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Abstract – Kurzfassung – Resumen

Systematic studies for the measurement of the cross section measurement of the ep → e ′X re-
action and for the extraction of the proton structure function F2(x, Q2) are performed. The data
sample analyzed has a luminosity of 450 nb−1 and corresponds to a special data taking period
taken in the year 2000, where the interaction point of the ep scattering was moved from its
nominal position. In order to minimize the total systematic error of the measurement, detailed
studies concerning the calibration of the main calorimeters of the H1 detector are required.
Such studies and their influence on the cross section measurement are the main subject of the
thesis. The kinematic region of the measurement has values of 9.5 × 10−6 < x < 8.0 × 10−3

and 0.2 < Q2 < 3.5 GeV2 and extends the kinematic coverage of the previous shifted vertex
analysis based on data taken by the H1 detector in the year 1995. Also, the total systematic
error is significantly reduced in comparison to the previous shifted vertex analysis.

In dieser Analyse werden die systematischen Fehler zur Messung des Wirkungsquerschnitts
ep → e′X und der Extraktion der Protonstrukturfunktion F2(x, Q2) untersucht. Analysiert wird
eine spezielle Datennahmeperiode, die mit dem H1 Detektor im Jahre 2000 genommen wurde.
Der Wechselwirkungspunk ist von der nominellen Position verschoben, so daß kleinere Werte
von Q2 erreichbar sind. Die gesamte Luminosität der Datanahmeperiode beträgt 450 nb−1. Um
die systematischen Fehler des Wirkungsquerschnitts zu minimieren, ist eine preäzise Kalib-
rierung der Kalorimeter notwendig, die einen Schwerpunkt dieser Arbeit darstellt. Die Mes-
sung des Wirkungsquerschnitts umfaßt einen Wertebereich von 9.5 × 10−6 < x < 8.0 × 10−3

und 0.2 < Q2 < 3.5 GeV2 und erreicht eine verbesserte Präzision im Vergleich zu einer vorheri-
gen Messung, die mit Daten des 1995 Jahres durchgefürhrt wurde.

En el presente trabajo se realizan estudios sistematicos para medir la sección eficaz del proceso
ep → e′X y para la extracción de la función de estructura de el protón F2(x, Q2). El intervalo
cinemático corresponde a valores de 9.5 × 10−6 < x < 8.0 × 10−3 y 0.2 < Q2 < 3.5 GeV2.
Los datos analizados corresponden a un período especial tomado en el año 2000. El punto de
interacción entre el electrón y el protón es movido de su posición nominal con el próposito de
obtener pequeños valores de Q2. La medida de la sección eficaz y la extracción de la función
de estructura de el proton require de una detallada calibración de los principales calorímetros
de el detector H1. La calibración y la determinación de los errores sistematicos son parte del
análisis realizado en el presente trabajo. La sección eficaz aqui medida extiende las mediciones
realizadas con datos tomados con el detector H1 en el año 1995. La precisión de la medicion
aqui realizada supera las mediciones previas.
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Chapter 1

Introduction

One of the most amazing questions in physics is how matter is composed and created. One
method used to investigate the structure of the matter, uses the scattering of elementary par-
ticles. Since electrons seem to be elemental they have been used to probe the structure of the
matter. For example one needs electrons of few keV of energy to resolve the size of the atom
better than 1A (10−10m). In order to discover the structure of the nucleus one has to resolve dis-
tances of approximately 1 fermi. These distances can be studied using the scattering of nucleus
with electrons having an energy of a few hundred of MeV.

Similar to the nucleus structure one can probe the structure of the proton using electrons with a
few GeV of energy. In the electron energy spectrum of such ep collisions there is an elastic peak
in which the proton recoils as a whole and secondary peaks appear due to the excitation of the
proton into various higher-mass N∗ resonant states. After the resonance region a continuum
distribution is observed and this corresponds to those electrons which have been scattered by
the constituents of the proton, now known as quarks.

The suggestion that the protons and neutrons could be composed of more basic objects called
“quarks” was made in 1964 by Gell-Mann and Zweig [1]. Experiments to probe the structure of
the proton by scattering electrons began at Stanford in the late 1960 and there it was revealed
that protons contain point-like constituents. It was Feynman [2] who called them “partons”
and only after the identification of the “partons” with “quarks” it was possible to establish the
first two of the three families which summaries the standard model of particles.

Deep inelastic scattering has thus played an important role in the development of the stan-
dard model of particles. In this thesis the structure of the proton is studied using also the deep
inelastic scattering of electrons with protons. In order to understand the kinematic region ex-
plored, the most important variables and experimental results of DIS will be summarized in

1
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the following sections.

1.1 Deep inelastic scattering

The generic diagram of the electron proton scattering is shown in Fig. 1.1, where k and p
represent the four momemtum of the incoming electron and proton, respectively. The four
momentum of the outcoming lepton is denoted by k ′ while Px represent the four momentum
of the hadronic final state. Depending on which vector boson V ∗ is exchanged, the electron
proton scattering can be divided in Neutral Current (NC) and Charge Current processes (CC).

e(k) l′(k′)

V ∗(q)

p(p)

X(PX)

Figure 1.1: �����������! �" ��#�" ��$&%��'�)(�*,+ ��-! .(&/0-�%1(� .(2/43��5�! 6 .�7%8"9/�$;:�" �<:!�!�� .(	%>=@?�(A3B(&/C�ED������'/�$7�

In case a CC process occurs a charged boson W± mediates the electron proton interaction,
producing a neutrino as the outcoming lepton. In NC events a neutral boson (γ or Z0) is
exchanged, and then an scattered lepton is observed in the final state. While CC events are
produced purely by weak interaction, the NC events will be dominated by the electromagnetic
interaction for low values of the virtuality Q =

√

−(k − k′)2.

The kinematic of the electron-proton reaction is usually described by the following Lorentz-
invariant quantities:

• The center of mass energy of the electron proton interaction,

s = (p + k)2 (1.1)
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• The invariant mass squared of the virtual exchanged boson,

Q2 = −q2 (1.2)

• The Bjorken x variable, which is interpreted in the lowest order of QCD, as the fraction
of the momentum of the incoming proton taken by the struck quark,

x =
Q2

2p · q
(1.3)

• The inelasticity y, which gives a measure of the amount of energy transferred between
the electron and the proton.

y =
p · q
p · k

(1.4)

Due its definition x and y vary in the interval [0, 1]. Ignoring the electron and proton masses,
from Eqs.1.2, 1.3, 1.4 follows:

Q2 ≈ sxy (1.5)

therefore only two of these quantities are independent, and then the ep scattering can be de-
scribed in terms of s, Q2 and x.

An additional variable used to describe the hadronic final state is the center of mass energy of
the γp system:

W2 = (q + p)2 = P2
x

= Q2 1 − x
x

+ m2
p

One speaks of deep inelastic scattering of electron proton collisions, if the virtuality
√

Q2 of the
exchanded boson is above the proton mass and if the center of mass energy of the γp system
goes beyond the resonance domain W2 >> m2

p.

If we concentrate on NC processes in the region where the photon exchange dominates (Q2 <

100 GeV2) then the amplitude of the ep → eX reaction is proportional to



����� �����	� 
�
 �	� 
���� 
 � � � 
������	� 
�
�� �

A ∝
1
q2 LµνWµν

where Lµν is the leptonic tensor which describes the interaction between the electron and the
photon and is calculable throught QED. Wµν is the hadronic tensor associated to the γp vertex.

In contrast to the leptonic tensor Lµν, the exact form of the current in the hadronic vertex can
not be calculated. The hadronic tensor Wµν has to be parametrized in terms of so called proton
structure functions. The proton structure functions will describe the γp → X transition. For
NC processes only two arbitrary functions F2, F1 depending on x and Q2 are relevant [4, 5].

The differential cross section for ep → eX is given by:

d2σ

dxdQ2 = k
[

F2(x, Q2) − y2

Y+
FL(x, Q2)

]

(1.6)

where

Y+ = 1 + (1 − y)2 k =
2πα2

Q4x
Y+

FL = F2 − 2xF1

Thus the proton structure functions can be obtained from the experiment if the cross section,
gets measured differentially in Q2 and x. One useful quantity is obtained from Eq. 1.6, absorv-
ing the kinematic factor k, and is known as the reduced cross section σred.

σred = F2(x, Q2) − y2

Y+
FL(x, Q2) (1.7)

1.1.1 The Naive Quark Parton Model

The quark parton model (QPM) introduced by Feynman in 1969 [2] provides a simple physical
interpretation of the electron proton scattering. This model considers that at large values of Q2

the γp interaction can be expressed as the sum of incoherent scattering from point like quark
constituents which behaves as free inside the proton during the interaction. This picture can
only be correct if the scattering process occurs over a short time scale during which the photon
sees a frozen state of non interacting quarks [3].
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Figure 1.2: ���!� νF2 = F2 3. �%����� ��'%>�4*��'/��E �" (&/ ��3,*��'/��E �" (&/<(�* Q2 �! ��AD�� # x = 0.25 �	��3 "  
	 ��3�� �!��3��'%>�!# ?��
 ����<��
���� =���� � $&%1(��'-������

Let fi be the probability to find a quark-i in the proton with a fraction χ of the proton momen-
tum. If the quarks do not interact with each other, and assuming partons of spin 0, then the
total ep cross section can be expressed as:

d2σ

dxdQ2 = ∑
i

∫

dχ fi(χ)

(

d2σi

dxdQ2

)

eqi→eqi

= ∑
i

∫

dχ fi(χ)
4πα2

Q4

e2
i

2
[1 + (1 − y)2]δ(x − χ)

= ∑
i

2πα2

Q4 e2
i Y+ fi(x) (1.8)

where in Eq. 1.8 the elastic eqi → eqi cross section have been introduced.

Comparing the two ep cross section formulae in Eqs. 1.8, 1.6 it follows that:

F2(x, Q2) = ∑
i

fi(x)xe2
qi (1.9)
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The QPM predicts that F2 is a function of x only, a phenomenon known as scaling. Fig. 1.2
shows the measurement of F2 as function of Q2 performed by the SLAC group. The relation
F2(x) = 2xF1(x) was derived by Callan-Gross [15], representing a direct consequence of the
spin 1/2 of the quarks.

Soon after the SLAC experiments were performed the violation of the scale was observed in
muon nucleon [7] scattering and later confirmed by neutrino nucleon scattering experiments
[8, 10]. It was not clear how to reconcile the picture of the free partons into the experimental
observations.

1.2 The QCD improved parton model

Altough the QPM provides a simple picture of the electron proton scattering and can describe
the scaling behaviour of the SLAC and Gargamelle data [9], it was not able to explain the
scaling violation behavior observed afterwards. Also it can not explain the fact that quarks are
not detected as free particles but always build bound systems as observed in hadron spectra
experiments, a phenomenon called “confinement”. It turns out that the QPM is the lowest
order approximation of a more general theory known as Quantum Chromodynamics (QCD).

Figure 1.3: 
�(	(&- #�" ��$&%��'� 3 "9+ +��!3B �%1�! �"9/�$  ���� "9/  .�7%1���E �" (&/0?��5 	 � ��/������7%��53��'/�# $&+���(&/�3��

QCD is a non-abelian theory based on the symmetry group SU(3)c, there quarks besides electric
charge, also carry “color charge” which can be of three types “red, green, blue”. The interaction
between quarks is mediated through the exchange of one of the eight-gluons which generate
the symmetry group. The gluons play a equivalent role as the photons in QED do, but contrary
to the photons, the interaction between gluons is possible. Therefore within QCD, the interac-
tion between quarks considers diagrams as shown in Fig. 1.3. The contributions of the loop
diagrams to any amplitude diverge but can be resummed introducing a Q2 dependence of the
coupling between the quarks and gluons αs. Formally this behaviour is known as the “run-
ning” of the strong coupling constant, which in the leading order logarithmic approximation is
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given by:

αs(Q2) =
12π

(33 − 2N f ) ln(Q2/Λ2)
(1.10)

where N f is the number of quarks flavours with the mass m2
q < Q2, and Λ ≈ 100MeV deter-

mines the energy scale at which αs becomes large.

Two important limits are deduced from Eq. 1.10. Since momentum is related to distance due to
the uncertainty principle, at low momentum the coupling between quarks is leading to quark
confinement. An opposite behaviour is seen at high Q2, since αs becomes small meaning that
the coupling between quarks is weak and therefore can be treated as nearly free particles [11,
12]. The running of the strong coupling constant αs is able to describe at the same time the
experimental results of confinement related to the existence of hadron spectra and asymptotic
freedom seen in DIS experiments. Note however that confinement has not been proven exactly
to follow from Eq. 1.10.

The introduction of gluons in QCD changed the picture of the proton and the interpretation of
the ep interaction as follows. The proton is composed of three “valence quarks” which interact
throught the exchange of gluons. The gluons can produce quark-antiquark pairs also known
as “sea quarks” and radiation of gluons due to their self-interaction is possible.

At lowest order, QCD reproduces the QPM picture of the interaction, but considering the first
order of the αs expansion (LO), the calculations of the ep cross section involve integrals which
are divergent and have to be resummed (renormalized) as in the case of αs. This resummation
introduces a “mass factorization scale” which separates the short distance partonic effects from
the long distance hadronic effects. The choise of the separation is arbitrary and in case the DIS
scheme is used, then:

F2(x, Q2) = ∑
i

e2
i xqi(x, Q2) (1.11)

and contrary to the QPM, F2 depends on x and Q2. The parton distribution qi(x, Q2) in Eq. 1.11
can not be predicted. But the requirement that they should not depend on the “factorization
scale” leads to the prediction of its evolution in Q2, which in leading order can be written as:
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Figure 1.4: � -'+ "  6 �"9/!$ *��A/��� �" (2/!3

∂qi(x, Q2)

∂ ln Q2 =
αS(Q2)

2π

∫ 1

x

dz
z

[

∑
j

qj(z, Q2)P(0)
ij

( x
z

)

+ g(z, Q2)P(0)
ig

( x
z

)

]

(1.12)

where the functions Pij and Pig are known as splitting functions. In LO the splitting functions
have a natural physical meaning e.g., Pij is the probability that a quark i with momentum z
radiates a gluon with 1− z of its momentum. Since quarks are coupled to gluons, the evolution
of the gluon density function is also required and is given by:

∂g(x, Q2)

∂ ln Q2 =
αS(Q2)

2π

∫ 1

x

dz
z

[

∑
j

qj(z, Q2)P(0)
gj

( x
z

)

+ g(z, Q2)P(0)
gg

( x
z

)

]

(1.13)

where Pgj, Pgg are the probability that a gluon splits in a quark antiquark pair or split to 2 gluons
(see Fig 1.4). The set of equations 1.12, 1.13 are known as Altarelli Parisi equations [13, 14]. The
evolution of the parton distribution function on x is not predicted, but for a given scale Q2 its



��� � ��� ����� � 

�
� 
�� � ���,� � � � ���	���C�E� � � 
 � 
 
7� � ���

Q2 �

dependence on x can be parametrized using the counting rules. The free parameters of the
parametrization will be determined using the measured data over several order of magnitude
of x and Q2. There are several parametrizations used, by example Glueck, Reya and Vogt (GRV)
[17], Martin,Ryskin,Sterling and Thorne MRST [18] and die CTEQ group [19].

Using this picture of the proton, the phenomenon of scaling violations observed at several
experiments is one of the most important successes of QCD. Fig 1.5 shows the measurement of
F2 as function of Q2 for different values of x. A good agreement is found between the measured
data which cover almost five orders of magnitude in Q2 with the predictions of pQCD. As it
can be seen from Fig. 1.5 the lower values of x are accessed mainly at low values of Q2. This
kinematical region will be discussed in the next sections.

1.3 The behavoiur of the cross section at low Q2

At low values of Q2 < 1 GeV2, pQCD can not predict the behaviour of the electron proton
scattering since the strong coupling constant αs is large. This kinematic domain can only be
investigated in terms of phenomenological models and hadron-hadron descriptions like Regge
theory.

A powefull method used to investigate the behaviour of F2 at very low Q2 proceeds via its
connection to the total γ∗p cross section.

σ
γ∗ p
tot =

4π2α

Q2 F2(W2, Q2) (1.14)

thus the electron can be seen as a source of quasi real photons which interact with the proton.
This is almost a hadron hadron interaction which can be studied in terms of Regge theory.

1.3.1 Introduction to Regge theory

Regge theory investigates the dynamics of hadrons by studying the two particle scattering
A + B → C + D (see Fig. 1.6) [20]. The physical idea is to relate the high energy behaviour of the
s−channel amplitude to the quantum numbers that are exchanged in the t−channel. Instead of
considering the exchange of single particles as QCD does, Regge theory considers the exchange
of a complete trajectory of particles α(t) having the same internal quantum number (strangeness,



��� � ��� ����� � 

�
� 
�� � ���,� � � � ���	���C�E� � � 
 � 
 
7� � ���

Q2 ���

0

2

4

6

8

10

12

14

16

1 10 102 103 104 105
Q2 (GeV2)

F
em

+c
i(x

)
2 

   
   

   
   

   
  

ZEUS 96/97

H1 96/97 H1 94/00 Prel.

NMC, BCDMS, E665

ZEUS NLO QCD Fit
(prel. 2001)

H1 NLO QCD Fit

Figure 1.5: �&�5�'+ "9/�$ :�" (2+ �! �" (&/�3 � � ��3��'%1� # "9/ + ��-! .(&/ -�%1(� .(2/ 3@� �! 6 .��% "9/!$0�ED'-��7%8"9� ��/! .3 ����� ����������	�����
 ��������� ���
�
��������� �

isospin, bayon number, etc) but different spin. The particles lying on a Regge-trayectory relate
their spin (J) and mass (m) such that in good aproximation m2 = J.

In order to describe the total hadron-hadron cross section (σtot) measurements, two universal
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trajectories known as Pomeron (αP) and Reggeon (αR) are needed. A Reggeon exchange usu-
ally is related with a exchange of quantum numbers, while a pomeron exchange involves the
exchange of the vacuum quantum numbers. Donnachie and Landshoff (1992) [29] performed a
global fit to all existing hadron-hadron total cross section data and discovered that all Reggeon
intercepts can be represented by one effective intercept having a value of αR(0) ≈ 0.5. In or-
der to reproduce the rising behaviour of the hadron-hadron cross section at high energies, DL
parametrized the Pomeron intercept as αP(0) = 1 + ε obtaining a value of ε varying between
[0.08, 0.09]. Following this ideas, the total cross section of any hadron-hadron interaction can
be written as:

σtot
i (s) = AP

i sαP(0)−1 + AR
i sαR(0)−1 (1.15)

where the coefficients Ai, Bi dependend on the process under study and on Q2. Donnachie and
Landshoff (1993) [30] showed that the Pomeron plus Reggeon exchange model could as well
describe successfully the existing data on σ

γ∗p
tot up to values of Q2 ≤ 10 GeV2. The measurement

at high energies of the total photoproduction cross section at Q2 ≈ 0 GeV2 ,was performed
by HERA in 1992 [31], and the measurement was fully in agreement with the Regge theory
prediction.

This result has an important impact on the proton structure function F2 at low x, since F2 is
related to the total γ∗p cross section (see Eq. 1.14) and then, the Regge description of DL
predicts a rise of F2 at low x as:

F2 ∝ x−0.08 = x−λ
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H1 and ZEUS collaborations have measured the proton structure function F2(x, Q2) over a large
range of values of x, Q2, and therefore the rise λ can be derived from the derivative of F2 for
differents values of Q2 and for low x (x < 0.02).

[

∂ ln F2(x, Q2)

∂ ln x

]

Q2
= −λ(x, Q2)

The measurements of the rise λ are summarized in Fig. 1.7 [32]. One can clearly see that the
predicted value of αP(0) ≈ 0.08 of Regge theory is compatible with the data for the region of
low Q2 < 0.5 GeV2. On the other hand, the rise of F2 is well described by pQCD for values of
Q2 > 1.5 GeV2.

1.3.2 The behaviour of F2 in the transition region

The model of Donnachie and Landshof is in agreement with the data for low values of Q2,
but can not describe the transition of photoproduction to deep inelastic scattering. In order to
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improve the description of the data over the whole phase space, the model of Donnachie and
Landshoff has been extended. The model of Abramowicz, Levin, Levy and Maor (ALLM97
[33]) makes the assumption that the intercept αP(0) depends on Q2. Using the data of deep
inelastic scattering and of hadron and hadron scattering, the free parameters are fixed. This
parametrization is used in this thesis.

In addition to the ALLM97 parametrisation based on Regge theory, there are other phenome-
logical models which have been developed in order to describe the transition region Q2 ≈
1 GeV2 of the electron proton scattering. Some of such models involves dipole interactions
[34], vector meson dominance models [35], and the fractal structure of the proton [105, 36].

In QCD the behaviour of the sea quark densities is described by gluon emissions and splitting.
The higher the resolution power Q2 is, the deeper the proton structure is probed and thus more
gluon-gluon interactions can be “observed”. Taking this interpretation in analogy to fractals,
the proton could be treated of fractal nature only at low values of x, in the region where the sea
quark densities dominates. Two magnification factors are used to simulate the fractal structure
of the proton, which are defined in terms of Q2 and x as 1 + Q2/Q2

0 and 1/x [36]. Using this
two magnification factors, the proton structure F2 is predicted to be described by

F2(x, Q2) =
eD0Q2

0x−D2+1

1 + D3 − D1log(x)

[

x−D1log(1+Q2/Q2
0)

(

1 +
Q2

Q2
0

)D3+1

− 1

]

(1.16)

where Di and Q2
0 are the five parameters that the fractal model needs to parametrize the behav-

ior of F2 as function of x and Q2. The value of the parameters were determined using data from
the HERA experiments H1 [21] and ZEUS [37] in the range x < 0.01 and 1.5 ≤ Q2 ≤ 120GeV2,
0.045 ≤ Q2 ≤ 0.65 GeV2, respectively. In addition to ALLM97 this parametrization will be
compared to the data in this analysis.

