronische Signal nähert sich entsprechend dem Signal von Elektronen an.

![Graph showing the ratio of electron-hadron signals for different combinations of absorber and detection media as a function of particle energy (from Fab89).](image)

Abbildung 2.5: Das Elektron-Hadronsignalverhältnis für verschiedene Kombinationen von Absorber- und Auslesemedien als Funktion der Teilchenenergie (aus [Fab89]).

Das Verhältnis $(e/h)_{\text{inr}}$ des Elektronsignals zu dem Signal aus einer rein hadronischen Schauerkomponente derselben deponierten Energie kann im Mittel zur Beschreibung der hadronischen Eigenschaften eines Sampling-Kalorimeters verwendet werden. Dieses Signalverhältnis ist eine intrinsische Eigenschaft des Kalorimeters, welches in seiner Energieabhängigkeit durch den Aufbau und die verwendeten Materialien bestimmt ist [Wig87]. Häufig ist das Verhältnis e/h des totalen Signals von Hadronen – inkl...
sive des Signalanteils aus der intrinsischen elektromagnetischen Schauerkomponente – zum Signal von Elektronen derselben deponierten Energie einfacher als \((\varepsilon / \hbar)^{\text{intr}} \) aus Messungen zu bestimmen.

\textbf{Zusammenhang zwischen} \(\varepsilon / \hbar \) \textbf{und} \textbf{deponierter Energie}

In der Energiebilanz eines hadronischen Schauers tragen drei Beiträge zur deponierten Energie \(E_{\text{dep}} \) bei:

\[
E_{\text{dep}} = E_{\text{em}} + E_{\text{had}} + E_{\text{ion}}
\]

Der rein hadronisch deponierte Energieanteil \(f_{\text{had}} = E_{\text{had}} / E_{\text{dep}} \) ist wiederum durch drei Beiträge gekennzeichnet:

\[
f_{\text{had}} = \frac{E_{\text{ion}} + E_{\text{em}} + E_{\gamma}}{E_{\text{dep}}} = f_{\text{ion}} + f_{\text{em}} + f_{\gamma}
\]

Die einzelnen Energieanteile sind mit den Schauercharakteristika in Tabelle 2.2 verknüpft: [Wig87]

\(f_{\text{ion}} \) ist der überwiegend durch Spallationsprotonen (70–75\%) und durch geladene Pionen in Ionisationen investierte Energieanteil.

\(f_{\text{em}} \) ist der durch langsame Neutronen übernommene Anteil an der deponierten Energie.

\(f_{\gamma} \) beschreibt den Anteil der in nuklearen Prozessen erzeugten Photonen an \(E_{\text{dep}} \).

Signale im Kalorimeter sind mit der Sampling Fraction für eine bestimmte Teilchensorte verknüpft, da sie proportional zur im aktiven Medium deponierten Energie \(E_{\text{em}} \) sind. Das Hadronsignal \(h \) läßt sich generell als

\[
h(E_{\text{dep}}) = S_h(E_{\text{dep}}) \cdot E_{\text{dep}}
\]

schreiben. Die hadronische Sampling Fraction \(S_h \) hängt von der deponierten Energie ab:

\[
S_h(E_{\text{dep}}) = f_{\text{em}}(E_{\text{dep}})S_e + f_{\text{had}}(E_{\text{dep}})S_{\text{had}}(E_{\text{had}})
\]

\(S_{\text{had}}(E_{\text{had}}) \) ist eine Funktion der rein hadronisch deponierten Energie und bestimmt das Signal aus dieser Komponenten. Das Elektron-Hadron-Signalverhältnis bei gleicher deponierter Energie \(E_{\text{dep}} \) ist schließlich durch

\[
\frac{e}{h}(E_{\text{dep}}) = \frac{S_e \cdot E_{\text{dep}}}{S_h(E_{\text{dep}}) \cdot E_{\text{dep}}} = \frac{f_{\text{em}}(E_{\text{dep}})S_e + f_{\text{had}}(E_{\text{dep}})S_{\text{had}}(E_{\text{had}})}{f_{\text{em}}(E_{\text{dep}})S_e + f_{\text{had}}(E_{\text{dep}})S_{\text{had}}(E_{\text{had}})}
\]

gegeben. Die Beziehung zwischen \(\varepsilon / \hbar \) und \((\varepsilon / \hbar)^{\text{intr}} \) kann mit

\[
\frac{e}{h}(E) = \frac{(\varepsilon)^{\text{intr}}}{1 - f_{\text{em}}(E)} \left(1 - \left(\frac{\varepsilon}{\hbar} \right)^{\text{intr}} \right)
\]

angegeben werden (z.B. [Pet89]). Für ein intrinsisch kompensierendes Kalorimeter \(((\varepsilon / \hbar)^{\text{intr}} = 1) \) ist also auch das Elektron-Hadron-Signalverhältnis für alle Energien gleich eins.
Energieauflösung für Hadronen

Die Energieauflösung bei der Messung hadronischer Schauer ist dominiert durch die
intrinsischen Fluktuationen, d.h. durch die starke Abhängigkeit des Signals von den in der
Schauerentwicklung eines bestimmten Ereignisses tatsächlich auftretenden Prozessen.
Insbesondere die Fluktuationen in f_m führen bei nicht intrinsisch kompensierenden Kalorimetern zu breiten Signalverteilungen für Hadronen einer festen Primärenergie.
Die Beiträge der schnellen und langsamen Phase einer Hadron-Kern-Reaktion an den
intrinsischen Fluktuationen ist in Tabelle 2.2 auf Seite 28 angegeben. Es ist zu beachten,
dass diese Beiträge korreliert sind und eine gewisse Abhängigkeit von dem Charakter der
ersten inelastischen Wechselwirkung haben. Eine große elektromagnetische Komponente
in dieser führt zum Beispiel zu stark unterdrückten rein hadronischen Beiträgen und
damit zu einem kleinen f_m und einem relativ großen Signal.

Quantitativ kann die Energieauflösung unter Vernachlässigung der bereits besprochenen elektronischen Einflüsse und Detektorimperfectionen sowie eventueller longitudinaler oder lateraler Energieverluste durch ein endliches Detektorvolumen nach [Wig87] und [Fab89] mit

$$\frac{\sigma_E}{E} = \frac{a_{\text{temp}} + a_{\text{intr}}}{\sqrt{E}} + X \cdot \left(\frac{\epsilon}{h} \right)_{\text{intr}} - 1$$ \hspace{1cm} (2.14)

angegeben werden. Die Sampling (a_{temp}) und die intrinsischen (a_{intr}) Fluktuationen sind in gleicher Art und Weise von der Energie abhängig. Die Abweichung der Energieabhängigkeit der relativen Auflösung von dem $1/\sqrt{E}$ Verhalten ist in dieser Näherung abhängig von (ϵ/h)$_{\text{intr}}$. Für ein intrinsisch kompensierendes Kalorimeter (ϵ/h)$_{\text{intr}} = 1$ ist die relative Auflösung bei hohen Energien beliebig gut, da die intrinsischen Fluktuationen durch die identische Signalansprache für die rein hadronische und die elektromagnetische Schauerkomponente gedämpft werden.

Die Signale in intrinsisch nicht kompensierenden Kalorimetern können, bei einer
genügend feinen Granularität der Auslesekanäle, mittels geeigneter Funktionen auf sta-
tistischer Basis gewichtet werden, um Kompensation zu erreichen. Diesem Verfahren,
welches auch bei der Rekonstruktion der deponierten Energie im H1 Kalorimeter zur
Anwendung kommt, liegt die Annahme zugrunde, dass ein hohes Signal in einem relativ
kleinen Kanalvolumen elektromagnetischen Ursprungs ist während ein vergleichsweise
kleines Signal als rein hadronisch deponierte Energie interpretiert wird und mit einem
anderen Gewicht – ähnlich dem Verhältnis ϵ/h – in das Gesamtsignal eingeht.

2.3 Flüssig Argon Kalorimetrie in H1

Das in den H1 Detektor eingebaute Flüssig-Argon/Blei- bzw. Flüssig-Argon/Stahl-
Kalarimeter ist durch seine feine Granularität und relativ große Homogenität ausge-
zeichnet, aber intrinsisch nicht kompensierend (ϵ/h)$_{\text{intr}} > 1$). Insbesondere die erst
genannte Eigenschaft ermöglicht es, durch spezielle Signalgewichtungsmethoden Komp-
ensation und eine relativ gute Energieauflösung zu erreichen. In diesem Abschnitt
werden nach kurzer Vorstellung des Kalorimeters (Konstruktionsdetails finden sich in
[H1T86]) die physikalischen Eigenschaften bezüglich der vorherigen Betrachtungen über
die Signalaufnahme diskutiert und einige Simulationsergebnisse vorgestellt.
2.3.1 Aufbau des Kalorimeters

Das Kalorimeter arbeitet nach dem Prinzip der Ionisationskammer, die beim Durchgang eines geladenen Teilchen im flüssigen Argon freigesetzten Elektronen werden durch ein elektrisches Feld auf segmentierten Kupferflächen, den Pads, gesammelt.

Die Wahl von flüssigem Argon als aktives Medium hat einige Konsequenzen auf die charakteristischen Eigenschaften des Kalorimeters:

- das flüssige Medium reduziert den inaktiven Bereich im Kalorimeter auf ein Minimum.

- flüssiges Argon hat wegen seiner geringen Ionisationsenergie und der ebenfalls geringen Rekombinationswahrscheinlichkeit der Argonionen eine hohe Ladungseffizienz.

- das flüssige Argon hat eine große Strahlungsresistenz und damit eine hohe Langzeitstabilität.

- die große Mobilität der Elektronen und die damit verbundenen kleinen Ladungsammlungszeiten (ca. 500 ns bei 2.5 mm Gap und 1 kV/mm Feld [Wil74]) führen zu einer in der HERA Maschine akzeptablen Totzeit.

- da das Argon bei etwa 86 K gehalten wird, frieren die meisten elektronegativen Verunreinigungen aus; es ist relativ einfach rein zu halten.

Flüssiges Argon ist praktisch nur sensitiv gegenüber direkt ionisierenden Teilchen wie Elektronen und insbesondere Protonen; Neutronen ohne inelastische Wechselwirkung hinterlassen kein Signal. Dieses hat Konsequenzen für die Wahl des Absorbers im hadronischen Kalorimeter, da das Verhältnis der im Schauerverlauf produzierten Protonen zu der Zahl der Neutronen sich wie \(Z/(A-Z) \) verhält [Wig87]. Eisen liefert damit nur etwa 13% weniger Protonen als Neutronen und ist bei einer relativ kleinen Absorptionslänge ein in Verbindung mit flüssigem Argon geeignetes Absorbermaterial. In dem in den elektromagnetischen H1 Kalorimetern verwendeten Blei werden im Schauerverlauf etwa 35% weniger Protonen als Neutronen erzeugt, womit dieser Absorber für hadronische Flüssig Argon Kalorimetrie nicht so vorteilhaft ist. Aufgrund seiner sehr kleinen Strahlungslänge von nur etwa 0.56 cm ist Blei allerdings zur Absorption elektromagnetischer Energie sehr gut geeignet.

Mechanischer Aufbau und Tiefe

Das Flüssig-Argon-Kalorimeter besteht aus acht Rädern, deren Anordnung und Benennung der Abbildung 2.6a zu entnehmen ist. Die bezüglich des Wechselwirkungspunktes innen liegenden elektromagnetischen Kalorimeter sind Blei/Flüssig-Argon Kalorimeter und etwa 25-30 \(X_0 \) - je nach Rad - tief. Für Hadronen sind die elektromagnetischen Kalorimeter etwa 1 - 1.5 \(\lambda \) tief. Zusammen mit den um die elektromagnetischen Stacks angeordneten hadronischen Stahl/Flüssig-Argon Kalorimetern variiert die von dem Winkel \(\theta \) bezüglich der Protonachse in HERA abhängige Gesamttiefe von etwa 6.5 \(\lambda \) im Bereich des inneren Vorwärtskalorimeters (IF, Inner Forward) über etwa 8 \(\lambda \) im Forward Barrel, \(FB \) bis zu etwa 4.5 \(\lambda \) in den Central Barrel, \(CB \) Rädern (Abbildung 2.6b). Im Bereich des Backward Barrel findet nur noch elektromagnetische Kalorimetrie zur Messung des
Abbildung 2.6: Schematische Darstellung des H1 Kalorimeters in einer $\tau - z$ Projektion (a). Die hervorgehobenen Linien begrenzen die in jeweils eine Energiesumme für den Trigger eingehenden Kanäle; die Linie vom Vertex soll die projektive Geometrie (Pointing) der Kanäle verdeutlichen. In (b) ist die Tiefe des Kalorimeters in Abhängigkeit vom Winkel θ dargestellt.
in einer Reaktion des neutralen Stroms gestreuten Elektrons statt (BBE-Kalorimeter). Insgesamt wird bei zylinderförmiger Anordnung ein Bereich von etwa \(4^\circ < \theta < 150^\circ \) abgedeckt. Details zum mechanischen Aufbau der Räder und deren Tiefe sind in \([H1T86]\) und \([H1P89]\) zu finden. Einzelheiten zur longitudinalen Struktur und der Auslese werden noch bei der Diskussion des Prototyps für die IF Kalorimeter in Kapitel 5 gezeigt.

Die longitudinalen und lateralen Segmentierung der Auslesekanäle ist so gewählt, dass die Zellen einer projektierten Geometrie bezüglich des Wechselwirkungspunktes folgen (siehe Abbildung 2.6). Die laterale Struktur für drei verschiedene Räder ist in Abbildung 2.7 dargestellt. Die Granularität nimmt mit zunehmendem Winkel \(\theta \) ab; die feinste Segmentierung ist im elektromagnetischen IFE-Stack zu finden. Generell sind die elektromagnetischen Kalorimeter zur Separation von hadronischem und elektromagnetisch deponierter Energie über Schauerstrukturen feiner segmentiert als die hadronischen. Das H1 Kalorimeter verfügt insgesamt über etwa 45000 Auslesekanäle.

2.3.2 Hadronen im H1 Kalorimeter

Energiedeponierung

Wegen der sehr geringen Sensitivität des flüssigen Argons auf Neutronen ist die nicht in ein Signal konvertierbare deponierte Energie \(E_{\text{nr}} \) im H1 Kalorimeter relativ groß und kann nicht kompensiert werden (\((e/h)^{\text{nr}} > 1 \)). Das Signal wird in der Hauptsache durch die elektromagnetische Komponente \(E_{\text{em}} \) und durch die Ionisation des Argons durch Protonen und geladene Pionen (\(E_{\text{ion}} \)) erzeugt. Die quantitativen Beiträge sind anhand von Studien mit detailliert simulierten Daten untersucht worden (zu den verwendeten Programmen und Abschneideparametern siehe Anhang A). Natürlich sind die vorgestellten Ergebnisse von dem im Simulationsprogramm eingebauten Modell der hadronischen Energiedeponierung und der Genauigkeit der Beschreibung des realen Kalorimeters abhängig.

Folgende Verhältnisse werden in ihrer Abhängigkeit von der deponierten Energie \(E_{\text{dep}} \) untersucht:

\[
\frac{f_{\text{em}}(E_{\text{dep}})}{E_{\text{dep}}} = \frac{E_{\text{em}}}{E_{\text{dep}}}, \quad \frac{f_{\text{had}}(E_{\text{dep}})}{E_{\text{dep}}} = \frac{E_{\text{had}}}{E_{\text{dep}}}, \quad f_{\text{ion}}(E_{\text{dep}}) = \frac{E_{\text{ion}}}{E_{\text{dep}}} \quad (2.15)
\]

Abbildung 2.8 zeigt die Verteilung der \(f_{\text{em}} \), \(f_{\text{had}} \) und \(f_{\text{ion}} \) für simulierte Pionen der Einschubenergien 5 GeV und 80 GeV in IFE und IFH. In Abbildung 2.9 ist die Abhängigkeit der einzelnen Verhältnisse von der deponierten Energie eingetragen. Der
Abbildung 2.7: Laterale Segmentierung des H1 Kalorimeters in einer $\tau - \phi$ Projektion für verschiedene Räder.
elektromagnetische Anteil läßt sich in dem studierten Energiebereich wie folgt parametrisieren:

\[f_{em} = (0.181 \pm 0.005) + (0.095 \pm 0.002) \ln \frac{E_{dep}}{1 \text{ GeV}} \] \hspace{1cm} (2.16)

parametrisieren. Die angegebenen Fehler sind rein statistisch. Es ist zu beachten, daß die in den Abbildungen gezeigten Größen unabhängig vom Ort der Energiepe
ingierung (elektromagnetisches oder hadronisches Kalorimeter) berechnet wurden. Sie geben somit die mittleren Absorptionseigenschaften beider Stacks an. Auffallend sind die annähernd logarithmisch mit wachsender Energie fast gleich fallenden Anteile \(f_{had} \) und \(f_{mes} \); die Hälfte der rein hadronisch deponierten Energie ist praktisch nicht in ein Signal konvertierbar. Der elektromagnetische Energieanteil nimmt mit steigendem \(E_{dep} \) in der in [Fab85] beschriebenen Art und Weise logarithmisch zu. Bei der kleinsten simulierten Energie (5 GeV) sind alle drei Anteile etwa gleichgroß (\(f_{em} \approx f_{had} \approx f_{mes} \approx 1/3 \)). Dies deutet darauf hin, daß in diesem Energiebereich Pionen häufig nur eine inelastische Wechselwirkung erleiden, in der neutrale Pionen erzeugt werden können. Die dabei produzierten geladenen Pionen haben nicht genug Energie, um in inelastischen Prozessen weitere Hadronen zu erzeugen.

Typische hadronische Signalspektren

Die Verwendung von verschiedenen passiven Medien im H1 Kalorimeter führt zu Unterschieden in den Absorptionseigenschaften zwischen dem elektromagnetischen und dem hadronischen Kalorimeter. Anhand einer qualitativen Diskussion werden die Signale aus Pionereignissen und deren Korrelation in den hintereinander angeordneten Kalorimetern auf der Basis der im aktiven Medium deponierten Energie \(E_{mes} \) gezeigt. Die Kompensation der unterschiedlichen Sampling Fractions für elektromagnetische Signale ist ein Teil der Ergebnisse dieser Arbeit und wird später diskutiert. In Abbildung 2.10
Abbildung 2.9: Die Energieabhängigkeit von $f_{em} (\circ)$, $f_{had} (\vartriangle --)$ und $f_{inv} (\triangledown \cdots)$. Die durchgezogene Linie zeigt die Gleichung (2.16) beschriebene Funktion. Die statistischen Fehler der Meßpunkte sind kleiner als die Symbolgrößen.

Abbildung 2.10: Das Signal von simulierten 50 GeV Pionen in IFE und IFH. Die Abbildung zeigt die Spektren in den beiden Kalorimetern und die Korrelation zwischen ihnen.
sind die einzelnen Signalverteilungen und ihre Korrelation gezeigt. Die Signale berechnen sich jeweils aus der Summe der in den Kanälen des elektromagnetischen bzw. des hadronischen Kalorimeters im Argon deponierten Energien

\[E_{\text{m},j}^i = \sum E_{\text{m},j}^i, \quad j = \text{EMC}, \text{HAC} \]

Einige Pionen durchqueren beide Kalorimeter ohne inelastische Wechselwirkung; sie hinterlassen wie die meisten Myonen sowohl im EMC als auch im HAC ein kleines Signal.

Aus der Abbildung 2.10 ist ebenfalls zu entnehmen, daß die Sampling Fraction für Pionen im elektromagnetischen Kalorimeter etwa doppelt so groß ist wie im hadronischen. Um das totale Signal \(E_{\text{m}}^i \) von Pionen mit dem totalen Signal von Elektronen vergleichen zu können, wird das Signal im HAC durch Anbringen eines konstanten Faktors

\[R = \frac{S_{\text{EMC}}}{S_{\text{HAC}}} \approx 2 \]

auf den Unterschied in den Sampling Fractions \(S_{\text{EMC}}, S_{\text{HAC}} \) korrigiert:

\[E_{\text{m},j}^i = E_{\text{m},j}^{\text{EMC}} + R \cdot E_{\text{m},j}^{\text{HAC}} \]

Abbildung 2.11: Spektren der totalen Signale für simulierte 30 GeV Elektronen (schraffiert) und Pionen im IF Kalorimeter. Die Ordinate ist für das Energiespektrum der Elektronen um eine Faktor 2.5 unterdrückt.
Kapitel 3

Grundlagen der Kalibration

Die Kalibration eines Kalorimeters in einem komplexen Detektor wie H1 kann unter verschiedenen Modellen für die Beziehung zwischen dem Signal und der Energie eines eingestreuten Teilchens oder Teilchenjets erfolgen. Der in dieser Arbeit verwendete Ansatz einer von den anderen Detektorkomponenten unabhängigen Kalibration mittels Testdaten erlaubt innerhalb gewisser Fehler die Konversion des Kalorimetersignals in die tatsächlich deponierte Energie, kann damit aber allenfalls nur in guter Näherung die Energie eines vom Vertex einer ep Reaktion kommenden Teilchens liefern. Letztere kann erst bei Berücksichtigung der vor und hinter dem Argon Kalorimeter deponierten Energie vollständig rekonstruiert werden.

In diesem Kapitel wird zunächst das Ladungssignal im Flüssig Argon Kalorimeter und seine Beziehung zur deponierten Energie insbesondere für Elektronen diskutiert. Dann wird auf der Basis von Elektronsignalen eine universelle Kalibrationskonstante definiert, die innerhalb relativ kleiner systematischer Fehler unabhängig von den genannten Unterschieden zwischen eigentlichen Experiment und den Kalibrationsmessungen ist und die die gemessene Ladung in ein Energiesignal konvertiert. Aufgrund dieser Eigenschaft können auf dieser Skala dann Ergebnisse der Kalibrationsmessungen auf das H1 Kalorimeter übertragen werden.

3.1 Bedeutung von Kalibrationskonstanten

Das Signal in einem Sampling Kalorimeter wurde im vorherigen Kapitel als die im aktiven Medium deponierte Energie \(E_{\text{dep}} \) interpretiert. Diese ist mit der total deponierten Energie \(E_{\text{dep}} \) über die Sampling Fraction \(S \) verbunden. Das reale experimentelle Signal ist allerdings durch die Zahl \(N \) der mittels Ionisationen im aktiven Medium freigesetzten Elektronen\(^1\) bestimmt. Diese entspricht einer Ladungsmenge \(Q_{\text{ion}} = N e \), welche mit

\(^1\) die positiven Argonionen tragen wegen ihrer geringen Beweglichkeit praktisch nicht zum Signal bei.
E_{ion} verknüpft ist:

$$Q_{\text{ion}} = \frac{E_{\text{ion}}}{E_{\text{ion}}} \cdot e = S \cdot \frac{E_{\text{ion}}}{E_{\text{ion}}} \cdot e$$

E_{ion} ist die zur Ionisation des aktiven Mediums benötigte Energie (für flüssiges Argon ist $E_{\text{ion}} = 23.6$ eV).

3.1.1 Ladungssammlung im Argon

Das Absammeln von Q_{ion} in einem elektrischen Feld im Argon ist in [Wil74] diskutiert worden. Danach werden bei Durchgang eines ionisierenden Teilchens durch eine Argonschicht der Dicke d die Ionisationselektronen zunächst homogen entlang der Teilchenspur verteilt sein. Dieses ist eine Folge der im Vergleich zur Teilchengeschwindigkeit geringen Driftgeschwindigkeit v_d dieser Elektronen im flüssigen Argon ($v_d \approx 5$ mm/μs bei 1 kV/mm elektrischem Feld). Die nach Ablauf der Driftzeit $t_d = d/v_d$ nach dem Teilchendurchgang gesammelte Ladung $Q(t_d)$ ist dann gegeben durch:

$$Q(t_d) = \int_0^{t_d} I(t)dt = \int_0^{t_d} N \cdot e \cdot \left(\frac{1}{t_d} - \frac{t}{t_d}\right) dt = \frac{Ne}{2} = \frac{Q_{\text{ion}}}{2}$$

Damit entspricht das Signal prinzipiell nur der Hälfte aller im Argon freigesetzten Elektronen.

$$\frac{dE'}{dx} = \frac{dE/dx}{1 + k_b dE/dx}$$ \hspace{1cm} (3.1)

Bei einer hohen Ionendichte ist auch die Wahrscheinlichkeit für Rekombination zwischen Elektronen und anderen Ionen groß. Diese säulenartige Rekombination tritt entlang der Trajektorie eines tief-ionisierenden Teilchens insbesondere dann auf, wenn sich wie in einer Ionisationskammer die Ionen und Elektronen antiparallel bewegen. Ähnlich der initialen Rekombination drückt sich auch der Effekt in einem wie in Gleichung (3.1) beschriebenen, hier aber von der elektrischen Feldstärke ε abhängigen Sättigungsverhalten aus ($k_b \rightarrow k_b(\varepsilon) \sim 1/\varepsilon$). Für flüssiges Argon in einer Ionisationskammer kann näherungsweise nach [Fab77]

$$k_b = 0.005 \frac{e}{\text{MeV cm}^2}$$

gesetzt werden, wenn die Kammer auf dem Hochspannungsplateau betrieben wird ($\varepsilon \approx 1$ kV/mm). Bei den in dieser Arbeit vorgestellten Ergebnissen ist der Sättigungseffekt in der Ionisation bei der Berechnung der sichtbaren Energie E_{ion} in der Simulation von realen Ereignissen berücksichtigt worden.

In einem realen Detektor sind noch die Reinheit des Argons, also die Effizienz der Ladungssammlung, und die Einflüsse der Ausleseelektronik zu beachten, die beide reine
Detektoreigenschaften sind. Zusammenfassend können diese und die oben beschriebenen Effekte mittels der Kalibration c beschrieben werden, die das Ladungssignal Q in die tatsächlich deponierte Energie E_{dep} überführt ($E_{\text{dep}} = c \cdot Q$).

3.1.2 Beziehungen zwischen Kalibrationen für verschiedene Teilchenarten

Die oben eingeführte Kalibration c ist abhängig von der Art der Energie deponierung, da sie proportional zur inversen Sampling Fraction ist. Für Elektronen gilt nach den Betrachtungen im letzten Kapitel

$$ c_e = \frac{E_{\text{dep}}}{Q} \sim \frac{1}{S_e} = \text{const}, $$

für Hadronen entsprechend

$$ c_h = \frac{E_{\text{dep}}}{Q} \sim \frac{1}{S_h(E_{\text{dep}})}. $$

Es ist zu beachten, dass die Kalibration c_h für Hadronen im Gegensatz zu der für Elektronen eine Funktion der deponierten Energie ist. Unter Verwendung des Elektron-Hadron-Signalverhältnisses e/h kann

$$ c_h(E_{\text{dep}}) = \frac{e}{h}(E_{\text{dep}}) \cdot c_e \quad (> c_e \text{ für } E_{\text{dep}} \gtrsim 1 \text{ GeV}) $$

gesetzt werden. Für Signale von Myonen2 lautet die entsprechende Beziehung:

$$ c_\mu = \frac{\mu}{\mu} \cdot c_e \quad (< c_e) $$

Die Normierung der Hadron- und Myonkalibration auf eine gemeinsame Skala, die elektromagnetische Kalibrationskonstante c_e, ermöglicht die Übertragung der aus den Ergebnissen der Kalibrationsmessungen extrahierten Funktion c_h bzw. der Konstanten c_μ auf die entsprechenden Signale im H1 Kalameter. Voraussetzung dafür ist die Verwendung baugleicher Module sowohl bei den Kalibrationsmessungen als auch im H1 Kalameter, da e/h und μ/μ nur von den verwendeten Materialien und dem geometrischen Aufbau sowie, im Fall von e/μ nur schwach [And88], von der Teilchenenergie abhängen. An die elektromagnetische Kalibrationskonstante c_e ist die Forderung der Universalität zu stellen, d.h. sie muss für die Kalibrationsmodule und für das H1 Kalameter identisch sein. Diese geforderte Eigenschaft bedingt insbesondere, dass c_e nicht von speziellen Gegebenheiten bei den Kalibrationsmessungen wie z.B. der Menge des inaktiven Materials vor dem eigentlichen Kalameter abhängt.

Bevor die elektromagnetische Skala weiter diskutiert wird, soll hier die Beziehung zwischen der primären Teilchenenergie, der tatsächlich deponierten Energie und eventuellen Energieverlusten für Elektronen, Hadronen und Myonen kurz vorgestellt werden. Für alle drei Teilchensorten gilt:

$$ E_{\text{tot}} = E_{\text{loss}} + E_{\text{dep}} + E_{\text{eik}} $$

2unter dem Myonsignal wird das meistwahrscheinliche Signal von Myonen verstanden.
mit:

\[E_{\text{im}} \quad \text{primäre Teilchenenergie am Vertex bzw. im Strahl;} \]
\[E_{\text{int}} \quad \text{vor dem Kalorimeter deponierte Energie;} \]
\[E_{\text{dep}} \quad \text{im Kalorimeter deponierte Energie;} \]
\[E_{\text{leak}} \quad \text{hinter dem Kalorimeter deponierte Energie.} \]

Für Elektronen bringt der Energieverlust \(E_{\text{int}} \) vor dem eigentlichen Kalorimeter einen insbesondere bei kleinen Energien nicht zu vernachlässigenden Effekt für die Normierung der Kalibrierung, wie im nächsten Abschnitt noch gezeigt wird. Andererseits gibt es bei diesen Teilchen praktisch keine longitudinalen Energieverluste (\(E_{\text{leak}} \approx 0 \)).

Bei Hadronen spielt die vor dem Kalorimeter deponierte Energie bei typischen Materialdicken von 0.1 bis 0.4 \(\lambda \) im H1 Experiment [H1P87] und 0.3 \(\lambda \) bei den Kalibrationsmessungen eine geringere Rolle bei der Normierung. Der insbesondere bei höheren Teilchenenergien (\(E_{\text{inc}} > 30 \text{ GeV} \)) mögliche relativ große longitudinale Energieverlust ist dagegen zu beachten (weitere Diskussion in Abschnitt 5.3).

Die meistwahrscheinliche, durch Myonen mit \(2 \text{ GeV} \leq E_{\text{inc}} \leq 100 \text{ GeV} \) im Kalorimeter deponierte Energie \(E_{\text{dep}} = E_{\text{dep}}^{\text{max}} \) nimmt im genannten Primärenergieintervall nur um etwa zehn Prozent zu: [And88]

\[E_{\text{dep}}^{\text{max}}(E_{\text{inc}} = 100 \text{ GeV}) \approx 1.1 \cdot E_{\text{dep}}^{\text{max}}(E_{\text{inc}} = 2 \text{ GeV}) \]

Myonen mit Primärenergien kleiner als 2 GeV werden mit großer Wahrscheinlichkeit im Kalorimeter absorbiert. Beachtenswert ist, das die mittlere durch Myonen depo- nierte Energie, zu deren Berechnung auch Myonereignisse beitragen, in denen elektromagnetische Schauer z.B. durch \(\delta \)-Elektronen induziert werden, sehr viel stärker von der Primärenergie \(E_{\text{inc}} \) abhängt [And88].

3.2 Ideale elektromagnetische Kalibrierung

Die elektromagnetische Kalibrationskonstante \(c_e \) ist dann als ideal oder universell zu bezeichnen, wenn sie unabhängig von der Energie der Elektronen deren physikalisches Signal in die im auslesbaren Kalorimetervolumen deponierte Energie sowohl in den Kalibrationsmodulen als auch im H1 Kalorimeter konvertiert. Da neben dem physikalischen Signal auch das elektronische Rauschen zur zur gemessenen Ladung beiträgt, wird es auch eine universelle Kalibrationskonstante nicht ermöglichen, direkt die Energie aus dieser Ladung zu rekonstruieren. Dazu ist eine weitere Funktion notwendig, die den in beiden Fällen unterschiedlichen Beitrag des elektronischen Rauschens korrigiert. Diese Funktion ist wiederum von der Definition des Signals und damit z.B. auch von der Kanalselektion in der Analyse abhängig. Insbesondere kann diese Korrektur für die Signale im H1 Kalorimeter nicht aus den Kalibrationsmessungen bestimmt werden, da der Gesamtbeitrag durch elektronisches Rauschen aufgrund der sehr viel größeren Zahl an Kanälen im H1 Kalorimeter nicht derselbe ist.

Zum prinzipiellen Verständnis der Bestimmung von \(c_e \) wird zunächst das Ergebnis der Kalibrationsmessungen, die unkorrigierte elektromagnetische Kalibrationskonstante \(c_e^u \), vorgestellt und dann die notwendigen Korrekturen gezeigt.
3.2.1 Experimentelle Kalibration für Elektronen

Die unkorrigierte Kalibration c^u_e für Elektronen ist ein direktes Ergebnis der Kalibrationssmessungen und wird aus der über viele Ereignisse gemittelten Summe $\langle Q \rangle$ der in den einzelnen Kalorimeterkanälen gemessenen Ladungen q_i und der bekannten Energie des Elektronenstrahls E_{inc} berechnet:

$$c^u_e = \frac{E_{\text{inc}}}{\langle \sum q_i \rangle} = \frac{E_{\text{inc}}}{\langle Q \rangle} \quad (3.2)$$

3.2.2 Energieverluste im inaktiven Material

Durch Wechselwirkungen mit inaktivem Material vor dem aktiven Modul deponieren die eingestreuten Elektronen bereits ein Teil $E_{\text{intr}}/E_{\text{inc}}$ ihrer Energie. Dieser relative Energieverlust ist eine Funktion der Strahlenergie, der mit abnehmender Strahlenergie größer wird. Damit wäre dann auch die Elektronenkalibration nicht mehr energieunabhängig, wenn man die Kalibrationskonstante nach Gleichung (3.2) berechnet.

Die Energieverluste vor dem Kalorimeter können nur durch eine möglichst realisti sche Simulation der Kalibrationssmessungen bestimmt werden. Das Resultat einer solchen Simulation von Elektronen im Kalibrationsmodul ist eine Beziehung zwischen dem Äquivalent der gemessenen Ladung $\langle E_{\text{sr}}^* \rangle$, und der Strahlenergie E_{inc}, ausgedrückt durch die dimensionlose Kalibrationskonstante $c^u_{e,MC}$:

$$c^u_{e,MC} = \frac{E_{\text{inc}}}{\langle E_{\text{sr}}^* \rangle} \quad (3.3)$$

47
Abbildung 3.1: Die durch Elektronen in 1.53 X_0 inaktiven Material vor dem Kalorimeter deponierte Energie als Funktion der Einschussenergie E_{inc} (linke Skala, △). Zusätzlich ist der relative Anteil dieser Energieverluste an E_{inc} gezeigt (rechte Skala, ○).

Dabei ist

$$\langle E_{\text{tot}}^* \rangle = \left\langle \sum_{i} (E_{\text{tot},i} + E_{\text{rel},i}) \right\rangle.$$

$E_{\text{tot},i}$ ist die simulierte, im aktiven Argon eines Kalorimeterkanals deponierte Energie und $E_{\text{rel},i}$ das dem Beitrag des elektronischen Rauschens entsprechende Energieäquivalent im gleichen Kanal. Die Berechnung dieser Größe wird im Kapitel 5 besprochen. Zunächst bleibt anzumerken, daß zur Berechnung von $c_{i,MC}^*$ die Kanalselektion in der gleichen Art und Weise zu erfolgen hat wie bei der Berechnung von c_{i}^*.

Die Größe $c_{i,MC}^*$ enthält unter der Voraussetzung einer realistischen Beschreibung im Simulationsprogramm – alle Imperfektionen des Kalibrationsmoduls und Einflüsse von inaktiven Material im Strahl. Elektronische Probleme und die Effizienz der Ladungssammlung werden nicht simuliert.

In Abbildung 3.1 ist der absolute und der relative Energieverlust von Elektronen in 1.53 X_0 inaktivem Material vor dem Kalorimeter als Funktion der Einschussenergie E_{inc} gezeigt. Die Ergebnisse sind unter Verwendung einer dem Aufbau und den Kalibrationsmessungen möglichst nahekommenden Simulation des experimentellen Aufbaus bei den Kalibrationsmessungen für das IF Kalorimeter gewonnen (weitergehende Beschreibungen der Simulationsprogramme finden sich in Anhang A).

Von geringer Bedeutung ist der Einfluß des inaktiven Materials auf die Sampling Fraction. Durch die Verschiebung des mittleren Schauerstartpunktes vor das eigentliche active Volumen ist durch die beim Transitionszeitpunkt diskutierte Abhängigkeit der Sampling Fraction von der Schauertiefe eine etwas kleinere mittlere Sampling Fraction zu erwarten. Dieser Effekt wurde ebenfalls anhand von Simulationen studiert und wird
bei der Berechnung der idealen Kalibrationskonstanten für die simulierte Energiedepo-
nierung durch Elektronen angegeben.

3.2.3 Korrektur der experimentellen Skala

Durch Simulationen von Elektronereignissen im Kalibrationsmodul kann eine ideale
Kalibration $c_{e,MC}$ bestimmt werden, die die sichtbar deponierte Energie $\langle E_{\text{dep}} \rangle$, also das Äquivalent des physikalischen Signals im Experiment, mit der tatsächlich im Kalorimeter
deponierten Energie E_{dep} in Verbindung setzt. Die Definition dieser dimensionslosen
Konstanten sei hier kurz wiederholt:

$$c_{e,MC} = \frac{E_{\text{dep}}}{\langle E_{\text{dep}} \rangle} = \frac{1}{S_e} \quad (3.4)$$

Die Annahme, daß die in Gleichung (3.3) gegebene Kalibrationskonstante $c_{e,MC}^\nu$ als Er-
egbnis einer der Realität weitgehend entsprechenden Simulation der Kalibrationsmes-
sungen in ihrer Bedeutung der unkorrigierten experimentellen Konstanten c_e^ν aus Glei-
chung (3.2) entspricht, führt zur idealen elektromagnetischen Skala c_e für experimentelle
Elektronsignale:

$$c_e = \frac{c_{e,MC}^\nu}{c_e^\nu} \cdot c_e^\nu \quad (3.5)$$

Durch Verhältnisbildung von c_e^ν zu $c_{e,MC}^\nu$ wird der systematische Effekt durch Energie-
verluste vor dem Kalorimeter entfaltet. Die Kalibrationskonstante c_e ist auch nicht
abhängig von der Wahl der Simulationsparameter, solange $c_{e,MC}^\nu$ und c_e^ν unter Ver-
wendung identischer Abschneideparameter bestimmt worden sind. Der Einfluß von
den Detektormperfektionen, welcher spezifisch für das Kalibrationsmodul ist, ist bei
genügend realistischer Beschreibung in der Simulation ebenfalls eliminiert.

Es sei jetzt schon darauf hingewiesen, daß bei der Extraktion von c_e in Kapitel 5
nicht direkt der in Gleichung (3.5) aufgezeigte Weg gegangen wird. Die Gleichung gibt
nur in einfacher Weise die Beziehungen zwischen den Skalen wieder und ist deshalb hier
angegeben worden. Tatsächlich brauchen die beiden unkorrigierten Skalen c_e^ν und $c_{e,MC}^\nu$
garnicht explizit berechnet zu werden, um die ideale Kalibrationskonstante für Elek-
tronen zu bestimmen. Bei entsprechender Behandlung des elektronischen Rauschens
reicht allein die Forderung nach Gleichheit der aus realen und simulierten Elektron-
signalen einer Strahlenergie rekonstruierten Energie zur Berechnung der idealen Skala
aus.
Kapitel 4

Durchführung der Kalibrationsmessungen

Nach der Beschreibung des Aufbaus und des Teststrahls im nächsten Abschnitt wird die Datennahme vorgestellt und insbesondere das elektronische Kalibrationsverfahren diskutiert. Im letzten Abschnitt dieses Kapitels werden schließlich die Ladungskorrekturen beschrieben.

4.1 Die Kalibrationsmodule

Für das innere Vorwärtskalorimeter ist 1988 ein Kalibrationsmodul, das Viertelstack, beim DESY in Hamburg gebaut worden. Es hat die gleiche longitudinale und laterale Struktur wie das eigentliche Kalorimeter, allerdings aus Platzgründen nur ein Viertel der Querschnittsfläche.

4.1.1 Elektromagnetisches Viertelstack

Der Prototyp für das elektromagnetische IFE Kalorimeter im H1 Detektor ist im Teststrahl vor dem hadronischen Viertelstack angeordnet (die Abbildungen 4.1,4.2 zeigen die beiden Module im Kryostaten in zwei verschiedenen Ansichten). Zunächst wird der mechanische Aufbau des IFE Viertelstacks vorgestellt.

Auslesestrukturen

Das elektromagnetische Kalibrationsmodul besteht aus 63 im Abstand von etwa 2.4 mm hintereinander angeordneten Absorberplatten, wobei die erste und die letzte Platte aus
Abbildung 4.1: Die Prototypen für die inneren Vorwärtskalorimeter in ihrer Anordnung im Kryostaten beim CERN, vertikaler Querschnitt. Alle Maße in mm.
Abbildung 4.2: Das Viertelstack im Kryostaten in einer Projektion auf die $z-z$ Ebene. Alle Maße in mm.

Zwischen jeweils zwei mit einer hochhomogenen Schicht bedruckten Hochspannungsplatten befindet sich eine mit den Auslesekanälen beklebte Ausleseplatte, die eine laterale Struktur aufweist. Die hochhomogene Schicht führt im Kalorimeterbetrieb die negative Hochspannung, so daß die im flüssigen Argon freigesetzten Elektronen zur Ausleseplatte (auf Massenpotential) driften und dort abgesammelt werden. Die Bedeutung der hochhomogenen Schicht wird im Abschnitt über das Signalüberspeichen noch diskutiert.

4.1.2 Hadronisches Prototypkalorimeter

Die hadronischen Kalorimeter im H1 Detektor zeichnen sich durch das Konzept der *Independent Readout Boards* aus, welches hier anhand der longitudinalen Struktur des IFH Viertelstacks vorgestellt wird.

Wie in Abbildung 4.4 gezeigt sind die Auslesekanäle im hadronen Kalorimeter mechanisch von der Absorberstruktur getrennt. Letztere besteht aus 37 etwa 15.7 mm dicken Stahlplatten, die im Abstand von ca. 27 mm hintereinander angeordnet sind. Zwischen jeweils zwei dieser Stahlplatten sind die Independent Readout Boards eingeschoben, die aus zwei dünnen Stahlplatten (im Mittel 1.5 mm dick) und der zwei angeordneten Auslesekarte aus kupferkaschiertem G10 aufgebaut sind. Die beiden dünnen Stahlplatten tragen die Hochspannungselektroden, die wie im Fall der elektromagnetischen Kalorimeter aus einer hochhomogenen Schicht bestehen. Das elektrische Feld ist so eingestellt, daß die Elektronen im Argon zu der Auslesekarte driften.

Die laterale Segmentierung der Auslesekanäle ist schon in Abbildung 2.7 dargestellt. Die Kantenlänge der Pads beträgt etwa 0.5 bis 0.7 λ. Zwei Independent Readout Boards
Abbildung 4.3: Der longitudinale Aufbau des elektromagnetischen Kalorimeters, alle Maße in mm.

Abbildung 4.4: Die longitudinale Struktur des hadronischen Kalorimeters, alle Maße in mm.
<table>
<thead>
<tr>
<th>IFH Segment</th>
<th>Zahl der Ausleseplatten</th>
<th>Segmentzentrum X_0</th>
<th>Segmenttiefe λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>3.36</td>
<td>0.42</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10.08</td>
<td>1.26</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>17.91</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>25.74</td>
<td>3.24</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>38.05</td>
<td>4.82</td>
</tr>
<tr>
<td>Σ</td>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IFE + IFH</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Die longitudinale Segmentierung des IFH Kalorimeters.

Abbildung 4.5: Die Optik des H6 Teststrahls beim CERN. Die einzelnen Elemente sind im Text erklärt.

Bilden lateral einen Oktant des IFH Kalorimeters. Der Vorteil des Konzepts der unabhängigen Auslesezellen ist eine größere Homogenität des Kalorimeters insbesondere in z und in ϕ (siehe Abbildung 2.7).