1.4 Motivation of this Analysis

This analysis is concentrated on the behaviour of the proton structure function F2 in the tran-
sition region of non-perturbative to perturbative QCD. The data set which is analysed here are
ep scattering data recorded by the H1 detector at the HERA collider. In order to measure the
cross section at low values of Q2, a special data sample is analysed where the interaction point
was moved from its nominal position.

The measurement of the inclusive DIS cross section ep → e + X and the extraction of the proton
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structure function F2 at low values of Q2 is dominated by systematic errors than by statistical
uncertanties. The first analysis of the data sample which is investigated in this thesis was
performed in [105] obtaining preliminary results [38]. This thesis together with the analysis
developed in [100] performs an independent cross section measurement using the same data
sample, but analysing in more detail the sources of systematic errors.

The inclusive cross section measurement can be obtained using two independent main detector
components. Therefore two independent analysis are performed to determine the cross section
measurement. In order to identify and quantify the systematic errors obtained from both anal-
ysis, detailed studies concerning the vertex reconstruction and the energy measurement of the
particles building the final state are required. The investigations performed in [100] concen-
trates on the uncertainties due to the reconstruction of the interaction point of the ep collision.
The cross section measurements of the two analysis, the one presented in this thesis and the one
from [100] are also compared there.

This analysis includes detailed studies on the systematic errors resulting from the uncertainty
of the energy measurement of the scattered electron and of the energy flow of the particles
building the hadronic final state. Therefore, special emphasis is given to the influence of the
noise identification algorithms on the reconstruction of the kinematical variables x and Q2,
which are essential for the measurement of the proton structure function F2.

The thesis is organized as follows. In chapter 2 the H1 detector is introduced, special emphasis
will be given to the subdetector components which are used to measure the inclusive cross
section for low values of Q2. In chapter 3 the data sample and the methods used to identify
the scattered electron coming from the ep collision will be presented. The methods used to
reconstruct the kinematical variables x and Q2 are also subject of chapter 3. The techniques
used to calibrate the main calorimeters of the H1 detector will be in detail discussed in chapter
4 and 5. In chapter 6 the cross section measurement and the extraction of the proton structure
function F2 is presented.



Chapter 2

The H1 Detector

The data sample of this analysis were collected in the year 2000 by the H1 detector at the
HERA collider. In this chapter an overview of the HERA accelerator and the H1 detector is
presented. Special emphasis is given to the H1 subdetector components used to measure the
proton structure function for low values of Q2.

2.1 HERA Storage Ring

The “Hadron-Elektron-Ring-Anlage” HERA at DESY is the first machine constructed to collide
electrons or positrons with protons, where both electrons and protons are accelerated. In Fig.
2.1 a schematic layout of HERA and the pre-accelerator complex is shown.

HERA consists of two independent accelerators, with a circumference of 6, 3 km. Electrons are
injected with an initial energy of 12 GeV, while the protons are injected with an energy of 40 GeV
into a ring of superconducting dipole magnets. In the year 2000, HERA delivered positrons 1

and protons with a final energy of 27.5 GeV and 920 GeV respectively.

In HERA proton and electron beams are composed of packets of particles called “bunches”. The
HERA rings can store maximally 220 bunches of particles. The electron bunches are short and
the profile in beam direction is approximatly of Gaussian shape, the protons have a more com-
plex structure with a central (main) bunch of high intensity, which is surrounded by additional
bunches of much less intensity called “satellite bunches”.

The electron and proton bunches cross the North and South interaction regions every 96 ns,

1during the following description the term “electron” is used to describe generically electrons or positrons

15
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where the H1 and Zeus detectors are installed. In order to directly determine the beam in-
duced background in the interaction region, some electron and proton bunches are not filled.
Therefore in addition to the colliding bunches there are a number of non colliding bunches (empty
bunches) and also the so called electron and proton pilot bunches. Electron bunches not having a
colliding proton bunch are known as electron-pilot bunches, in analogy proton bunches without
a corresponding colliding electron bunch are known as proton pilot bunches. Thus, from the
220 bunches that HERA can fill, in average only 174 collide, 24 are empty bunches and 7, 15
correspond to proton and electron pilot bunches, respectively [100].

2.2 The H1 Detector

The H1 detector is a multipurpose detector, designed to study inclusive and exclusive final
states of ep interactions.

In Fig. 2.2 a three dimensional view of the H1 detector is shown, where the sub-detector compo-
nents are marked with numbers . The H1 detector is situated concentrically around the beam
axis 1 . The interaction point (marked in red) defines the origin of the H1 coordinate system.
The direction of the incoming proton defines the positive z direction of the coordinate system.
Since the centre of mass energy of the ep collisions is boosted along the proton direction, the
H1 detector is more massive and finer segmented in that direction.

The interaction point is surrounded by the central and backward silicon trackers (not visible
in Fig. 2.2). The central and forward trackers 2,3 enclose the silicon detectors and the beam
pipe. They are used to identifies charged particles and to measures their momenta. The liquid
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1 Beam pipe and beam magnets 9 Muon Chambers
2 Central tracking chambers 10 Instrumented iron yoke
3 Forward tracking chambers 11 Forward muon toroid
4 Electromagnetic LAr calorimeter 12 Backward calorimeter Spacal
5 Hadronic LAr calorimeter and backward drift chamber
6 Superconducting coil (1.16T) 13 Forward plug calorimeter
7 Compensating magnet 14 Concrete shielding
8 Helium supply for 7 15 Liquid Argon cryostat
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argon calorimeter (LAr) surrounds the tracking devices 4,5 and is used to measure the energy
and momenta of high energetic particles. The superconducting coil 6 surrounds both the
tracking devices and the LAr calorimeter, producing a constant magnetic field of 1.16 T parallel
to the beam axis. The compensating magnet 7 provides a longitudinal field equal in size and
opposite in direction to that of the superconducting coil. The magnetic field configuration of
H1 is designed to not disturb the circulating beams of HERA.

Muons are detected in a streamer tube system placed inside the iron of the return yoke 10 .
The muons are recognised since they can penetrate large quantities of material almost without
deflection, meanwhile other particles are absorbed. In order to recognise muons produced in
the forward direction, the forward muon spectrometer 11 is used.

Particles scattered into the backward direction deposit their energy in the SpaCal calorimeter
12 . In front of the SpaCal, the backward drift chamber BDC is located. Using the SpaCal

calorimeter and the BDC chamber, it is possible to identify the scattered electron coming from
DIS events for values of 2 < Q2 < 100 GeV2. In Fig. 2.3 a schematic r − z view of the backwards
detectors is shown. The essential subdetector components used in the low Q2 analysis are:

• the SpaCal calorimeter since it provides trigger information, identify the scattered elec-
tron and measure their energy.

• the Central Trackers devices (CTD) which measure the position of the interaction point
(vertex) and the momenta of particles belonging to the final state.

• the Backward Drift Chamber (BDC) provide information of the exact position of the
scattered electron in the radial direction and measure the angle of the scattered electron,
together with the CT devices.

• the Backward Silicon Trackers (BST) measures precisely the vertex position and the angle
of the scattered electron.

• the Liquid Argon calorimeter measures the momenta of particles coming from the hadron-
ical final state.

• the Luminosity system measures the luminosity.

In the following sections, these subdetectors components will be explained in detail.
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2.2.1 SpaCal Calorimeter

The SpaCal is a sampling calorimeter which uses lead as convertor material and scintillating-
fibre as active material [45]. The SpaCal is localised at z = −160 cm and has a diameter of
160 cm, having an angular acceptance of 168◦ < θe < 177.8◦ for electrons scattered from the
nominal vertex position. The SpaCal calorimeter is divided into two sections, one electromag-
netic and one hadronic. In Fig. 2.3 an r − z view of the electromagnetic section of the SpaCal
calorimeter is shown.

The electromagnetic part of the SpaCal calorimeter consists of 1192 cells, each cell has an active
cross section area of 40.5 × 40.5 mm2 and a depth of 250 mm. The SpaCal cells are made of
grooved lead plates and scintillating fibres with a lead-fibre ratio of 2.27 :1. The electromagnetic
SpaCal corresponds to 27.47 radiation lengths (X0) and one hadronic interaction length. A
drawing of the SpaCal calorimeter in the r − φ view is shown in Fig. 2.4(a).
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(a) r − φ view of the electromagnetic section of the SpaCal calorimeter. The
border of the 16-cell modules are drawn with bold lines.

(b) The 2-cell module configuration showing lead fibre matrix,
fibre bundles and the light mixers.
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The smallest construction unit of the detector are 2-cell modules. They consist of a stack of
52 lead plates each containing 90 fibres (see Fig. 2.4(b)). The fibres ends are arranged into
two fibre bundles of 70 mm length. The scintillation light of each cell is converted to a electric
pulse using photomultipliers tubes, which operates in the magnetic field of 1.16 T and reach an
amplification gain of ≈ 104 [47].

Groups of 2-cell modules are combined to form a 16−cell module, which represent the main
building block of the electromagnetic section (see Fig. 2.4(a)). The innermost module is called
the insert module and has the same size as the other 16−cell modules (see Fig. 2.4(c)). The cells
of the insert module are not of rectangular shape due to the space needed for the beam pipe.
The cells closest to the beam pipe are of ring shape and are called “veto cells” (see Fig 2.4(c)).
A 2 mm thick tantalum layer protects the detector against synchrotron radiation.

Due to the small diameter of the fibres, an relative energy resolution of 7%/
√

E[GeV] ⊕ 1% is
achieved. The designed energy resolution of the SpaCal calorimeter is 2% for electron energies
of 30 GeV, and the angular resolution achieved is 2 mrad. The time resolution of the SpaCal
calorimeter is 1 ns and is used to reject beam related background (beam-gas and beam-wall)
events. The time of the SpaCal is used for trigger purposes.

The hadronic section of the SpaCal calorimeter has a structure similar to the electromagnetic
section. The diameter of the scintillation fibres is 1 mm being two times bigger than the elec-
tromagnetic ones. The lead-to-fibre ratio for the hadronic part of the SpaCal calorimeter is
3.4 : 1. The calorimeter consists of 136 modules surrounding the beam pipe, each module has a
cross section area of 119.3 × 119.0 mm2 and a depth of 250 mm, corresponding to one nuclear
interaction length.

2.2.2 Backward Drift Chamber

The scattering angle measurement of the SpaCal can be improved using the Backward Drift
Chamber (BDC) [52]. The BDC is placed in front of the SpaCal calorimeter (see Fig. 2.3). The
chamber is built of four double layers, which are divided into eight octants. Each octant com-
prises 32 drift cells with sense wires. The radial wire spacing is 1 cm for the inner 16 cells and
3 cm for the outer cells. Each double layer is consequently revolved by 11.25◦ to enable the
azimuthal φ angle measurement. A schematic view of the chamber is shown in Fig. 2.5.

In order to optimise the polar angle measurement, the wires of the BDC are oriented in the
azimuthal direction like a spiderweb. In that way the drift in the cells takes place in the radial
direction. The BDC has the same angular acceptance as the SpaCal and provides a polar angle
measurement with a resolution of 0.5 mrad.
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2.2.3 Tracking Devices
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The track reconstruction in the cen-
tral region of the H1 detector is
based on two large concentric drift
chambers CJC1 and CJC2 (detec-
tor 2 in Fig. 2.2), having wires
strung parallel to the beam axis.
The drift cells are inclined with re-
spect the radial direction. From the
signals recorded in those chambers
the transverse track momentum is
determined and in addition the spe-
cific energy loss dE/dx is used to
perform particle identification. A
transversal view of the tracking de-
vices of the H1 detector is shown
in Fig. 2.6 The chambers allow the
measurement of the z position com-
paring the signals in the read out
from both wire ends.

The central inner z−chamber (CIZ) and the central outer z−chambers (COZ) measure the z
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coordinate with better accuracy than CJC1 and CJC2. They deliver track elements with a reso-
lution in z of 300µm, which is combined with the measurement of the CJC. The CIZ is placed
inside CJC1, while the COZ is located between CJC1 and CJC2. The polar angles covered by
CIZ and COZ are 16◦ < θ < 25◦ and 25◦ < θ < 156◦ respectively.

In the central and forward regions, combinations of pad hits in the central inner proportional
chamber (CIP), central outer proportional chamber (COP) and the forward proportional cham-
bers (FWPC) are used to trigger on tracks coming from a nominal interaction vertex. The prin-
cipal task of the trigger of the proportional chambers is the determination of the vertex in the
z axis. Fig. 2.7 illustrates the concept to determine the vertex. For each ep collision, the hits in
the chambers are connected by a straight line which is extrapolated to the beam axis. The inter-
ception of the line tracks with the beam axis make an entry in a z-histogram. One expects that
the maximum of the histogram corresponds to the position of the vertex. The vertex histogram
is constructed with 16 bins in an interval in z from −43.9 cm to 43.9 cm [40].

2.2.4 BST

The Backward Silicon Tracker (BST), is one of the two silicon detectors placed close to the beam
pipe. The BST serves for the precise measurement and identification of the scattered electron
in the backward region. A schematic view of the detector is shown in Fig 2.8.

The detector consists of two subdetector parts BST1 and BST2, each one is arranged perpen-
dicularly to the beam axis between z = −35.8 cm and −95.7 cm. Both BST1 and BST2 are
composed of two symmetric shells, each containing 8 planes of active sensors called wafers (see
Fig. 2.8(a)).
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(a) Three dimensional view of the backward
silicon tracker. The label 1 and 2 represent the
detectors BST1 and BST2.
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Each plane of the BST is made of 16 so called r sensors and 1 u sensors. The u sensor is a
single metal sided silicon, which is located on each plane at 45◦ < φ < 67.5◦. Combining the
information from the r and u sensors it is possible to measure the momentum and the charge
of a track with the BST.

The active sensors or the wafers are made of 250 µm thick n-type silicon. A single minimiz-
ing ionization particle creates about 22000 electron-hole pairs, which is sufficient to produce a
signal. Each wafer provides 640 readout channels, the signals are collected with an integrated
front-end system [90].

The BST provides a polar angle measurement independent of the central tracking devices, cov-
ering the interval 164◦ < θ < 176◦ with an accuracy of about 0.2 mrad. Through the extrapola-
tion of the reconstructed track to the beam line a measurement of the z-vertex position is also
possible.

2.2.5 Liquid Argon Calorimeter

The Liquid Argon calorimeter (LAr) is the biggest calorimeter of the H1 detector (see 4 and
5 in Fig. 2.2). It is divided in an electromagnetic and an hadronic section. The LAr is a

sampling calorimeter which uses liquid argon as active material, and lead as absorber material
in the electromagnetic section and steel in the hadronic section. In order to keep the liquid
argon fluid, the calorimeter is placed in a cryostat. Cooling down to liquid argon temperature
is achieved by circulating helium gas cooled in an external and movable liquid nitrogen heat
exchanger. Fig. 2.9 shows the LAr calorimeter in the r − z view.
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The calorimeter is build of absorber plates supplemented by high voltage and read out elec-
trodes. The interspaces between the plates are filled with liquid argon. To obtain a uniform
energy resolution, the orientation of the plates is arranged such that the angle of incidence of
particles coming from the interaction point is always larger than 45◦. The absorption length of
the electromagnetic part varies between 20 and 30 radiation lengths X0.

The LAr calorimeter is divided along the z−direction into eight self supporting wheels named
according to its position with respect to the proton beam, Backward Barrel (BB), Central Bar-
rel (CB), Forward Barrel (FB1,FB2) and Outer Forward (OF) and Inner Forward (IF). The BBE
consists only of an electromagnetic section and the OF of two hadronic sections. In φ direction
each wheel is further segmented into eight identical units, the so called octants.

The energy resolution of the electromagnetic part of the calorimeter is σE/E ≈ 11%/
√

E/GeV ⊕
1% while the hadronic part has a resolution energy of σE/E ≈ 50%/

√
E/GeV ⊕ 2%. The LAr

calorimeter covers the tracking system and has an angular acceptance of 5◦ < θ < 154◦ .

2.2.6 The Luminosity system

The luminosity in the H1 experiment is derived from the rate of the Bethe-Heitler events ep →
epγ. In such a process the electron and the proton interact elastically and in addition a photon
is emitted.

The luminosity system consist of two arms, the electron tagger (ET) and the photon detector
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(PD). Since the angular separation between the electron and the photon are of the order or
16µrad, the detectors are placed far away from the H1 interaction point. A schematic view of
the luminosity system is shown in Fig. 2.10.

The on-line luminosity is obtained measuring the rate of Bethe-Heitler events detected in co-
incidence. The scattered electron is deflected by quadrupoles and a bending magnet, being
detected with the ET located at z = −33.4 m. The bremsstrahlung photon is detected in the PD
located at −z = 102.9 m. In order to protect the PD from the high synchrotron flux, a filter of
Pb with 2X0 followed by a 1X0 water Cerenkov counter is located in front of the PD. The main
source of background are bremsstrahlung events originating from collisions between the beam
electron and the residual gas (e+gas) in the beam pipe leading to the same event signature. The
contribution of such events is estimated using the electron pilot bunches.

A more precise luminosity calculation is performed “off-line” using the energy spectrum of the
bremstrahlung photons coming from the Bethe-Heitler process. To minimise the systematic er-
rors, it is important to understand in detail the energy spectrum of the photon and the influence
of the acceptance of the PD. In addition the e+gas background is taken into account and the ef-



� � � ��� ��� � ������� � �
�&� � �

fect that more than one photon at the same buch crossing (photon pile-up effect) is produced
and detected in the PD [99]. The luminosity calculation needs to consider also contribution
coming from the satellite bunches [60]. The resulting uncertainty of the measured luminosity
is within 2.2% [61].

2.2.7 The Trigger system

The principal task of the trigger system is to separate real physic events from background
events. The trigger system in H1 in the year 2000 selected events in three levels, in the following
denoted as L1,L2 and L4, respectively.

During the latency time of the first trigger level L1, all subdetector components store their data
in pipelines [62]. The pipeline is designed such that the decision if the event is accepted (or not)
has to be taken within 2.3 µs. In order to take this decision selected subdetector components
deliver their trigger information to the central trigger. The central trigger receives up to 256
trigger elements (TE), which through logical combinations define the 128 subtrigger elements
(SE). If one of those SE accepts the event, the so called L1-keep signal is generated the pipeline
system is stopped, causing from that moment and dead time of the detector.

The second trigger level (L2) calculates its decision within 20µs. The decision of L2 is based
on two systems, the topological trigger (L2TT) and the neuronal trigger (L2NN). Both use the
information of several subdetector components. In case the event is accepted by L2, the full
detector data for the triggered event are readout and sent to L4. After that, the pipelines are
enabled again.

The level 4 system (L4) consist of a group of 30 farm computers working in parallel. These
computers run a optimised version of the H1 reconstruction program. Based on the result of
the reconstruction the decision of the early trigger levels is verified. In addition each event gets
assigned to various classes of physics. The event will be rejected if does not match the selection
of any class.

The capacity of the L4 input has a fixed bandwidth of 50 Hz and has to be distributed over
all active SE. Since the rates of the SE might be different, the bandwidth of L4 is not equally
distributed over all SE.

In addition to the trigger conditions, also the beam conditions can influence the rate of the
various SEs. It is possible that several subtriggers accept so often events that the rate of the
SEs exceeds the input rate of L4. Therefore it is necessary to introduce prescale factors. If one
subtrigger element j (SE-j) has a prescale-factor k, then it will cause an L1-keep only every
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k-time. On analysis level the events triggered by the subtriger SE-j have to have a weight
corresponding to the prescale factor k [64, 63].

The prescale factors are calculated with a prescale program. It is an automatic tool which
analyses the rate of the different subtriggers and performs a prediction on the future behaviour
of the rate of the triggers. Using a complicated strategy the distribution of the bandwidth can
be optimised.

2.3 Run selection

The time during which the electron and proton beams collide is known as luminosity fill and its
duration is limited due to the lifetime of the electron beam. This luminosity fills are divided into
“runs”, having an average duration of 1 − 2 hours, depending on the beam and background
conditions. Thus, on analysis level is important to perform a selection of the usable runs.

The selection of the runs is based in the following criteria:

• Run quality. Each run is clasified as “good” “medium” or “poor” depending on the status
of the subdetectors components. A run can be poor if one of the main components is
not available over the whole time. Here will be used only runs which were clasified as
“good” and “medium”.

• Readout status. For each run there is information available over the status of the readout of
the subdetector components. Since an inclusive DIS cross section measurement requires
the identification of the electron and the hadronical final state, only runs where SpaCal,
BDC, BST, CIP, COP, CIZ, CJC and LAr in the readout are considered.

• Trigger phase and prescale. At the beginning of the luminosity fill, the trigger phase 2 is
declared if the current of the electron and proton beams is high and the background con-
ditions allows turn on the central tracker devices. Since the statistic error of the mea-
surement is calculated through the quadrat of the prescales σ2 = ∑i wi, only runs with
prescale less than 3 will be considered. The trigger used in this analysis is based on en-
ergy depositions on the SpaCal calorimeter of particles coming from the interaction point.
In section 6.2 a dissusion of the trigger efficiency will be presented.



Chapter 3

Data and Monte Carlo sample

In August of 2000 a special run period was performed by H1 to measure low values of Q2 be-
low the nominal value of 2 GeV2. The ep interaction point was shifted by 70 cm in the proton
direction, reaching higher acceptance in the backward region of the H1 detector. This spe-
cial “shifted vertex run” took data over 3 days, recording an integrated luminosity of about
600 nb−1. This amount of luminosity represents two times more statistic than the previous
shifted vertex run taken in the year 1995.

In this chapter will be described the reconstruction methods used to analyze the shifted vertex
data, afterwards the cuts used to identify the scattered electron are introduced and its efficiency
is studied. At the end of the chapter will be described the background of DIS events for low
values of Q2.

3.1 The Shifted vertex run

In DIS events for values of Q2 ≤ 100 GeV2, the electron is scattered into the backward region of
the H1 detector. There are two possibilities to measure the angle of the scattered electron at low
values of Q2: One possibility uses the track measured by the backward silicon tracker (BST),
while the other possibility reconstructs the angle with the backward drift chamber (BDC) and
the central tracking devices (see section 2.2.4 and 2.2.2).

Usually, when the collision between the electron and the proton beams takes place in the nomi-
nal position, the maximum value of the angle of the scattered electron that can be measured by
the BST and the BDC is 176.5◦ and 176.8◦ respectively. During the shifted vertex run period,
the interaction point was moved in the proton direction by 70 cm, increasing the acceptance of

29
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the backwards devices as the BST and the BDC.

In Fig. 3.1 the Q2 − x plane is shown, with lines of constant scattering angles. The solid lines
θe = 176.5◦ and θe = 169◦, are the maximum and minimum angle of the scattered electron that
can be measured by the BST at the nominal vertex position (z = 0 cm). The hatched area in Fig.
3.1 represents the angular acceptance of the BST in case the vertex is shifted by z = 70 cm. The
solid area in Fig. 3.1 illustrates the additional maximal angular acceptance that the BDC and
the CTD have in case the vertex is shifted 70 cm from the nominal position.

From Fig. 3.1 follows that during the shifted vertex period the acceptance of the BST and the
BDC shifts towards lower values of Q2, opening the possibility to measure lower values of x
for low values of Q2.

In order to measure the inclusive cross section of the DIS process ep → eX for these low values
of x and Q2, the identification of the scattered electron with the backward devices is a task
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of prime importance. In order to profit from the two detector components used to identify
the scattered electron and to derive the systematic errors of the measurement, two analysis
in parallel were performed. In the analysis developed in [100] the BDC is used as the main
detector to reconstruct together with the CTD and the SpaCal the angle of the scattered electron.
The analysis presented in this thesis uses the BST and the SpaCal calorimeter to identify the
scattered electron.

Several effects like background contributions and detector resolution, have to be studied in
order to correctly identify the scattered electron, for example:

• The scattered electron can escape the detection of the backward devices and a charged
particle coming from the hadronical final state can be misidentified as the scattered elec-
tron. This background events are known as photoproduction events and have a con-
tribution of 5% for y ≥ 0.5 (see section 3.6). In order to reduce the photoproduction
background, not only the electron identification is important but also the hadronical final
state had to be studied in detail.

• The reconstruction of the kinematical variables x and Q2 can be performed using exclu-
sively the energy and momenta measurements of the scattered electron. Although this
reconstruction method is the most precise for low values of x ≈ 10−4, it begins to be less
accurate for values of x ≈ 10−3. Other possibilities used to reconstruct the kinematical
variables for high values of x consider also the energy and momenta measurement of the
hadronical final state.

In section 3.3 the methods used to reconstruct the kinematical variables x and Q2 are intro-
duced, there the resolution of the kinematical variables are studied using a Monte Carlo sim-
ulation (MC) with the characteristics of the shifted vertex data. This step is necessary since
the measured distributions like energies and positions are a convolution of pure physics char-
acteristic with intrinsic detector resolutions, therefore the Monte Carlo simulation is used to
reproduce the behavior of the data and to separate as good as possible the pure physic effects
from the detector resolutions. The MC used in this analysis is discussed in section 3.2.

In section 3.4 the electron identification using the SpaCal calorimeter and the BST is presented,
afterwards in section 3.5 the efficiency of the cuts used to identify the scattered electron are
discussed. At the end in section 3.6, the main source of background to DIS events is explained
and its contribution during the shifted vertex data is determined.
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3.2 Monte Carlo Sample

The Monte Carlo (MC) samples are produced in two steps, first a generator is used and then
the detector simulation and the reconstruction of the event is performed.

The generator has the task to produce pure physic events according to theory or models, in
such way four vectors and cross sections are obtained. The simulation uses this information
to produce the detector response. In this analysis the generator programs DJANGOH1.4 [68]
and PHOJET [74] were used to produce the signal and background of DIS events. Next, the
package H1SIMREC [65, 66] was used to simulate and produce the detector response. In the
following paragraphs the general characteristic of the MC generators and the simulation step
are described.

• The DJANGOH1.4 program is based on several packages. HERACLES[69] generates the
event at parton level and allows the integration of the differential cross section for ep →
e′X over kinematical regions which can be defined in terms of x, y, Q2. HERACLES can
perform a separate treatment of the Born term of the cross section and several parts of the
QED corrections. For NC processes, the QED corrections include leptonic initial state ra-
diation (ISR), leptonic final state radiation (FSR), a contribution called Compton part and
quarkonic radiation. Within HERACLES is possible to choose among a set of parametriza-
tions for input parton distributions. In this analysis are used the parton distribution
parametrization from the MRST group [104]. HERACLES can also simulate electroweak
processes to first order in αs and one loop corrections.

In order to have a complete event simulation not only at parton level, DJANGOH call rou-
tines from LEPTO[70] and JETSET [75], in such way the complete event simulation includ-
ing fragmentation and hadronization of the scattered quark and the proton remmmant
are obtained.

The program LEPTO is used to calculate the QCD matrix elements and generate the
hadronic final state on the parton level. Parton cascades are generated by ARIADNE[71]
using the Color Dipole Model. While, the fragmentation step is computed using the
Lund-String model as implemented in JETSET. In order to simulate the hadronic final
state at low W, the SOPHIA[73] package is used. In this analysis a cut on W = 5 GeV is
performed to define the boundary where SOPHIA and LEPTO+ARIADNE had to be used.

Diffractive events are simulated with ARIADNE using the Soft Color Interaction (SCI)
model. This implementation does not take into account the pomeron quantum numbers.
It produces a reasonable description of the inclusive energy flow in DIS events, but it
creates huge backgrounds to exclusive process like DVCS[101] and QEDC[102]. A study
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of the DJANGOH1.4 excluding the SCI will be discussed in section 5.5

• PHOJET[74] simulates the total photoproduction cross section, incorporating soft and
hard hadronic processes. The hadronization is performed by JETSET. Photo-production
is the main physical background for DIS events at low Q2. The amount of photoproduc-
tion events in the DIS sample, is studied using part of the luminosity system and will be
discussed in section 3.6 in detail.

• H1SIMREC[65, 66]: The generated events are fed into the detector simulation H1SIM
based on GEANT[67]. H1SIM simulates the H1 detector response, taking into account the
geometry and acceptance of its subdetectors as well as dead material distributed within
H1. H1DIGI runs after H1SIM and perform a “digitalisation” of the simulated hits. In this
step efficiencies and noise corrections and calibration constants obtained from data and
test beam studies are applied. H1REC reconstruct finally the whole event as it is done for
real data.

The MC samples used in this analysis have in total 20 millions of events for both DJANGOH

and PHOJET.

In the following section, the MC simulation is used to study the resolution of the reconstructed
variables x and Q2. The original generated variables denoted by the subindex gen are directly
compared with the reconstructed variables having a subindex e, Σ. Since the resolution of the
kinematical variables is influenced by several effects, the final deviation of the reconstructed
variables from the generated ones is studied using the DIS selection cuts introduced in chapter
6.

3.3 Reconstruction Methods

As we have seen in chapter 2, the H1 detector can measure the energy and the angle of the scat-
tered electron and the energy depositions and momenta of the particles building the hadronic
final state. The event kinematic is over-constrained and several reconstruction methods can be
defined using the total final state or part of it. In the following sections the relevant reconstruc-
tion methods employed are briefly described.
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3.3.1 Electron Method

The electron method uses purely the measurement of the four vectors of the incoming and
scattered electron. The event kinematic is given by:

Q2
e = E2

e
sin2 θe

1 − ye
ye = 1 − Ee

E0
inc

sin2 θe

2
xe =

Q2
e

sye
(3.1)

where E0
inc = 27.5 GeV is the energy of the incoming electron. The variables Ee and θe are the

energy and polar angle of the scattered electron.

The resolution of the event kinematic depends on the accuracy of the energy measurement of
the scattered electron Ee and its polar angle θe, the resolution is given by:

δQ2
e

Q2
e

=
δEe

Ee
⊕ tan

(

θe

2

)

δθe (3.2)

δye

ye
=

1 − ye

ye

(

δEe

Ee
⊕ δθe

tan θe/2

)

(3.3)

From Eq. 3.3 it is clear that the electron method is very precise for high values of y, due to the
factor (1 − y)/y, and begins to be less precise for low values of y.

Fig. 3.2 show the relative deviation of xe and Q2
e from the generated variables xgen and Q2

gen for
the whole DIS selection.

Each point in Fig. 3.2(a) and (b) correspond to the mean position and spread of a Gaussian fit
restricted to the interval:

−0.3 ≤ xe − xgen

xgen
≤ 0.3 − 0.5 ≤

Q2
e − Q2

gen

Q2
gen

≤ 0.5 (3.4)

In such way the Gaussian fit converges giving the correct peak position of the scattered distri-
bution also shown in Fig. 3.2.

Form Fig. 3.2(a) follows that the electron method is very precise for low values of x ≤ 10−4

(high y) and begins to be less accurate for higher values of xgen ≈ 10−3. For such values x is
reconstructed to lower values as it was generated. The resolution of x degrades from 5% at
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x ≈ 10−5 to almost 20% at x ≈ 10−3. The reconstruction of Q2
e is precise, having relative values

less than 5% (see Fig. 3.2(b)).

Since the relative resolution of x deviates significantly from the generated quantities for values
of x > 10−4, the electron method can be used to measure the cross section up to values of
x ≈ 10−4 (see Fig. 3.2(a)).

The resolution of the electron method depends on the precise measurement of the angle of
the scattered electron and on a precise energy measurement. This requires good alignment
between the H1 subdetectors and a good electromagnetic calibration. The alignment of the
detector components was derived in [100], and the calibration of the SpaCal calorimeter is
presented in chapter 4.

Two important effects influence the reconstruction of events using the electron method at low
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x (high y); photoproduction (γp) and initial state radiation events (ISR), both phenomena will
be disscussed in section 3.6 and 6.5.2 respectively.

3.3.2 Hadron or JB Method

This reconstruction method uses the measurement of the four momentum of all particles which
define the hadronical final state. In practise unfortunately, some hadrons are undetected due to
the uncovered regions of the H1 detector used to inject the beams. Nevertheless it was shown
by Jacques and Blondel [76] that the event kinematic can be calculated using the variable:

Σ = (Eh − pz,h) = (E − pz)had (3.5)

where (E − pz)had is the difference between the energy Eh and longitudinal momentum pz,h

of all particles which define the hadronical final state. Particles having low values of p t can
escape the detection, but these particles have a negligible contribution to the total (E − p z)had.
The event kinematic is given by:

yh =
Σ

2Ee
Q2

h =
p2

t,had

1 − yh
xh =

Q2
h

syh
(3.6)

where pt,had correspond to the total transverse momentum of the hadronic final state:

pt,had =
√

(∑
h

px,h)2 + (∑
h

py,h)2 (3.7)

being px,h and py,h the x and y four-momentum components of each particle which build the
hadronical final state (see chapter 5 for more details).

The hadron method provides a precise measurement of y for low and medium values y(< 0.15).
But, the hadron method is not adequate to measure low Q2 events, since the measurement of
low pt particles is not precise.

Using the four momentum of the hadronic final state, the angle of the hadronical final state θhad
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is reconstructed as:

cos θhad =
Σ2 − p2

t,had

Σ2 + p2
t,had

(3.8)

3.3.3 Σ Method

The Σ method combines the measurement of the scattered electron and of the hadronic final
state. This method has a better precision than the hadron method for the event kinematic at
low values of Q2 and low values of y.

The inelasticity y is reconstructed similar to the hadron method, but the energy of the incoming
electron Einc is obtained using the longitudinal energy conservation, thus:

2Einc = (E − pz)had + (E − pz)el = (E − pz)tot (3.9)

= Σ + Ee(1 + cos θe) (3.10)

this substitution ensures a correct reconstruction of the event kinematic at the hard interaction,
even in the case where a photon from the incoming electron is radiated. The event kinematic is
given by:

yΣ =
Σ

Σ + Ee(1 + cos θe)
Q2

Σ =
E2

e sin2 θe

1 − yΣ
(3.11)

Due to the correct reconstruction of ISR events, these can be used for the analysis. Since the
emission of the photon of the incoming electron conduces to a reduced centre of mass energy s,
the Σ method extends the measurement to low values of y. In contrast to the electron method,
the ISR events are considered with the Σ method.

The resolution of the Σ method is given by,

δy
y

= (1 − y)

(

δΣ

Σ
⊕ δEe

Ee
⊕ δθe

tan θe/2

)

(3.12)

and is dominated by the experimental error of the term δΣ/Σ. At high values of y, the error on
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y decreases as (1 − y) and at low values of y the error is similar as the resolution of the hadron
method.

The relative deviation of xΣ and Q2
Σ from the generated variables xgen, Q2

gen is shown in Fig.
3.3(a) and (b) respectively. Each point in Fig. 3.3 corresponds to a Gaussian fit restricted in the
interval:

−0.3 ≤ xΣ − xgen

xgen
≤ 0.3 − 0.5 ≤

Q2
Σ − Q2

gen

Q2
gen

≤ 0.5 (3.13)

From Fig. 3.3 follows that the Σ method extends the measurement to higher values of x above
10−3 but is less precise than the electron method for the low x region (compare Fig. 3.3(a)
with Fig. 3.2(a)). The resolution of x using the Σ method for values is of the order of 10% for
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values of x ≈ 10−5. The resolution of Q2 with the Σ method varies between 10% and 5% for
Q2 < 1 GeV and Q2 > 1 GeV respectively.

In the region 10−4 ≤ xgen ≤ 10−3, the Σ method tends to reconstruct x at higher values than it
was generated (see Fig. 3.3(a)).

The projection of the relative deviation between xΣ and xgen for all values of xgen is shown
in Fig. 3.4. There it can be seen that the relative deviation has a tail over the whole generated
phase space. The tail is created by the substraction of the identified noise in the LAr calorimeter.
The dashed line in Fig. 3.4 show the relative deviation of xΣ from xgen in case the noise is not
substracted. The high x (low y) kinematical region is complicated, because it is sensitive to
noise substraction mechanisms, showering effects and losses of low p t particles coming from
the hadronical final state.
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The losses and the identification of the noise
are two different mechanism which can not
be easily separated. The losses of low pt par-
ticles are specially pronounced for low values
of W < 50 GeV. The comparison between WΣ

and Wgen improves considerably in case the
identified noise is substracted from the mea-
sured energy and momenta in the LAr. This
comparison is shown in Fig. 3.5(a) and (b).
The losses of low pt particles will be studied
in section 6.1.4.

Although the noise substraction mechanism
deteriorate the resolution in x, in chapter 5 it
will be shown that the LAr noise has to be
substracted in order to reproduce reasonably
the behaviour of the data. The noise substrac-
tion mechanism and the identification of the noise sources have to be studied in detail, therefore
such investigations are the subject of chapter 5.

In order to guarantie that the reconstructed variable xΣ does not deviate from the generated, a
special study of purity and stability will be performed and discussed in chapter 6.
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3.3.4 Double angle method

The double angle method uses the angle measurement of the scattered electron θ e and hadron
systems θhad to calculate the event kinematics.

yDA =
tan(θhad/2)

tan(θhad/2) + tan(θe/2)
Q2

DA = 4(E0
inc)

2 sin θhad(1 + cos θe)

sin θhad + sin θe − sin(θhad + θe)
(3.14)

where θhad is determined from equation 3.8. To first order the double angle method is inde-
pendent of the detector energy scale and therefore is mainly used for calibration purposes. For
small values of θe or θhad the resolution of the double angle method gets worse.

3.4 Electron Identification

As we have seen in the previous sections, the reconstruction of the event kinematic requires
a correct identification of the scattered electron and of the hadronical final state. The electron
identification for the lowQ2 values studied in this analysis, start from energy clusters measured
in the SpaCal calorimeter, while their corresponding track is reconstructed by the BST. In pre-
vious analysis[105] the cuts listed in Table 3.1 were used to identify the scattered electron using
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the SpaCal and the BST. In the following sections these variables will be defined precisely.

Electron validation
SpaCal: Fiducial volumen

Rclog < 4 cm Eq. 3.17
Eveto < 1 GeV

fhad < 0.15 Eq. 3.18
BST: ∆R = |Rbst − RSpaCal| < 1.5 cm Eq. 3.19

|zBST − 70| < 30 cm
Rbst > 10 cm

NBST,hits < 200

Table 3.1: �	��+ �!�� �" (2/ �!3@� #  .( " #A��/! �" * �  ���� 3��5�! 6 .��%1� # ��+ �!�� �%1(&/ ��3�"9/�$  ��!� � -�� � �'+ �5�'+ (	% "9� �E .�7% �'/�#  ��!� � ���
� � � � � �

3.4.1 Electron identification with the SpaCal

The electron is identified as the most energetic cluster measured in the SpaCal calorimeter.
This is justified since for values of y < 0.5 the energy of the scattered electron is greater than
the energy of the hadronic jet. For high y this criterium is not appropriate, nevertheless in such
cases, the energy of the hadrons scattered in the backward region deposit their energy over
different cells of the SpaCal calorimeter. Since the hadronic showers are in general broader
than the electromagnetic ones, two requirements apart of the maxima energy-cluster criteria
are in addition applied to identify the electron.

One requirement is related to the transverse extension of the shower Rclog in the electromag-
netic section of the SpaCal calorimeter. The other selection criterium is to have behind the
electromagnetic cluster a minimal deposition of energy ( fhad) in the hadronic section of the
SpaCal. In the following paragraphs both variables will be defined in detail.

The energy of the scattered electron is commonly deposited over more than one cell of the
SpaCal calorimeter, in average 20 cells build the electron cluster. The cluster energy Ecl is given
by the sum of the energy Ei of all individual cells which belong to the cluster. The cell with the
maximum energy is known as the “hottest-cell”. The position of the electron cluster is defined
as

xcl =
N

∑
i=1

xiwi ycl =
N

∑
i=1

yiwi (3.15)
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where xi and yi are the geometrical centres of the cells and the weight of the cell is defined as

wi =
max(0, wcut + ln(Ei/Ecl))

∑
N
j=1 max(0, wcut + ln(Ei/Ecl))

(3.16)

The parameter wcut decides which cells will be taken into account in the reconstruction of the
cluster position. Through the variation of the wcut parameter the cluster position determination
was optimized, leading to a value of wcut = 4.8 [78].

There are different possibilities to calculate the transverse extension of the shower. In [89]
was shown that the logarithmic weighting has the best resolution to distinguish clusters of
electromagnetic and hadronic origin. The transverse extension of the shower is defined as:

Rclog =
√

∑
i
(Riwi)2 (3.17)
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where Ri is the distance of the cell i to the cen-
tre of the cluster. Fig. 3.6 shows the trans-
verse extension of the cluster for electrons
having energies 20 < Ee < 30 GeV.

The energy of electromagnetic clusters are
mostly contained inside the 27Xo electro-
magnetic section of the SpaCal. The hadronic
part of the spacal was used to sum the en-
ergy Ehad,spa deposited behind the most en-
ergetic cluster in a cylinder having an exten-
sion of 15 cm of radius. If the fraction of the
energy Ee of the cluster to Ehad,spa is greater
than 15% then the cluster is identified to have
an hadronic origin. The fraction of Ee and
Ehad,spa will be in denoted as fhad:

fhad =
Ehad,spa

Ee
(3.18)

In case the scattered electron is reconstructed inside the insert module of the SpaCal calorime-
ter, a maximum energy of Eveto < 1 GeV in the veto cells is required, in order to loose not too
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much energy due to shower leakage.

3.4.2 Electron identification using the BST

The identification of the scattered electron is optimised by reconstructing in addition its track.
This can be performed using the BST or the BDC and the central tracking devices.

The reconstruction of the electron track with the BST was initially implemented in [90] where
the BST consisted only of 4 planes. Afterwards the reconstruction algorithm was implemented
in [106], it starts with the measured position of the SpaCal cluster. The three r−strip sectors
localised around the azimuthal position φspa of the SpaCal cluster are selected. The r coordinate
of each BST hit is projected along the line which connects the hit and the SpaCal cluster to the
outermost BST plane. The projection of all hits enters into a histogram. The line which connects
the maximum of the histogram with the SpaCal cluster is used as the starting point for the track
finding.

The track finding is performed using an iterative technique, where all hits of the three selected
sectors enters the minimisation procedure. The contribution of each hit is weighted depending
on the distance of the hit to the track around an effective corridor. At the beginning of the
track finding this corridor is equal to the SpaCal resolution, for the next iteration the corridor
is reduced until the BST resolution 5σBST ≈ 250µm is reached.

Once a track is reconstructed with the BST, the additional requirement:

∆R = |RBST − RSpaCal | < 1.5 cm (3.19)

is applied, in order to minimise the influence of background γp events [105].

RBST in Eq. 3.19 is the transverse distance of the impact point of the scattered electron on the
SpaCal plane to the centre of the beam pipe. The subindex BST means that the BST track was
extrapolated to the SpaCal surface in order to determine the scattered electron position on the
SpaCal front plane. In analogy, RSpaCal is the same transverse distance but measured with the
coordinates of the hottest cluster.

Due to acceptance problems of the BST during the shifted vertex data period [106], the RBST >

10 cm cut is applied. In the following section, the efficiency of the cuts introduced until now
are studied.
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3.5 Efficiency of Electromagnetic cuts

The efficiency of the cuts listed in table 3.1 is investigated using a sample which is almost free
of background events. This study is performed using data and the Signal MC DJANGOH. The
efficiency study is important to guaranty that the applied cut, reject the same fraction of events
for data and MC.

To select a sample almost free of background a so called tagged ISR sample is used, where the
scattered electron is identified as in the standard selection (table 6.1) and the initial state photon
is detected using the photon detector.