4.2 Aufbau der Kalibrationsmessungen

4.2.1 Aufbau in der Testregion

In Abbildung 4.6 ist der Aufbau im Bereich des Testareaals gezeigt. Vor und hinter dem Kryostaten sind einige Zähler zur Strahldefinition aufgebaut. Für die Energiemessung von Pionen, die ihre Energie nicht vollständig im Flüssig Argon Kalorimeter deponieren, ist - analog der Konstellation in H1 - hinter dem Flüssig-Argon-Kalorimeter ein etwa
Abbildung 4.6: Schematische Darstellung der Elemente des Strahlbereichs in der Nähe des Kryostaten. Die Maße sind in [cm] (aus [Zei91]).

Die Lage des Viertelstacks relativ zum Teilchenstrahl ist bereits in den Abbildungen 4.1 und 4.2 zu sehen. Das Modul ist vertikal und horizontal so gedreht, daß für die Standardeinschußposition die Eintrittsrichtung gerade der eines Teilchens vom Vertex im H1 Detektor entspricht.

4.2.2 Strahlführung

Die gewünschten Teilchenergien können mittels spezieller Magneten (*BM3*, *BM4*, *BM5* in Abbildung 4.5) und Kollimatore (*C3*, *C5* in der selben Abbildung) hinter dem primären Target *T1* oder einem sekundären Target *T2* selektiert werden. Die so ausgewählten Teilchen werden dann durch verschiedene Detektoren zur Bestimmung der Strahllage und der Teilchenart geschickt. Die wichtigsten Strahlelemente sind in Tabelle 4.3 und, soweit sie sich in der Nähe des Kryostaten befinden, in Abbildung 4.6 dargestellt.

Einige der Zähler im Strahl sind als aktive Elemente in den Ereignistrigger eingebaut, d.h. ihre Signale dienen zur Anreicherung bestimmter Ereignisse während der Datenannahme. Für alle Zähler wurde für jedes akzeptierte Ereignis eine digitale Information in Form von Treffermustern oder eine analoge Information, z.B. ein Pulshöhenspektrum, aufgezeichnet.

4.2.3 Trigger und Teilchenselektion

Drei verschiedene Klassen von Ereignissen werden während der regulären Datennahme getriggert1:

(i) reale Strahlteilchen. Das sind Elektronen, Pionen und Myonen, die sich in einem durch die Strahlzähler definierten Orts- und Phasenraum aufhalten.

(iii) gepulste Ereignisse (*Calibration Events*) dienen als Monitor für die Funktionen, die das digitalisierte Signal in Ladung zurückkonvertieren.

Die beiden letzten Ereignisklassen sind wichtig zur Überprüfung des Zustandes der Ausließelektronik während der regulären Datennahme und werden im Abschnitt über elektronische Kalibration noch diskutiert.

1 Eine weitere, im Trigger stark unterdrückte Ereignisklasse sind die Myonen aus der Strahlhalo, die auch im Rahmen dieser Arbeit keine Rolle spielen.
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Typ</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDAR 1, CEDAR 2</td>
<td>differentielle Cerenkovzähler</td>
<td>Selektion einer bestimmten Teilchenart aus dem Strahl.</td>
</tr>
<tr>
<td>B1, B2</td>
<td>Szintillatoren</td>
<td>Die beiden gekreuzten Fingerzähler definieren ein 3×3 cm2 großes Fenster im Strahl. B1 befindet sich bei MWPC1, während B2 auf dem Tisch bei MWPC2 angebracht ist.</td>
</tr>
<tr>
<td>VM, Lochzähler</td>
<td>Szintillatoren</td>
<td>Das Vetrosystem gegen Teilchen in der Strahlhalo besteht aus der Vetowand (VM) und dem Lochzähler, welcher ein Veto gegen schräge Teilchenspuren bildet.</td>
</tr>
</tbody>
</table>

Tabelle 4.3: Die wichtigsten Detektoren zur Definition des Teststrahls.
Teilchenereignisse

Strahlteilchen befinden sich in einem Phasenraum, der durch die gekreuzten Fingerzählern und das Vetosystem (ohne Myonveto) definiert ist. Ihr Impuls wird durch ein System aus Kollimatoren und Magneten definiert. Die Impulsauflösung beträgt [Bra87]

\[
\frac{\Delta p}{p} = 0.8\% \quad \text{für Pionen und Elektronen, } p < 100 \text{ GeV/c}
\]
\[
\frac{\Delta p}{p} = 0.05\% \quad \text{für Pionen, } p \geq 100 \text{ GeV/c}
\]
\[
\frac{\Delta p}{p} = 0.8\% \quad \text{für Elektronen, } p \geq 100 \text{ GeV/c}
\]

Zu beachten ist noch eine systematische Unsicherheit bezüglich des absoluten Teilchenimpulses, die in folgender Weise angegeben wird: [Dob91]

\[
\frac{\delta p}{p} = 0.5\% \pm \frac{150 \text{ MeV}}{p} \quad (4.1)
\]

Damit ist insbesondere bei kleinen Impulsen ein relativ großer Fehlerbeitrag durch den Strahl zu erwarten.

Während der Datennahme sind die Standardteilchentrigger durch

- eine Koinzidenz zwischen B1 und B2 sowie, falls die Strahlernergie kleiner als 100 GeV ist, den CEDARs und

- eine Antikoinzidenz mit den Signalen aus dem Vetosystem

gekennzeichnet. Außerdem werden zur Unterdrückung von Signalpileup bestimmte Zeitfenster um ein akzeptiertes Ereignis definiert, indem kein weiteres Signal ausgelesen werden darf (weitere Details zum Trigger finden sich in [Rie89]).

Teilchentrennung im Strahl

Bei dem niedrigsten möglichen Strahlimpuls von 5 GeV/c erfolgt die Teilchentrennung durch ein zusätzliches Bleitarget (etwa 2 \(X_0\) tief), in dem die Elektronen Energie verlieren und somit aus dem Strahlbereich ausgelenkt werden.

\(^2\)die Eigenschaften der CEDAR's sind in [Bov82] beschrieben.
Abbildung 4.7: Strahlbreiten in x und y für 30 (schattiert) und 170 GeV Pionen.

Strahlprofile

4.3 Elektronische Kalibrierung

In diesem Abschnitt wird zunächst kurz die bei den Kalibrationsmessungen verwendete Ausleseelektronik vorgestellt. Im Anschluß werden die Verfahren zur elektronischen Kalibrierung, d.h. die Konversion des digitalisierten Signals in Ladungswerte, diskutiert.

4.3.1 Elektronische Signalauslese

Das hier beschriebene Kalibrationsmodul hat insgesamt 2176 bestückte Auslesekanäle\(^3\), die alle nach dem in Abbildung 4.8 gegebenen Prinzipschaltbild ausgelesen werden. Die nachfolgende Diskussion der Signalverarbeitung erfolgt in Anlehnung an Beschreibungen in [H1T86,Bin89].

Die Hochspannungsseite jedes Kanals wird durch den Widerstand R_{HRC} der hochohmigen Schicht und der Kapazität C_{HRC}, die Störungen in der Hochspannung herausfiltert, charakterisiert. Die Detektorkapazität C_D ist durch die Zahl der jeweils zu einem Auslesekanal longitudinal zusammengeschalteten Argonschichten bestimmt. Die in C_D durch Ionisationen freigesetzten Elektronen werden über Schutzglieder gegen Hochspannungsuberschläge – bestehend aus einer Glimmlampe L, einem $R_s = 200$ großen

\(^3\)Einige strahlferne geometrische Bereiche in den ersten beiden longitudinalen Segmenten des elektromagnetischen Viertelstacks konnten nicht ausgelesen werden.
Abbildung 4.8: Prinzipschaltung der Ladungsablese im H1 Kalorimeter (aus [Bin89]).

Reihenwiderstand und dem Transistor \(T_P \) – in den Vorverstärker eingespeist. Letzterer zeichnet sich durch die Verwendung eines raucharmen JFet Transistors am Signalausgang aus. Dem Vorverstärker nachgeschaltet sind noch bipolare Shaper, die das Signal in eine für die weitere Behandlung geeigneter Form konvertieren. Alle bisher beschriebene elektronischen Bauteile nach dem 10 m Kabel sind in Gruppen von jeweils 16 Kanälen auf Analogkarten zusammengefaßt. Insgesamt 1024 geometrische Kanäle im Bereich des Strahleintrittspunktes im Kalorimeter werden mit zwei verschiedenen elektronischen Verstärkungsfaktoren ausgelesen, so daß die Gesamtzahl der elektronischen Kanäle 3200 beträgt.

Bei Vorlage eines Triggersignals werden die Signale in einem Sample & Hold Glied zwischengespeichert und seriell mit 1 aus 16 an eine Empfangseinheit weitergeleitet. Hier werden sie erneut zwischengespeichert und nacheinander mit 1 aus 8 über die Endverstärker an die Analog-zu-Digital-Konverter (ADC's) übertragen. Insgesamt werden jeweils 1024 elektronische Kanäle in acht ADC Kanälen auf einer ADC Karte digitalisiert. Der gesamte dynamische Bereich der ADCs beträgt 12 Bits.

4.3.2 Ladungseichung des digitalen Signals

Das gemessene digitalisierte Signal muß zur Berechnung der entsprechenden Ladung in jedem Kanal konvertiert werden. Die dabei benutzten Funktionen gehen von einer in erster Nähерung linearen Digitalisierung aus, berücksichtigen aber Nichtlinearitäten in den ADCs bei sehr großem Signal. Der Ansatz ist:[Ja89b]

\[
q_0 = p_0 + p_1 \cdot A \tag{4.2}
\]

\[
q = q_0 + p_2 \cdot q_0^2 + p_3 \cdot q_0^3 \tag{4.3}
\]

\(q \) ist die in jedem Kanal aus dem gemessenen digitalen Signal \(A \) rekonstruierte Ladungsmenge. Die Parametrisierungen \(p_i \) müssen für jeden Kanal ermittelt werden. Die beiden nachfolgend diskutierten Verfahren werden angewendet.
Kalte elektronische Kalibration

Das Standardverfahren zur Ermittlung der Parametrisierung der Konversionsfunktion (Gleichungen (4.2), (4.3)) ist die sogenannte kalte elektronische Kalibration. Dabei werden simultan alle elektronischen Kanäle mit einer Ladung Q_p wiederholt gepulst und das korrespondierende digitale Signal $A(Q_p)$ gemessen. Die gepulste Ladung wird sehr nah am Detektor im Kryostaten in die Ausleseleitungen eingespeist, sodass das Signal fast den gesamten Weg eines Teilchensignals durchläuft (Abbildung 4.8). Dieses wird für etwa 35 verschiedene Ladungs punkte durchgeführt. Dabei wird der jeweilige Wert von Q_p durch die Kalibrationskapazität $C_{	ext{calib}}$ und einen Spannungspuls U_p definiert: $Q_p = C_{	ext{calib}} \cdot U_p$. Durch Invertieren der Abhängigkeit $A(Q_p) \rightarrow Q_p(A)$ und einem Ansatz wie in Gleichung (4.2, 4.3) beschrieben, kann die Parametrisierung durch Anpassung des Polynoms in jedem Kanal gewonnen werden.

Warme elektronische Kalibration

Beim diesem Verfahren wird in Prinzip genauso wie bei der oben beschriebenen kalten Kalibration vorgegangen. Auch hier werden bekannte Ladungen auf die elektronischen Kanäle gepulst, allerdings erst direkt vor dem Verstärker, also außhalb des Kryostaten. Im Unterschied zur kalten Kalibration kann mit diesem Verfahren also die Verbindung zwischen Verstärkern und dem Detektor nicht getestet werden. Allerdings erlaubt es näherungsweise die Bestimmung der elektronischen Kalibrationsparameter $p_{i,j}$ in einem Kanal i, für den die kalte Pulserleitungen ausgefallen ist. In einem einfachen Ansatz [Ja89a] können diese durch Vergleich mit Parametern des Nachbarkanals4 k gemäß

$$p_{i,j}^{\text{kalit}} = \frac{p_{k,j}^{\text{kalit}}}{p_{k,j}^{\text{warm}}} \cdot p_{i,j}^{\text{warm}}$$

berechnet werden.5

4.4 Ladungskorrekturen

4Die Pulserleitungen sind so verteilt, dass aus einer Gruppe von 16 benachbarten Kanälen bei einer fehlenden Leitung nur ein Kanal betroffen ist.

5Diese Berechnung ist wegen der Korrelation der p_j in einem Kanal untereinander nur als gute Näherung zu betrachten.

4.4.1 Elektronische Korrekturen

Korrektur der Pedestaldrift
Bei der Anpassung der elektronischen Kalibrationsparameter wird die Parametrisierung \(p_i \) in jedem Kanal so bestimmt, daß die rekonstruierte Ladung für das Pedestal \(P \) null ist. Damit ergibt sich aus (4.2) die folgende Bedingung:

\[
q(P) = p_0 + p_1 \cdot P = 0
\]

\[
\Rightarrow - \frac{p_0}{p_1} = P
\]

Die Parametrisierung der elektronischen Kalibration ist also direkt mit der Nullage des ADCs verknüpft.

Da die Bestimmung der \(p_i \) außerhalb der regulären Datennahme erfolgt, kann es passieren, daß die Pedestal während der Datennahme nicht mit denen zur Zeit der elektronischen Kalibration übereinstimmen. Damit wäre die Signalladung in einem Kanal um eine Ladung \(q(P) \neq 0 \) gegenüber der wahren Ladung verschoben.

Diese Verschiebung kann mittels spezieller, während der normalen Teilchendatennahme genommener Ereignisse korrigiert werden. Diese leeren oder Random Trigger Ereignisse werden durch einen speziellen Trigger ausgelöst, der mit einer Häufigkeit von etwa 0.5 - 1% aller Ereignisse immer dann das Kalorimeter auslöst, wenn innerhalb eines bestimmten Zeitfensters nach einem realen Ereignis kein weiteres Teilchen getriggert wird. Die Random Trigger Ereignisse sind somit ein Monitor für die Nullagen der ADCs während der regulären Datennahme.

Die einem digitalen Signal \(A_p \) in einem Kanal entsprechende rekonstruierte Ladungs mengen muß für Random Trigger Ereignisse gerade null sein. Es muß also eine korrigierte Parametrisierung \(\bar{p}_i \) der Konversionsfunktion gefunden werden, für deren ersten beiden Parameter die folgende Bedingung gilt:

\[
- \frac{\bar{p}_0}{\bar{p}_1} = A_p
\]

Mit dieser Bedingung und unter der gerechtferdigten Annahme, daß die Pedestaldrift zu einer linearen Verschiebung der rekonstruierten Ladung führt, kann eine Beziehung
zwischen der ursprünglichen, nicht korrigierten Parametrisierung \(p \) und den korrigierten Parametern \(\tilde{p} \) gefunden werden, die die Korrelation zwischen den Parametern berücksichtigt: \([\text{Pass90}] \)

\[
\begin{align*}
\tilde{p}_3 &= p_3 \cdot \left(\frac{p_1}{\tilde{p}_1} \right)^3 \\
\tilde{p}_2 &= (3p_2q_{\text{corr}} + p_1) \cdot \left(\frac{p_1}{\tilde{p}_1} \right)^2 \\
\tilde{p}_1 &= p_1 \cdot \left(1 + 2p_2q_{\text{corr}}^2 + 3p_3q_{\text{corr}}^3 \right) \\
\tilde{p}_0 &= -\tilde{p}_1 \cdot P
\end{align*}
\]

Dabei ist \(P \) der Pedestalwert zur Zeit der kalten Kalibration und \(q_{\text{corr}} = q_0 - q(\Delta P) \) die in erster Ordnung (\(q_0 \) aus Gleichung (4.2) und \(\Delta P = P - A_p \)) auf die Pedestaldrift korrigierte Ladung.

Der Effekt dieser Korrektur auf das Gesamtsignal von Teilcheneignissen ist natürlich stark abhängig von der jeweiligen elektronischen Situation während der Datenannahme. Die Korrektur kann für Daten der hier besprochenen Meßperioden für den IF Prototypen zu einer Zunahme der rekonstruierten Ladung um bis zu 0.7 pC führen, was bei Elektronen einer Strahlenergie von 50 GeV einer Zunahme von etwa 5% entspricht.

Korrektur des elektronischen Übersprechens

Die Einflüsse von Signalen in Nachbarkanälen auf das Signal in einem Kanal führt zu dessen Verfälschung. Zwei in ihrer Wirkung entgegengesetzte Effekte können unterschieden werden:

- Bei dem physikalischen oder negativen Übersprechen kommt es durch den Durchgang eines ionisierenden Teilchens durch das flüssige Argon in einem Kanal zu einer Reduktion des Signals in benachbarten Kanälen. Qualitativ ist dieser Effekt so zu verstehen, daß durch die Ionisationen und dem damit verbundenen Strom im Argongap das elektrische Feld kurzzeitig lokal zusammenbricht. Diese Feldvariation führt zu Potentialunterschieden auf den Hochspannungsplatten, die wiederum Ursache für transversale Ströme auf der hochohmigen Schicht sind, die durch Induktion zu einer Signalverminderung auf den Kupferpads führen. Der quantitative Effekt ist aufgrund des relativen großen Flächenwiderstands (1 - 100 MΩ pro Flächeneinheit) der Schicht vernachlässigbar klein (\(\lesssim 0.1\% \) [Pass87]) und bedarf keiner Korrektur.

- Das elektronische oder positive Übersprechen durch kapazitive Kopplung zwischen benachbarten Ausleseleitungen ist dagegen quantitativ nicht mit einem Teilchen durchgang korreliert, sondern nur von der Wahl der Leitungsführung und der Qualität der Abschirmung abhängig. Insbesondere ist damit dieser Effekt nicht zeitabhängig.

Das positive Übersprechen kann durch die Parametrisierung der Kalibrationsfunktion korrigiert werden, wenn gepulste Ladungen Signalen aus realen Ereignissen entsprechen. Beim simultanen Pulsens aller elektronischen Kanäle liegt allerdings eine Situation vor,
bei der aufgrund der in allen Kanälen gleich großen Signale kein Übersprechen auftritt. Das Signal in einem einzelnen Kanal entspricht direkt der gepulsten Ladungsmenge \(Q_p \).

Damit ergibt sich für Signale von realen Ereignissen in einzelnen Kanälen, daß zwar das Signal der tatsächlich am ADC zu messenden Ladung entspricht, diese aber durch Ladungsverluste durch Übersprechen nicht mehr der im Argon freigesetzten Ladungsmenge entspricht. Das Übersprechsignal ist zudem langsamer als das Originalsignal [Ja89b], es wird daher nicht vollständig digitalisiert. Damit werden auch global die gemessenen Ladungssummen nicht mit der im gesamten Argon freigesetzten Ladungsmenge übereinstimmen.

Eine Korrektur ist zu erreichen, indem explizit die Kalibrationsparameter in einzelnen Kanälen bestimmt werden und die damit rekonstruierte Ladung \(q_4(A) \) für ein bestimmtes Signal \(A \) mit der mit den Standardparametern berechneten Ladungsmenge \(q_4(A) \) für das gleiche Signal verglichen wird.

Das Ergebnis dieses Vergleichs ist eine nur von \(A \) und dem Aufbau, nicht aber von der Zeit abhängige Korrekturfunktion \(f_4(A) \), die in folgender Weise parametrisiert werden kann (Abbildung 4.9):

\[
f_4(A) = \frac{q_4(A)}{q_4(A)} = a_0 + a_1 \cdot A + a_2 \cdot A^2 + a_3 \cdot A^3
\]

Der Effekt auf die mittlere rekonstruierte Ladung für Teilchen einer bestimmten Energie in IF ist ein um etwa drei Prozent vergrößertes Signal.

Kalibrationskapazitätskorrektur

Die Korrektur auf kanalabhängige Variationen der Kalibrationskapazitäten, über die die Ladung \(Q_p \) bei der elektronischen Kalibration eingepulst wird, ist im Gegensatz zu den bereits diskutierten elektronischen Korrekturen nicht für alle Kalibrationsmodule notwendig; teilweise sind diese Variationen bereits bei der Bestimmung der elektronischen Kalibrationsparameter berücksichtigt worden.

Die gepulste Ladung \(Q_p \) ist direkt proportional zu der Kalibrationskapazität \(C_{calh} \) in einem Kanal. Bei der Bestimmung der Parameter \(p_i \) der Konversionsfunktion (4.2), (4.3) wurde \(C_{calh} = 47 \) pF als konstant für alle Kanäle angenommen. Kanalabhängige Abweichungen von diesem Sollwert können durch einen Korrekturfaktor in folgender Weise korrigiert werden:

\[
f_4(A) = \frac{q_4(A)}{q_4(A)} = a_0 + a_1 \cdot A + a_2 \cdot A^2 + a_3 \cdot A^3
\]

Abbildung 4.9: Die Korrekturfunktion \(f_4(A) \) in zwei Kanälen des Viertelstacks. Die Punkte zeigen die Aus den beiden Parametrisierungen berechneten Ladungsverhältnisse, die Kurven das Ergebnis der jeweiligen Anpassung des Polynoms (Gleichung (4.4)).

\[A \text{ [ADC Kanäle]} \]

\[0 \quad 1024 \quad 2048 \quad 3072 \quad 4096 \]

- **dieses Verfahren ist sehr zeitaufwendig und wurde in der Praxis nur ein Mal in jeder Meßperiode zur Bestimmung der Korrektur durchgeführt.**
Weise berücksichtigt werden:

\[q_{\text{corr}}(A) = \frac{C_{\text{rel}}}{4\pi \varepsilon_0} \cdot q(A) \]

Dabei ist \(q_{\text{corr}}(A) \) die korrigierte und \(q(A) \) die nicht auf diesen Effekt korrigierte Ladung. Die individuellen \(C_{\text{rel}} \) sind vor der Installation einzeln gemessen worden. Die Korrektur vermindert das Teilchensignal im IF Kalorimeter im Mittel um weniger als 0.5%.