For normal DIS events the longitudinal momentum has to be conserved and equal to 2E inc =

55 GeV, nevertheless this requisite is not satisfied in case the electron radiates a photon. In such
case, from longitudinal momentum conservation follows:

2Einc − (E − Pz)γ = (E − Pz)el + Σ (3.20)

≈ 2Ee + 2yhadEinc

Einc ≈ Ee + Eγ

Thus, for ISR events the energy of the incoming electron is basically distributed between the
energy of the photon and the energy of the scattered electron. Since, the radiated photon can
be detected in the photon-tagger of the luminosity system and the energy of the electron can
be measured in the SpaCal calorimeter, a sample of tagged-ISR events can be used to study the
efficiency of the cuts used to identify the scattered electron. In order to have a clean sample,
events with only one cluster in the SpaCal are selected.

The selection of tagged-ISR events requires a minimal photon energy of 1 GeV. In addition no
activity in the electron tagger is required to reduce Bethe Heitler process. Since ISR events are
mainly localised at low y, only events with yhad < 0.1 are considered.

In order to calculate the efficiency of the cut, the electron identification selection given in Table
3.1 in addition to the tagged-ISR selection is applied. The efficiency of the cut is calculated as
the fraction of events accepted for the whole sample Nall with the events which are accepted
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relaxing the cut.

ε(cut) =
Nall

Nall + Nrej,cut
(3.21)

In Fig. 3.7 the efficiency is shown of the cuts listed in table 3.1 as function of the energy of
the scattered electron Ee. In Fig. 3.7(a) is shown the efficiency of the Rclog cut. One can see,
that the efficiency of the Rclog cut is fully in agreement with the signal MC DJANGOH. In Fig.
3.7(b) and (d) are shown the efficiency of the Spacal-BST matching ∆R and the RBST > 10 cm
cut. In Fig. 3.7(c) is shown the efficiency of the Eveto cut. In general, all investigated cuts are
well described by the DJANGOH MC, rejecting only a small fraction of events for data and MC

having differences which do not exceed 2%.
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3.6 Photoproduction

The cut efficiency previously presented compares the data with the signal MC DJANGOH using
a sample which is almost free of background. But the real DIS selection is influenced by the
photoproduction background. Therefore it is important to estimate the influence using the data
and the background MC PHOJET.

In γp events, the interaction between the electron and the proton occurs at very low Q2 <

10−2GeV2, having thus an ep interaction mediated by an almost real photon. For small values
of Q2, the transverse momentum of the scattered electron is low, and the probability that the
scattered electron escapes the detection of the backward detectors is high. However a fraction
of γp events can satisfy the electron identification criteria, when a particle coming from the
hadronic final state is wrongly identified as the scattered electron.
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In order to determine how many photopro-
duction events pass the DIS selection, a sam-
ple of events where the scattered electron is
detected in the ET is used, and at the same
time fulfil the DIS selection listed in table 3.1.
Part of the photoproduction events are de-
tected directly by the electron tagger ET. The
subtrigger 115 is used to select events which
posess a shower good contained in the elec-
tron tagger. The energy in the electron tagger
is required to be greater than 7 GeV and the
energy deposited in the photon tagger is re-
quired not to exceed 2 GeV to exclude Bethe
Heitler events.

The acceptance of the ET is limited and only a
small fraction of events in a certain kinematic
range can be detected. The acceptance of the
ET as function of y is show in Fig. 3.8 and is calculated using different fills having the same
beam position delivered by HERA. The acceptance function is used to correct event by event
the photoproduction contribution in the PHOJET MC.

One additional background source for the γp events are the overlap of Bethe-Heitler and nor-
mal DIS events. For such events E − pz is expected to be greater than 55 GeV. The overlap
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events are suppressed requiring that the (E − pz)tot defined as in Eq. 3.22 be lower than 70 GeV.

(E − Pz)tot = Σ + (E − Pz)el + 2Ee,tagger + 2Eγ,tagger (3.22)

In Fig. 3.9 is shown the comparison of data and Phojet MC for events which pass the DIS
selection and the tagged-selection. The Phojet contribution is normalised to the data using the
integral of the distribution of the energy measured by the wrongly identified scattered electron
by phojet Iphojet and in the data Idata. The luminosity of phojet is thus obtained as:

Lphojet =
Iphojet

Idata
Ldata (3.23)



� � 
 � � �	�
� �A��� � �7� � 
 � 
 � �

Fig 3.9(a) shows the energy measured in the electron tagger and Fig. 3.9(b) shows the energy
of the hadron that was identified as the scattered electron, normalized according to Eq. 3.23.
The photoproduction background is correctly described by PHOJET, hence it can be used to
estimate the background contribution of the final DIS selection. In such way, the photopro-
duction contribution will be added to the DJANGO MC sample of DIS events to reproduce the
behaviour of the data.



Chapter 4

SpaCal Calibration

As it was mentioned in the last chapter, the measurement of the proton structure function is
only possible if the event kinematics is correctly and precisely reconstructed. The resolution
of the reconstruction methods relies directly on the precision of the measurement of the angles
and energies of the scattered electron and of the hadronical final state.

Since the energy measurement enters directly to the event kinematics, especially for the elec-
tron method, and represent the largest source of systematic uncertainty for the measurement
of F2 for values of x ≥ 10−4, it is important to perform a precise calibration of the energy mea-
sured by the SpaCal calorimeter on analysis level. In this chapter the calibration of the SpaCal
calorimeter and the determination of its uncertainty is explained.

In section 4.1 the calibration sample is explained, afterwards in section 4.2 the method used to
calibrate the shifted vertex data and the MC sample is introduced. Since the energy measure-
ment has to be understood better than the percent level, the double angle calibration proce-
dure originally introduced in [89] is used to calibrate the electromagnetic section of the SpaCal
calorimeter. The scale of the electromagnetic energy measurement is derived in section 4.3 us-
ing the cluster of the scattered electron with energies of 27.5 GeV. In order to study the scale
of the energy measurement at lower energies, the reconstruction of the invariant mass of π 0

decays using the SpaCal calorimeter is presented in section 4.5.

4.1 Calibration Sample

In DIS events at low values of Q2, the energy distribution of the scattered electron has a char-
acteristic shape with a maximum close to the electron beam energy commonly known as the

49
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kinematic peak. In Fig. 4.1(a) the energy distribution of the scattered electron at generator level
for a DIS selected sample is shown.

The kinematical properties of events located in the kinematic peak region are unique and are
used to determine the scale of the electron energy measurement. In Fig. 4.1(b), the Q2−x
plane is shown with different contours of constant scattered electron energies. If the energy
of the scattered electron coincides with the energy of the incoming electron, then the contour
correspond to a fixed x ≈ 0.032 for all values of Q2. This kinematic region is only accessible for
larger electron scattering angles as can be seen from Fig. 4.1(b), where the angle of the scattered
electron is also shown. At this value of x the proton structure function F2 is approximately flat
(see Fig. 1.5) therefore events located in the kinematic peak region are almost independent of
structure function assumptions and thus appropriate to perform calibration studies [80].

The calibration of the SpaCal calorimeter begins already during the data taking. The variation
of the gains of the photomultipliers are measured with the help of the light-emitting-diode
(LED) system situated at the back side of the calorimeter [81]. Each photomultiplier receives
well defined constant light pulses and afterwards photodiodes are used to identify instabilities
of the LED intensity. The instabilities are read out to the data base and afterwards an offline
correction of the photomultiplier gain is performed.

After applying the correction factors determined by the LED system, the inner cells of the
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calorimeter are calibrated using events localized in the “kinematic peak” region [82]. Due to
the decreasing statistic at larger Q2 the outer part of the calorimeter is calibrated with muons
coming from either cosmic rays or from proton beam halo [83] events.

Nevertheless an improved calibration of the SpaCal calorimeter, which is able to reduce the
uncertainty of the F2 measurement at high values of x, can only be achieved on analysis level.
The energy calibration has to provide:

• a good energy resolution, therefore it is vital to obtain a relative equalization of response
of the calorimeter cells.

• a correct reconstruction of the event kinematics, therefore the absolute energy scale has
to be determined.

The method to calibrate the SpaCal calorimeter used in this analysis was introduced in [89]
and uses events localized in the kinematic peak region. The SpaCal energy measurement is
compared with a reference energy obtained by the double angle (DA) reconstruction method,
which will be explained in section 4.2.

In this analysis the “hottest-cell” calibration method introduced in [88] is used as a cross check
of the energy calibrated with the DA method. The “hottest-cell” method compares directly the
energy distribution of the data and the MC simulation in the kinematic peak region.

4.2 Calibration with the Double angle method

As we have seen in section 3.3.4 the event kinematics can be completely reconstructed using
the angle of the scattered electron θe and of the hadronic final state θhad. This allows to derive
the energy of the scattered electron independently of the SpaCal energy measurement. The
energy measured by the DA method (DA energy) is given by:

EDA = E0
inc

1 − yDA

sin2 θe/2
(4.1)

Following Eq. 4.1 one can see that the DA energy can be reconstructed in the kinematic peak
region E0

inc ≈ 27.5 GeV, if the scattered electron is measured at large angles θe ≈ 180◦ and low
values of y (see also Fig. 4.1(b)).
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The angle θe of the scattered electron is measured with the BST. In case the event is out of the
acceptance of the BST, then the BDC and the central tracking devices are used to reconstruct the
electron scattering angle. In both cases a well reconstructed vertex around 30 cm with respect
the expected collision point at z = 70 cm is required. Events at low y are selected applying a cut
on the hadronic angle θhad < 80◦, this cut allows a maximum value of y of approximately 0.15.
The influence of events at very low y where the hadronic final state escapes often undetected
in the forward direction, was suppressed by requiring θhad > 15◦.

In order to minimize contributions of photoproduction background events, an additional SpaCal
selection is applied. Only events with exactly one cluster in the SpaCal calorimeter with an en-
ergy in the kinematic peak region 20 GeV< Ee < 32 GeV are accepted. In addition the radius
of the cluster Rclog must be less than 4 cm. The cuts introduced in this paragraph and in the
previous one constitute the DA selection.

The energy measured by the SpaCal calorimeter can be calibrated with the DA energy EDA

only in case the resolution of the DA energy is better than the resolution of the SpaCal energy
measurement. This can be verified using the MC simulation where the generated energy Egen

is taken as the reference for both the DA and the SpaCal energy measurements. The resolution
of the DA energy and of the SpaCal energy measurement are compared in Fig. 4.2. A shift
up to 2% of the generated variable is observed in case of the SpaCal measurement, while EDA

deviates by only 0.4%. Therefore the DA energy is well suited to be the reference energy scale
for the SpaCal calibration.

The calibration procedure is an iterative process, where the reference energy EDA is com-
pared to the uncalibrated measured energy Euncal

SpaCal using the previous DA selection. The cali-
bration gain factors g are obtained such that Ecal

SpaCal = (1 + g)Euncal
SpaCal , thus the deviation of

δ = EDA/Euncal
SpaCal from 1 correspond to the needed calibration factor.

In order to ensure homogeneity over the whole SpaCal plane the following calibration factors
are required:

1. Gain calibration factors for each cell of the calorimeter.

2. Inbox and Cracks calibration factors which correct for the losses of energy due to the
SpaCal cell module geometry.

3. Radial calibration factors, calculated as function of the transversal distance of the impact
point of the scattered electron to the center of the beam pipe RSpaCal .

This set of calibration constants will be applied sequentially to the uncalibrated energy Euncal
SpaCal .
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First, each cell belonging to the electron cluster is corrected with its corresponding gain factor
(see section 4.2.1). Next the inbox corrections will be applied (see section 4.2.2) according to
the coordinates of the hottest cell of the electron cluster. Finally, using the coordinates of the
hottest cell, the corresponding radial calibration factors are applied (see section 4.2.3). This serie
of corrections constitute the main DA calibration chain. The calibration procedure is performed
for both data and MC.

4.2.1 Cell Gains

The first calibration constants are derived for each cell of the SpaCal calorimeter. As we have
seen from section 3.4.1, the energy measured by SpaCal is constructed as the sum of the energies
of the cells which are assigned to the electron cluster.

ESpaCal = ∑
celli

Ei (4.2)
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The gain of each calorimeter cell is calculated using an iterative procedure. The energy de-
positions of all cells which form the electron cluster are used to define individual “cell-pull”
distributions δcell−i.

Each cell contributes to the pull distributions of the entire sample with a weight w i given by
the fraction of its measured energy Ei to the total energy of the electron cluster ESpaCal . Thus,
the pull distribution for the cell − i is defined as,

δcell−i =
EDA

Euncal
SpaCal

having a weight wi =
Ei

Euncal
SpaCal

(4.3)

If all cells would be already calibrated, the δcell−i pull distribution should be centered around
1. If this is not the case, then the deviation of the δcell−i distribution from 1 corresponds to
the gain factor with which the cell has to be corrected. The dashed line in Fig. 4.3 shows the
pull distribution for two example cells of the SpaCal calorimeter. Since the shape of the pull
distribution is generally not of Gaussian shape, the deviation of δcelli to 1 is obtained using a
robust fit which removes the outliers in the distribution [84]. In cases where cells do not have
enough statistics to perform an individual fit, a global fit for all those cells is performed.

In order to ensure the convergence of the calibration method, an iterative gain determination
of the cells is performed. The gains of the iteration it are obtained using:
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Euncal
SpaCal → Eit

SpaCal = ∑ Ei

k=it−1

∏
k=0

(1 + gk)

and thus the pull distribution for the cell − i for the iteration it is changed according to:

δit
cell−i =

EDA

∑i Ei ∏
k=it−1
k=0 (1 + gk)

wit
i =

Ei(1 + git
i )

∑i Ei ∏
k=it−1
k=0 (1 + gk)

(4.4)

for k = 0 the gains gk = 0 and in this case Eq. 4.4 is equal to Eq.4.3. Usually 8 iterations are
needed to achieve a result which is stable within 0.001%. In Fig. 4.3 are also shown the pull
distribution for the same SpaCal cells after applying the gains obtained after eight iterations.

The gain factors correct the energy measurement by 2% to 3%. Fig 4.4 shows the variation of
δ as function of the transverse distance of the cluster from the center of the beam pipe RSpaCal

for the uncalibrated δ and after the gains are applied. A significant improvement is achieved
taking the gains into account. Nevertheless some variations stay, which are minimized by the
following steps.
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4.2.2 Inbox Corrections

Using the gains calibration constants derived in the previous section, the energy measured by
the SpaCal calorimeter has to be corrected further due to several effects. As we have seen in
section 2.2.1, the SpaCal calorimeter is constructed of supermodules containing 16 cells each.
Therefore energy losses due to the dead material present between the supermodules is ex-
pected. Cells placed in the corner of the supermodule are more affected by energy losses than
the cells situated in the middle of the 16 cell module.

In order to compensate for this losses, the measurement of the energy is corrected as function
of the impact point of the electron candidate inside the cell. In order to take into account the
position of the cell inside the supermodule, three topologies are defined as illustrated in Fig.
4.5. The cells situated in the middle, corners and at the borders define the topologies 1,2 and 3
respectively.

For each inbox topology the cell is divided in a grid with spacing of 8 mm. The coordinates of
the hottest cell are used to determine the position of the electron candidate inside the cell. The
inbox corrections are derived using the same DA selection as in the the gain determination.
Since the insert modules have cells with different geometry and are affected by leakage, an
additional cut on RSpaCal > 10 cm was applied. The inbox corrections are obtained with the
same robust fit procedure as the gain determination, but no iteration for the inbox correction is
performed.

Fig. 4.6 shows the correction factors for data and MC due to the energy losses between the
modules. For data cells in the corner are corrected up to 2%, while 1% of correction is obtained
for the border cells and up to 0.5% for the cells located in the center of the module.
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Another source of energy losses in the calorimeter is due to the inhomogeneity of the SpaCal
cells inside the module. Since the variable Rbox = max(|xcell |, |ycell |) covers the calorimeter
surface in squares, it was used to correct the energy losses between the cells. The corrections
are derived comparing the DA energy with the calibrated SpaCal energy with gains and inbox
corrections. Four sets of calibration factors as function of Rbox are derived for 4 φ sectors, each
covering one quarter of the SpaCal surface.

This procedure corrects the energy measurement by 0.3% in addition. Fig. 4.7 show the devi-
ation of the energy measurement from the reference energy EDA as a function of RSpaCal after
the inbox and crack calibration factors are applied.

4.2.3 Radial Corrections

As we can see from Fig.4.4 and Fig.4.7 after the gains inbox and crack calibration factors are
applied, a significant improvement of the measured energy over the SpaCal plane is achieved.
Nevertheless a radial dependence of the calibrated δ pull quantity up to 1.2% still remains. Such
a deviation is probably due to dead material located in front of the SpaCal calorimeter which
is not properly implemented in the MC simulation. In particular the deviations observed at
RSpaCal ≈ 12. 20 cm corresponds to the CIZ and COZ electronics [102]. This dependence is
corrected by deriving the last calibration factors as function of the measured radius RSpaCal . In
analogy to the crack corrections, four sets of calibration factors are derived for the same 4 φ
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sectors.

In Fig. 4.8 is shown the radial dependence of δ after the complete calibration procedure is
applied. The remaining differences between data and MC do not exceed 0.2% for allmost all
the regions covered by the SpaCal calorimeter.

4.2.4 MC Smearing

The uncalibrated and calibrated energy distribution of the scattered electron for the whole cal-
ibration sample is shown in Fig. 4.9(a) and (b). It can be seen, that the mean value of data and
MC of the energy distribution agrees after the whole DA calibration factors are applied. Nev-
ertheless, the MC resolution is better than the resolution of the data. Therefore it is necessary
to smear the MC simulation in order to fit its resolution to the one of the data.

In order to determine the optimum value of the smearing, the calibrated energy in the MC was
smeared with different factors varying between 0% and 0.4%. The value of χ2 of the deviation
between data and MC was used to determine the optimum value. The best value was found to
be 0.2%. In Fig. 4.9(c) the calibrated energy distributions of data and MC with the additional
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smearing of 0.2% are shown.

However the smearing of the MC results in a constant systematic shift of the energy distribution
of about 0.15%. This systematic shift can be avoided by introducing in the MC calibration chain,
the smearing value starting from the inbox corrections. In Fig. 4.9(d) is shown the calibrated
energy distribution when the smearing is applied to the MC calibration. All distributions in
Fig. 4.9 are normalized using their total number of events.

4.3 Energy Scale

We have seen in the previous sections that after performing the DA calibration, the agreement
between the data and the MC simulation is of the order of 0.2%. Nevertheless the resolution
of EDA the energy derived by the DA method has not a completely symmetric shape and it is
displaced from zero by 0.4%, as is it shown in Fig. 4.10(a). The long tail of the distribution in
Fig. 4.10 (a) is due to showering [85] and due to final state radiation events, where the scattered
electron radiates a photon, which deposits its energy indistinguishable in the same cluster as
the electron.

The DA energy of the scattered electron relies directly on the measurement of the hadronic
and electron scattering angles. The hadronical final state is constructed, combining the tracks
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measured in the central tracking devices with the energy depositions measured by the LAr
calorimeter and the SpaCal calorimeter. During the reconstruction, isolated energy depositions
in the LAr are investigated in order to identify noise. The recognition of the LAr-noise is per-
formed with different thresholds depending on the position of the energy cluster in the LAr
calorimeter (see chapter 5 for more details).

Up to now the identified noise is not subtracted during the reconstruction of θhad. However,
this isolated energy deposition can influence the measurement of θhad and therefore the DA
energy could be affected. While the resolution of the DA energy is nearly independent of the
subtraction of noise in the θhad reconstruction, the mean value decreases considerably and tends
to be zero (see Fig. 4.10(b)). The whole calibration procedure is therefore repeated, subtracting
the identified noise during the reconstruction of the hadronical angle θhad. The gain calibration
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factors differ up to 0.5%, while the inbox, cracks, radial corrections stay in the same order.

In order to determine which calibration procedure should be applied during the analysis, the
scale of the energy measurement at the kinematic peak for both calibration setups will be com-
pared. Therefore the comparison between the SpaCal calibrated energy and the generated
energy is necessary. This comparison is shown in Fig. 4.10 for both calibration schemes. In case
the noise is subtracted, the scale of the SpaCal measurement is 0.5% while in case the noise is
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not subtracted, the calibrated SpaCal measurement coincides with the generated quantity as it
is shown by the lines in Fig. 4.10(c) and (d).

Since the aim of the calibration procedure is to have a SpaCal energy measurement close to the
generated energy, the calibration scheme not subtracting the noise is chosen. In such way dis-
placements of the SpaCal energy in the kinematic peak from the generated energy are avoided.

4.4 Cross check with the Hottest cell calibration

The hottest cell calibration method uses as well the kinematic peak region to derive individual
cell calibration factors. In contrast to the DA method, the SpaCal measurement of the electron
cluster is directly compared with the MC simulation [88].

In order to have an electron energy distribution with a Gaussian shape almost free of tails, the
calibration sample uses the following selection:

• Events in which the electron cluster has a energy between 20 and 30 GeV and a cluster
radius less than 4 cm.

• Radiative events are suppressed allowing a maximum value of y of 0.05.

• The noise contribution is suppressed applying y > 0.005.

The calibration gain factors are derived as:

gi =
< EMC

cl,i >

Edata
cl,i

(4.5)

where < Ecl,i > is the mean of the electron cluster energy, which is assigned to the hottest cell
i. The statistics of the sample decreases considerably with increasing distances from the beam
pipe and thus individual calibration factors can be determined only for the inner cells.

Since in the last sections data and MC were calibrated with the DA method, the hottest cell cal-
ibration selection is used only to cross check the DA calibration in a slightly different kinematic
region where the effect of the tails due to radiative events is reduced.

In Fig. 4.11 the DA calibrated cell distributions for the hottest cell calibration selection are
shown. There is no significant shift between data and MC for almost all cells. However, this
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selection allows us to identify which cells have to be rejected from the analysis due to their bad
shape distribution. This correspond to the insert cells denoted by the numbers 15, 6, 9, 12 and
the cells 31 and 29.

4.5 Energy measurement at low Energies

As was shown in the previous sections, the DA calibration is performed with electron clusters
where the energy lies in the kinematical peak region. A comparison between the data and the
MC simulation shows that the energy measurement has a scale uncertainty of 0.2% in kinematic
peak. If the DA calibration derived in the last sections is also valid for lower energies, then it is
necessary to known what is its uncertainty.

One method used to study the scale of the energy measurement of the SpaCal calorimeter
towards lower energies, uses the reconstruction of the invariant mass of π0 → γγ decays. The
invariant mass is calculated according to:

mπ0 =
√

2Eγ1Eγ2(1 − cos θγγ) (4.6)
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where Eγ1 and Eγ2 are the energies of the photons, which can be measured by the SpaCal
calorimeter, and θγγ is the opening angle between the two photons. In order to suppress back-
ground from random coincidences in the π0 mass reconstruction sample, the following selec-
tion cuts were applied:

• Events having only two clusters in the SpaCal calorimeter and triggered by S9 are used
(see section 6.2). Since the threshold of S9 is 2 GeV, the clusters must have a minimum
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energy of 2 GeV (see section 6.2).

• In order to measure a precise separation angle, only events having a well reconstructed
vertex around 30 cm of the expected position at z = 70 cm are used.

• A cut of a minimum distance of 10 cm between the clusters is required to avoid overlap
between the selected clusters

In Fig. 4.12 the reconstructed mass of the π0 decays is shown for data and DJANGOH MC
before and after the DA calibration is applied. The introduction of the DA SpaCal calibration,
decreases the observed shift of the mass reconstructed distribution by almost 0.5%. However a
shift between the data and the MC simulation is still observed. The value of this displacement
determines the scale of the energy measurement at the π0 mass. The shift is studied using the
Kolmogorov-Smirnov (KS-test). The invariant mass distribution of the π0 of the MC is shifted
until the KS-test between the shifted-MC invariant mass and the data shows the maximum
probability.

In order to study the dependence of the scale on the different variables used to reconstruct
the invariant mass, the entire π0 sample is divided into sub-samples with approximately equal
statistic. Fig. 4.13(a) and (b) shows the comparison between data and MC of the maximal,
minimal energy of the photon clusters, while in Fig 4.13(c) the separation distance between the
two cluster on the SpaCal plane is shown. The lines represent the imposed cut used to define
the subsamples. For each subsample, the shift between data and MC of the invariant mass
using the KS-test is studied.

In Fig. 4.14(a) is shown the result of the KS-test for the invariant-mass subsamples, a shift of
2.5% is necessary to fit the MC with the data. Correcting the MC for the scale value of 2.5%,
the agreement between the two invariant mass distributions considerably improves (see Fig
4.14(b)).

In order to determine the error of the scale, several checks to the π0 invariant mass selection
are performed. Fig. 4.13(d) shows the sum of the energy of the two photon clusters of the
π0 candidate. One observes that the data distribution is not completely described by the MC,
therefore the energy distribution of the data of Fig. 4.13(d) was used to weight the MC. The
weighted distributions of the MC were used to derive again the energy scale. The resulting
scale have values which does not exceed 1% of the ones shown in Fig. 4.14(a). The error of the
scale is thus quoted to be 1%.
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4.6 Energy measurement Uncertainty

The differences of the energy scale at low energies E ≈ 2 GeV and at kinematic peak E ≈
27.5 GeV correspond to the non linearity behaviour of the SpaCal energy response, previously
studied in [102]. The energy measurement of the data will be corrected assuming that the
energy scale is linear. The scale at kinematic peak and at π0 mass (E ≈ 2 GeV) are used to derive
the linear correction. QED Compton events were used in [106, 102] to check the calorimeter
energy scale in the range 4 − 24 GeV, the linear energy correction derived in this analysis is in
agreement with those results performed for different data sample periods.

The correction and the uncertainty of the scale of the SpaCal energy measurement is given by:

• 0% ± 0.2% for E= 27.5 GeV

• 2.5% ± 1% for π0 Energy (E= 2 GeV)

The uncertainty of the energy measurement will be used to derive the systematic uncertainty
of the F2 measurement.



Chapter 5

Hadronic Final State

The calibration of the LAr calorimeter and the understanding of the hadronic final state (HFS)
requires special attention for the x ≥ 10−4 region, where the electron method begins to be less
accurate and the kinematical variables can be better reconstructed with the Σ method. Thus,
for values of x ≈ 10−4, the measurement of the inclusive DIS cross section depends not only on
the reconstruction of the scattered electron but also depends on the reconstruction of the HFS.

In order to reconstruct as good as possible the kinematical variables x and Q2 with the Σ

method, detailed studies on the energy flow of the HFS have to be performed. This studies
essentially involve the calibration of the main calorimeters of the H1 detector. The calibration
is performed using the longitudinal and the transverse momentum of the particles which form
the initial and the final state. Measuring with a perfect detector, energy and momentum con-
servation requires that the total (E − pz)tot and pt,tot of the scattered electron and of the HFS be
equal to:

(E − pz)tot = 2Einc ≈ 55 GeV ~pt,tot = ~pel
t + ~phad

t = 0 (5.1)

However, real experiments suffer from acceptance losses and resolution effects which lead to
deviations of the expected values. In this chapter the HFS is studied in detail using the global
quantities written in Eq. 5.1 and those already discussed in section 3.3.2 and 3.3.3.

In section 5.1 the response of the SpaCal calorimeter to hadrons is studied using the longitu-
dinal energy conservation (E − pz)tot ≈ 55 GeV. The reconstruction of the HFS is explained
in section 5.2. The calibration of the LAr calorimeter is described in section 5.3, where the
transverse momentum of the electron is used as the energy scale reference. Part of the energy
measured in the LAr calorimeter is influenced by noise signals originating either from the elec-
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SpaCal Calibration factor for hadrons
Reference Electromagnetic section Hadronic section

[87] 1.1 1.3
[89, 88] 1.5 1.5

[88] 1.07 1.07

Table 5.1: � �'+ "9?�%��! �" (&/<�5(&/�3. B�'/! .3 *8(	%  ����;����#2%1(&/7" � %1�535-�(&/�3B�4(�*  ��!� � -�� � �'+'� �'+ (	%8"9� �5 .��% �

tronics of the LAr calorimeter readout or it is beam induced. Additional noise due to secondary
scattering of final state particles which deposit its energy into the calorimeter can influence the
energy measurement. The influence of the noise on the kinematic reconstruction is explained
in section 5.4. At the end of the chapter the uncertainties assigned to the description of the HFS
are summarized.

5.1 Hadronic SpaCal

The hadronic section of the SpaCal calorimeter is non-compensating, thus its response is differ-
ent for hadronic and electromagnetic showers. The combined response of the SpaCal calorime-
ter for hadrons was investigated in [86] using data taken at the CERN proton Synchroton. Two
parts of the electromagnetic and hadronic sections of the SpaCal where installed at the CERN
PS T9 beam line, where electrons and π− having incident energies between 1 and 7 GeV were
used to investigate the hadronic response and the e/π separation.

The combined response of the SpaCal to hadrons was studied using π−, the energy measure-
ment in the electromagnetic and hadronic section were added in case the π− interacted at least
in one of the two sections of the SpaCal. An optimal constant scale factor 1.94 was found for the
electromagnetic section while for the hadronic section the calibration factor varies from 1.29 at
3 GeV to 1.46 at 7 GeV [86].

The hadronic energy corrections for the SpaCal calorimeter were also estimated in a Monte
Carlo study obtaining values of 1.1 for the electromagnetic part and 1.3 for the hadronic part
[87]. These corrections were applied for both data and MC for all cells which do not belong to
the electron cluster.

Using ep collisions the longitudinal energy conservation was used in several analyses in order
to study the response to hadrons using the SpaCal. Such investigations exploited the combined
energy measurement in the electromagnetic and hadronic section of the SpaCal, obtaining cali-
bration factors which are summarized in table 5.1. The product of the correction factors repre-
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sent the starting scale of the SpaCal hadronic energy in the data sample which is investigated
here.

The energy scale of the hadronic section of the SpaCal can be studied with DIS events [90]. For
high values of y, the hadronic final state is scattered mainly in the backward region of the H1
detector, thus the measurement of the HFS for high values of y is mainly performed by the
SpaCal calorimeter. Therefore in that region, the energy of the scattered electron can be used as
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the reference scale to study the hadronic energy scale. The inelasticity variable y reconstructed
with the electron ye (see equation 3.1) and the hadron yhad (see equation 3.6) method are the
variables used to study the scale.

Since for high values of y > 0.5 the photoproduction background contributes strongly (see
Fig. 3.9(d)),hence only events having a (E − pz)tot > 35 GeV are selected to study the hadronic
energy scale of the SpaCal calorimeter. In Fig 5.1(a) the ratio yhad/ye is shown for events where
ye > 0.5 and (E − pz)tot > 35 GeV. A clear shift between the data and the MC is observed.

The energy shift is studied analyzing the behaviour of the measured (E − pz)had from the
hadrons taking as reference the (E − pz)el of the scattered electron. Due to longitudinal energy
conservation the total (E − pz)tot has to be conserved and equal to 55 GeV. Thus in average
the (E − pz)had with the (E − pz)el of the electron should be directly correlated. In Fig. 5.1(b)
is shown the dependence of the (E − pz)had with (E − pz)el for data and MC. The deviation
between data and MC reflect the shift observed in the yhad/ye distribution. The shift can be
obtained using the ratio or the difference between the data and the MC points shown in Fig.
5.1(b).

The (E − pz)had of the hadrons in the MC had to be corrected with a factor 0.97 (3%). This
correction correspond to a shift of 700 MeV. In Fig. 5.1(c) is shown the yhad/ye distribution after
applying the correction leading to a good agreement. The uncertainty of the hadronic SpaCal
is quoted as half of the needed correction which is 350 MeV.

5.2 Reconstruction of the Hadronic final State

In contrast to the identification of the scattered electron, the identification of the hadronic final
state (HFS) is even more complex, since the HFS can have different topologies inside the H1
detector depending on which values of Q2 and x the DIS event occur. This involves several
energy depositions which can be measured using the subdetector components of the H1 de-
tector. The aim of the reconstruction of the HFS is to provide a four vector which contains all
measured energy depositions.

The reconstruction of the particles belonging to the HFS rely basically on the momentum mea-
surement of the central tracking devices, the energy deposition in the LAr calorimeter cells and
the energy deposition in the cells belonging to the hadronic activity in the SpaCal calorimeter.
The HFS is reconstructed with the elaborated algorithm FSCOMB [92, 94, 95], which combines
the measurements of the subdector components previously mentioned.
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In order to improve the kinematic reconstruction, the FSCOMB algorithm optimizes the momen-
tum measurement according to the resolution of the subdetector components. For example for
low energetic particles the central tracking devices are used, since their resolution is propo-
tional to the energy E of the particle, whereas the calorimeter resolution is 50%/

√
E leading to

better performance at high energies.

Using the measured hits in the tracking devices, the curvature κ and the spacial position of
the track is determined. The information of each track is used to determine the vertex position
of the event. Thus, using the vertex and the track parameters a four momentum PTrack of all
measured tracks by the tracker devices is constructed. In the same way, the four momentum
PLAr and PHadSpa is constructed using the vertex position and the spacial coordinates of the
cells where energy was deposited.

FSCOMB combines the calorimeter and the track information in the following way. Tracks with
momenta less than 2 GeV are selected and extrapolated to the LAr surface where they are linked
to clusters. The extrapolated track with the calorimeter cluster is linked, under the assumption
that the particle yielding the track is a pion [92, 93]. All clusters inside a cylinder with a ra-
dius of 20 cm in the electromagnetic section and 40 cm in the hadronic section of the LAr are
considered. A track is also used if its extrapolation does not reach the LAr surface. In order
to avoid double counting of the measured four momentum, those calorimeter cells, where the
energy deposition is replaced by the track measurement, are masked and are not used to build
the LAr four momentum PLAr. In general the four momentum of the hadronic final state can
be expressed as the following vectorial sum:

~Phad = ~PTrack + ~PLAr + ~PHadSpa (5.2)

The combination of the track with the calorimeter measurement uses primary vertex con-
strained tracks. In the course of this analysis it was found that the vertex position determined
by the central tracking devices and the BST differ considerably in case the tracks reconstructed
by forward trackers are used to determine the vertex position. Thus, the link of tracks and
calorimeter four momentum is performed using the primary vertex only in case reconstructed
tracks by the CJC are found. In case no tracks are in the CJC found, then the default vertex
position z = 70 cm is used. At analysis level the four momentum is again calculated using the
vertex position of the BST.

The contribution of the four momentum of the SpaCal PHadSpa contains the energy deposited
in the electromagnetic section, which does not belong to the electron cluster and the energy
which is deposited in the hadronic section.
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For low values of y, the determination of (E− pz)had is affected by extra activity in the calorime-
ter. The scattered electron can be rescattered off the detector material behind the central tracker
with secondary particles. These particles can be wrongly identified as taking part of the HFS
originating from the primary interaction. This extra activity is reduced by substracting 10% of
the (E − pz)el of the electron from the total hadronic contribution measured in the SpaCal, if
the result is negative a zero contribution for the SpaCal is taken [89].

5.2.1 Noise identification using FSCOMB

During the reconstruction of the four momentum in the LAr, the FSCOMB algorithm also iden-
tifies noise. This is neccesary, since during the ep collision, the energy measured by the LAr
calorimeter is overlayed with noise signals produced by example from the electronics of the
LAr cells which allow to measure the energy depositions in the LAr [96]. Thus, not all measured
energy in the LAr calorimeter belongs to the energy of the HFS of the ep collision. Therefore it
is necessary to investigate the noise.

The strategy is to look for isolated energy depositions in the cells of the LAr, thus all cells which
have an energy deposition are investigated. Two different energy thresholds depending on the
angular position of the cell are considered.

The angular position of the cell θcell is measured with respect the origin of coordinate system of
the H1 detector. In case a cell is localised at θcell < 15◦ and its energy energy is below 800 MeV,
the energy of the neighbouring cells localised in a transversal cone of 40 cm is summed. In case
the summed energy of all neighbouring cells is also below 800 MeV, all those cells are masked
as “noise-cells”. Similarly a energy threshold of 400 MeV is used if the cell is localised at θ cell >

15◦, but the transversal extension of the neightbouring cells is only 20 cm. For θcell < 15◦ the
cell is located in the IF1, IF2 wheels (see Fig. 2.9).

Following this procedure, the four momentum measured by the LAr can be expressed as the
sum of the identified Noise and the Signal:

~PLAr = ~PLAr
Signal + ~PLAr

Noise (5.3)

where PLAr
Noise is constructed with the cells masked as noise-cells.
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5.3 Calibration of the LAr calorimeter

In contrast to the electromagnetic SpaCal calibration the energy flow in LAr does usually not
consist of a single cluster, but it is distributed over collimated jets or it is just dispersed into the
H1 detector. Therefore it is very difficult to select single hadrons and use them to calibrate.

Since in neutral current DIS events, the transverse momentum of the electron p el
t and of the

hadronic final state pt,had have to be balanced, it is possible to use the well measured transverse
momentum of the electron to achieve the calibration of the LAr calorimeter.

The trasversal balance of the event pt,bal defined as

pt,bal =
pt,had

pel
t

(5.4)

is the most used variable to derive the calibration of the LAr calorimeter. The transverse mo-
mentum of the total HFS pt,had is calculated using:

pt,had =
√

(∑
h

px,h)2 + (∑
h

py,h)2

where the contributions of the LAr signal, tracks and hadrons measured in the SpaCal are
considered in the vectorial sum of px,h and py,h:

px,h = pLAr
x,Signal + pTrack

x + pHadSpa
x

py,h = pLAr
y,Signal + pTrack

y + pHadSpa
y

5.3.1 Calibration procedure

In this analysis the Lagrangian method introduced in [90] is used to derive the calibration
constants of the LAr calorimeter. The Lagrangian method minimizes the difference between
the transverse momenta of the scattered electron and of the hadronic final state particles. The
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function used has the form:

L =
Nevents

∑
i=1

1
σ2

i

(

pel
t,i −

[

pTrack
t,i + pHadSpa

t,i + pNoise
t,i,LAr

]

−
M=120

∑
j=1

αj p
j
t,i,LAr

)2

(5.5)

where pel
t is the transverse momentum of the electron, measured in the electromagnetic section

of the SpaCal calorimeter. The variable σi is the weight of each event, which is taken as 1 in the
following calculation.

pTrack
t and pHadSpa

t are the transverse momenta of the hadrons measured with the central track-
ing devices and with the SpaCal calorimeter, respectively.

The contribution of the LAr is considered by the last term in Eq.5.5, where the index j corre-
sponds to a continues number asigned to the different wheels and octants of the LAr calorime-
ter. Since the LAr calorimeter is build of 8 wheels subdivided in 8 octants and 7 wheels have
one electromagnetic and one hadronic section, in total M = 7 ∗ 8 ∗ 2 + 8 = 120 contributions
of the transverse impulse of the LAr pt,LAr are considered. The variable α j are the calibration
constants to be determined by minimizing the function L.

The term pNoise
t in Eq. 5.5 represents the transverse momentum of the cells which are identi-

fied by the FSCOMB algorithm as noise. This noise can be substracted globally from the LAr
contribution or for each module.

The mimimization procedure is performed such that the transverse momentum of the hadrons
is projected onto the electron direction, in such way only the p t component parallel (or antipar-
allel) to the pel

t is considered. The minimization requirement

∂L
∂αj

= 0 (5.6)

defines a system of M equations corresponding to the M considered modules and octants:

Nevents

∑
i=1

pi,k
t,LAr ·

(

pel
t −

[

pTrack
t + pHadSpa

t − pNoise
t,LAr

]

− αK

M

∑
j=1

pi,j
t,LAr

)

= 0 (5.7)

The results of the minimization determine the energy scale factors αk for the M = 120 modules
and octants of the LAr calorimeter. The solution of Eq. 5.7 is obtained using numerical matrix
techniques.
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Since the Lagrangian method relies on the balance of the transverse momentum of the elec-
tron and the hadrons to derive the calibration constants of the LAr calorimeter modules, it is
important to consider a calibration sample almost free of background events.

A precise determination of pel
t is ensured by requiring a BST track validation of the electron can-

didate cluster. Photoproduction background is considerably reduced by requiring the energy
of the scattered electron to be Ee > 20 GeV (see Fig. 3.9(b)).

In addition, the calibration sample uses events where the hadronic angle lies in the LAr accep-
tance. In order to suppress events where the hadronic final state escapes undetected through
the beam pipe, the angular coverage is restricted to 15◦ ≤ γh ≤ 150◦ . Furthermore the trans-
verse momentum of the hadrons pt,had has to have at least 30% of the electron momentum. This
cut also reduces the losses in the forward direction where pt,had tends to be zero.

In Fig. 5.2 are shown the calibration constants of the LAr calorimeter for data of the shifted
vertex period and the signal MC DJANGOH. The calorimeter response is well described by the
MC simulation only for the electromagnetic part, but differences are observed in the hadronic
modules, specially for the forward module IF2.

The pt,bal distribution for the calibration sample, before and after the calibration constants are
applied is shown in Fig. 5.3 (a) and (b), respectively. A good description between the data and
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the MC simulation is found after applying the calibration constants. Nevertheless, the mean of
the distribution is not located at the expected value pt,bal = 1. The values of pt,bal vary according
to the phase space in which the event occur. Therefore the dependence of the p t,bal distribution
on the angle of the hadrons and on the kinematic variables has to be studied in more detail for
the final DIS analysis sample (for a detailed description of the DIS sample see table 6.1). This
studies are presented in the next section.

5.3.2 Description of the HFS in the DIS analysis sample

As already mentioned at the beginnig of this chapter the HFS is a complex system. The p t,bal

and the (E − pz)tot distributions of the DIS sample are the unique quantities used to study
the total energy flow of the HFS. On the one hand, the pt of the hadrons should be balanced
with the pel

t of the electron, but on the other hand the event sample should also conserve its
longitudinal energy.

In Fig. 5.4(a) and (c) are shown the pt,bal distributions for the whole DIS event selection before
and after applying the calibration constants. An improvement of the description between the
data and the MC is observed for the whole DIS sample. Apart from the normalization problem
which will be discussed in the next chapter, a slight imbalance of the order of 3% is observed
for values of pt,bal < 0.6 (see Fig. 5.4(c)). The deviation between the data and the MC simulation
is quantified by its ratio, which is shown in Fig. 5.4 (b) and (d).
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As in the calibration sample, the pt,bal distribution is good described by the MC simulation,
but it does not peak at the expected value 1. In order to investigate how the balance of the
transverse momentum is distributed over the accessed kinematical region, the dependence of
pt,bal on the angle of the hadrons and on the kinematic variables is studied.

Using the transversal and longitudinal momentum of the HFS, the polar angle of the hadrons
θhad can be calculated (see Eq. 3.8). The polar angular dependence of the pt,bal distribution is
shown in Fig. 5.5(a). The mean value of the pt,bal distribution deviates from 1 depending on
which hadronic angle θhad is accessed. For low and high values of θhad the ratio deviates from 1
by 5%. This behaviour leads to a distribution of pt,bal with a mean value of 0.85. The deviation
between the data and the MC is shown in Fig. 5.5(b), which does not exceed 2% for θhad > 20◦.
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The dependence of pt,bal on the transversal momentum pel
t of the electron is shown in Fig. 5.5(c).

In this case, the difference between data and MC is concentrated at low values of p el
t . The MC

can describe the behaviour of the data even at low values of pel
t . For values of pel

t > 1 GeV, the
mean value of ptbal approximates to 1. Hence the quality of the pt,bal reconstruction varies with
the kinematical regions characterized by θhad and pel

t .

In order to investigate how the transverse energy flow is related with the longitudinal energy
flow, the dependence of the pt,bal distribution for different values of y is analysed. In such way
a “measure” of the transverse and longitudinal energy flow can be determined.

The kinematical variable y characterizes the fraction of the longitudinal energy that the HFS
takes after the ep collision. For high values of y the HFS is located mainly in the backward
region of the H1 detector, while for low values of y the HFS is scattered in the forward region
of the H1 detector. Using this naive characteristic of y, one can understand that depending
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on which kinematical region the event occurs, the different subdetector components of the H1
detector play a relevant role.