Zusammenfassung der elektronischen Korrekturen

Die oben beschriebenen elektronischen Korrekturen entfalten Einflüsse der bei den Kalibrationsmessungen verwendeten Elektronik und Verfahren zur Bestimmung der Konversion des digitalen Signals \(A \) zur gemessenen Ladung \(q \) weitgehend aus der Ladungsinformation. Alle angewendeten Korrekturen arbeiten auf dem Niveau der elektronischen Kanäle, d.h. für jeden einzelnen Kanal gibt es eine Korrekturfunktion oder -faktor. Die einzelnen Korrekturen sind nicht gänzlich unabhängig voneinander, die Reihenfolge ihrer Anwendung bei der Berechnung der Ladung ist folgende:

I auf dem Niveau der Konversion von \(A \) zu \(q \) wird die Parametrisierung \(p_i \) durch die auf die Pedestaldrift korrigierte Parametrisierung \(\tilde{p}_i \) ersetzt.

II auf dem Ladungsniveau wird das positive elektronische Übersprechen mittels einer von \(A \) abhängigen Funktion korrigiert und die von Kanal zu Kanal variierende Kalibrationskapazität mittels eines konstanten Faktors berücksichtigt.

4.4.2 Effizienz der Ladungsammlung

Die in diesem Abschnitt diskutierten Korrekturen sind nicht mit der elektronischen Kalibrierung oder der Elektronik selbst verbunden. Die Ladungsammlung des flüssigen Argons ist eine globale Eigenschaft des Kalibrationsmoduls, die mittels spezieller Messungen bestimmt werden kann.

Abbildung 4.10: Die Hochspannungskurve für 30 GeV Elektronen in IFE. Aufgetragen ist die auf den Plateauwert Q_0 normierte Ladung Q als Funktion der Hochspannung. Der Punkt bei 0.1 kV wurde bei der Kurvenanpassung nicht mitberücksichtigt.

Hochspannungskurve

Die Messung der absoluten Effizienz der Ladungsammlung kann durch das Kalorimeter selbst erfolgen. Dabei wird benutzt, daß Ladungsverluste durch Verunreinigungen im Argon feldstärkeabhängig sind. Die Variation des mittleren Signals von Elektronen oder Pionen einer festen Energie als Funktion der elektrischen Feldstärke im Argongap ist ein Maß für die Verunreinigung des Argons; die Funktion selber wird als Hochspannungskurve bezeichnet.

Unter der Annahme, daß Sauerstoff die wesentliche Quelle für Ladungsverluste ist, kann die Beziehung zwischen der Ladung $Q(E,P)$, der elektrischen Feldstärke E und der Sauerstoffkontamination P in folgender Weise beschrieben werden: [Hof76]

$$Q(E,P) = Q_0 \cdot 2 \frac{\lambda(E,P)}{d} \left[1 - \frac{\lambda(E,P)}{d} \left(1 - e^{-\frac{d}{\lambda(E,P)}} \right) \right]$$

(4.5)

mit:

$$\lambda(E,P) = \frac{a \cdot E}{P}$$

$$a = 0.12 \frac{\text{ppm} \cdot \text{cm}^2}{\text{kV}}$$

Q_0 ist Plateauladung für ein unendlich großes elektrisches Feld, $d = 0.24$ cm ist die mittlere Breite des Argongaps und $\lambda(E,P)$ ist ein Faktor, der die Feldstärke- und Verunreinigungsabhängigkeiten von $Q(E,P)$ vereinigt. Dabei ist a eine empirische Konstante.
Die Messung der Hochspannungskurve erfolgt durch Bestimmung des mittleren Gesamtsignals für 30 GeV Elektronen im elektromagnetischen Kalibrationsmodul bei verschiedenen Feldstärken (von 0.04 bis 1.00 kV/mm). In der Analyse wird der aktive Bereich des Kalorimeters auf einen kleinen Bereich um den Einschusspunkt eingeschränkt. Das Gesamtsignal eines Ereignisses ist dann die Ladungssumme aller Kanäle in diesem Bereich – ohne weitere Kanalselektion zur Unterdrückung des Einflusses des elektronischen Rauschens. Damit ist sichergestellt, daß auch bei kleineren Feldstärken stets das gesamte Signal gemessen wird und die Abhängigkeiten von der Feldstärke nicht verfälscht werden. Bei sehr kleinen Feldstärken wird die Ladungssammlungszeit im Argon groß gegen die Integrationszeit der Elektronik, es wird nicht mehr das volle Signal ausgelesen. Aus diesem Grund ist Q(0.1 kV) kleiner als der allein aufgrund der Verunreinigung zu erwartende Wert und wird bei der Anpassung nicht berücksichtigt.

In Abbildung 4.10 ist die Hochspannungskurve als Funktion der über das Argongap anliegenden Spannung gezeigt. Die freien Parameter der Anpassung der in Gleichung (4.5) gegebenen Funktion sind \(Q_0 \) und \(P \). Zur Bestimmung der systematischen Unsicherheit werden die Parameter zusätzlich noch mit verschiedenen großen Schnitten gegen Signalbeiträge durch elektronisches Rauschen bei der Ladungsberchnung bestimmt (Details in [Ga91a]). Es ergibt sich eine Effizienzkorrektur \(\eta_{\text{abs}} \) von

\[
\eta_{\text{abs}} = \frac{Q_0}{Q(2.5 \text{ kV})} = 1.065 \pm 0.002 \text{ (stat.)} + 0.002 \text{ (syst.)}
\]

Die entsprechende Sauerstoffverunreinigung ergibt sich zu

\[
P = (0.911 \pm 0.003 \text{ (stat.)} + 0.027 \text{ (syst.)}) \text{ ppm}
\]

Der angegebene systematische Fehler beinhaltet die maximalen Abweichungen der Ergebnisse der oben erwähnten Analysen vom durch Anpassung an die Signale aus dem begrenzten Kalorimeterbereich bestimmten Wert.

Zeitabhängige Effizienzkorrekturen

Mit zunehmender Meßzeit nahm die Verunreinigung des flüssigen Argons zu. Die korrespondierende Abnahme der Effizienz in der Ladungssammlung wird durch unter gleichen Bedingungen wiederholte Messungen des Signals von Elektronen einer festen Strahlenergie bestimmt. Die Kalibration des Viertelstacks erfolgte in zwei etwa drei Monate voneinander getrennten Meßperioden, zwischen denen das Kalibrationsmodul im flüssigen Argon verblieb. Die Angleichung der Signale aus der zweiten Periode an die der ersten ist mit Hilfe eines zeitabhängigen Korrekturfaktors \(\eta_{\text{rel}}(\tau) \) möglich, der relativ zum Zeitpunkt \(t_{\text{HV}} \) der Datennahme für die Hochspannungskurve gemessen wird (\(\tau = t - t_{\text{HV}} \)).

Die Zeitabhängigkeit des in Abbildung 4.11 dargestellten mittleren Ladungssignals \(Q(\tau) \) läßt sich in guter Näherung als linear über den betrachteten Zeitraum annehmen:

\[
Q(\tau) = Q(\tau = 0) \cdot (1 + s \cdot \tau) = Q(\tau = 0) \frac{Q(\tau = 0)}{\eta_{\text{rel}}(\tau)}
\]

Damit ist der Korrekturfaktor durch

\[
\eta_{\text{rel}}(\tau) = \frac{1}{1 + s \cdot \tau}
\]
Abbildung 4.11: Die mittlere Ladung $Q(\tau)$ für 30 GeV Elektronen in IFE als Funktion der Messzeit τ. Die Steigung der an die Messpunkte angepaßten Geraden bestimmt die Korrektur der Ladungsverluste durch Verunreinigungen.

gegeben. Die Anpassung einer Geraden an die Messpunkte ergibt eine relative Signalabnahme von

$$ s = (-0.382 \pm 2.8 \cdot 10^{-3}) \% \text{Woch} $$

Die verbleibende Unsicherheit bezüglich der zeitlichen Abhängigkeit des Kalorimetersignals beträgt etwa 0.4%.
Kapitel 5

Energierekonstruktion auf der elektromagnetischen Skala

Im Kapitel 3 wurden die Eigenschaften der idealen elektromagnetischen Skala bereits diskutiert. In diesem Kapitel wird die Extraktion dieser Skala aus den gemessenen und korrigierten Elektronsignalen vorgestellt. Die Linearität des Elektronsignals und die Auflösung des elektromagnetischen Kalorimeters werden gezeigt. Im letzten Abschnitt werden die Signale realer und simulierter Pionen im elektromagnetischen und hadronischen Kalorimeter verglichen. Dieser Vergleich erfolgt auf der elektromagnetischen Skala.

5.1 Bestimmung der elektromagnetischen Skala

Die Aufteilung des Kalorimeters in einen elektromagnetischen und hadronischen Teil erfordert die Bestimmung zweier experimenteller Kalibrationskonstanten \(c^\text{EMC}_e, c^\text{HAC}_e \) für elektromagnetisch deponierte Energie. Während \(c^\text{EMC}_e \) unter Verwendung der gemessenen Signale realer Elektronen berechnet werden kann, stehen für das hadronische Kalorimeter keine entsprechenden Daten zur Verfügung. Dessen Kalibration \(c^\text{HAC}_e \) kann nur durch Simulationsrechnungen aus

\[
 c^\text{HAC}_e = \frac{c^\text{HAC}_e}{c^\text{EMC}_e} \cdot c^\text{EMC}_e
\]

(5.1)

5.1.1 Die ideale Monte Carlo Skala

Die Monte Carlo Skalen \(c^\text{MC}_e \) werden aus Simulationen von Elektronsignalen in den IFE und IFK Kalibrationsmodulen berechnet. Dabei werden für das IFE Kalorimeter zwei Konstellationen simuliert, die es erlauben, die Abhängigkeit der Kalibration von
Abbildung 5.1: Die dimensionslosen Skalen $c_{e,MC}$ im elektromagnetischen und im hadronischen Kalorimeter, beispielhaft bestimmt mit simulierten Signalen von 30 GeV Elektronen im jeweiligen Kalorimeter.

der durch inaktives Material vor dem Kalorimeter bedingten Vorverlegung des Schau-
erstartpunkts zu bestimmen:

A die Elektronen werden direkt vor dem aktiven Detektorelement injiziert; die im inaktiven Material vor dem Kalorimeter deponierte Energie E_{los} ist gleich null.

B die Elektronen starten vor dem Fingerzähler B2 auf dem Tisch und durchqueren zunächst 1.53 X_0 inaktives Material, welches auch bei den Messungen vorhandenen ist ($E_{\text{los}} \neq 0$).

Für das hadronische Kalorimeter wurde nur Konstellation A simuliert.

Die Ergebnisse für verschiedene Einschussenergien sind in der Tabelle 5.1 zusammengefaßt. Berechnet wurden die $c_{e,MC}$ durch Mittelung des Verhältnisses $E_{\text{dep}}/E_{\text{en}}$ über Ereignisse einer Strahlenergie; Abbildung 5.1 zeigt die Verteilung dieser Größe für Ereignisse des Typs A mit $E_{\text{en}} = 30$ GeV in IFE und IFH. Die Differenz Δ zwischen den Kalibrationskonstanten für die in Konstellation A und der in B simulierten Elektronensignale ist für die betrachteten Energien (5, 10 und 30 GeV) in IFE kleiner als zwei Promille; das inaktive Material vor dem Kalorimeter beeinflußt die mittlere Sampling Fraction und damit die ideale Kalibrationskonstante für simulierte Elektronen nicht.

Gemittelt über alle simulierten Elektronenergien und beide Konstellationen ergibt sich die ideale Kalibration zu:

\begin{align}
\frac{dN}{N} & = \frac{1}{0.2} \\
\frac{dN}{N} & = 0.3 \\
\frac{dN}{N} & = 0.2 \\
\frac{dN}{N} & = 0.1 \\
\frac{dN}{N} & = 0.0 \\
\frac{dN}{N} & = 10.0 \\
\frac{dN}{N} & = 11.0 \\
\frac{dN}{N} & = 12.0 \\
\frac{dN}{N} & = 13.0 \\
\frac{dN}{N} & = 14.0 \\
\frac{dN}{N} & = 15.0 \\
\frac{dN}{N} & = 16.0 \\
\frac{dN}{N} & = 17.0 \\
\frac{dN}{N} & = 18.0 \\
\frac{dN}{N} & = 19.0 \\
\frac{dN}{N} & = 20.0 \\
\frac{dN}{N} & = 21.0 \\
\frac{dN}{N} & = 22.0 \\
\frac{dN}{N} & = 23.0 \\
\frac{dN}{N} & = 24.0 \\
\frac{dN}{N} & = 25.0 \\
\frac{dN}{N} & = 26.0 \\
\frac{dN}{N} & = 27.0 \\
\frac{dN}{N} & = 28.0 \\
\frac{dN}{N} & = 29.0 \\
\frac{dN}{N} & = 30.0 \\
\frac{dN}{N} & = 31.0 \\
\frac{dN}{N} & = 32.0 \\
\frac{dN}{N} & = 33.0 \\
\frac{dN}{N} & = 34.0 \\
\frac{dN}{N} & = 35.0 \\
\frac{dN}{N} & = 36.0 \\
\frac{dN}{N} & = 37.0 \\
\frac{dN}{N} & = 38.0 \\
\frac{dN}{N} & = 39.0 \\
\frac{dN}{N} & = 40.0 \\
c_{e,MC} & = E_{\text{dep}}/E_{\text{en}} \\
\end{align}

\begin{equation}
\begin{aligned}
c_{e,MC}^{\text{EMC}} & = 12.716 \pm 0.008 \pm 0.061 \pm 0.033 \\
&\quad \text{(stat.)} \quad \text{(syst.)} \\
c_{e,MC}^{\text{HAC}} & = 26.731 \pm 0.047 \pm 0.094 \pm 0.091 \\
&\quad \text{(stat.)} \quad \text{(syst.)} \\
\end{aligned}
\end{equation}

71
Die Kalibrationskonstanten für simulier te Elektronen in IFE und IFH, ermittelt für verschiedene Strahlenergien E_{nu}. Δ ist die relative Differenz zwischen den Skalen für die beiden im Text beschriebenen Konstellationen A und B.

Die systematischen Fehler sind die jeweils größten Abweichungen der in Tabelle 5.1 angegebenen Werte für einzelne Energien bzw. Konstellationen vom Mittelwert.

Damit ist im elektromagnetischen Kalorimeter im Mittel etwa 7.9% und im hadronischen Kalorimeter etwa 3.7% der total durch Elektronen deponierten Energie im Argon sichtbar.

Außer in den Signalkanälen ($E_{\text{nu}} \geq E_{\text{th}}$) wird Energie auch in Kanälen deponiert, deren Signal null ist (falls $E_{\text{nu}} < E_{\text{th}}$, wird $E_{\text{nu}} = 0$ gesetzt). Die Schwellenergie E_{th} ist ein Parameter des Simulationsprogramms, hier ist $E_{\text{th}} = 50$ keV.

Die vorgestellte Kalib raierung berücksichtigt diese Energie, deren abso luten und relativen Anteile an der total deponierten Energie in der Tabelle 5.2 zusammengefasst sind. Die Differenz der ebenfalls in dieser Tabelle genannten total deponierten Energie zur nominellen Strahlenergie ist gerade die im inaktiven Material vor dem Kalorimeter deponierte Energie, wie sie in der Abbildung 3.1 auf Seite 48 gezeigt wurde.

Die prinzipiell noch zu berücksichtigenden Energieverluste durch longitudinale Leckage aus dem elektromagnetischen Kalorimeter betragen für die größte untersuchte Strahlenergie gerade etwa ein Promille der total deponierten Energie.

Die im Abschnitt 1.2 angesprochene, aufgrund des Transitioneffekts auftretende Abhängigkeit der Sampling Fraction von der Schauertiefe entspricht einer Variation des Verhältnisses $E_{\text{dep}}/E_{\text{nu}}$ und damit der Kalib raierung mit der Schauertiefe. Prinzipiell kann diese Variation durch
\[
\begin{array}{|c|c|c|c|}
\hline
E_{\text{inc}} & E_{\text{dep}} & E_{\text{dep}}^* & E_{\text{dep}}^*/E_{\text{dep}} \\
[\text{GeV}] & [\text{GeV}] & [\text{GeV}] & [%] \\
\hline
5 & 4.803 \pm 0.003 & 0.207 \pm 0.001 & 4.31 \pm 0.02 \\
10 & 9.752 \pm 0.006 & 0.287 \pm 0.002 & 2.94 \pm 0.02 \\
20 & 19.698 \pm 0.014 & 0.382 \pm 0.003 & 1.95 \pm 0.02 \\
30 & 29.645 \pm 0.021 & 0.448 \pm 0.004 & 1.51 \pm 0.01 \\
50 & 49.553 \pm 0.040 & 0.519 \pm 0.005 & 1.05 \pm 0.01 \\
\hline
\end{array}
\]

Tabelle 5.2: Die durch Elektronen der nominellen Strahlenergie \(E_{\text{inc}}\) total in IFE deponierte Energie \(E_{\text{dep}}\) und die davon in Kanälen mit \(E_{\text{vis}} = 0\) deponierte Energie \(E_{\text{dep}}^*\).

die der Abbildung 5.2 zu entnehmende Faktoren, die z.B. in Abhängigkeit vom Gesamtsignal der Elektronen bestimmt werden können, in jedem longitudinalen Segment des elektromagnetischen Kalorimeters korrigiert werden. In der Abbildung ist das mittlere Verhältnis von deponierter \(E_{\text{dep}} \) zu rekonstruierter Energie \(E_{\text{rec}} \) in den longitudinalen Segmenten dargestellt, welches gerade der genannten Korrektur entspricht. Für die weiteren Betrachtungen in dieser Arbeit ist diese Korrektur allerdings nicht wichtig, da stets das (integrierte) Gesamt signal eines vollständig gemessenen elektromagnetischen Schauers betrachtet wird.

5.1.2 Die Kalibration für reale Elektronen

Mit den im vorherigen Abschnitt bestimmten idealen Skalen für simulierte Elektronensignale ist es nun möglich, die korrigierte elektromagnetische Skala \(c_e\) für reale Elektronereignissen in IFE anzugeben. Voraussetzung ist, daß alle im Kapitel 4 diskutierten kanalabhängigen und globalen Korrekturen an das Ladungssignal in den einzelnen Kalorimeterkanälen angebracht worden sind.

Die in Gleichung (3.5) gegebenen Relation, die nur die prinzipielle Korrektur veranschaulicht, wird bei der Bestimmung von \(c_e\) nicht direkt verwendet. Stattdessen wird die experimentelle Konstante in IFE durch Vergleiche von realen mit simulierten Elektronen, wobei bei letzteren das elektronische Rauschen berücksichtigt wird - bestimmt [Ga91a].

Behandlung des elektronischen Rauschens

Unter der insbesondere für Elektronen gerechtfertigten Annahme, daß die Beschreibung der Energieverteilung durch das Simulationsprogramm realistisch ist, kann die experimentelle elektromagnetische Skala \(c_e\) aus der Forderung gewonnen werden, daß die rekonstruierte Energie für simuliert und reale Elektronen der gleichen Energie gleich ist. Diese Forderung setzt voraus, daß die Art der Datenanalyse für beide Ereignisarten absolut identisch erfolgt. Damit verbunden ist die richtige Behandlung des elektronischen Rauschens im Fall von simulierten Signalen. Dieses ist eine individuelle Eigenschaft der Kanäle, die wegen Abweichungen der Pedestalfaktionen vom Gaußschen Verhalten nur schwierig zu simulieren ist. Einfacher ist, zu jedem simulierten Ereignis ein reales, durch einen Random Trigger gewonnenes Ereignis auf Kanalbasis
zu addieren. Die in einem Kanal i rekonstruierte Energie ist dann durch
\[E_{\text{rec,MC},i} = c_e \cdot E_{\text{nu},i} + c_e \cdot q_i, \]
(5.4)
gegeben. Dabei ist c_e,MC die schon vorgestellte dimensionslose Kalibrationskonstante für simulierte Elektronen, $E_{\text{nu},i}$ die sichtbare deponierte Energie aus der Simulationsrechnung, q_i die Ladung aus dem Random Trigger Ereignis und c_e die korrigierte experimentelle Skala für Elektronen.

Durch Schnitte gegen Beiträge des elektronischen Rauschens werden in experimentellen Ereignissen nur Kanäle berücksichtigt, deren Signalladung q_i größer als das Vielfache f des Ladungsequivalents q_{ref} der Breite der Pedestalverteilung:
\[q_i > f \cdot q_{\text{ref}}. \]
(5.5)
Im Fall der simulierten Ereignisse werden entsprechend nur Kanäle akzeptiert, die die Bedingung
\[\frac{E_{\text{rec,MC},i}}{c_e} > f \cdot q_{\text{ref}}. \]
(5.6)
erfüllen.

Balancieren der Signale

Die Forderung der Identität der rekonstruierten Energien für reale und simulierte Elektronereignisse einer Einfallsenergie in IFE kann durch die folgende Gleichung ausgedrückt werden:
\[c_e \cdot \left(\frac{\sum_{i} q_i}{E_{\text{rec,exp}}} \right) = \left(\frac{\sum_{i} E_{\text{rec,MC},i}}{E_{\text{rec,MC}}} \right) \]
(5.7)
$\langle E_{\text{rec,exp}} \rangle$ ist die mittlere, aus realen Signalen unter Verwendung der vollständig korrigierten Kanalladungen q_i rekonstruierte Energie während $\langle E_{\text{rec,MC}} \rangle$ die unter Verwendung der in Gleichung (5.4) gegebenen Relation aus den simulierten Daten und den realen Rauschereignissen mit den gleichen Analyseschritten rekonstruierte Energie ist.