For low values of y the transverse momentum of the hadrons tends to be reconstructed to lower
values than the transverse momentum of the electron pel

t . This can be seen in Fig. 5.6 where
the pt,bal distribution is shown for different intervals of the inelasticity yΣ. From Fig. 5.6(a) and
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(b) follows that for low values of yΣ < 10−2, the pt,bal is lower than 1. The opposite behaviour
is observed at y > 10−1 where pt,had is reconstructed to higher values of pel

t (see Fig. 5.6 (e) and
(f)). Nevertheless for values of yΣ > 10−2 the balance between the electron and the hadrons is
well described by the MC simulation, the difference between data and MC do not exceed 2%
for this yΣ region.

The pt,bal distribution is used to investigate the energy flow of the HFS in the transverse direc-
tion, and it is observed that for values of yΣ ≥ 10−2 is good described by the MC simulation
(see Figures 5.6(c) to 5.6(d)). However the kinematic variable yΣ is not well described in the
whole sample as can be seen from Fig. 5.7. The MC simulation can not reproduce the behaviour
of the data for low values of yΣ, spefically an excess is observed around yΣ ≈ 10−2. Since yΣ

is one of the most important kinematical variables used to measure F2, and pt,bal is used as a
reference for the hadronic energy scale, the disagreement between data and MC for low values
of y had to be investigated in more detail. The reason of the discrepancy might be related to
an incomplete description of the physics which is implemented in the MC simulation. That
would mean that the discrepancy comes from the proton structure function assumptions, or it
might be that the discrepancy is a detector effect. In the following paragraphs this last option
is investigated in detail.

The reconstruction of y with the hadron method allows to identify which subdetector compo-
nent has the main impact in a specific kinematical region. The contribution of a subdetector
component i − had to the kinematical variable yhad is calculated through the fraction of the
(E − pz)i−had measured by the subdetector component i − had to the total (E − pz)had of the
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hadrons. For example, in order to calculate the fraction of y coming from the track measure-
ment, each event is weighted with

f Track
y =

yTrack

yhad
=

(E − pz)
Track

(E − pz)had
(5.8)

where

(E − pz)had = (E − pz)LAr + (E − pz)Track + (E − pz)HadSpa (5.9)

(E − pz)had considers the contributions from the LAr, tracks and the hadrons measured with
the SpaCal calorimeter. The decomposition of yhad is shown in Fig. 5.8, where the whole mea-
sured energy is taken into account. At high yhad the contribution of the SpaCal calorimeter
dominates, while the tracks contribute mainly at medium values of yhad. The LAr calorimeter
contributes over the whole kinematic region, and the identified LAr-FSCOMB noise plays a ma-
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jor role in the low yhad region. From Fig. 5.8 it is clear that in the region y ≈ 10−2, where the
“yΣ−bump” occurs (see Fig. 5.7(a)), the identified LAr-FSCOMB noise has a large influence on
the reconstruction of the kinematics from the HFS.

In addition to the noise identification performed by the FSCOMB algorithm there are several
noise suppression mechanisms implemented in the reconstruction of the energy measured by
the LAr calorimeter. The first noise rejection is performed during the recording of raw data.
Further noise suppression are done by the algorithms which merge the energy deposition into
clusters [97, 98].

In order to study the influence of the noise in the DIS selection, different MC simulations were
performed varying the noise input. The procedure used to include the noise in the MC simula-
tion of the H1 calorimeter and how the noise is treated during the reconstruction is explained
in the next section.

5.4 LAr Noise

5.4.1 Noise in the MC simulation

The energy deposited in the LAr calorimeter is overlayed with noise signals. Basically, two
contributions not originating from the genuine ep DIS event are present during the energy
measurement. One noise source is related to the capacitance of the LAr cells and of the ampli-
fiers which process the signals, while another noise source is beam induced [96, 100]. This two
noise sources are indistingible from the real LAr signal during the data taking phase.

In contrast to the data, the energy depositions obtained over the whole detector with the MC

simulation arise exclusively from the ep collision. Thus, in order to compare the energy mea-
sured in the LAr with the MC simulation, the noise present in the data also has to be considered.
Two strategies can be followed, one can either try to simulate the noise or one can add the noise
to the MC extracted from real data. The noise simulation is difficult, since it changes with the
run period and the beam conditions and its shape is not a simple gaussian distribution which
could be added to the signal of the calorimeter cells. Therefore in H1 the LAr noise is added
simply to the MC simulation using its sprectra recorded with real data.

The noise is readout in special runs known as “noise files”. The aim of the noise-file is to record
the sprectrum of the noise of each LAr cell. The noise-file is taken with random triggers. The
task of the random trigger is to get empty events without any physics signal originating from
ep event. Thus, in the ideal case pure noise should be collected. The noise-files are runs qualified
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as poor and usually are taken with ep collisions and contains typically only 1000 events. The
noise file recorded for the shifted vertex period will be in the following section called “default
noise-file”.

Each event of the MC simulation, will contain in addition to the energy depositions of the ep
collision the energy deposited of one event of the noise-file. This means that each N−th events
1, the same noise pattern is fed into the MC simulation. After the noise from the noise file is
incorporated in the MC simulation, the noise suppresion algorithms will be performed in the
same way as applied to the data.

For events coming from the normal data taking, the signal of the LAr cells is readout only
in case, its deposited charge is greater than the noise cut σ. The value of σ depends on the
position of the module, having a value which varies between 10 MeV and 30 MeV [40, 91]. This
noise suppression is applied online for all data. However, this cut is not applied if a noise-file is
taken, since the aim of the noise-file is to readout the whole noise spectrum. Thus, the first noise
suppression which is performed in the MC, is the application of the online σ cut.

The noise suppression is performed to all LAr calorimeter cells, and it can occur that the inves-
tigated cell has a energy which is below the σ or pedestrial value. In order not to overestimate
the signal, the cells which have negative energy below the σ value will not be excluded. Thus,
the noise substraction is performed using the absolute value of the energy threshold n · σ (the
value of n depend on the octant in which the cell is located).

During the reconstruction of the energy measurement a so called “topological noise suppre-
sion” is also performed. One cell will be considered in the cluster algorithm if its energy or the
energy of its neighbor is higher than 4σ [98]. The noise suppression mechanism explained in
the previous paragraphs together with the cluster algorithm is done in the same way for data
and MC.

5.4.2 Investigation of the noise in the MC

In order to investigate the influence of the noise file and the noise which is identified by the
FSCOMB algorithm, different MC simulations were produced varying the input noise-file. In
order not to change the physics coming from the ep DIS event the MC simulations must have
the same generated files as the ones disccussed in section 3.2.

The following MC samples were produced:

1where N is the length of the noise file
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1. Half-Noise MC sample.
As already mentioned the noise-files posess only 1000 events, thus its statistic could create
a bias in the final measured distributions, since each 1000 event the same pattern of noise
is used. To study the influence of this possible bias a MC with half of the statistics of the
used noise-file was produced.

2. Alternative noise file MC sample.
In order to investigate how the final measured distribution are influenced by the added
noise, an alternative noise-file was used to produce the MC simulation. The noise-file used
until now, were recorded one day after the shifted vertex run period. The alternative
noise-file was recorded three month before the shifted vertex period 2.

The amount of added energy on the default and alternative noise file after applying the
online cut as function of θcell is shown in Fig. 5.9. One can see that the default noise-file
of the shifted vertex data has in average more deposited energy than the alternative one.
How much this additional noise changes the hadronic distributions will be discussed in
the next section.

3. No-Added noise MC sample
A MC where only the energy deposition in the LAr comes from the real ep scattering is
obtained by dropping the contribution derived from the noise-file. In order to compare
with the data the pedestal or σ cut value is performed. This MC can be used to derive an
upper limit of the error due to a “wrong” identification of the noise.

2The noise-file for the shifted vertex data was taken at 21.08.00 in the lumi fill 2601 while the alternative noise-file was
taken in the lumi fill 2462 the 11.06.00
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In the following subsections, the HFS distributions for each of the special MC simulations to-
gether with the default MC simulation are presented. The data sample of the three special MC

simulations were calibrated with the Lagrangian method explained in section 5.3.
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Half-Noise MC

The calibration constants with half of the statistic of the default noise-file do not considerably
change from the calibration constants compared to the whole statistic. The main distributions
as pt,bal and yΣ show the same behaviour as the distributions presented in section 5.3.2. There-
fore this result does confirm that the statistics of the noise-file does not affect the measured final
distributions.
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Alternative-Noise and No-Added-Noise MC

Variations of the calibration constants are observed in the simulation when the alternative noise-
file is used and when no-noise is added. In Fig. 5.10 is shown the comparison of the calibration
constants between the default MC simulation (closed points) and the alternative noise-file (a)
and the simulation without addition of noise (b). The calibration constants for the alternative-
noise MC differ in average by 2% from the calibration constants of the default noise-file. In case
the noise is not added in the MC simulation, the calibration constants differ 3% and 6% from
the default MC, as follows from Fig. 5.10 (b). The calibration constants of the CBH1 modules
vary strongly due to the limited statistic.

The comparisons between the data and the different MC simulations for the yΣ distributions
are shown in Fig. 5.11(a). The excess of data over MC at yΣ ≈ 10−2 is always present and seems
to be independent of the choice of the noise-file.

Fig. 5.11(b) shows the mean value in yhad of the noise identified by the FSCOMB algorithm
(see 5.2.1). The noise identified by the FSCOMB algorithm is localised in average at the same
values of yhad for each MC simulation. In fact, also the simulation where no noise was added,
shows the same behaviour. For the no-noise MC the average value of yhad is found towards
lower values than the simulations where the noise was explicity added using the noise-files (see
Fig.5.11(b)). This is expected since, no additional noise is explicitly added. Comparing the
distributions of the position in yhad of the noise in Fig. 5.11(b), it is clear that the FSCOMB al-
gorithm identifies more noise than acctually is added. The isolated clusters which the FSCOMB

algorithm identifies as noise do not always correspond to the noise added with the noise-file
in the MC simulation. Part of those isolated cluster can be real signals coming from the ep
scattering.

The isolated clusters which are identified by FSCOMB as noise, are located mainly in the for-
ward region and are isotropically distributed in azimuth. However, the substraction of the
FSCOMB noise is necessary since its incorporation into the reconstruction of the kinematical
variables conduces to a huge disagreement between the data and the MC simulation of more
than 10%. Fig. 5.12 show the distributions of yΣ in case the FSCOMB noise is not substracted.
The yΣ distribution is better described if the FSCOMB noise is substracted (compare Fig. 5.7(a)
with Fig. 5.12(a).)

Another source of noise can influence the measurement of the (E − pz)had of the HFS. These
energy depositions are coming from back scattered particles in the forward region. This rescat-
tering contribution is included already in the MC simulation.

From this results one concludes that:
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• The addition of the noise-files does not considerably change the measured distributions
relevant for the F2 measurement.

The relative contribution of the LAr calorimeter differ from the official and the alternative
noise file by less than 2%. Fig. 5.13(a) shows the yhad decomposition of the data and the
comparison between the MC simulations using different noise files. The drawn band in
Fig. 5.13(a) represent the variations of the hadronic response using the default MC and the
MC with the alternative noise-file. The width of the band is less than 2% over all accessed
values of yhad

• The noise identified by the FSCOMB algorithm has the biggest influence on the recon-
struction of yhad and yΣ for values of O(10−2).

The excess of the data in comparison with the MC remains. Nevertheless the uncertainty of the
noise identification performed by FSCOMB has to be taken into account. The uncertainty will
be calculated using the variation between data and MC of the FSCOMB noise over the whole
yhad range. Since the MC without noise-file is not able to describe the data, the uncertainty is
derived using the MC with the default noise-file. In Fig. 5.13(b) is shown the yhad decomposition
distribution for the no noise MC simulation. For this MC simulation, the LAr contribution and
of course the LAr-noise contribution completely disagree with the measured data.

The uncertainty due to the noise substraction procedure is taken to be 10%. In Fig. 5.14(a) the
yhad decomposition distribution is shown again. The band corresponds to the variation of the
LAr and the FSCOMB noise, in case the FSCOMB noise is varied by 10%. In Fig. 5.14(b) is shown
the ratio of the noise fraction between data and MC taken from the default MC. From this
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distribution follows that the assigned 10% uncertainty is conservative over the whole measured
phase space.

Since at y = 10−3 the noise is significant, the uncertainty of the LAr signal is taken to be 10% at
y = 10−3 and is extrapolated linearly to 2% at y = 10−2. Fig. 5.14(c) shows the decomposition of
yhad for data and the default MC in case the LAr signal is varied by its uncertainty (10% − 2%).
The drawn band correspond to the asigned uncertainty of the LAr signal.

The uncertainties of the LAr signal and Noise will be taken into account for the determination
of the systematic errors of the F2 measurement.

One additional remark concerning the official noise-file used for the shifter vertex data period
is necessary: it was recorded one day after the shifted vertex period ended. Thus, it was not
clear if the noise conditions of the noise-file are appropiate for the shifted vertex data sample.
One possibility to verify it is using so called “random-events”. These data are recorded always
during the data taking with a constant rate. The main difference between the random-events
and the noise-files is, that the random-runs posess the online noise suppression cut of 2σ 3.
Therefore not all cells are read out and recorded. While, the noise-files contains the whole noise
spectrum for all cells. However, this random events can be used to check the noise behaviour
of the data period by comparing the noise contribution above the online noise σ cut. The
comparison of the noise-file used for the shifted vertex MC with the random runs was performed
in [100]. Good agreeement was found between the official noise-file and the random events of
the shifted vertex period. Thus, the official noise-file is well suited to be used for the MC of the
shifted vertex period.

5.5 Diffractive Events

As was already pointed in section 5.3.2, the DJANGOH MC can reasonably describe the be-
haviour of the inclusive data. Nevertheless, in previous analysis it was already observed that
DJANGOH is not appropiate to study exclusive processes like DVCS[101] and QEDC [102].

One possible explanation of the yΣ discrepancy between data and MC could come from the
diffractive component of the cross section. Diffractive events constitute 6% of the inclusive DIS
cross section [103]. The DJANGOH MC used in this analysis, includes diffractive events through
the model of soft color interactions. In order to investigate if this component has an influence
on the yΣ distribution and the energy flow, a MC sample using the same version of DJANGOH

without the soft color interaction model was produced.

3The online noise suppresion cut is different for each module of the LAr.
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In Fig. 5.15 the yΣ and the pt,bal distributions are shown. The data are compared to the MC sim-
ulation where no diffractive events were generated. The diffractive contribution of the DJAN-

GOH simulation is not localized in low y region. In addition the exclusion of the diffractive
events creates an imbalance of the transversal energy as follows from Fig. 5.15(b). Therefore
the diffractive component can not explain the differences observed between the data and the
MC simulation in the low y region.

5.6 Hadronic energy scale uncertainty

In this chapter, the HFS was studied using the pt,bal and (E− pz)tot distributions. The deviations
of the MC simulation to the data were used to derive the systematic uncertainties which are
listed in table 5.2.

Source Uncertainty reference
Noise identification 10% Fig5.14(b)

Hadronic energy 10% for y = 10−3 Fig 5.14(c)
2% for y = 10−2

Hadronic SpaCal 350 MeV Fig. 5.1(b)

Table 5.2: 
A" 3B ,(7*
�'/��5��%> B�7"9/  �" � 3 (&/C ���� ����#2%>(2/�" � � �!��3��'%>�7� ��/! �



Chapter 6

Cross section Measurement

In this chapter the complete DIS selection is presented and the cross section measurement for
the shifted vertex data is performed. The event selection used to identify the scattered elec-
tron with the SpaCal calorimeter and with the BST was already discussed in chapter 3. The
efficiency of the electron identification was studied using a sample of ISR tagged events, since
it has a minimal background contribution. Nevertheless, the DIS sample is influenced at low
energies of the scattered electron by the photoproduction background. Also, the measured
distributions have contribution from processes like elastic QED compton scattering, which are
not included in the MC simulation and have to be rejected. Thus, it is also important to study
the efficiency of the cuts which define the full DIS selection. In section 6.1 the complete DIS
selection is introduced together with the efficiency for the most important cuts.

One important step in the measurement of the DIS cross section is the identification of the
fiducial region, where all used detector components worked properly, therefore a summary of
the trigger efficiency during the shifted vertex data studied in [100] and its influence on this
analysis is discussed in section 6.2.

In section 6.3 the z−vertex distribution of the event selection as reconstructed by the BST is
studied and in section 6.4 the comparison between the data and the MC simulation for the
most important variables is presented.

The method used to measure the cross section is explained in section 6.5. The migration of the
selected events between the measured bins is studied in section 6.5.1 and the contribution to
the cross section from non-tagged radiative events is discussed in section 6.5.2.

The cross section measurement and the extraction of the proton structure function F2 are the
subject of section 6.5. As already mentioned in section 3.1, this analysis uses the BST as the
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main detector to reconstruct the angle of the scattered electron, nevertheless there is another
possibility to reconstruct the angle of the scattered electron by using the BDC and the CTD. In
this thesis only the BST results are described, the measurement of the BDC as well as the com-
parison of the cross section measurement determined in this thesis with the BDC is presented
in [100].

In chapter 4 and 5 it was explained in detail how the calibration of the SpaCal and the LAr
calorimeters were performed for the shifted vertex data. There, the scale of the energy mea-
surement of the scattered electron was derived. Moreover, the deviations between data and MC
of the transverse energy flow were used to determine the uncertainty of the hadronic energy
measurement. These uncertainties together with the results of other analyses [100, 105] will be
used to calculate the total error of the cross section measurement. These studies are presented
in section 6.7.

6.1 DIS selection

Table 6.1 summarizes the cuts used to identify DIS events. The event selection is mainly per-
formed by the SpaCal calorimeter and the BST, a minimal number of cuts depending on the
hadronical final state are considered, this are the pt,bal and the (E − pz)tot cuts (see Eq. 5.4 and
Eq. 3.10 for the definition of both variables).

The efficiency of a cut is studied using the number of events that the particular cut has either
accepted or rejected. Nevertheless some background contributions are only present in the data.
For example, events coming from an empty pilot bunch are rejected from the data, but its
efficiency can not be studied with the MC since such events are not simulated. Similarly, the
MC does not simulate events due to the satellite part of the z−vertex distribution, therefore the
z−vertex cut can not be excluded. In general, cuts which are applied to reduce effects which
are not considered in the MC simulation can not be excluded to study the losses due to cut
application. These cuts are marked as fix in Table 6.1 and will allways be applied.

The efficiency of the cut-i is defined as,

ε(cut − i) =
Nall

Nall + Nrej,cut−i
(6.1)

where Nall is the number of events accepted by the DIS selection and Nrej,cut−i is the number of
good events rejected by the cut − i. Since the data include a certain amount of background, the
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DIS selection
Efficiency Cut Recontruction

Study method
SpaCal: fix Fiducial volumen e, Σ

fix 7 GeV< Ee < 30 GeV e, Σ
+ Rclog < 4 cm e, Σ

+ Eveto < 1 GeV e, Σ
+ fhad < 0.15 e, Σ

BST: + ∆R = |Rbst − RSpaCal | < 1.5 cm e, Σ

fix |zBST − 70| < 30 cm e, Σ
fix Rbst > 10 cm e, Σ
+ NBST,hits < 200 e, Σ

Hadronical Final State:
+ Pt,bal > 0.3 e, Σ
+ Rcompton e, Σ
+ Rveto e, Σ
+ (E − pz) > 35 GeV e

Table 6.1: � � � 3@��+ � �E �" (&/ ��3B�!#; .( � � ��3��'%1�  ���� "9/���+���3�" :�����%>(A3B3 3B�!�� �" (&/

PHOJET MC is used to estimate it. Thus,

Nall = N(data)acc − N(PHOJET)acc Nrej,cut−i = N(data)rej,cut−i − N(PHOJET)rej,cut−i

(6.2)

with N(data)acc and N(PHOJET)acc being the number of events accepted in the data and in
the PHOJET MC using the whole DIS selection. The PHOJET contribution is normalized to the
data using the normalization factor determined in section 3.6. In the following sections, the
efficiency of the cuts cuts marked by a “plus” sign in Table 6.1 are studied and compared with
the expectation of the signal MC DJANGOH.

6.1.1 Rclog

The transverse extension of the electron shower over the SpaCal plane Rclog is shown in Fig.
6.1. One can see that the MC does not describe the Rclog variable (see Eq. 3.17), in particular
a shift between the data and the MC simulation is observed and the clusters with transverse
extension greater than 4 cm are concentrated in the tail of the distribution. The shift of the R clog

variable is a known problem related to the fast shower simulation in MC [102].
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The efficiency of the Rclog cut as function of
the energy of the scattered electron Ee for the
data and the DJANGOH MC is presented in
Fig.6.2(a). The error band of the data cor-
responds to the uncertainty asigned to the
background substraction 15% [106]. The lim-
its of the band are obtained varying the pho-
jet normalization 15%. The efficiency curve is
not described by the MC simulation at lower
energies.

The exclusion of the Rclog cut leads to more
background in the sample, and the PHO-

JET contribution for accepted and rejected
events considerably changes. The efficiency
was therefore studied using different PHO-

JET contributions for accepted and rejected
events. Thus, the background contribution
was determined as in section 3.6 but relaxing
the Rclog cut. The normalization of the PHO-

JET MC to the data increases by almost 70%.
In contrary to the accepted events, the energy distribution of the mis-identified scattered elec-
tron Ee is not described by the MC simulation for the rejected events.

The different normalization factors improve the description of the efficiency curve, as can be
seen from Fig. 6.2(b). Nevertheless, discrepancies are still observed for the interval between
7 GeV and 9 GeV. This discrepancy is related to the non-description of the energy Ee of the
rejected events by PHOJET and due to the non description of the Rclog variable itself (see the tail
in Fig. 6.1). In section 3.5 it was shown that using a sample almost free of background events
(the tagged ISR sample), the efficiency of the Rclog cut is in agreement with the DJANGOH MC

simulation (see Fig. 3.7(a)).