Da $\langle E_{\text{rec,MC}} \rangle$ aufgrund der Addition der Rauschereignisse schwach von c_e abhängt (Gleichung (5.4)), muß die Gleichung (5.7) iteriert werden, um die elektromagnetische Skala zu bestimmen. Für 30 GeV Elektronen in IFE und einen $f = 3$ Schnitt gegen elektronisches Rauschen ergibt sich aus einer solchen Iteration
\[c_e^{\text{EMC}} = (3.542 \pm 0.006) \frac{\text{GeV}}{\text{pC}} \]
(5.8)
Unter Verwendung der Gleichung (5.1) und den Ergebnissen der Simulationen berechnet sich die elektromagnetische Skala im hadronischen IFH Kalorimeter zu
\[c_e^{\text{HAC}} = (7.154 \pm 0.018) \frac{\text{GeV}}{\text{pC}} \]
(5.9)
Es sei darauf hingewiesen, daß der hier angegebene Wert für c_e^{HAC} nicht direkt das Ergebnis der oben genannten Berechnung ist, sondern aufgrund einer nicht genügend genauen Beschreibung der Geometrie des hadronischen Kalorimeters im Simulationsprogramm um etwa 4% nach unten korrigiert wurde (nach [Ga91c]). Die angegebenen Fehler sind rein statistisch.
Abbildung 5.3: Die Energierlinearität des Elektronsignals. Dargestellt ist die relative Abweichung ΔL der aus simulierten Elektronsignalen unter Berücksichtigung des elektronischen Rauschens rekonstruierten Energien von den entsprechenden aus experimentellen Signalen rekonstruierten Energien für verschiedene Strahlenergien E_{inc} (Gleichung (5.10) mit $f = 3$).

5.1.3 Systematische Unsicherheiten der elektromagnetischen Skala

Die (ideale) experimentelle Skala muß, so wie sie oben bestimmt worden ist, unabhängig von der Elektronenergie E_{inc} und von Schnitten gegen Signalbeiträge durch elektronisches Rauschen – ausgedrückt in f – sein. Die quantitative Abweichung von diesen Forderungen können als Abweichung von der Energierlinearität und damit als systematische Fehler in der Elektronenkalibration betrachtet werden. Diese Abweichungen sind als ΔL in folgender Weise definiert:

$$
\Delta L(E_{\text{inc}}, f) = \frac{\langle E_{\text{rec,MC}}(E_{\text{inc}}, f) \rangle}{\langle E_{\text{rec,exp}}(E_{\text{inc}}, f) \rangle} - 1
$$

(5.10)

Die Überprüfung der Linearität des Elektronsignals im IFE Kalorimeter erfolgt für verschiedene E_{inc} bei konstantem $f = 3$. Das Ergebnis ist in Abbildung 5.3 gezeigt. Aus der Abbildung ist zu entnehmen, daß die hier mit der Korrektur bestimmte elektromagnetische Skala e^{EMC} auf ein Prozent unabhängig von der Elektronenergie E_{inc} ist.

Die Abhängigkeit der rekonstruierten Energien von der Größe f des Schnittes gegen Beiträge des elektronischen Rauschens ist für experimentelle und simulierter Elektronereignisse in IFE in Abbildung 5.4 gezeigt. Die Abweichung beträgt im Bereich der üblichen Rauschunterdrückung ($2 \leq f \leq 3$) weniger als ein halbes Prozent.

In Tabelle 5.3 werden die systematischen Unsicherheiten der elektromagnetischen Skala zusammengefaßt. Die in dieser Arbeit nicht besprochenen Unsicherheiten bezüglich der räumlichen Homogenität des Kalorimeters wurden durch Variation der Ein-
Abbildung 5.4: Die für 30 GeV Elektronen rekonstruierte Energie für experimentelle (a) und simulierte (b) Signale als Funktion der Höhe f des Schnittes gegen elektronisches Rauschen. In (c) ist die relative Abweichung des simulierten vom experimentellen Signal als Funktion von f dargestellt, nach Gleichung (5.10) mit $E_{\text{re}} = 30$ GeV berechnet.
schuβposition für Elektronen bei den Kalibrierungsmessungen ermittelt. Die ebenfalls
nicht genauer diskutierte Fehler in der Bestimmung der elektronischen Kalibrationspa-
rameter (Abschnitt 4.4) sind stark abhängig von dem aktuellen Zustand der Elektronik
während der Datennahme und wurden über die gepulsten Ereignisse bestimmt. Der
angeschnittene Wert ist als typische mittlere Abweichung der gepulsten Ladung von der
rekonstruierten Ladung in den verwendeten Daten zu verstehen.

<table>
<thead>
<tr>
<th>Quellen systematischer Fehler</th>
<th>Fehlerbeitrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsunsicherheit des Strahls</td>
<td>0.7%†</td>
</tr>
<tr>
<td>Elektronische Kalibration</td>
<td>0.5%</td>
</tr>
<tr>
<td>Tote / heiße Kanäle</td>
<td>0</td>
</tr>
<tr>
<td>Effizienzkorrekturen</td>
<td>0.5%</td>
</tr>
<tr>
<td>Zeitliche Signalstabilität</td>
<td>0.4%</td>
</tr>
<tr>
<td>Räumliche Homogenität</td>
<td>1.0%</td>
</tr>
<tr>
<td>Simulationen</td>
<td>0.4%</td>
</tr>
<tr>
<td>Energielinearität</td>
<td>1.0%</td>
</tr>
<tr>
<td>Rauschunterdrückung</td>
<td>0.5%</td>
</tr>
<tr>
<td>insgesamt</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

† die Kalibrationskonstante ist bei $p = 30$ GeV bestimmt worden, vgl. 4.1 auf Seite 59.

Tabelle 5.3: Abschätzung der systematischen Unsicherheiten in der Elektronikalibration.

5.1.4 Rekonstruktion der deponierten Energie

Abschließend sei auf einen wichtigen Aspekt der elektromagnetischen Skala c_p hingewie-
sen. Die jeweils aus experimentellen oder simulierten Elektronereignissen rekonstruierte
Energie E_{rec} und $E_{\text{rec,MC}}$ ist immer von den angewendeten Analyseschritten wie z.B.
der Kanalselektion zur Unterdrückung von Signalbeiträgen durch elektronisches Rau-
schen abhängig. Im vorherigen Abschnitt hat sich gezeigt, daß diese Abhängigkeiten bei
Verwendung der idealen Kalibrationen für experimentelle und simulierte Elektronen
innerhalb der vorgestellten Fehler identisch sind. Dadurch ist es möglich, aus der nur
im Fall der Simulation bekannten deponierten Energie E_{dep} auch für reale Elektronen
(mit $E_{\text{rec}} = E_{\text{rec,MC}}$) tatsächlich im Kalorimeter deponierte Energie zu bestim-
men. Dieses kann z.B. durch eine geeignete Funktion erfolgen, die aus dem Verhältnis
$E_{\text{rec,MC}}/E_{\text{dep}}$ bestimmt werden kann. In Abbildung 5.5 ist dieses Verhältnis für eine
$f = 3$ Rauschunterdrückung gemäß Gleichungen (5.5), (5.6) gezeigt. Die Abweichung
der rekonstruierten von der deponierten Energie beträgt demnach etwa -2.5% bei 5
GeV Strahlenei ogen bis etwa -1.5% bei 50 GeV, hervorgerufen durch die gewählte Art
der Rauschunterdrückung.
Abbildung 5.5: Das Verhältnis der für simulierte Elektronen unter Berücksichtigung des elektronischen Rauschens und einem \(f = 3 \) Schnitt nach Gleichung (5.6) rekonstruierten Energie \(E_{\text{rec,MC}} \) zur deponierten Energie \(E_{\text{dep}} \) in Abhängigkeit von der Strahlenergie \(E_{\text{inc}} \) in IFE. Die eingezeichnete Linie zeigt das Ergebnis der Anpassung einer Geraden in dem dargestellten Energiebereich. Die systematischen Unsicherheiten der Skalen sind bei den angegebenen Fehlern berücksichtigt.

Für die Signale von Elektronen im Energiebereich von 5 bis 50 GeV aus den Kalibrationsmessungen reicht eine einfache, nur wenig energieabhängige lineare Korrektur der auf der elektromagnetischen Skala rekonstruierten Energie aus, um die Signalverluste durch die Kanalselektion zur Unterdrückung des Rauschens zu kompensieren. Es sei noch darauf hingewiesen, daß bei der gleichen Art der Rauschunterdrückung für Signale im H1 Kalorimeter eine deutlich andere Korrektur zu erwarten ist; aufgrund der sehr viel größeren Zahl an vorhandenen Kanälen ist hier der Beitrag des elektronischen Rauschens zum Gesamtsignal größer als bei den Kalibrationsmessungen.
5.2 Elektronsignale in IFE

Im folgenden Abschnitt werden die auf der elektromagnetischen Skala rekonstruierten Signale von experimentellen Elektronen mit simulierten Ereignissen verglichen. Es wird dabei zwischen drei verschieden rekonstruierten Signalen unterschieden:

1. für experimentelle Ereignisse wird die mittels der elektromagnetischen Kalibrationskonstanten in einem Kanal \(i\) rekonstruierte Energie mit
 \[
 E_{\text{rec},i} = c_e \cdot q_i
 \]
 berechnet.

2. zum Vergleich mit realen Ereignissen werden simulierte Ereignisse unter Berücksichtigung der Beiträge durch elektronisches Rauschen rekonstruiert, deren Energie auf der elektromagnetischen Skala durch
 \[
 E_{\text{rec},i} = c_{e,MC} \cdot E_{\text{sim},i} + c_e \cdot q_{r,i}
 \]
 in einem Kanal gegeben ist (vergleiche Gleichung (5.4)).

3. für reine Simulationsstudien werden die gleichen Ereignisse wie unter 2. verwendet, allerdings wird in diesem Fall die Energie in einem Kanal nach
 \[
 E_{\text{rec},i} = c_{e,MC} \cdot E_{\text{sim},i}
 \]
 rekonstruiert.

Die Rekonstruktionsvorschriften ansich können z.B. auch für Pionen angewendet werden, wie im nächsten Abschnitt gezeigt.

Zunächst werden die Verteilungen der rekonstruierten Energien und die Energieauflösung des elektromagnetischen Kalorimeters für reale und simulierter Elektronen vorgestellt. Das totale Elektronensignal berechnet sich durch

\[
E_{\text{rec}} = \sum_{i} E_{\text{rec},i}
\]

wobei im Fall der Simulation ohne Beiträge durch elektronisches Rauschen (5.13) diese Summe gerade die deponierte Energie ist. Zur Unterdrückung des Signalbeitrages durch elektronisches Rauschen tragen bei der Rekonstruktion experimenteller Elektronereignisse nur Kanäle bei, deren Signale die Bedingungen (5.5) mit \(f = 3\) erfüllen. Die gleiche Selektion erfolgt auch bei simulierten Elektronensignalen, die mit Rauschbeiträgen rekonstruiert werden (nach Gleichung (5.6)).

Die longitudinalen und lateralen Schauerstrukturen werden für experimentelle Elektronensignale gezeigt und, wie die Auflösung, mit Simulationsergebnissen verglichen.

5.2.1 Energieauflösung

In Abbildung 5.6 sind die Verteilungen der aus experimentellen und simulierten Elektronensignalen rekonstruierten Energien dargestellt. Die jeweilige Breite der Verteilungen
Abbildung 5.7: Die Energieauflösung als Funktion der Nominalenergie für experimentelle (o) und simulierter Elektronen (○) in IFE. Bei der Rekonstruktion der simulierten Signale ist das elektronische Rauschen berücksichtigt worden. Die Kurven zeigen das Ergebnis der Anpassung der in Gleichung (5.15) gegebenen Auflösungsfunktion.

wird durch Anpassung einer Normalverteilung bestimmt. Hieraus ergeben sich dann die Energieauflösungen, die in Abbildung 5.7 als Funktion der Strahlenergie gezeigt sind. Die Energieabhängigkeit der Auflösung kann, wie bereits im Abschnitt 2.2 diskutiert, durch

\[
\frac{\sigma}{E} = \sqrt{\frac{a^2}{E} + \frac{b^2}{E^2} + c^2}
\]

(5.15)

parametrisiert werden. Das Ergebnis der Anpassung für reale Elektronen ist:

\[
a = (13.3 \pm 0.2)\% \cdot \sqrt{\text{GeV}}, \quad b = (20.0 \pm 1.5)\% \cdot \text{GeV}, \quad c = (0.0 \pm 0.5)\%
\]

Für simulierte Elektronen mit Rauschbeiträgen ergibt sich eine vergleichbare Auflösung mit leicht kleineren Sampling Fluktuationen:

\[
a = (11.8 \pm 0.5)\% \cdot \sqrt{\text{GeV}}, \quad b = (19.8 \pm 2.2)\% \cdot \text{GeV}, \quad c = (0.0 \pm 0.5)\%
\]

Der Term \(c\) ist in beiden Fällen mit null verträglich, was auf eine gute Interalivation zwischen den Kanälen im elektromagnetischen Kalorimeter schließen läßt. Die angegebenen Fehler sind rein statistisch.
Abbildung 5.8: Longitudinales Schauerprofil für 50 GeV Elektronen (experimentelle Ereignisse →, Simulation mit Rauschbeiträgen ○, reine Simulation schattiert). Die Kurve zeigt eine Anpassung der in Gleichung (2.4) auf Seite 24 gegebenen Formel an das Profil realer Elektronen. Die freien Parameter sind dabei die Norm und der Schauerstartpunkt.

5.2.2 Schauerstrukturen

Die longitudinalen und lateralen Energieverteilung ist für Elektronen in IFE untersucht worden. Abbildung 5.8 zeigt exemplarisch die longitudinalen Schauerprofile für reale und simulierte Elektronen von 5 und 30 GeV. Innerhalb der Fehler stimmen die Profile jeweils gut miteinander überein. Die leichte Überhöhung des Signals für reale Elektronen im ersten longitudinalen Segment deutet darauf hin, daß das inaktive Material vor dem Kalorimeter in seiner Tiefe leicht unterschätzt in die Simulation implementiert wurde.

Das laterale Schauerprofil ist in Abbildung 5.9 für experimentelle und simulierte Ereignisse mit Rauschbeiträgen sowie für reine simulierte Daten ohne Kanalselektion gezeigt. An das Profil aus letzteren Ereignissen kann die Funktion angepaßt werden, die bereits bei der Diskussion elektromagnetischer Schauer erwähnt wurde: [Ako77]

\[
\frac{1}{E} \frac{dE}{dr} = a_0 \cdot e^{-\alpha r} + a_1 \cdot e^{-\beta r}.
\]

(5.16)

Die Kurven in der Abbildung zeigen das Ergebnis der Anpassung der energieabhängigen Parameter \(a_0\), \(a_1\), \(\alpha\) und \(\beta\). Bei experimentellen und simulierten Daten mit Rauschbeiträgen sind die Schauer bedingt durch die Kanalselektionen schmaler; weit entfernt von der Schauerachse gefundene Signale sind im wesentlichen durch elektronisches Rauschen bedingt. Die Abnahme der deponierten Energie sehr nah bei der Schauerachse
kann durch Phasenraumbegrenzungen⁴ und durch die Granularität des Kalorimeters bedingt sein. Im allgemeinen ist die Übereinstimmung zwischen den aus Simulationen rekonstruierten Signalen und den Daten von realen Elektronen sehr gut.

Abbildung 5.9: Das laterale Schauerprofil für Elektronen zwei verschiedener Energien in IFE. Die Abbildung zeigt die über die gesamte Schauertiefe integrierte Schauerbreite für experimentelle Daten (→), simulierten Daten mit Rauschbeiträgen (Histogramm), und reine simulierten Daten ohne Schnitte (schattiert). Die durchgezogenen Kurven sind Ergebnisse der Anpassung der in Gleichung (5.16) gegebenen Funktion.

5.3 Signale von Pionen

Die vollständige Rekonstruktion von durch Hadronen deponierter Energie wird im H1 Kalorimeter durch die im nächsten Kapitel vorgestellten Methoden der Signalgewichtung erfolgen. Zunächst werden Pionsignale auf der elektromagnetischen Skala betrachtet, die rekonstruierte Energie wird also im Mittel gerade um e/h zu klein sein. Zum Vergleich mit simulierten Pionereignissen reicht die elektromagnetische Kalibration aus.

5.3.1 Ereignisselektion

Anders als bei den bisher besprochenen Elektronen verlangt die Analyse von Pionen eine Klassifikation von Ereignissen bezüglich longitudinaler Energieverluste. Bei einer

⁴ die Fläche eines Ringelements um die Schauerachse ist $2\pi r dr = 0$ für $r = 0$ [Ga91d]
totalen Tiefe der IF Module von etwa 6.5 λ sind diese insbesondere bei hohen Teilchenenergien nicht zu vernachlässigen. Die Bewertung der hadronischen Ereignisse kann nach folgenden Kriterien erfolgen:

(I) Die Pionenergie wird vollständig im elektromagnetischen und hadronischen Kali-
 rimeterteil absorbiert (Containment).

(II) der Schauerstartpunkt befindet sich im elektromagnetischen oder hadronischen
 Kalorimeter, ein gewisser Teil des Schauers leckt longitudinal heraus (Leakage).

(III) es findet keine inelastische Wechselwirkung beim Durchqueren des Flüssig-Argon
 Kalorimeters statt (Punchthrough).

Die Definition der drei Ereignisklassen erfolgt für reale und simulierte Pionereignisse
in identischer Art und Weise unter Verwendung der digitalen Information (Zahl der
getroffenen Drähte) aus dem Tailcatcher-Kalorimeter oder der Forderung nach einem
minimalen Gesamtsignal im Flüssig-Argon Kalorimeter.

Die zu bestimmende Kalibration soll für beliebige hadronische Schauer die jeweils
tatsächlich deponierte Energie rekonstruieren. Daher werden möglichst viele hadro-
nische Ereignisse verschiedener deponierter Energien und Schauerstrukturen zur ihrer
Bestimmung herangezogen. Bei Selektion der oben definierten Klasse I werden insbe-
sondere bei großen Strahlenergien Ereignisse angereichert, in denen die Schauer kurz
sind, also solche mit hohem elektromagnetischen Anteil. Für reale Ereignisse der Klasse
II ist die total im Kalorimeter deponierte Energie nicht gut bekannt\(^2\). Mit Hilfe von
Simulationen ist es möglich, die Relation zwischen deponierter Energie und Signal inner-
halb der Vergleichbarkeit mit realen Daten auch für diese Ereignisklasse zu bestimmen.
Die Vereinigungsmenge der beiden ersten Klassen wird aus Ereignissen gebildet, deren
Signalverteilungen beliebige hadronische Schauer z.B. für eine bestimmte Strahlenergie
beschreiben. Die dritte Ereignisklasse ist für die hadronische Kalibration nur insofern
interessant, als daß die entsprechenden Ereignisse aus den Energie- und Schauerinfor-
mationen des Kalorimeters erkannt werden sollten und wie Myonen zu behandeln sind.

Strahluntergrund

Aufgrund des relativ langen Strahlweges (~ 600 m) am H6 Teststrahl sind Teilchen-
verluste im Strahl durch Zerfälle für Pionen insbesondere bei kleinen Energien groß –
evtl. 90% bei 5 GeV. Dementsprechend steigt bei dieser Strahlenergie die Zahl der Myo-
nen, die sich im selben Phasenraum wie die Pionen aufhalten, stark an. Diese Teilchen
bilden einen Untergrund, der bei der Analyse durch Selektion von Ereignissen ohne
Signale in der letzten Drahtlage des Tailcatchers (nach insgesamt etwa 16.5 λ) und in
der Myonwand MΠ unterdrückt werden kann. Wie der Myonuntergrund die Energie-
spektren beeinflußt, ist der Abbildung 5.10 zu entnehmen. In Abbildung 5.11 ist die
Korrelation zwischen den Signalen im elektromagnetischen und denen im hadronischen
Kalorimeter mit und ohne Selektion der Strahlmyonen zu sehen. Natürlich werden mit
den gleichen Analyseschritten auch einige Pionen aus den Daten selektiert, die keine
inelastische Wechselwirkung im Flüssig Argon Kalorimeter erlitten haben.

\(^2\)der Tailcatcher erlaubt zwar eine analoge Energiemessung der Schauerachwände, die aber bei den hier
besprochenen Kalibrationsmessungen aus technischen Gründen nicht zur Verfügung stand. Die digitale
Information aus den Drähten ist nur innerhalb großer Fehler mit der deponierten Energie korreliert.

84

Abbildung 5.11: Die Korrelation zwischen der im elektromagnetischen und im hadronischen Kalorimeter rekonstruierten Energie für 5 GeV Pionen mit (rechts) und ohne Schnitte gegen Strahlmyonen. Das eingezeichnete Rechteck zeigt den Bereich, der von Myonsignalen ausgefüllt wird.
5.3.2 Vergleichbarkeit mit Simulationen

Im nachfolgenden werden das totale Kalorimetersignal, die mittlere longitudinal und laterale Struktur der hadronischen Schauer und die Signalverteilungen in den einzelnen Kalorimetern für reale und simulierte Pionen verglichen. (Vergleiche experimenteller hadronischer Ereignisse mit zwei verschiedenen Simulationsprogrammen sind in [Ga91b] zu finden). Basis ist die auf der elektromagnetischen Skala in einem Kalorimeterkanal gemäß den Gleichungen (5.11) und (5.12) rekonstruierte Energie. Die gesammte im Flüssig Argon Kalorimeter rekonstruierte Energie E_{rec} ist damit für reale Pionereignisse nach

$$E_{\text{rec,exp}} = c_e^{\text{EMC}} \sum_i q_i + c_e^{\text{HAC}} \sum_j q_j$$ \hspace{1cm} (5.17)

und für simulierte Pionereignisse mit Rauschbeiträgen nach

$$E_{\text{rec,MC}} = \sum_i \left(c_i^{\text{EMC}} \cdot E_{\text{nu},i} + c_e^{\text{EMC}} \cdot q_{i,i} \right) + \sum_j \left(c_j^{\text{HAC}} \cdot E_{\text{nu},j} + c_e^{\text{HAC}} \cdot q_{i,j} \right)$$ \hspace{1cm} (5.18)

zu berechnen. Die Kanalselektion erfolgt in beiden Kalorimetern wiederum nach (5.5), (5.6) mit $f = 3$.

Energieverteilungen im Vergleich

In Abbildung 5.12 ist das totale Signal für verschiedene Einschußenergien gezeigt. Die Schwänze in den Verteilungen zu kleinen Signalen sind durch die Ereignisselektion bedingt, die auch Ereignisse zuläßt, wo der hadronische Schauer erst sehr spät im Flüssig Argon Kalorimeter startet. Es zeigt sich, daß auch bei alleiniger Verwendung der elektromagnetischen Kalibrierungskonstanten die Summe der in IFE und IFH rekonstruierten Energien, über viele Ereignisse gemittelt, um den meistwahrscheinlichen Wert bereits einer Normalverteilung nahe kommt. Die Abweichungen der simulierten von den experimentellen Pionsignalen ist in Abbildung 5.13 als Funktion der Strahlenergie dargestellt. Die relative Differenz ΔE ist dabei zum einen aus den statistischen Mittelwerten der Verteilungen $E_{\text{rec}}^{\text{stat}}$, zum anderen aus den durch die Anpassung einer Gaußkurve bestimmten Mittelwerten $E_{\text{rec}}^{\text{norm}}$ berechnet:

$$\Delta E = \frac{E_{\text{rec,MC}}^{j}}{E_{\text{rec,exp}}^{j}} - 1; \hspace{0.5cm} j = \text{stat, norm}$$ \hspace{1cm} (5.19)

Im Bereich kleiner bis moderater Energien von 5 bis 80 GeV sind die Mittelwerte aus der Anpassung der Gaußkurve auf etwas besser als zwei Prozent gleich, wobei ab 10 GeV die Simulationen ein etwas zu niedriges Signal produzieren. Diese Tendenz ist
Abbildung 5.12: Energieverteilungen für Pionen, simulierte (Histogramme) und experimentelle (---) Daten. \(E_{\text{rec}}\) ist jeweils nach (5.17) bzw. nach (5.18) berechnet.
Abbildung 5.13: Die relative Differenz zwischen experimentellen und simulierten Pionsignalen, berechnet nach (5.19) für die statistischen (○) und die aus den Anpassungen von Gaußkurven bestimmten Mittelwerte (○). Die gepunkteten Linien zeigen den Bereich von ±2%.

Aus der Anpassung der Normalverteilungen läßt sich die Auflösung \(\sigma(E_{rec})/E_{rec} \) auf der elektromagnetischen Skala bestimmen. Ihre Energieabhängigkeit ist in Abbildung 5.14 gezeigt. Die Anpassung einer reduzierten Auflösungsfunktion³

\[
\frac{\sigma(E)}{E} = \sqrt{\frac{a^2}{E} + c^2}
\]

ergibt für reale Pionen

\[
a = (54.6 \pm 0.9)\% \cdot \sqrt{\text{GeV}}, \quad c = (10.0 \pm 0.1)\%
\]

und für simulierte Pionen

\[
a = (58.5 \pm 0.9)\% \cdot \sqrt{\text{GeV}}, \quad c = (11.7 \pm 0.2)\%.
\]

Das in beiden Fällen große \(c \) ist eine direkte Folge des auf der elektromagnetischen Skala nicht kompensierten Signalverhältnisses \(e/h \). Beachtenswert ist die im Fall der simulierten Daten schlechtere Auflösung, die auf zu groß beschriebene Fluktuationen im Simulationsprogramm hindeuten.

³Aufgrund der großen dominanten intrinsischen Fluktuationen ist der durch elektronisches Rauschen bedingte Anteil nicht aus der Anpassung zu bestimmen.
Abbildung 5.14: Die Auflösung für simulierte (○, - - -) und reale (○, ---) Pionen bei Rekonstruktion auf der elektromagnetischen Skala. Die Kurven sind Ergebnisse einer Anpassung der Auflösungsfunktion (5.20).

Die Spektren in den einzelnen Flüssig Argon Kalorimetern, deren qualitativer Verlauf im Abschnitt 2.3 gezeigt wurde, sind in der Abbildung 5.15 für das elektromagnetische und in 5.16 für das hadronische Kalorimeter für Pionen von 5, 30, 80 und 120 GeV dargestellt. Es gibt insbesondere bei kleineren Strahlenergien im Mittel mehr simulierte Ereignisse, die nur wenig Energie im hadronischen Kalorimeter deponieren als bei realen Pionen; in der Simulation wird die Energie schneller deponiert als in der Realität.
Abbildung 5.15: Mit der Elektronkalibration rekonstruierte Energie im elektromagnetischen Kalorimeter für experimentelle (—) und simulierter Pionereignisse (Histogramme) vier verschiedener Strahlenergien.
Abbildung 5.16: Unter Verwendung der elektromagnetischen Skala rekonstruierte Energie im hadronischen Kalorimeter für reale (→) und simulierte Pionen (Histogramme) vier verschiedener Strahlenergien.
Hadronische Schauerstrukturen

Die in Abbildung 5.18 für verschiedene Strahlenergien gezeigte mittlere laterale Verteilung der rekonstruierten Energien um die für jedes Ereignis individuell bestimmte Schauerachse zeigen innerhalb der Kalorimetergranularität eine gute Übereinstimmung zwischen Messung und den Simulationen. Zudem sind sie qualitativ nur wenig energieabhängig, was den bei der Diskussion des hadronischen Schauermodells erwähnten empirischen Erkenntnissen entspricht. Die gegenüber der reinen Simulation kleiner laterale Akzeptanz des Kalibrationsmoduls für experimentelle Pionsignale ($r \leq 2\lambda$) ist durch den in der Messung nicht auslesbaren Bereich in den vorderen Segmenten des IFE bedingt, der bei der Rekonstruktion der simulierten Signale mit Rauschbeiträgen berücksichtigt wird. Bei kleinen Energien wird die Form des Profils im Abstand von etwa 0.5 bis 1.5 λ von der Schauerachse durch die Beiträge vom elektronischen Rauschen dominiert; erst bei höheren Strahlenergien folgt die gemessene Schauerform aufgrund der nun gegenüber dem Rauschen absolut größeren Beiträge der tatsächlichen Schauerstruktur in diesem räumlichen Bereich.

Zusammenfassend ergibt sich aus dieser Studie, daß für hadronische Ereignisse die Vergleichbarkeit zwischen realen und simulierten Daten zwar nicht die Qualität wie bei den Elektronen erreicht, aber dennoch mit dem hier verwendeten Simulationsprogramm sowohl qualitativ als auch quantitativ eine gute Beschreibung der Messungen zu erreichen ist. Insbesondere ist zu beachten, daß die Energirekonstruktion bisher nur durch die auf Messungen und Simulationen von Elektronen basierende elektromagnetische Skala erfolgte. Die Unterschiede in der Sampling Fraction zwischen dem elektromagnetischen und hadronischen Kalorimeter sind damit nur für Elektron- und Photonsignale vollständig korrigiert, d.h. Signale aus der gleichen elektromagnetisch deponierten Energiemenge führen auf der elektromagnetischen Skala in beiden Kalorimetern zur selben rekonstruierten Energie. Bei hadronischen Schauern werden die im elektromagnetischen und hadronischen Kalorimeter jeweils aus der gleichen, rein hadronischen Energiedeponierung mittels dieser Skala rekonstruierten Energien wegen der unterschiedlichen Elektron-Hadron-Signalverhältnisse in den beiden Kalorimetern nicht identisch sein.

92
Abbildung 5.17: Das mittlere longitudinal Profil für Pionen verschiedener Strahlenergien, gemessen ohne explizite Bestimmung des individuellen Schauerstartpunktes für jedes Ereignis, für Simulation mit Rauschbeiträgen (Histogramme), experimentelle (→) und rein simulierten Pionsignalen (gepunktet). Aufgetragen ist der mittlere relative Energieverlust pro Wegstrecke ds als Funktion der Kalorimetertiefe s.
Abbildung 5.18: Das laterale Schauerprofil von Pionen, gemittelt über die gesamte Kalorimetertiefe, für Simulation mit Rauschbeiträgen (Histogramme), experimentelle (···) und rein simulierter Pionsignale (gepunktet) verschiedener Strahlenergien. Im Fall der Simulation ohne Beiträge durch elektronisches Rauschen ist die transversale Akzeptanz des Kalorimeters größer (siehe Text).
Kapitel 6

Energierekonstruktion für Hadronen und Teilchenjets mit Signalgewichtung

Der Übergang von der auf der elektromagnetischen Skala rekonstruierten Energie zur vollständigen Kalibration für hadronisch deponierte Energie erfolgt durch Bestimmung der Signalgewichtungsfunktionen, mit denen Kompensation von $c/h \neq 1$ erreicht werden kann. Qualitativ und quantitativ werden diese Funktionen zunächst für Einzelteilchenereignisse studiert, für die es Daten aus Kalibrationsmessungen gibt. Danach wird anhand von Betrachtungen von Signalen aus Simulationen von Teilchenjets aus u-Quark Fragmentationen ein Weg vorgeschlagen, die aus Einzelteilchen gewonnenen Funktionen auf Teilchenjets anzuwenden.

6.1 Bestimmung der Gewichtungsfunktionen

6.1.1 Beziehungen zwischen Signal und deponierter Energie in einzelnen Kanälen

Abbildung 6.1: Das jeweils in verschiedenen Bereichen des Energiesignals E_k^0 in Kanälen des elektromagnetischen (links) und hadronischen Kalorimeters (rechts) gemittelte Verhältnis $\langle E_k^{\text{dep}}/E_k^0 \rangle$ für simulierte 30 GeV Pionen, aufgetragen in Abhängigkeit von E_k^0. Die durchgezogene Linie im linken Bild zeigt eine Gewichtungsfunktion nach (6.1) während die gestrichelten Kurven rein qualitativ die Greif'schen Funktionen (6.2) zeigen.

Signal und der tatsächlich deponierten Energie untersucht werden. Bei diesen Betrachtungen wird zunächst das reine Simulationssignal E_{m}, mittels der elektromagnetischen Kalibration in ein Energiesignal

$$E^0 = c_{\text{MC}} \cdot E_{\text{m}}$$

konvertiert. Das elektronische Rauschen wird zunächst nicht berücksichtigt.

Das Verhältnis der in Kanälen mit einem bestimmten Energiesignal E_k^0 deponierten Energie E_k^{dep} zu E_k^0 kann im Mittel über viele Pionereignisse einer festen Strahlenergie berechnet und als Funktion von E_k^0, getrennt nach elektromagnetischem und hadronischem Kalorimeter, dargestellt werden (Abbildung 6.1). Die Kalibrationsfunktion $\mathcal{W}(E_k^0)$ ist dann die kontinuierliche Beschreibung von $\langle E_k^{\text{dep}}/E_k^0 \rangle$ und hängt sowohl vom Kalorimetertyp als auch von der Strahlenergie E_{m} ab. Diese Funktion wird nun im elektromagnetischen Kalorimeter für $E_{\text{m}} = 30$ GeV näher betrachtet.

Die Kalibrationsfunktion im elektromagnetischen Kalorimeter

In Abbildung 6.2 ist $\langle E_k^{\text{dep}}/E_k^0 \rangle$ nochmal für Signale E_k^0 in Kanäle in IFE dargestellt. Daneben sind die drei verschiedenen Anteile f_{em}, f_{had} und f_{ns} in ihrem mittleren Verhalten als Funktion des Signals in diesen Kanälen in Abbildung 6.3 gezeigt. Die Definition der verschiedenen Anteile sei hier kurz wiederholt (vgl. Gleichung (2.15) auf Seite 38):

\footnote{Es sei angemerkt, daß im eigentlichen Sinne die rekonstruierte Energie von der deponierten Energie abhängt.}
Abbildung 6.2: \(\langle E^{\text{dep}}_{\pi} / E^0_{\pi} \rangle \) für simulierte 30 GeV Pionen und Elektronen als Funktion des Energiepeaks \(E^0_{\pi} \) in IFE Kanälen. Dargestellt ist das Verhalten gemittelt über beliebige Pionereignisse (\(\rightarrow \)), für selektierte, vorwiegend nicht inelastisch wechselwirkende Pionen (\(\leftrightarrow \), schraffiert) und für Elektronen (\(\rightarrow \), Histogramm).

Abbildung 6.3: Die einzelnen Anteile an der durch 30 GeV Pionen deponierten Energie als Funktion des Energiepeaks in einzelnen Kanälen des IFE.
\(f_{em} \) ist der durch Photonen, Elektronen und Positronen deponierte Anteil an der totalen in einem hadronischen Schauer deponierten Energie;
\(f_{had} \) ist der durch Ionisationen anderer geladener Teilchen wie Protonen und geladene Pionen – aber auch Myonen – deponierte Energieanteil;
\(f_{em} \) ist der prinzipiell nicht in ein Signal konvertierbare Anteil an der durch einen Hadron deponierten Energie (langsane Neutronen, Neutrinos aus Pionzerfällen etc.).

Aus der Betrachtung der Abbildungen ergibt sich folgendes Bild:

- Sehr kleine Energiesignale \((E^0 < 100 \text{ MeV}) \) in einzelnen Kalorimeterkanälen stammen häufig von niedrigerenergetischen Photonen aus elektromagnetischen Subschauern oder Kernprozessen. Sie sind aufgrund von Sampling Fluktuationen und wegen des Transitioneffekts nur sehr schlecht kalibriert \((\langle E^{'\text{dep}} / E^0 \rangle > 1) \). Diese Interpretation wird durch das relativ große mittlere \(f_{em} \) für diesen Signalbereich gestützt.

- Größere Kanalsignale von etwa 100 bis 300 MeV sind häufig aus Kalorimeterzellen in Schauerbereichen, in denen die Pionen als minimal ionisierende Teilchen durch das Kalorimeter fliegen; der rein hadronisch deponierte Energieanteil \(f_{had} \) zu welchem alle Ionisationen außer die durch Photonen und Elektronen bzw. Positronen gezählt werden – nimmt zu. Für diese Kanäle wird \(\langle E^{'\text{dep}} / E^0 \rangle \) wieder kleiner, da \(e/m_{\text{ip}} < 1 \) ist.

- Noch höhere Signale bis zu 1 GeV kommen in Kanälen vor, in denen eine inelastische Wechselwirkung stattgefunden hat. Dieses drückt sich durch einen größeren Beitrag von neutralen Pionen \((f_{em}) \), aber auch in dem relativ großen \(f_{em} \) aus. Für sehr große Signale in Kanälen dominiert dann der elektromagnetische Anteil im Mittel \(f_{em} \sim 1 \).

Diese Strukturen im Signal lassen sich im elektromagnetischen Kalorimeter aufgrund seiner relativ kleinen Kanalvolumina und seiner geringen Gesamtthick von etwa 1.5 \(\lambda \) separieren. Die Wahrscheinlichkeit für Signalbeiträge aus inelastischen Wechselwirkungen in einem kleinen Zellvolumen ist in diesem Kalorimeter relativ klein; das Signal in den entsprechenden Kanälen stammt oft aus reiner Ionisation.

Für Signale von nicht im IFE inelastisch wechselwirkende Pionen wird, wie auch für Myonen, \(\langle E^{'\text{dep}} / E^0 \rangle < 1 \) gefunden. Das maximale Energiesignal dieser Teilchen in einem Kanal des IFE beträgt etwa 300 MeV (scharfröter Bereich in Abbildung 6.2). Zum Vergleich ist in der selben Abbildung das Verhältnis von deponierter zu rekonstruierter Energie für 30 GeV Elektronen in den Kanälen des elektromagnetischen Kalorimeters gezeigt; die Abweichungen dieses Verhältnisses von eins sind, wie bereits diskutiert, auf die Tatsache zurückzuführen, daß die elektromagnetische Skala nur für den integrierten elektromagnetischen Schauer die deponierte Energie rekonstruiert.

Die in Abbildung 6.3 gezeigte Relation zwischen dem Signal \(E^0 \) in einem IFE Kanal und dem unsichtbar deponierten Energieanteil \(f_{em} \) ist insofern bemerkenswert, als das für \(E^0 < 100 \text{ MeV} \) im Mittel \(f_{em} < 0 \) ist. Ursache für diesen Energiegewinn bei einzelnen Reaktionen kann das Einfangen von Neutronen sein, deren kinetische Energie praktisch null ist. Wenn ein Kern ein solches Neutron einfängt, kann Bindungsenergie in Form von Photonen freierwerden. Die Energiebilanz dieser Reaktion ist somit negativ\(^2\) in Bezug auf Energiedeponierung [Kuh91].

\(^2\) das Simulationsprogramm läßt den Einfangszprozess für diese Neutronen \((E_{km} < 1 \text{ MeV}) \) noch zu.
Beschreibung durch Kalibrationsfunktionen

Im Prinzip ist es möglich, anhand einer Beschreibung des bisher diskutierten mittleren Verhältnisses von deponierter Energie zum Signal in einzelnen Kanälen eine Funktion zu finden, die es erlaubt, in einem beliebigen Kanal eine gute Schätzung der tatsächlich deponierten Energie zu bekommen. Diese Funktion kann relativ kompliziert sein; z.B. ist die in Abbildung 6.1 gezeigte durchgezogene Kurve das Ergebnis einer Anpassung der Funktion

\[W(E^0) = |a_0| - \left(|a_1| \cdot \exp(- |a_1|E^0) + |a_3| \cdot \exp(- |a_3|E^0) \right). \] (6.1)

Offensichtlich ist diese Beschreibung auch nur für Signale \(E^0 > 100 \text{ MeV} \) geeignet. Berücksichtigt man noch, daß die Parameter dieser Funktionen typischerweise vom mittleren elektromagnetischen Anteil in hadronischen Ereignissen abhängen, so wird der numerische Apparat zur Rekonstruktion von hadronisch deponierter Energie sehr unübersichtlich.

Eine einfachere Beschreibung der Gewichtungsfunktionen, bei der die Forderung nach minimaler Auflösung qualitativ implementiert ist und die die Strukturen in \(\langle E_E/E^0 \rangle \) über einen großen Signalbereich mittelt, wurde von Greif in [Gre90] vorgeschlagen (Abbildung 6.1, gestrichelte Kurve):

\[W(E^0) = a_0 + a_1 \exp(-\alpha \cdot E^0); \quad a_i > 0, \alpha > 0 \] (6.2)

Die Anwendung einer solchen Funktion auf das Energiesignal in einem Kalorimeterkanal konstruiert zwar nicht die in dem Kanal deponierte Energie optimal, ermöglicht aber eine sehr gute Schätzung der total deponierten Energie in hadronischen Ereignissen bei einer sehr guten Auflösung. Der Parametersatz \(P = \{a_0, a_1, \alpha\} \) ist abhängig vom Kalorimeter und den Charakteristika hadronischer Schauer. Letztere Abhängigkeit kann zum Beispiel durch eine Parametrisierung der Elemente von \(P \) als Funktionen der in einem Ereignis deponierten Energie beschrieben werden, die im Mittel ein gutes Maß für hadronische Schauerkartografie ist [Mar89,Gre90]. Da diese Variable gleichzeitig das Ergebnis der Rekonstruktion ist, ist ein iteratives Vorgehen notwendig.

6.1.2 Berücksichtigung von Korrelationen zwischen Signalen in einzelnen Kanälen

Aufgrund der feinen Granularität des H1 Kalorimeters ist es möglich, getroffene Kanäle in einem Ereignis zu Substrukturen (Cluster) in Teilchenschauern zusammenzufassen. Die Kriterien, nach denen die Clusterbildung erfolgt, seien hier kurz erläutert (nach [Gör91]).
Abbildung 6.4: Das Spektrum der Clustersignale \(E_{C1}^0 \) für reale 50 GeV Elektronen (schriftiert) und Pionen. Bild (a) zeigt das absolute Signal auf der elektromagnetischen Skala; Bild (b) zeigt den relativen Anteil der einzelner Cluster am Gesamtsignal \(E^0 \). Die Verteilungen sind auf die gleiche Anzahl von Ereignissen normiert.

Bei der Signalgewichtung können Schauersubstrukturen benutzt werden, um die Parametrisierung \(P \) der Gewichtungsfunktion (6.2) als Funktion lokaler, direkt messbarer Variablen zu bestimmen. Grundlage für dieses Modell ist, daß die durch den Clu-
Steralgorithmus gefundenen Korrelationen zwischen Signalen in einzelnen Kanälen eines Ereignisses tatsächlich der Schauerentwicklung entsprechen. Unter der Annahme, daß dies der Fall ist, soll eine einfache Variable, nämlich die Summe E_{Cl}^0 der mittels der elektromagnetischen Kalibrierung berechneten Energiesignale in den einem Cluster zugehörigen Kanälen, genügen, um P für beliebige hadronische Schauer berechnen zu können. Die Güte dieses Kalibrationsmodells wird im folgenden geprüft.

6.1.3 Bestimmung der Parameter der Gewichtsfunktion

Bei der Rekonstruktion der durch einzelne Hadronen deponierten Energie wird folgende Kette für jedes Ereignis durchlaufen:

(i) das Signal aus simulierten oder realen Daten wird nach Gleichung (5.11) bzw. (5.12) in einem Kalorimeterkanal rekonstruiert (E_k^0).

(ii) Gruppen von Kanälen werden zu Cluster zusammengefaßt, deren Energiesignal E_{Cl}^0 auf der elektromagnetischen Skala sich aus der Summe der zum jeweiligen Cluster beitragenden Kanalsignale E_k^0 bildet:

$$E_{Cl}^0 = \sum_k E_k^0$$ \hspace{1cm} (6.3)

(iii) die in einer Zelle k eines Clusters Cl mit einem von E_{Cl}^0 abhängigen Gewicht W rekonstruierte Energie E_k^w ergibt sich aus:

$$E_k^w = W(E_{Cl}^0, E_k^0) \cdot E_k^0 = \left[a_0(E_{Cl}^0) + a_1(E_{Cl}^0) \cdot \exp \left\{ -\alpha(E_{Cl}^0) \cdot E_k^0 \right\} \right] \cdot E_k^0$$ \hspace{1cm} (6.4)

Dabei hängen die Parameter a_0, a_1 und α nicht nur von E_{Cl}^0, sondern auch davon ab, in welchem Kalorimeterteil (EMC oder HAC) sich die Zelle befindet.

(iv) die gesamte, für ein hadronisches Ereignis rekonstruierte Energie E^w ist durch

$$E^w = \sum_j \left[\sum_k \frac{E_k^0}{\text{Kanäle}} \right]$$ \hspace{1cm} (6.5)

gegeben. Dieses ist schließlich die beste Schätzung für die durch ein Hadron total deponierte Energie.

Die Parameter a_0, a_1 und α sind also für jedes Kalorimeter als Funktion von E_{Cl}^0 zu bestimmen. Es zeigt sich, daß die Energieauflösung mit dem Ansatz

$$a_0^{EMC} = a_0^{HAC} = 1$$

nur unwesentlich verschlechtert wird, sodaß eine Reduktion der Zahl der freien Parameter auf zwei pro Kalorimeter akzeptabel ist.