6.1.2 fhad, ∆R, Rveto

In Fig.6.3(a) and (b) are shown the efficiency of the hadronic fraction fhad < 0.15 cut and of
the SpaCal BST matching ∆R < 1.5 cm cut, as function of the energy of the scattered electron
Ee (see equations 3.18 and 3.19). The fhad cut is inefficient for low values of the energy of the
scattered electron, but its behaviour is well described by the signal MC DJANGOH. For values
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of the scattered electron Ee ≈ 7 GeV, the efficiency of the ∆R cut goes to unphysical values. This
is just a statistical fluctuation coming from the substraction of PHOJET. The difference between
data and MC for both cuts do not exceed 2%.

The Rveto cut, rejects events with a wrongly recontructed vertex by the central tracking devices
outside the z−vertex measured region |z − 70| < 30 cm. From Fig. 6.3(d) follows that the Rveto

cut is full efficient.

6.1.3 Rcompton

In order to extract correctly the proton structure function from the measured cross section, it is
necessary to correct for contributions coming from higher order radiative processes. The largest
contributions to the corrections arise from QED processes in first order in α. In such processes
a photon is radiated from the incoming electron or from the outgoing electron. Experimentally
one distinguishes between different event classes in the detector, the QED Compton (QEDC)
being one of those signatures.
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Since the DJANGOH1.4 MC includes only the inelastic component of the QEDC cross section
and does not include the elastic contribution, a rejection of those events has to be performed.
The QED Compton signature is characterised by two electromagnetic clusters in the backward
region of the H1 detector, one corresponding to the scattered electron and the another to the
radiated photon. The energy of both clusters can be measured with the SpaCal calorimeter.
The electron and photon cluster should be in a “back to back” topology.

In elastic and most inelastic QEDC events, the detector is empty except for the electron and
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the photon, so that no central tracks are reconstructed. Although the requirement of a vertex
reconstructed with the CTD reduced the contribution of the QEDC events to the cross section,
a small fraction can still remain if one reconstruct the vertex with the BST [90, 102].

The cuts used to reject the QED Compton events, follow the selection criteria developed in
[102]. Rcompton considers the following selection to reject the compton events. The energies of
the electron and photon clusters should be greater than 4 GeV and the sum of the energy of both
clusters should be greater than 18 GeV. Also, the difference of the azimuthal angle between the
electron and photon clusters should correspond approximately to φ ≈ 180◦ . In case the event
fulfil those requirement it will be rejected.

In Fig. 6.3(c) is shown the efficiency of the Rcompton cut as function of the energy of the scattered
electron. The rejection due to the Rcompton cut is localized mainly between 15 GeV and 20 GeV.
The differences of data and MC do not exceed 2%.

6.1.4 pt,bal

As was already mentioned in the previous chapter, the acceptance of the backward and forward
part of the detector is limited due to the beam pipe holes used to store the beams. The hadronic
final state can be produced at small angles escaping the forward calorimeter acceptance; this
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.

cut can create an imbalance of the transverse momenta of the hadrons with the electron. Such
non-balanced events are concentrated mainly at very small p t,bal values, which is shown in Fig.
6.4(a).

The losses become especially pronounced for high values of x (low y). This region corresponds
to the resonance region where W tends to be small. In Fig. 6.4(b) is shown the WΣ distribution
for events having pt,bal < 0.3, it can be seen that those events are mainly concentrated in the
interval WΣ < 50 GeV.

Fig.6.4(a) and (b) demonstrate that the pt,bal cut has to be performed in order to reduce the
losses of low pt,had particles, since the MC simulation does not follow the behaviour of the data
for values of pt,bal < 0.3 and conservatively WΣ < 50 GeV.

The efficiency of the pt,bal < 0.3 cut as function of the energy of the scattered electron is shown
in Fig. 6.5(a). The efficiency is not completely described by the MC simulation for values of
Ee ≤ 15 GeV. Excluding the pt,bal < 0.3 cut, more non balanced events enters to the selection and
much of them should be background. In order to minimize the background contribution, the
efficiency for the pt,bal < 0.3 cut is studied using in addition a (E − pz)tot > 35 GeV cut, which
is used in the analysis for the region where the electron method is applied. The (E − pz)tot >

35 GeV cut, will guarantee that the longitudinal energy conservation is fulfilled. The efficiency
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However, the (E − pz)tot > 35 GeV cut is
not performed in case the kinematic is recon-
structed with the Σ method. On one hand,
one sees that once the longitudinal energy
conservation is fulfill, the pt,bal efficiency is
good described, the discrepancy observed in
Fig. 6.5(a) can be related to background con-
tribution or to an incomplete implementation
of the physics of the MC. The DJANGOH MC

does not generate events in the region where
both x and y are small, since Q2 ≈ syx, those
events are mainly concentrated for low val-
ues of Q2. Thus, the description of the pt,bal

efficiency for Q2 > 2 GeV2 should be better
described even not applying the (E − pz)tot

cut. This efficiency is shown in Fig. 6.6, also
a good agreement between data and MC is
found.

6.1.5 (E − pz)tot

The (E − pz)tot > 35 GeV cut is applied only
in case the kinematical variables will be reconstructed with the electron method. This cut is
applied to reduce the contribution of photoproduction background and ISR events.

The efficiency of the (E − pz)tot > 35 GeV cut is shown in Fig. 6.7, one observes that DJANGOH

MC describes the behaviour of the data. For energies of the scattered electron greater than
17.5 GeV, the (E − pz)tot from the electron is sufficient to satisfy the cut (E − pz) > 35 GeV cut,
so the efficiency is 100%. For energies of the scattered electron lower than 17.5 GeV, the (E −
pz)tot of the electron is not sufficient to satisfy the (E − pz)tot > 35 GeV cut and therefore the
(E − pz)tot from the hadrons begin to become important. The drop of the efficiency curve can
be explained to be due to particles escaping through the beampipe in the backward direction
and therefore the measured (E − pz)tot will be smaller than 2Einc or the event is a ISR one.

The (E − pz)tot cut is not applied in case the kinematical variables are reconstructed with the Σ
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method. However, the kinematical variables are also correctly reconstructed since, contrary to
the electron method, the centre of mass energy is corrected for the photon emission in this case
(see section 3.3.3 for details).

6.2 Trigger efficiency and fiducial volumen

The relevant triggers used in the low Q2 analysis are S0, S3 and S9. Table 6.2 summarises the
configuration of S0, S3, S9 during the shifted vertex period.

The basic information comes from the deposited energy in the SpaCal calorimeter cells. This
energy deposition defines the bits of the Inclusive Electron Trigger (IET), which is the basis of all
trigger elements delivered by SpaCal. IET considers three different energy thresholds denoted

Subtrigger L1 L2
S0 IET>1 || Cen−LIET > 2 R10
S3 IET>2 || Cen−LIET > 3
S9 IET>0

Table 6.2: � ���  �%8" $A$7�7%A�E(2/ ��$��'%��! �" (&/ *8(	%� ���� 3E�7" *� .� # :���%> .��D4%��A/ � � ��� � � � �'/�# � ��/!= � � � %1�5$	" (2/!3 �7%1� "9+ +��!3B �%1�! .�!#
"9/ �	" $ � � � � �
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as IET> 1, 2, 3 and discriminates at L1 between different SpaCal regions. The thresholds of
IET> 1, 2, 3 during the shifted vertex period were set to 2, 5, 10 GeV, respectively. The central IET
Cen−IET region cover mainly the inner region of the SpaCal surface. In Fig. 6.8 the coverage of
IET and Cen−IET is shown. During the shifted vertex period, the thresholds of Cen−IET were
also set to 2, 5, 10 GeV.

Due to the acceptance of the BST during the shifted vertex period, only S0 is used. The sub-
trigger S0 has a threshold of 5 GeV and a L2 condition R10. The L2 condition means that only
events are considered, which contain at least one impact outside a circle of 10 cm on the SpaCal
surface.

The efficiency of S0 was studied in [100] and is calculated taking as reference a group of inde-
pendent subtriggers which validate the event. The reference sample considers events where
only one electron candidate was at L4 reconstructed. In order to minimise the influence of
background events in the reference sample, an additional electron identification selection has
to be applied. Also, the time of flight of the electron candidate should correspond to the time
expected of an ep collision.

Fig 6.8(b) shows the efficiency of S0 as function Rbox = max(|xcl |, |ycl |) of the scattered electron
measured by the SpaCal calorimeter. Using only S0, the fiducial volumen is restricted to a
SpaCal surface with a box cut of 10 cm. This trigger region together with the cells which were
excluded in chapter 3 constitute the fiducial volumen on the SpaCal plane used in the BST
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As was already mentioned in the pre-
vious section, the BST analysis is per-
formed using only events accepted by
the S0 trigger. Since during the shifted
vertex period, S0 had a prescale differ-
ent of one, each event had to be cor-
rected with the corresponding prescale
factor of the analysed run. In average the
prescale of S0 was 1.15.

For MC there are two weights which are
used, one is related to the vertex position
of the simulated events, and the other
corresponds to the structure function as-
sumption of the MC. These two weights
are briefly explained in the followings
sections.

6.3.1 z−vertex Reweighting in the
MC

The determination of the vertex position
is important to correctly reconstruct the
kinematic variables, since its precision
directly influences the measurement of
the angle of the scattered electron. In Fig 6.9 is shown the mean and width of the vertex po-
sition measured by the BST during the shifted vertex data period as function of the analysed
run. The dashed lines indicates the luminosity fills. From Fig. 6.9(a) and (b) one can see that
the mean position and the width of the vertex changes during the luminosity fill [99].

Contrary to the data, the vertex position of the MC is a gaussian distribution with a fixed mean
position and width. Since the distribution of the vertex position of the data differs from the
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z−vertex simulated, the MC events are reweighted as a function of the z−vertex distribution.
Such it is possible to match the z−vertex distribution of the MC simulation to the z−vertex
distribution of the data.

The z-vertex reweighting procedure requires a sample which ideally is not influenced by addi-
tional systematic deviations and be inside the BST acceptance.

In order to get a z−vertex position in the BST acceptance, and to guarantee that all possible
z−vertex values are considered, only events with electron candidates which are located in the
interval 175◦ < θ < 176.5◦ are accepted. This angular interval correspond to the best radial
acceptance of the BST projecting on the SpaCal plane, which correspond to 12cm< RSpaCal <

22 cm. In addition, the Spacal selection of Table 6.1 is applied, but the energy of the scattered
electron should be greater than 15 GeV in order to reduce the contribution of photoproduction
events. The z−vertex distribution for data and MC for the previos selection is shown in Fig.
6.10. It can be seen, that the z−vertex distributions are slighlty asymmetric, thus a sum of
a gaussian function and a polynomial of first order can describe satisfactorily the tails of the
vertex distributions.

The weight to be used in the analysis is calculated as:
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data MC
P0 1685.69 10088.98
P1 73.167 72.274
P2 11.272 11.211
P3 45.858 −60.937
P4 −0.456 −0.297

Table 6.3: � �! B� �'/�# � � -���%��'� �E .�7%>3 (7*  ���� �' �-���%>*8(	% � � #  .(; ����4:!�7%� .�ED;#�" 3. �% "9? �! �" (&/ ��3�"9/�$  �����*��A/��� �" (2/ G

weightz−vertex =
G(zdata

v , Pdata
i )

G(zMC
v , PMC

i )
(6.3)

(6.4)

where G(zdata
v , Pdata

i ), G(zMC
v , PMC

i ) are the sum of a gaussian function and a polynomial ob-
tained from the fit of the z−vertex distributions of data and MC, respectively.

G(zdata
v , Pdata

i ) = P1 exp((zdata
v − P2)2/2P32) + P4 + P5 zdata

v

The fit parameters are shown in Fig. 6.10(a) and (b), and listed in table 6.3.

6.3.2 MC reweight

At generator level, the DJANGOH1.4 simulations were performed using the parton distribution
functions of the MRST(3,75) [104] group. These functions were selected due to their reasonable
behaviour over most of the measured kinematic range. However the MRST functions are only
applicable for Q2 ≥ 1.25 GeV2, and are not expected to describe completely the data for lower
values of Q2. In previous analyses [105], it was shown that the data can be described using
the fractal model [36] and the ALLM97 [33] fit, therefore during the analysis the events were
re-weighted according to:

weigthσ =
σFit

red(Q2, x)

σGen
red (Q2, x)

(6.5)

where σGen
red correspond to the originally generated cross section and σFit

red is the cross section
computed from the expectation of the fractal and the ALLM97 fit. Since the fractal fit only
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describes the low x region, for events having a generated value of x lower than 0.01 the fractal
fit while for the region x > 0.01 the ALLM97 fit is used.

6.4 Control Distributions of the DIS sample

In order to measure the cross section, it is necessary to verify if the MC simulation can repro-
duce the behaviour of the data. Therefore the distributions of the most important variables
were compared with the MC simulation. The MC and the data have to contain all calibration
constants and the weights introduced in the previous sections.

The final distributions of the main variables used to measure the cross section and to extract the
proton structure function F2 are shown in Fig 6.11 and in Fig 6.12. The MC is shown as the sum
of the signal MC DJANGOH and the background MC PHOJET. The background contribution
in each distribution is shown in addition as a shaded area. In all figures presented in Fig. 6.11
and Fig. 6.12 all cuts listed in 6.1 are applied.

The DJANGO MC is reweighted with the procedure explained in section 6.3.2 and normal-
ized to the integrated luminosity of the data which is 450 nb−1. However the fractal fit used to
reweight the MC was performed using previous H1 measurements with a wrong luminosity
calculation. The difference between the luminosity used to perform the fractal fit and the value
used in this analysis is 5%. The MC simulation is therefore 5% lower than the data. Neverthe-
less, the shape of the measured distributions are well described by the MC simulation.

In Fig 6.11(a),(b) are shown the energy and the angle of the scattered electron measured by
the SpaCal calorimeter and by the BST. The vertex distribution is shown in Fig. 6.11(c). The
kinematical variables x, Q2 and y reconstructed with the electron method, are shown in Fig 6.11
(d),(e),(f). In general a good agreement between the data and the MC simulation is observed.

In Fig 6.12, the E − pz and pt,had distribution for the whole DIS selection is presented. The
kinematical variables reconstructed with the Σ−method are shown in Fig. 6.12(c),(d) and (e).
The yΣ distribution is reasonably described having an excess in y ≈ 10−2, whose origin could
not be completely explained due to the noise in the LAr.

Since most of the variables are well described, the cross section and the extraction of F2 can be
performed. In the next section the method used to measure the cross section will be discussed.




 � � � � 
 �!��� � � 
 ���!� 
 � � � 
 � 
 � ���,� � � � � � �5
 � �&� � ��� �

0

5000

10000

0 10 20 30
Ee [GeV]

E
nt

ri
es

0

5000

10000

15000

172 174 176 178 180
θe [°]

E
nt

ri
es

0

5000

10000

15000

20 40 60 80 100 120
zBST [cm]

E
nt

ri
es

0

10000

20000

30000

0 5 10 15 20
Q2 e [GeV] 2

E
nt

ri
es

0

2500

5000

7500

10000

-5 -4 -3 -2 -1 0
log10(xe)

E
nt

ri
es

0

5000

10000

15000

-5 -4 -3 -2 -1 0
log10(ye)

E
nt

ri
es

Data

MC

Phojet

(a) (b)

(c) (d)

(e) (f)

Figure 6.11: � (2/  �%1(&+ #�" 3. �% "9? �  �" (2/!3 (�* � ��� ��/���%1$ ���.?����'/!$2+ � (7*  ��!� 3��5�! 6 .��%1� # �7+ � �� �%1(&/�� � � :!�7%� .�ED -�(73�"  �" (&/ �
� # � Q2 � � � x � * � y %1� �5(&/�3. �%����E .� #�	�"  ��  ���� �7+ � �E �%>(2/ � �5 ��!(�# � � ��� � � " 3C/�(	% � �'+ " �5� #  .(0 ��!�
+��A�4"9/�(73�"  �C(7*  ����C#A�! B� +5% � 3B� �4 .��D� 	�




 � � � � 
 �!��� � � 
 ���!� 
 � � � 
 � 
 � ���,� � � � � � �5
 � �&� � �����

0

10000

20000

30000

20 40 60 80 100
E-pz [GeV]

E
nt

ri
es

0

5000

10000

15000

20000

0 2 4 6 8
pt,had [GeV]

E
nt

ri
es

0

2000

4000

6000

8000

0 1 2 3 4 5
Q2 Σ [GeV]2

E
nt

ri
es

0

2500

5000

7500

10000

-5 -4 -3 -2 -1 0
log10(xΣ)

E
nt

ri
es

0

5000

10000

-5 -4 -3 -2 -1 0
log10(yΣ)

E
nt

ri
es

Data

MC

Phojet

(a) (b)

(c) (d)

(e)

Figure 6.12: � (2/  �%1(&+7#�" 3. �% "9? �! �" (&/�3 (7* � ��� E − pz �.?��  ��!�  �%1�'/�3.:���%13 � (&� �7/  ��'� (7*  ��!� ����#&%1(&/�3 pt,had � � ���
��"9/!�7� �! �" �5�'+�:���% " �'?'+ �53 � � � Q2 � # � xΣ �'/�# � � � yΣ %1� �5(&/�3. �%����E .� # 	�"  ��4 ��!� Σ � �5 ��!(�# � ���!� � �
3�"9� �'+ �! �" (&/ " 34/�(	% � �'+ " �5� #  .(; ��!� +��'�4"9/�(73�"  ��C(�*  ��!�<#'�! B� +5% � 3@�5�4 .�ED! 	�




 � � � ���	���4�E� � � 
 � 
 �&�����	� � 
>
 
�� 
 � 
 �����

6.5 Cross section determination

The DIS cross section is measured by counting the number of events in a x − Q2 grid. This
number represent the integral of the double differential cross section over the kinematic inter-
val. The cross section is given by:

d2σ(x, Q2)

dxdQ2 =
Ndata − Nbackground

AL
1
ε

1
1 + δ

βBC (6.6)

where:

• Ndata is the number of total events selected in the x − Q2 bin

• Nbackground represent the background events

• A denotes the detector acceptance which is calculated with the MC, as:

A =
Nrec

Ngen

being Nrec and Ngen the reconstructed and generated events in the particular bin.

• L is the integrated luminosity of the selected runs.

• ε are additional detector efficiency corrections obtained from data which were not in-
cluded or not correctly described in the MC. In this particular case, this are the trigger
efficiency of S0 [100].

• δ represents the radiative corrections, calculated as,

δ =
σ f ull

σBorn − 1

where σ f ull and σBorn denotes the full and Born cross sections.

• βBC are the bin center corrections which have to be applied in order to take the maximun
variation of the cross section over the bin size and to obtain the cross section at the bin
central value

βBC =
d2σBorn

dxdQ2
1

σBorn

The cross section measurement is significantly simplified if the MC already contains the radia-
tive corrections. In such case Ngen = σf ull LMC and therefore the cross section formula given in
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Eq. 6.6 can be written as:

d2σ(x, Q2)

dxdQ2 =
Ndata − Nbackground

Nrec

LMC

L
d2σBorn

dxdQ2
1
ε

(6.7)

since:

1
A

1
1 + δ

βBC =

[

Ngen

Nrec

] [

σBorn

σf ull

] [

d2σBorn

dxdQ2
1

σBorn

]

=
LMC

Nrec

d2σBorn

dxdQ2

The Monte Carlo method is applicable just in case the MC already contains the radiative cor-
rections and the relevant measured distributions are described by the MC. Thus, it is important
to perform detailed studies on the description between the MC and the data for all measured
quantities. This involves calibration, alignment and efficiency corrections. In chapter 4 and 5 it
was in detail explained how the calibration of the H1 calorimeter were performed to the shifted
vertex data. The alignment of the H1 detector was studied in [100], while the BST efficiency
were studied in [106, 105].

6.5.1 Bin selection

high low bin
boundary boundary center

0.85 0.75 0.8
0.75 0.6 0.675

Table 6.4:
� (��'/�#'��% � #A��� /�"  �" (2/ *8(	%< ���� y −
Q2 ?�"9/'/�"9/�$

The binning used in this analysis is the same that
was defined to perform the DIS cross section mea-
surement for the 1995 data. The binning is cho-
sen as a non-equidistant grid, mainly in the x−Q2

plane. Only in case the event has a value of y
greater than 0.6 a y−Q2 binning is chosen. This
procedure is performed to profit from the statistic
of the high y events.

In Fig.6.13 is shown the Q2−x plane together with
the bin definition. A trapezoidal shape is observed for each Q2 bin located in the lowest values
of x. This trapezoidal bins are defined in a y-Q2 grid, with the boundaries defined in Table
6.5.1. The rectangular grid in y, Q2 is transformed to a trapezoid area in x and Q2.

The statistics accumulated for each bin for the shifted vertex data is shown in Fig. 6.13, using
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either the electron or the Σ method. From Fig. 6.13, it follows that the electron and the Σ

method have comparable statistics for “high” Q2 values and x around 10−5. For higher values
of x at low Q2, no events are reconstructed with the electron method due the E− pz cut imposed
to reduce the influence of radiative events, for which the electron method leads to a wrong
reconstruction. The E − pz cut is not necessary for the Σ method, allowing therefore to access
higher values of x for low values of Q2.

Besides an equally distribution of the statistics, the aim of the binning is also to have a minimal
migration of events between the bins. A bad adjustement of the bin size can cause migrations
from bin to bin and therefore the cross section measurement can be influenced. In order to
control the migration of the events between the bins, the purity and stability value for each bin
is studied.

The purity and stability value are defined as:

Purity =
Nrec&gen

Nrec
Stability =

Nrec&gen

Ngen
(6.8)

where Nrec and Ngen are the numbers of events reconstructed and generated in a particular bin.
Nrec&gen represents the number of events which are reconstructed and generated in the same
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bin.