In einem ersten Schritt werden zunächst die Abhängigkeiten der Gewichtsparameter von E_{Cl}^0 bestimmt. Grundlage dafür sind Simulationen von einzelnen Pionen verschiedener Strahlenergien im Kalibrationsmodul. Die Signale werden zunächst ohne Addition von Rauschereignissen rekonstruiert.
Abbildung 6.5: Die Abhängigkeit der Exponenten \(\alpha \) der Gewichtungsfunktion im elektromagnetischen und hadronischen Kalorimeter vom Clustersignal \(E_{C_1}^0 \). Die Kurven zeigen Ergebnisse von Anpassungen gemäß (6.7) bzw. (6.8).

Abhängigkeit der Parameter vom Clustersignal

Die Beschreibung der Beziehung zwischen einem Cluster mit dem Signal \(E_{C_1}^0 \) und der entsprechenden, lokal deponierten Energie in einem hadronischen Schauer soll durch die Gewichtungsfunktionen auf statistischer Basis erfolgen. Diese hängen in dem hier diskutierten Kalibrationsmodell nicht von globalen Schauergrößen ab. Zu Bestimmung der Abhängigkeit von der lokalen Variablen \(E_{C_1}^0 \) werden die Parameter der Gewichtungsfunktionen zunächst für Cluster mit jeweils innerhalb einer kleinen Verschmierung gleich großem Signal aus Ereignissen aller zur Verfügung stehender Strahlenergien berechnet.

Diese Normierung auf Clusterebene verlangt die Berücksichtigung von außerhalb von Clustern deponierter Energie. Diese Energie ist in Kalorimeterzellen mit \(E_{\text{zelle}} = 0 \) oder in Kanälen, die aufgrund ihrer zu kleinen Signale und nicht vorhandener Nachbarn nicht in einen Cluster eingebunden sind, deponiert. Sie wird jeweils dem nächsten Cluster im Raum zugeordnet. Diese Vorgehensweise hat die wichtige Konsequenz, daß Kanäle außerhalb von Clustern nicht zum Signal beitragen, wobei zu beachten ist, daß auch ein isolierter Kanal als Cluster verstanden wird, falls sein Signal nur groß genug ist. Die Kalkulation ist dann so bestimmt, daß die total in einem Ereignis deponierte Energie nur auf Basis der Signale in Clustern rekonstruiert wird.

Die Parameter der Gewichtungsfunktionen sind so zu wählen, daß die mit ihnen in einem Cluster rekonstruierte Energie (mit \(E_k^{\text{sp}} \) aus Gleichung (6.4))

\[
E_{C_1}^{\text{w}} = \sum_k E_k^{\text{w}}
\]

gerade der deponierten Energie \(E_{C_1}^{\text{sp}} \), welche die oben genannten Beiträge enthält, ent-
spricht. Durch Minimalisierung von

\[\chi^2 = \frac{1}{\sigma_{CI}^2} \left(E_{CI} - E_{CI}^{dep} \right)^2 \]

wird diese Bedingung erfüllt. Dabei ist \(\sigma_{CI}^2 \sim E_{CI} + E_{CI}^{dep} \) gesetzt (nach \(\sigma \sim \sqrt{E} \)).

In einer ersten Iteration werden alle vier Parameter jeweils für ein Clustersignal korreliert bestimmt. Das Ergebnis für die Exponenten der Gewichtsfunktionen zeigt Abbildung 6.5. Die Abhängigkeit dieser Parameter von \(E_{CI} \) kann durch

\[a_{EMC}^{\text{EMC}} = a_0 + \frac{\alpha_1}{E_{CI}}; \quad \alpha_i > 0 \]

\[a_{HAC}^{\text{HAC}} = \beta_0 + \frac{\beta_1}{E_{CI}}; \quad \beta_i > 0 \]

beschrieben werden. Die Kurven in der Abbildung zeigen die Ergebnisse der Anpassungen. Diese Funktionen werden nun in die \(\chi^2 \)-Minimalisierung investiert; in der nächsten Iteration sind nur noch die verbleibenden freien Parameter \(a_i \) zu bestimmen. Deren Abhängigkeit von \(E_{CI}^0 \) ist in Abbildung 6.6 gezeigt und läßt sich mit

\[a_i^{EMC} = A_0 + \frac{A_1}{E_{CI}^0}; \quad A_i > 0 \]

für das elektromagnetische und

\[a_i^{HAC} = B_0 = \text{const} > 0 \]

für das hadronische Kalorimeter angeben. Damit ist die Form der Parametrisierung gegeben. In einer letzten Iteration werden schließlich die energieunabhängigen Parameter \(P_j = \{ a_0, \alpha_1, \beta_0, \beta_1, A_0, A_1, B_0 \} \) simultan für alle verfügbaren Cluster bestimmt. Die Gewichte für die simulierten Pionereignisse sind als Funktion des Signals \(E_{CI}^0 \) in einzelnen Kanälen des elektromagnetischen und hadronischen Kalorimeters für verschiedene Clustersignale \(E_{CI}^0 \) in Abbildung 6.7 dargestellt.

Auswirkungen der Gewichtung in einzelnen Kanälen

Bevor die Bestimmung der Parametrisierungen der Gewichtsfunktionen unter realistischeren Bedingungen und deren Ergebnisse diskutiert werden, seien hier kurz die Auswirkungen der Gewichtung in einzelnen Kanälen exemplarisch für simuliert 30 GeV Pionen gezeigt.

Zur Untersuchung dieser Frage wird die nach Gleichung (6.4) gewichtete in einem Kanal rekonstruierte Energie \(E_1 \) mit der tatsächlich im entsprechenden Kanal deponierten Energie \(E_1^{dep} \) verglichen. Das Ergebnis für IFE und IFH ist, ausgedrückt in einem mittleren Verhältnis \(\langle E_1/E_1^{dep} \rangle \), in Abbildung 6.8 im Vergleich mit dem \(\langle E_1/E_1^{dep} \rangle \) zu sehen. Allgemein werden kleine Signale im IFE zu groß rekonstruiert, was nach der bisherigen Diskussion zu erwarten war. Kompenziert wird dieses Verhalten durch im Mittel zu klein rekonstruierte Energien bei höheren Signalen. Im hadronischen Kalorimeter erlaubt die Gewichtung eine gute Rekonstruktion für Kanäle mit Signaler derenergie bis etwa 2 GeV; die Kompensation der im Signalbereich zwischen etwa 100 MeV und 2 GeV im Mittel zu groß konstruierten Kanalenergien erfolgt durch zu niedrige Gewichtung sehr kleiner Signale.
Abbildung 6.6: Die Gewichtungsparameter a_1 als Funktion des Cluster signals E_{CI}^0. Die Kurve im linken Bild zeigt die Anpassung der in Gleichung (6.9) gegebenen Funktion. Im hadronischen Kalorimeter ist der Parameter a_1^{HAC} in guter Nähung unabhängig von Clustersignal.

$W(E_{CI}^0, E_C^0)$

Abbildung 6.7: Die Gewichtungsfunktionen W aus Gleichung (6.4) im elektromagnetischen und im hadronischen Kalorimeter in Abhängigkeit vom Energiesignal E_C^0 in einem Kanal und dem Cluster signal E_{CI}^0. Die Funktionen sind ohne Beiträge durch elektronisches Rauschen bestimmt worden.
Abbildung 6.8: Das mittlere Verhältnis von rekonstruierter zu deponierter Energie in Kanälen des elektromagnetischen und hadronischen Kalorimeters, vor (○) und nach (→) Anwendung der Signalgewichtungsfunktionen.

6.1.4 Berücksichtigung des elektronischen Rauschens

Bisher wurde das elektronische Rauschen bei der Bestimmung der Gewichtungsparameter nicht berücksichtigt. Dieses wird unter der Annahme, daß sich die qualitative Beschreibung der Abhängigkeit der Gewichtungsparameter von \(E_{CI}^0 \) nicht ändert, ergeben. Die Addition der Random Trigger zu den simulierten Ereignissen hat zur Folge, daß es einige Cluster gibt, denen keine deponierte Energie zugeordnet wird (\(E_{dep}^{CI} = 0 \)). Die in Gleichung 6.6 angegebene Normierung auf Clusterebene ist in diesem Fall nicht zur Bestimmung der Parametrisierung geeignet und wird durch ein auf der Rekonstruktion vollständiger Ereignisse beruhendes \(\chi^2 \) ersetzt:

\[
\chi^2 = \sum_{\text{Ereignisse}} \frac{1}{\sigma_E^2} \left(\sum_{\text{Cluster}} E_{CI}^{w} - E_{dep} \right)^2
\]

(6.11)

\(E_{dep} \) ist die totale, in einem hadronischen Ereignis deponierte Energie.

Auch in diesem Fall tragen nur Kanäle, die Clustern zugeordnet wurden, zum Signal bei. Die Kanäle sind durch Anwendung eines \(f = 3 \) Schnittes zur Unterdrückung des Signalbeitrages durch elektronisches Rauschen nach (5.5), (5.6) auf Seite 74 vorselektiert. Die Bestimmung der Parameter \(P_f \) erfolgt in Analogie zum vorher beschriebenen Fall unter Verwendung von simulierten Pionereignissen aller verfügbaren Energien und Berücksichtigung des elektronischen Rauschens gemäß Gleichung (5.12).

6.1.5 Ergebnisse der Anpassungen

In Abbildung 6.9 sind die aus der Anpassung der Parametrisierung \(P_f \) bestimmten Signalgewichte als Funktion des Signals \(E_{CI}^0 \) in Kanälen im elektromagnetischen und hadronischen Kalorimeter für verschiedene Clustersignale \(E_{GI}^0 \) bei Berücksichtigung des
Abbildung 6.9: Die Gewichte als Funktion des Signals in Kanälen des elektromagnetischen und hadronischen Kalorimeters bei Berücksichtigung des elektronischen Rauschens, gezeigt für verschiedene Clustersignale E_{cl}^0. Die gestrichelt eingezeichneten Linien zeigen die typische Energieschwelle in einem einzelnen Kanal bei einem $f = 3$ Schnitt gegen den Signalbeitrag durch elektronisches Rauschen (ca. 30 MeV in IFE und 60 MeV in IFH).

elektronischen Rauschens gezeigt. Auffallend ist der Wechsel in der qualitativen Beschreibung des Parameters a_{EMC}^4 im IFE; er wird bei Berücksichtigung des elektronischen Rauschens mit steigendem Clustersignal größer. Dieser Vorzeichenwechsel $A_1 \rightarrow -A_1$ in (6.9) gegenüber der Beschreibung ohne Rauschbeiträge deutet auf die geringe Abhängigkeit der Gewichtsfunktionen von E_{cl}^0 im IFE hin, welche eine Folge der Unterdrückung von Clustern mit relativ kleinem Energiesignal E_{cl}^0 durch die Kanalselektion gegen Signalbeiträge durch elektronischen Rauschen ist. Zudem führt die realistische Rekonstruktion zu einer relativ höheren Gewichtung der Kanäle im hadronischen Kalorimeter.

Da die Parametrisierung P_f so bestimmt ist, daß im Mittel stets die tatsächlich deponierte Energie rekonstruiert wird, ist P_f selbst von Analyseschritten abhängig. Auch der Clusteralgorithmus ist nicht unabhängig von Kanalselektionskriterien; somit kann der hier bestimmte Parametersatz P_f nur für die im folgenden mit $f = 3$ analysierte Ereignisse die tatsächlich deponierte Energie gut rekonstruieren.

6.2 Linearität und Auflösung

In diesem Abschnitt werden die Ergebnisse der oben besprochenen Bestimmung der Parametrisierung der Gewichtsfunktion vorgestellt und auf die Rekonstruktion von Pionereignissen beliebiger Strahlenenergie angewendet. Die unter Berücksichtigung des elektronischen Rauschens ermittelte Parametrisierung wird auch bei der Energimessung von realen Pionen benutzt. Die Vergleichbarkeit der damit im Mittel rekonstruierten Energien ist, wie bereits beim Elektronensignal, dann ein Maß für die erreichte Linearität. Da der Fall der reinen Simulation ohne elektronisches Rauschen im nächsten Abschnitt
im Vergleich mit u-Quarkjets noch genauer diskutiert wird, sollen hier zunächst die Ergebnisse für experimentelle und simulierter Pionsignale mit Beiträgen des elektronischen Rauschens gezeigt werden.

6.2.1 Güte der Parameterbestimmung

Die aus den simulierten Pionereignissen bestimmte Parametrisierung der Gewichtsfunktionen wird hinsichtlich der Güte der EnergierECHIktion überprüft. Die dazu getestete Größe ist die für individuelle Ereignisse berechnete relative Abweichung Δ_{norm} der mittels der Gewichtsfunktionen rekonstruierten Gesamtenergie E^u und der tatsächlich im jeweiligen Ereignis deponierten Energie E_{dep}:

$$\Delta_{\text{norm}} = \frac{E^u}{E_{\text{dep}}} - 1$$ (6.12)

Die über viele Ereignisse gemittelte Abweichung dieser Größe von null ist ein Beitrag zum systematischen Fehler der Energimessung. Die Breite der Verteilung der Δ_{norm} gibt die Auflösung des Kalorimeters an.

Die relative Abweichung zwischen deponierter und rekonstruierter Energie, für jedes simulierte Ereignis nach Gleichung (6.12) berechnet, ist in Abbildung 6.10 dargestellt. Sie ist praktisch für alle verfügbaren Energien normalverteilt, was auf eine gute Kompensation schließen läßt. Durch Anpassung von Gaußkurven sind die mittleren Abweichungen als Funktion der nominalen Strahlenergie bestimmt und in Spalte 1 der Tabelle 6.1 zusammengefaßt worden. Die gewählten Gewichtsfunktionen und deren Parametrisierungen erlauben eine auf weniger als 1 % von der nominalen Strahlenergie abhängige Rekonstruktion der deponierten Energie.

6.2.2 Vergleichbarkeit mit realen Pionen

Die Anwendung der mittels Simulationen gewonnenen Gewichtsfunktionen auf Signale realer Pionen erlaubt eine Abschätzung der Möglichkeit, die Parametrisierungen auf reale Signale im H1 Detektor anzuwenden. Es ist dabei zu beachten, daß das Simulationsmodell nur innerhalb gewisser Grenzen die realen Pionsignale beschreiben kann. Der Fehler in der Beschreibung wird durch die Vergleichbarkeit der mittels der elektromagnetischen Skalen rekonstruierten Signale, wie sie im vorherigen Kapitel vorgestellt wurde, definiert.

Die Verteilungen der gewichteten rekonstruierten Energien für experimentelle und simulierte Pionereignisse mit Rauschbeiträgen ist in Abbildung 6.11 gezeigt. Aus den
<table>
<thead>
<tr>
<th>$E_{\text{inc.}}$ [GeV]</th>
<th>Δ_{norm} [%]</th>
<th>Δ_{ω} [%]</th>
<th>$(e/h)_{\text{MC}}^*$</th>
<th>$(e/h)_{\text{exp}}^*$</th>
<th>$(e/h){\text{exp}}^*/(e/h){\text{MC}}^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.8±0.5</td>
<td>2.0±0.0</td>
<td>1.303±0.009</td>
<td>1.349±0.013</td>
<td>1.035±0.013</td>
</tr>
<tr>
<td>10</td>
<td>0.4±0.4</td>
<td>4.2±0.0</td>
<td>1.313±0.007</td>
<td>1.353±0.008</td>
<td>1.030±0.008</td>
</tr>
<tr>
<td>30</td>
<td>0.8±0.3</td>
<td>3.3±0.0</td>
<td>1.312±0.006</td>
<td>1.352±0.003</td>
<td>1.030±0.005</td>
</tr>
<tr>
<td>50</td>
<td>0.8±0.2</td>
<td>2.7±0.0</td>
<td>1.304±0.006</td>
<td>1.335±0.003</td>
<td>1.024±0.005</td>
</tr>
<tr>
<td>80</td>
<td>0.1±0.2</td>
<td>1.4±0.0</td>
<td>1.302±0.008</td>
<td>1.313±0.003</td>
<td>1.008±0.007</td>
</tr>
<tr>
<td>120</td>
<td>0.0±0.2</td>
<td>0.7±0.0</td>
<td>1.286±0.009</td>
<td>1.299±0.004</td>
<td>1.016±0.008</td>
</tr>
<tr>
<td>170</td>
<td>0.3±0.2</td>
<td>0.8±0.0</td>
<td>1.242±0.008</td>
<td>1.269±0.003</td>
<td>1.022±0.007</td>
</tr>
<tr>
<td>205</td>
<td>0.7±0.2</td>
<td>1.2±0.0</td>
<td>1.221±0.006</td>
<td>1.235±0.003</td>
<td>1.011±0.005</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Zusammenfassung des Vergleichs zwischen Simulation mit Rauschbeiträgen und experimentellen Pionsignalen. Δ_{norm} ist die mittlere relative Abweichung zwischen rekonstruierter und deponierter Energie für die simulierten Signale; Δ_{ω} gibt die relative Abweichung zwischen den aus experimentellen und simulierten Signalen gewichteten rekonstruierten Energien an. Die Größen $(e/h)_{\text{MC}}^*$ bzw. $(e/h)_{\text{exp}}^*$ geben die durch die Gewichtung bewirkte mittlere Kompensation für Simulation und Experiment an.

Mittelwerten dieser Verteilungen kann die relative Differenz Δ_{ω} zwischen den rekonstruierten Energien bestimmt werden:

$$
\Delta_{\omega} = \frac{\langle E_{\text{exp}}^w \rangle}{\langle E_{\text{MC}}^w \rangle} - 1
$$

(6.13)

Dabei ist $\langle E_{\text{MC}}^w \rangle$ die mittlere, aus den simulierten Ereignissen gewichtete rekonstruierte Energie und $\langle E_{\text{exp}}^w \rangle$ die gleiche aus realen Pionsignalen rekonstruierte Größe. Im Gegensatz zu den Betrachtungen im Kapitel 5, wo die Frage der Güte der Beschreibung der Messungen durch die Simulation im Vordergrund stand, wird hier die Übertragbarkeit der aus Simulationen bestimmten Gewichtungsfunktionen auf experimentelle Pionsignale getestet. Eine Normierung der relativen Differenz Δ_{ω} auf das Simulationsergebnis ist deswegen angebracht. In Spalte 2 der Tabelle 6.1 ist Δ_{ω} als Funktion der nominellen Strahlenergie angegeben.

Die Frage, inwieweit die Anwendung der aus simulierten Daten bestimmten Gewichtungsfunktionen die Vergleichbarkeit der rekonstruierten Energien aus Simulationen und realen Signalen gegenüber der im vorherigen Kapitel diskutierten Vergleichbarkeit auf der elektromagnetischen Skala verändert, läßt sich anhand des Verhältnisses

$$
\left(\frac{e}{h} \right)^* = \frac{\langle E^w \rangle}{\langle E^0 \rangle}
$$

(6.14)

jeweils für simulierte – $\langle e/h \rangle_{\text{MC}}^*$ – und experimentelle – $\langle e/h \rangle_{\text{exp}}^*$ – Pionereignisse diskutieren. $\langle E^0 \rangle$ ist das mittlere, für Pionen einer bestimmten Strahlenergie auf der elektromagnetischen Skala rekonstruierte Energiesignal und $\langle E^w \rangle$ die mittlere mit Signalgewichtung rekonstruierte Energie der gleichen Ereignisse.

Die $(e/h)^*$ sind in den Spalten 3 und 4 der Tabelle 6.1 angegeben. Spalte 5 der Tabelle zeigt die Unterschiede zwischen den $(e/h)^*$ für reale und simulierter Signale. Aus diesen Ergebnissen folgt, daß die insbesondere bei kleinen Strahlenergien relativ
Abbildung 6.12: Gewichtete Energieauflösung für simulierte (○) und experimentelle Pionereignisse (○) unter Verwendung der mittels der Simulation bestimmten Parametrisierung.

große Diskrepanz zwischen den rekonstruierten Energien im wesentlichen durch eine zu große Anhebung der Signale aus realen Pionereignissen durch die aus der Simulation gewonnene Parametrisierung zu erklären ist.

6.2.3 Gewichtete Energieauflösung

\[a = (49.7 \pm 0.6)\% \cdot \sqrt{\text{GeV}}, \quad c = (1.6 \pm 0.3)\% \]

und für simulierte Signale

\[a = (49.8 \pm 0.8)\% \cdot \sqrt{\text{GeV}}, \quad c = (3.0 \pm 0.2)\% \]

Der in beiden Fällen relativ große Term \(c \) ist in beiden Fällen auf zusätzliche Fluktuationen durch longitudinale Energieverluste zurückzuführen. Der Fall der Simulation \(c \) annähernd doppelt so groß ist wie bei den realen Pionen, deutet auf eine ungenügende Beschreibung der realen Fluktuationen in hadronischen Schauern durch das Simulationsprogramm – insbesondere bei hohen Einzelteilchenenergien – hin.

Die Form der Parametrisierung der gewählten Gewichtungsfunktionen erlaubt prinzipiell eine bessere Kompensation, wie in Abbildung 6.13 dargestellt ist. In dieser Abbildung ist die Auflösung für reale Pionen unter Verwendung des gleichen Gewichtungsansatzes gezeigt. Die Werte für die Parameter ändern sich allerdings durch eine andere,

auf einer nicht auf Simulationen übertragbaren Energieskalibrierung des digitalen Tailcatchersignals beruhenden Berechnung der im Argon Kalorimeter deponierten Energie:

\[E_{\text{dep}} = E_{\text{inc}} - E_{TC}; \quad E_{TC} = 0.025 \cdot h^{1.4} \text{ GeV} \]

Dabei ist \(h \) die Zahl der Drahttreffer im Tailcatcher [Ber90]. Die angepaßten Parameter der Auflösungsfunktion sind in diesem Bild:

\[a = (54.7 \pm 0.4)\% \cdot \sqrt{\text{GeV}}, \quad c = (0.7 \pm 0.2)\% \]

6.3 Rekonstruktion von Teilchenjets

Das im folgenden vorgeschlagene Modell zur Energirekonstruktion wird anhand von reinen Simulationen ohne Berücksichtigung der Beiträge durch elektronisches Rauschen und dadurch bedingte Kanalselektion diskutiert. Die Basis sind die schon im letzten Abschnitt verwendeten Simulationen einzelner Pionen im Kalibrationsmodul und die unter gleichen Bedingungen simulierten Signale aus den Fragmenten von \(u \)-Quarkjets. Es sei darauf hingewiesen, daß weder die Definition von Teilchenjets noch bestimmte Jetcharakteristika in die Rekonstruktion direkt eingehen.

6.3.1 Ein Modell zur Energirekonstruktion von Jets

Die Rekonstruktion von durch Teilchenjets deponierter Energie wird unter der Vorstellung erfolgen, daß der in einem Jet vorhandene, insbesondere durch Photonen aus
Zerfallen neutraler Pionen getragene primäre elektromagnetische Energieanteil im Kalorimeter von der durch die Hadronkomponente des Jets deponierten Energie getrennt werden kann. Die durch die Photonen produzierten Signale sind auf der elektromagnetischen Skala geeicht; die Anwendung der oben vorgeschlagenen Gewichtungsfunktionen auf Kanäle im photoninduzierten elektromagnetischen Schauer könnte zu einer Überschätzung der deponierten Energie in einer typischen Größenordnung von 20% führen.

Struktur der Teilchenjets

Bevor die Vorgehensweise bei der Rekonstruktion der Jetenergie weiter diskutiert wird, sollen hier kurz die verwendeten Ereignisse unter dem für die kalorimetriche Rekonstruktion wichtigem Aspekt der Winkelabhängigkeit des Energieflusses vorgestellt werden. Andere Gesichtspunkte der Fragmentation werden im Rahmen der hier erörterten Studien nicht diskutiert (zu den verwendeten Programmen siehe Anhang A).

Es stehen Jets zur Verfügung, die aus der Fragmentation von u-Quarks mit Impulsen von 20, 40, 80 und 100 GeV/c unter Winkeln von \(\theta = 10^\circ \) und \(\phi = 22.5^\circ \), gemessen relativ zur Protonrichtung in H1, stammen und deren Konstituenten hauptsächlich in den Bereich des IF Kalorimeters einstreuen. In Abbildung 6.14 ist die Signalverteilung der Fragmente eines solchen Jets aus einem 20 GeV u-Quark exemplarisch gezeigt. Die jeweiligen Energiespektren für Hadronen und die elektromagnetische Jetkomponente sind für die kleinste und die größte zur Verfügung stehende Jetenergie in Abbildung 6.15 gezeigt. Der Energiefluß in Abhängigkeit von \(\theta \) ist in den Bildern in Abbildung 6.16 jeweils für die elektromagnetischen Komponenten (Elektronen, Positronen und Photonen) und für geladene und neutrale Hadronen im Vergleich mit dem totalen Fluß gezeigt.

6.3.2 Selektion von Clustern

Aufgrund der sehr unterschiedlichen räumlichen Ausbreitungsskalen von elektromagnetischen und hadronischen Schauern ist es möglich, die primäre elektromagnetische Fraktion eines Jets auf der Clusterebene bis zu einem gewissen Grad zu isolieren. Die Qua
Abbildung 6.15: Die Energiespektren der in den simulierten Teilchenjets produzierten elektromagnetischen und hadronischen Einzelteilchen für zwei verschiedene Jetenergien.

lität, mit der elektromagnetische Cluster gefunden werden können, ist abhängig von der Granularität des Kalorimeters; im H1 Detektor reicht sie in den elektromagnetischen Kalorimetern aus, um einfallende Elektronen von Pionen zu trennen [Col90,Sir92]. Die intrinsische elektromagnetische Komponente kann allerdings im Allgemeinen wohl nicht isoliert werden.

- der im ersten longitudinalen Segment des elektromagnetischen Kalorimeters gemessene Anteil F_0 am gesamten Clustersignal E_{C_0};

- der in Kanälen des elektromagnetischen Kalorimeter gemessene Anteil F_{rem} an E_{C_0};

- der Anteil F_{4h} der Summe der Signale in den Kanälen mit den vier höchsten Signalen in einem Cluster.

Diese Größen benutzen nicht implizit die Schauerstrukturen, die nur mit stark von der Kalorimetergeometrie abhängigen Fehlern – und damit in großer Abhängigkeit vom Winkel θ in H1 – gemessen werden können. Dagegen werden mehr phänomenologische,
Abbildung 6.16: Der elektromagnetische (oberer Bildteil) und hadronische Energiefluss in Abhängigkeit von \(\cos \theta \) für 20 und 100 GeV Jets aus u-Quark Fragmentationen. Die offenen Histogramme zeigen den totalen Energiefluss aller Teilchen (neutrale Hadronen sind ohne Beiträge von \(\pi^0 \) oder \(\eta \) zu verstehen). Das IF Kalorimeter befindet sich in dem Bereich zwischen den senkrechten, gestrichelten Linien.
weniger auf Unterschiede in der Geometrie der Kalorimeterräder empfindliche Aspekte der Schauerentwicklung, wie die relative hohe Energiedichte in elektromagnetischen Schauern (F_{eh}) und die Tatsache, daß das erste longitudinale Segment typischerweise bereits drei Strahlungslängen, aber nur wenige 10 % einer Absorptionslänge tief ist, was praktisch alle primären Photonen und nur sehr wenige Hadronen zum Starten von Schauern bringt, ausgenutzt (F_{emc}, F_0).

Die Schnitte in den drei vorgestellten Größen, die zur Separation elektromagnetischer Cluster benutzt werden sollen, können anhand von Clustern in Elektronereignissen, wo ein Cluster praktisch den gesamten elektromagnetischen Schauer enthält, untersucht werden. Das Ergebnis ist in Abbildung 6.17 dargestellt. Die Energieabhängigkeit der Schnitte wird direkt als Funktion der Clusterenergie E_{Ct}^0 parametrisiert:

$$\max(0.01, 0.05 - 0.01 \cdot \ln E_{Ct}^0) < F_0 < \max(0.10, 0.60 - 0.12 \cdot \ln E_{Ct}^0)$$ (6.15)

$$\min(0.60, 0.50 + 0.02 \cdot \ln E_{Ct}^0) < F_{th} < \max(0.75, 0.98 - 0.05 \cdot \ln E_{Ct}^0)$$ (6.16)

$$F_{emc} > 0.98$$ (6.17)

E_{Ct}^0 ist dabei in GeV zu messen.

Auf das explizite Studium der Effizienz dieser Selektionskriterien sei an dieser Stelle verzichtet; im Rahmen der Teilchenidentifikation im H1 Kalorimeter werden diese Aspekte – auch für andere Bestimmungsgrößen – genauer diskutiert [Sir92]. Stattdessen wird die Auswirkung der Clusterselektion auf die vollständig rekonstruierte Energie für hadronische Einzelteilcheneignisse und die oben genannten Jets diskutiert.

6.3.3 Rekonstruktion mit Clusterfilter

Die vollständige Rekonstruktion sowohl der simulierten Einzelteilcheneignisse als auch der u-Quarkjets erfolgt unter Verwendung des Filters für elektromagnetische Cluster. Formal stellt sich die in einem Ereignis rekonstruierte Energie E^w damit wie folgt da:

$$E^w = \sum_{i \in \text{elektromagnetische Cluster}} E_{Ct}^i + \sum_{i \in \text{hadronische Cluster}} E_{Ct}^i$$ (6.18)

Abbildung 6.20: Die durch Jets im Flüssig Argon Kalorimeter deponierte (scharf gerahmt) und rekonstruierte Energie.

Bei den 5 GeV Pionen sind die relativen Energiebeiträge durch elektromagnetisch kalibrierte Cluster klein (<1%). Diese Cluster sind aufgrund der Ineffizienz der Selektion insbesondere bei niedrigen Energien häufig fehlidentifiziert; die in ihnen rekonstruierte Energie ist im Mittel zu klein.

Energierekonstruktion der Jets

Genau wie der bei der vorhergehend besprochenen Rekonstruktion von hadronischen Einzelteilchenereignissen wird die Qualität der Energiemessung in dem vorgestellten Kalibrationsmodell nun für die Teilchenjets aus der u-Quark Fragmentation bestimmt. In analoger Vorgehensweise wird dazu die relative Differenz Δ_{norm} auf der Basis ein-
Abbildung 6.21: Die Abweichung der nach Gleichung (6.18) rekonstruierten und der tatsächlich deponierten Energie für die im Text besprochenen Jets.
Abbildung 6.23: Linearität für Jets (⊙) und für identisch rekonstruierte Pionen (○). Zum Vergleich ist der mittlere relative Unterschied zwischen deponierter und rekonstruierter Jetenergie gezeigt, wenn der Filter zur Identifikation elektromagnetischer Cluster ausgeschaltet ist (−→).

...

die neben den intrinsischen weiteren Fluktuationen im elektromagnetischen Energiegehalt eingeführt. Die mögliche Ursache für den relativ großen konstanten Term bei den Pionen ist bereits im Abschnitt 6.2 beim Vergleich der Auflösungen für simulierte und experimentelle Pionen angesprochen worden.

Fehlerbetrachtungen

Abschließend folgt eine kurze Betrachtung der Güte der erreichten Kalibration, die für Hadronenergien zwischen 5 und 50 GeV im wesentlichen über die Vergleichbarkeit zwischen simulierten und realen Pionsignalen definiert wird. Bei höheren Energien ab 80 GeV sind die rekonstruierten Signale sehr viel besser vergleichbar, der Fehler wird hier durch die Abweichungen von der Energielinearität und dem Fehler der elektromagnetischen Skala bestimmt.

Darauf die elektromagnetische Skala im ersten Schritt der Energierekonstruktion verwendet wird, überträgt sich deren systematische Unsicherheit auch auf die hadronische Kalibration. Unter der Annahme, daß alle Fehler bei den Kalibrationsmessungen in den systematischen Fehler der Elektronkalibration absorbiert werden, sind bei der Berechnung der systematischen Unsicherheit der hadronischen Kalibration noch die folgenden Beiträge zu beachten:

- der Fehler aus der Anpassung der Gewichtungsfunktionen wird über die Vergleichbarkeit der rekonstruierten und der deponierten Energie für die simulierten Pionereignisse zu 0.8% bestimmt (Tabelle 6.1 auf Seite 110, Spalte 1).

- die Übertragbarkeit der mittels simulierten Daten bestimmten Gewichtung auf Signale in experimentellen Pionereignissen kann in zwei verschiedenen Energiebereichen mit:
- einer etwa 3% zu groß rekonstruierten Energie für experimentelle Pionen zwischen 5 und 50 GeV
- und einer etwa 1% zu klein rekonstruierten Energie für experimentelle Pionen im Bereich von 80 bis 205 GeV angegeben werden (Tabelle 6.1, Spalte 2).

- die Selektion des primären elektromagnetischen Energieanteils in Teilchenjets mittels eines einfachen Filters auf Clusterebene erlaubt die Anwendung der aus simulierten Pionereignissen gewonnenen Gewichtungsfunktionen auf Kanäle in als hadronisch klassifizierten Clustern. Die erreichten Abweichungen von der Energielinearität sind sowohl für die Teilchenjets als auch für hadronische Einzelteilchenereignisse, die mit dem gleichen Algorithmus rekonstruiert werden, etwas kleiner als 2% (Abbildung 6.23 auf Seite 125).

- der hier nicht weiter studierte Einfluß von toten oder heißen Kanälen auf die Pionkalibration ist kleiner als 0.1%, wie mit Simulationsergebnissen verifiziert werden konnte.

Zusammenfassend kann, je nach betrachteten Energiebereich, der systematische Fehler in der Kalibration für Teilchenjets – unter Berücksichtigung aller aufgezählten Effekte – im besseren Fall bei hohen Energien mit 3.0% und im schlechteren Fall bei kleineren Energien mit 4.2% abgeschätzt werden. Es bleibt zu bemerken, daß alle Ergebnisse nur in einem bestimmten Teil des H1 Flüssig Argon Kalorimeters erreicht wurden und insbesondere Interkalibrationseffekte zwischen einzelnen Rädern und die Abhängigkeit der Effizienz der Identifizierung elektromagnetischer Cluster vom Jetwinkel θ zu größeren Fehlerbeiträgen führen können.
Zusammenfassung

Die Ergebnisse der Kalibrationsmessungen und der entsprechenden Simulationen erlauben die Bestimmung der elektromagnetischen Skala für das hier studierte Kalibrationsmodul des inneren Vorwärtskalorimeters innerhalb einer systematischen Unsicherheit von 1.9%. Die Abweichung von der Energielinearität wird durch die relative Differenz zwischen simulierten und experimentellen Elektronsignalen für jede Strahlenergie definiert und ist nach den vorliegenden Ergebnissen etwas kleiner als 1%. Die leicht von der Energieabhängigkeit unterscheidende Rekonstruktion der auf elektromagnetsischen Skalen rekonstruierten und der durch Elektronen deponierten Energie zwischen etwa 2.5% bei 5 GeV und etwa 1.5% bei 50 GeV werden durch den Beitrag des elektronischen Rauchens und die Schmierung zur Rauschunterdrückung hervorgerufen.

Die Energieauflösung des elektromagnetischen Kalorimeters beträgt für gemessene Elektronen \(\sigma/E \approx 13.7\sqrt{\text{GeV}}/\sqrt{E} \pm 200 \text{ MeV}/E\); für simulierte Elektronsignale sind etwas kleinere Sampling Fluktuationen gefunden worden (\(\sigma/E \approx 11.8\sqrt{\text{GeV}}/\sqrt{E} \pm 198 \text{ MeV}/E\)).

Die experimentellen Signale von Pionen im elektromagnetischen und hadronischen Kalibrationsmodul sind auf der elektromagnetischen Skala innerhalb einer Unsicherheit von etwa 2% durch Simulationen zu reproduzieren. Bemerkenswert ist auch die relativ gute Übereinstimmung zwischen Simulation und Messung bezüglich der longitudinalen und transversalen hadronischen Schauerstrukturen.

Diese Ergebnisse legen nahe, die zur Rekonstruktion der durch Hadronen deponierten Energie notwendigen Gewichtungsfunktionen aus der Simulation zu bestimmen, da für diese Daten die Beziehung zwischen dem Signal und der deponierten Energie besser bekannt ist als bei der Messung. Bei der Bestimmung der Gewichtungsfunktionen werden die Korrelationen zwischen den Signalen in einzelnen Kalorimeterzellen durch Zusammenfassung der Zellen zu Clustern direkt zur Parametrisierung genutzt. Die Abweichungen von der Energielinearität ist nach Anwendung der Signalgewichtung für simuliert Pionen im experimentellen Energiebereich zwischen 5 und 205 GeV etwas kleiner als 1%.

Die Anwendung der aus der Simulation bestimmten Gewichtungsfunktionen auf experimentelle Pionereignisse führt bei kleineren Energien (5 - 50 GeV) zu einer im Ver-
gleich mit der Simulation um etwa 3% zu groß rekonstruierten Energie. Bei größeren Energien (80 - 205 GeV) wird dagegen aus den experimentellen Signalen eine um etwa 1% zu kleine Energie rekonstruiert. Die für experimentelle Pionen erreichte Auflösung ist \(\sigma / E \approx 49.7 \sqrt{\text{GeV}} / \sqrt{E} \pm 1.6\% \); bei simulierten Pionen wird eine etwas schlechtere Kompensation erreicht, deren Ursachen unter anderem in der Parametrisierung der Fluktuationen in hadronischen Schauern bei großen Einzelteilchenenergien zu suchen sind (\(\sigma / E \approx 49.8 \sqrt{\text{GeV}} / \sqrt{E} \pm 3.0\% \)).

Die Rekonstruktion der deponierten Energie ist mit diesem Modell innerhalb einer zweiprozentigen Unsicherheit möglich. Bei Anwendung des Filteralgorithmus auf Pionereignisse ist die Abweichung von der Energielinearität in dem untersuchten Energiebereich auch für diese Ereignisse nie mehr als 2%.

Die relative Energieauflösung für Teilchenjets zeigt einen deutlichen Dämpfung der instrinsischen Fluktuationen, aber auch einen relativ großen konstanten Term, der durch die bei hohen Jetenergien kleiner werdende Effizienz im Lokalisieren elektromagnetischer Cluster hervorgerufen wird (\(\sigma / E \approx 37.5\% \sqrt{\text{GeV}} / \sqrt{E} \pm 3.7\% \)).
Anhang A

Parameter der Simulationen

A.1 Verwendete Programme

Die geometrische Beschreibung der Kalorimeter und die Simulation der deponierten Energie und des entsprechenden Signals sind in H1SIM und in ARCEP identisch. Damit sind auch die elektromagnetische Skala in beiden Simulationsprogramme gleich. Unterschiede bestehen darin, daß in H1SIM der gesamte H1 Detektor implementiert ist während in ARCEP der Aufbau des Teststrahls und der Kryostat beim CERN detailliert beschrieben sind.

Die einzelnen im simulierten Schauer erzeugten Teilchen wurden bis zu den in der folgenden Übersicht angegebenen unteren Energieschwellen durch das Kalorimeter verfolgt:

<table>
<thead>
<tr>
<th>Teilchenart</th>
<th>Energieschwelle [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>e±</td>
<td>1.0</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
</tr>
<tr>
<td>alle anderen</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Die GEANT Steuerparameter zur Selektion physikalischer Prozesse wurden auf die folgenden Werte gesetzt: (vgl. [Bru87])

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IPAIR</th>
<th>ICOMP</th>
<th>IPHOT</th>
<th>IPFIS</th>
<th>IDRAY</th>
<th>IANNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBREM</th>
<th>IHADR</th>
<th>IMUNU</th>
<th>IDCAY</th>
<th>ILOSS</th>
<th>IMULS</th>
<th>IRAYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Zusätzlich wurde noch eine Signalabschwächung nach Birk’s Law (vgl. Diskussion im Abschnitt 3.1) bei der Simulation berücksichtigt.

Die verwendeten Jets wurden mit dem String Fragmentationsmodell in LEPTO Version 5.2 generiert. Die Fragmente des Jets wurden dann mit H1SIM durch den H1 Detektor simuliert.

A.2 Ereignisstatistik

Die Zahl der simulierten Pionen und Elektronen wurde so gewählt, daß der statistische Fehler in der Energirekonstruktion jeweils kleiner als 0.5% war. Für die beiden Teilchenarten standen für die verschiedenen Energien folgende Anzahlen von Ereignissen in IF zur Verfügung:

<table>
<thead>
<tr>
<th>Strahlenergie [GeV]</th>
<th>Elektronen</th>
<th></th>
<th>Pionen</th>
<th></th>
<th>Teilchenjets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Messung</td>
<td>Simulation</td>
<td>Messung</td>
<td>Simulation</td>
<td>Simulation</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>5000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>2885</td>
<td>1250</td>
<td>1750</td>
<td>4000</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>1978</td>
<td>625</td>
<td>2181</td>
<td>3104</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>1977</td>
<td>880</td>
<td>–</td>
<td>–</td>
<td>2000</td>
</tr>
<tr>
<td>30</td>
<td>4182</td>
<td>1000</td>
<td>6205</td>
<td>4715</td>
<td>–</td>
</tr>
<tr>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2000</td>
</tr>
<tr>
<td>50</td>
<td>2378</td>
<td>125</td>
<td>18972</td>
<td>2865</td>
<td>–</td>
</tr>
<tr>
<td>80</td>
<td>–</td>
<td>–</td>
<td>18676</td>
<td>3000</td>
<td>2000</td>
</tr>
<tr>
<td>100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10000</td>
</tr>
<tr>
<td>120</td>
<td>–</td>
<td>–</td>
<td>8545</td>
<td>1000</td>
<td>–</td>
</tr>
<tr>
<td>170</td>
<td>–</td>
<td>–</td>
<td>14599</td>
<td>1000</td>
<td>–</td>
</tr>
<tr>
<td>205</td>
<td>–</td>
<td>–</td>
<td>12905</td>
<td>1000</td>
<td>–</td>
</tr>
</tbody>
</table>

Die in der Tabelle angegebenen Ereignisse beinhalten nur den Teil der von den Kalibrationsmessungen zur Verfügung stehenden Daten, der in dieser Arbeit betrachtet worden ist.
Literaturverzeichnis

[Ber90] Bergstein, H., private Mitteilung

[Bor92] Borras, K., Dissertation in Vorbereitung (Universität Dortmund)

[Bra87] Braunschweig, W., et al. (H1 Collaboration), Results from a Test of a Pb-Cu Liquid Argon Calorimeter, NIM A265 (1988) 419

[Bra89] Braunschweig, W., et al. (H1 Calorimeter Group), Performance of a Pb-Cu Liquid Argon Calorimeter with an Iron Streamer Tube Tail Catcher, NIM A275 (1989) 246 419

[Col90] Colombo, M., Trennung von Elektronen und Pionen in einem Flüssgargonkalorimeter des H1 Detektors, Diplomarbeit Universität Dortmund (1990)

[Dob91] Doble, N., und J.F. Laporte, private Mitteilungen

[Fel88] Feltesse, J., Measurement of Inclusive Differential Cross Sections, in [Pro88]

133

[Ga91b] Gayler, J., *Simulation of H1 Calorimeter Test Data with GHEISHA and FLUKA*, H1-06/91-175, veröffentlicht in [MC81]

[Ga91c] Gayler, J., private Mitteilung

[Ga91d] nach einem Hinweis von J. Gayler

[H1T86] H1 Collaboration, *Technical Proposal for the H1 Detector*, 1986

[Ing88] Ingelmann, G. et al., *Deep Inelastic Physics and Simulation*, in [Pro88]

[Ja89a] Jacholskowska, A., private Mitteilung

[Jus91] Just, F., Test eines Moduls des H1 Eisenjochs in der H1 Detektorkonfiguration, WU D 91-6, Diplomarbeit Universität Wuppertal (1991)

[Kuh91] Kuhlen, M., private Mitteilung

[Loh86] Lohrmann, E., Hochenergiephysik, Teubner 1986

135
[Ja89a] Jacholskowska, A., private Mitteilung

[Kuh91] Kuhlen, M., private Mitteilung

[Pas90] Pascaud, C., private Mitteilung; die Rechnung ist in [Grä91] dokumentiert.