The purity is a measure for the migration of events coming from adjacent bins into the studied
bin, while the stability controls the migration of events out of the bin. The values of both
quantities are by definition restricted to the interval 0 to 1. In Fig. 6.14, the purity and stability
values in per cent for each bin are presented. Fig. 6.14 (a) and (c) show the purity and stability
obtained using the electron method, while in Fig. 6.14 (b) and (d) the purity and stability
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values obtained with the Σ method are presented. From this plots, one can see that the electron
method has values of purity and stability between 40% and 70%. The Σ method, in contrary
has lower values, between 25% and 50%.

The differential cross section is measured in each bin only in case the values of the purity and
stability are greater than 25%. In the kinematical region where the electron and the Σ method
overlap, the method having higher values of stability and purity is chosen.

Although the value of purity and stability for the Σ method are lower than the values of the
electron method, the Σ method extends the measurement to higher values of x and lower val-
ues of Q2. In Fig. 6.14, is also shown the acceptance of the BST when the angle of the scattered
electron has its maximal value (θ ≈ 178◦). One can see, that there are events which are localized
below the acceptance line, those events are ISR events. The purity and stability values of the
ISR events are greater than 25%, therefore the measurement of the cross section should be pos-
sible. Thus before to present the cross section measurement, the reconstruction of the incoming
energy for the radiative events is in the next section in detail studied.

6.5.2 Non-tagged ISR analysis
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For the electron method the ISR events are effi-
ciently removed using the (E − pz)tot > 35 GeV
cut. Nevertheless, the (E− pz) > 35 GeV cut is not
performed in case the kinematical variables are re-
constructed with the Σ method. In this case the
ISR event are used to enlarge the accesible phase
space.

In this analysis the radiated photon is not directly
detected in the photon detector of the luminosity
system. The identification of the initial state ra-
diation relies mainly on the recontruction of the
(E − pz)tot. One important check to be performed
is the reconstruction of the incoming energy Einc.

As was already mentioned in Chapter 3, the Σ-
method uses the longitudinal momentum conser-
vation to define the event kinematic, therefore the
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incoming energy can be reconstruced as:

Einc =
(E − pz)had + (E − pz)el

2
(6.9)

For MC one can verify, if the reconstructed energy of the ISR events agree with the generated
one. In Fig. 6.15 the distribution of the reconstructed and the generated energy of the incoming
electron are compared. The reconstructed incoming energy Einc is calculated with Eq. 6.9 and
is illustrated with the poins in Fig. 6.15, while in solid line is shown the incoming energy from
the generator level. Only events with Q2 < 0.85 GeV2 and having values of x in the interval
5 · 10−5 < x < 10−3 are shown. The selected events are located in bins where the values
of purity and stability are higher than 25%. In such way the contribution from ISR events is
high. On generator level the energy of the radiated photon is substracted from the energy
of the incoming electron in case the event was explicitly generated as a ISR event. A good
agreement between the generated and reconstructed energy of the incoming electron for the
main kinematic region is observed.

A pronounced peak is observed in the incoming energy Einc distribution presented in Fig. 6.15,
those events are 5.5% of the whole statistic and are non ISR events reconstructed with small
(E − pz)had. However, most of the events are good described by the MC simulation. The contri-
bution of such non-radiative events becomes higher for values of x < 10−5 and Q2 < 0.5GeV2,
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leading to lower values of stability and purity (see Fig. 6.14 (b) and (d)).

In Fig. 6.16 (a) and (b) are shown the energy of the incoming electron and the kinematical
variable yΣ for data and MC for events with Q2

Σ < 1.2 GeV2. The MC simulation is in good
agreement with the data.
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6.6 Cross Section Measurement and Extraction of F2

The cross section is measured following Eq.6.7. The f ull cross section from the MC uses the
proton structure functions F2 from the fractal fit [36] and from the ALLM97 [33] parametriza-
tions, while the FL contribution is taken from the dipole model [34]. A similar Eq. to 6.7 is
obtained for the reduced cross section (see Eq. 1.7).

In Fig. 6.17 is shown the reduced cross section as a function of x in different Q2 bins. The points
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determined by the electron method are presented in red, while the points measured using the
Σ method are marked in blue. The electron method is used up to values of x≈10−4, while the
Σ method cover the measurement up to values of x ≈ 10−2.

The errors presented in Fig. 6.17 are only statistical errors. The radiative points have statistical
errors which vary between 10% − 5% for the lowest Q2 bins and 2% − 3% for the high Q2 >

2 GeV2 region. The systematics errors are presented in the next section.

The proton structure function F2 is extracted from the measured cross section and the prediction
of FL from the dipole model.

F2 = σred +
y2

Y+
FL (6.10)

The measurement of F2 is shown in Fig. 6.18, where also only stastistical errors are presented.

6.7 Systematic Errors

The measured cross section and the extraction of F2 is influenced by systematic effects, some of
which were derived in chapter 4 and 5. There are two types of systematic uncertainties, known
as uncorrelated and correlated uncertainties.

The correlated uncertainties are global normalization uncertainties which affect as a whole the
measurement. This are for example uncertainties of the luminosity, the trigger efficiency and
radiative corrections. The uncorrelated uncertainties result from the implemented mechanism
used to reconstruct the kinematical variables, this involves for example energy scale uncertain-
ties, noise substraction procedures and angular measurements.

Uncorrelated errors influence the measured values independent of each other. Many systematic
errors are partly correlated and partly uncorrelated. In the following the global normalization
uncertainties will be treated as correlated, while all other will be treated as fully uncorrelated.
In Table 6.5 are summarized all the uncorrelated and correlated sources which will be used to
determine the total systematic error.

In order to estimate the influence of the uncorrelated and correlated uncertainties on the mea-
surement, the values of all relevant quantities were varied within their uncertainties in positive
and negative direction. After varying the relevant quantities, the kinematical variables are re-
calculated and the measurement of the cross section or F2 extraction is performed again. The
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Uncorrelated error
Source value Reference

Luminosity 2.2% [61]
Trigger Efficiency 0.5% [100]

Radiative corrections 0.5% [106]
BST efficiency 2% [105, 106]

Correlated error
Source value Reference

angle θe 0.2mrad [106]
Electron Energy 0.02% at 27.5 GeV see chapter 4

1% at 2.5GeV
Hadronic energy 10% at y = 10−3 see chapter 5

2% at y = 0.01
LAr noise 10% see chapter 5

Hadronical SpaCal 350 MeV see chapter 5
γp Background 15% [105, 106]

Table 6.5: � ��3. .�7� �! �" � �A/��E�7%� B�7"9/! �" �53 (7*  ���� � � � ��%1(73@3,3@� �E �" (&/0� �!��3��'%>�7� ��/! 

deviation of the “varied” measurement from the original value is treated as the systematic un-
certainty caused by the particular error source δ. The total error δtot will be computed as the
quadratic summation over all error sources listed in Table 6.5 and the statistical error.

δtot =
√

δ2
stat + δ2

corr + δ2
uncorr (6.11)

where δstat, δcorr and δuncorr are the statistical, correlated and uncorrelated errors respectively.
Following the table 6.5 δcorr and δuncorr are calculated as:

δcorr =
√

δ2
ee + δ2

θ + δ2
LAr + δ2

Noise + δ2
HadSpaCal + δ2

γp

δuncorr =
√

δ2
trigger + δ2

Luminosity + δ2
BST + δ2

rad−corr

Fig. 6.19(a) shows an example of the variations of F2 in case the energy of the scattered electron
Ee is changed according its uncertainty to the positive and negative direction:

E±
e = Ee(1 + ∆±)

where ∆± is defined as:
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∆± =

[

(∆Ekin)± +
(∆Ekin)± − (∆Eπ0)±

Ekin − Eπ0
(Ee − Ekin)

]

∆Ekin = 0.02% and ∆Eπ0 = 1% are the uncertainties of the energy measurement at kinematic
peak and at π0 energy, respectively. The systematic error for this particular Q2 = 2.5 GeV2 bin
due to the energy measurement uncertainty varies between 0.2% and 1.5% (see Fig. 6.19(b)).

In Fig. 6.20 is shown the proton structure function F2 as function of x for different Q2 bins with
the total systematic error. For Q2 < 1.5 GeV2 the measurement has a total error which varies
between 5% − 15%. For Q2 > 1.5 GeV2 the total error vary between 2% − 4%. The values of the
cross section, F2 and the error sources are summarized in Appendix A.

The comparison of the measurement performed in this analysis with the previous analysis is
shown in Fig. 6.21. One can see that the measurements agree in shape in the overlap bins. The
present analysis extend the phase space to lower values of Q2 = 0.2 and 0.25 GeV2. The present
measurement is 5% higher than the presented in [105]. This discrepancy can be traced back to
a wrong luminosity value used in [105].

In Fig. 6.22 is shown the comparison of the measured points of this analysis with the published
data of H1 performed with shifted vertex data taken in the year 1995. Good agreement in
normalization is found between the analysis here presented and the published measurement.
The systematical errors of this analysis, for values of Q2 > 2 GeV2 are reduced by a factor of
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two, in comparison with the previous shifted vertex data. The measurement for Q2 < 2 GeV2

have total errors comparable to the 1995 shifted vertex measurement.
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Summary

The measurement of the inclusive DIS cross section and the extraction of the proton structure
function F2 in the kinematical region of 0.2 < Q2 < 3.5 GeV2 for low values of 9.5 × 10−6 < x <

8.0 × 10−3 have been performed. The data sample analysed correspond to a special data taking
period where the interaction point of the ep scattering was moved from its nominal position in
order to access low values of Q2.

In order to minimize the total error of the measurement over the accessed phase space, usually
two kinematical reconstruction methods are employed, the electron and the Σ method. The
electron method is used in this analysis up to values of x < 10−4, while the Σ method is used for
the interval 10−4 ≤ x ≤ 8.0 × 10−3. Both methods are influenced by several systematic errors
which were studied in detail to determine the total error of the F2 measurement. The present
analysis concentrated on the understanding of the uncertainty of the energy measurement of
the scattered electron and of the energy flow of the hadronical final state.

Since for ep collision at low values of Q2, the electron is scattered into the backward region of
the H1 detector, a precise calibration of the electromagnetic part of the SpaCal was performed.
The uncertainty of the energy measurement is found to be 0.02% for energies of the scattered
electron close to the incoming electron energy E0

inc ≈ 27.5 GeV, while 1% is obtained for small
energies around E ≈ 2 GeV. Using a linear interpolation of the uncertainty of the energy mea-
surement, the resulting systematic error of the F2 measurement varies between 0.5% and 4%.

Using the energy measurement of the scattered electron as the reference scale, the energy flow
of the hadronic final state was studied in terms of its transverse and longitudinal momentum.
Since the Σ method uses the reconstruction of all particles building the final state, detailed stud-
ies of the calorimeter noise and its influence on the reconstruction of the kinematical variables
were performed. The noise originating from the beams and the electronics circuits of the LAr
calorimeter was found to have a negligible influence on the kinematical reconstruction. The
noise substraction algorithm was found to have an influence of 10% over the accessed phase
space. The uncertainty of the energy flow identified as coming from the real ep collision was
assigned to 10% at y = 10−3 and to 2% at y = 10−2. The correlated systematic error of the F2
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measurement due to the uncertainty of the hadronic energy measurement accounts to values
between 0.5% and 4%.

The cross section measurement in the same kinematical region and using the same data sample
was performed in [100], but the CTD and the BDC were used instead of the BST in order to
reconstruct the angle of the scattered electron coming from the ep collision. The cross section
measurement and the proton structure function performed in [100] and the one derived in this
thesis are in good agreement.

The measurement of the proton structure function here presented agrees with the previous
measurement of H1 using shifted vertex data taken in the year 1995. The total error of the
measurement presented here have a higher precision than the previous shifted vertex data for
values of Q2 > 1.5 GeV2. The total error of the F2 measurement achieves the same precision
as the low Q2 analysis of H1 using data of 1996 and 1997, having a total error which varies
between 3% − 4% for values of Q2 > 2 GeV2 and 8% − 15% for Q2 < 2 GeV2.



Appendix A

Tables
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Q2 [GeV]2 x y σred R F2 δtot% δstat% δunc% δcor% δee% δθ% δLAr% δNoise% δHadSpa% δγp%
0.2 3.98E-05 4.96E-02 1.83E-01 0.16288 0.18257 22.55 11.95 10.36 16.07 4.29 0.48 -0.2 -0.17 -9.76 -12.02
0.2 2.51E-04 7.86E-03 1.64E-01 0.24344 0.16382 15.17 12.8 6.49 4.91 2.26 0.42 -0.39 -3.42 -2.14 -1.56
0.2 1.58E-03 1.25E-03 1.18E-01 0 0.11784 20.51 18.57 7.58 4.28 0.22 -2.58 0.14 0.33 -3.38 -0.14
0.25 3.98E-05 6.20E-02 2.53E-01 0.14903 0.25297 19.21 7.2 6.87 16.43 3.01 -1.17 -6.28 -1.3 -6.67 -13.19
0.25 2.51E-04 9.82E-03 1.77E-01 0.13273 0.17745 12.53 9.81 5.14 5.86 -1.47 -0.09 0.61 -4.77 -2.73 -1.26
0.25 1.58E-03 1.56E-03 1.87E-01 0 0.18726 13.22 11.11 5.69 4.37 0.43 1.28 -1.51 -3.3 -2 -0.29
0.35 5.12E-06 6.74E-01 4.13E-01 0.14863 0.43622 24.09 19.61 12.99 5.22 4.43 -0.37 1.11 0 0.55 -2.44
0.35 3.20E-05 1.08E-01 2.54E-01 0.23396 0.25472 28.01 6.39 7.96 26.08 2.24 0.22 -7.11 -0.75 -10.13 -22.84
0.35 1.30E-04 2.66E-02 2.64E-01 0.18607 0.2639 10.78 8.51 4.9 4.45 -0.06 -1.62 -1.85 -1.18 -2.7 -2.24
0.35 5.00E-04 6.90E-03 2.23E-01 0.2289 0.22333 10.66 8.91 4.69 3.5 -0.83 -0.58 -0.69 -2.84 -1.55 -0.48
0.35 2.51E-03 1.38E-03 1.96E-01 0 0.19581 12.1 10.31 5.04 3.8 -1.48 0.63 0.06 -3.25 -1.16 -0.04
0.5 7.32E-06 6.74E-01 5.05E-01 0.1704 0.5375 8.57 6.34 4.84 3.14 0.36 -0.23 1.04 -0.29 1.72 -2.35
0.5 1.00E-04 4.93E-02 3.67E-01 0.19643 0.36701 12.63 8.19 5.27 8.04 -0.54 1.2 -2.21 0.21 -6.66 -3.68
0.5 2.51E-04 1.96E-02 2.72E-01 0.22946 0.27174 12.23 9.67 4.85 5.71 0.05 -0.51 1.17 -4.39 -3.28 -1
0.5 8.00E-04 6.16E-03 2.74E-01 0.23073 0.27438 9.6 7.83 4.36 3.45 -0.24 -0.84 0.18 -3.28 -0.53 -0.17
0.65 9.52E-06 6.74E-01 4.87E-01 0.2271 0.52703 6.09 3.36 3.56 3.62 -0.18 0.35 1.1 -0.23 1.45 -3.1
0.65 1.58E-05 4.06E-01 4.75E-01 0.23473 0.48658 10.6 9.05 5.24 1.68 -0.45 -1.43 0.3 -0.06 0.41 -0.55
0.65 1.00E-04 6.41E-02 3.61E-01 0.26321 0.36136 12.71 7.29 5.08 9.09 -0.38 -1.09 -3.35 -0.01 -6.88 -4.76
0.65 2.51E-04 2.55E-02 3.59E-01 0.22431 0.35871 10.12 8.28 4.51 3.69 -0.08 -1.76 -1.72 -0.35 -2.65 -0.65
0.65 8.00E-04 8.01E-03 2.84E-01 0.28236 0.28432 10.68 7.6 4.18 6.22 -1.38 0.45 1.13 -5.92 -0.52 -0.17
0.65 3.20E-03 2.00E-03 2.59E-01 0 0.25861 10.22 8.91 4.6 2.01 -1.54 0.11 -0.46 1.16 -0.3 -0.06
0.85 1.24E-05 6.74E-01 5.96E-01 0.22734 0.64483 5.1 2.17 3.26 3.27 -0.26 -0.29 1.3 -0.11 1.25 -2.7
0.85 2.00E-05 4.19E-01 6.39E-01 0.20887 0.65385 5.52 3.97 3.62 1.29 -1.04 0.04 0.5 -0.12 0.37 -0.45
0.85 3.98E-05 2.11E-01 4.46E-01 0.30102 0.44897 14.29 12.13 6.27 4.23 -1.58 -3.88 0.55 -0.14 0 -0.11
0.85 1.00E-04 8.38E-02 4.65E-01 0.24776 0.46521 11.13 5.66 4.15 8.63 -2.11 0.05 -2.4 0.75 -7.43 -2.91
0.85 2.51E-04 3.34E-02 3.65E-01 0.28685 0.36554 10.08 7.52 4.28 5.17 0.46 -0.62 -1.46 -0.39 -4.79 -0.97
0.85 8.00E-04 1.05E-02 3.37E-01 0.272 0.33654 8.75 6.61 4 4.1 0.09 -1.01 1.07 -3.63 -1.19 -0.25
0.85 3.20E-03 2.62E-03 3.35E-01 0 0.33488 8.73 7.2 4.33 2.36 0.17 -0.81 1.95 -1.04 -0.14 -0.04
1.2 1.76E-05 6.74E-01 6.83E-01 0.25172 0.74433 5.32 2.18 3.25 3.61 -1.03 -0.11 1.3 -0.22 1.2 -2.96
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Q2 [GeV]2 x y σred R F2 δtot% δstat% δunc% δcor% δee% δθ% δLAr% δNoise% δHadSpa% δγp%

1.2 2.00E-05 5.92E-01 6.93E-01 0.24945 0.73704 4.27 2.46 3.25 1.26 -0.71 -0.28 0.4 -0.08 0.5 -0.76
1.2 3.20E-05 3.70E-01 6.68E-01 0.25398 0.68193 4.49 2.83 3.3 1.11 -1.02 0.19 0.17 -0.15 0.14 -0.28
1.2 6.31E-05 1.88E-01 6.44E-01 0.24106 0.64682 5.34 3.89 3.56 0.82 -0.67 -0.32 0.31 0.13 0 -0.03
1.2 1.58E-04 7.49E-02 5.50E-01 0.24986 0.55077 9.92 8.06 4.91 3.04 -2.78 1.17 0.38 0.19 0 0
1.2 3.98E-04 2.97E-02 4.66E-01 0.26121 0.46622 7.56 5.31 3.8 3.81 -2.23 -0.23 -0.58 -0.64 -2.96 -0.15
1.2 1.30E-03 9.10E-03 3.80E-01 0.33834 0.38049 7.12 5.19 3.74 3.12 -2.27 -0.48 0.95 -1.69 -0.79 -0.02
1.2 5.00E-03 2.37E-03 3.16E-01 0 0.31597 8.47 6.67 4.11 3.24 -1.72 -1.18 1.23 2.13 -0.34 -0.02
1.5 2.20E-05 6.74E-01 7.02E-01 0.28284 0.77167 5.02 2.2 3.22 3.16 -0.02 -0.97 1.21 -0.21 1.04 -2.54
1.5 3.20E-05 4.62E-01 7.87E-01 0.24687 0.81361 3.75 1.71 3.14 1.11 -0.67 -0.5 0.37 -0.11 0.31 -0.53
1.5 5.00E-05 2.96E-01 7.41E-01 0.25173 0.74996 3.84 1.96 3.17 0.93 -0.88 -0.1 0.25 -0.07 0.01 -0.09
1.5 8.00E-05 1.85E-01 7.08E-01 0.2463 0.71086 4.38 2.63 3.26 1.26 -1.19 -0.2 0.34 0 0 -0.02
1.5 1.30E-04 1.14E-01 6.67E-01 0.24269 0.66768 4.91 3.27 3.38 1.41 -1.33 -0.22 0.4 -0.15 0 -0.02
1.5 2.00E-04 7.40E-02 6.43E-01 0.23368 0.64332 6.11 3.67 3.48 3.42 -3.36 -0.41 0.43 -0.25 0 0
1.5 1.00E-03 1.48E-02 4.86E-01 0.22669 0.48637 5.38 3.05 3.34 2.92 -1.85 -0.82 0.7 -1.93 -0.45 0
1.5 3.20E-03 4.62E-03 4.20E-01 0.27881 0.42009 5.63 2.76 3.3 3.62 -1.34 -0.87 2.27 -2.32 -0.25 0
1.5 1.30E-02 1.14E-03 3.86E-01 0 0.38615 15.24 4.56 3.69 14.06 -1.36 -0.7 1.72 13.87 -0.22 0
2 2.93E-05 6.74E-01 8.44E-01 0.26956 0.92455 4.29 1.98 3.16 2.12 -0.45 -0.92 0.82 -0.11 0.78 -1.47
2 5.00E-05 3.95E-01 8.46E-01 0.26253 0.86644 3.68 1.6 3.12 1.12 -0.62 -0.81 0.26 -0.16 0.11 -0.29
2 8.00E-05 2.47E-01 7.88E-01 0.26582 0.79468 3.66 1.64 3.12 1 -0.88 -0.38 0.26 -0.15 0 -0.05
2 1.30E-04 1.52E-01 7.35E-01 0.26372 0.7375 3.91 1.83 3.14 1.46 -1.41 0 0.36 -0.13 0 -0.01
2 2.00E-04 9.86E-02 7.07E-01 0.25392 0.70742 4.16 1.98 3.16 1.85 -1.75 -0.37 0.43 -0.1 0 -0.01
2 3.20E-04 6.16E-02 5.81E-01 0.29536 0.58156 4.56 2.16 3.17 2.48 -0.92 -0.68 -0.95 0.07 -1.98 -0.03
2 5.00E-04 3.95E-02 5.34E-01 0.3012 0.53368 4.4 2.43 3.19 1.82 -1.5 0.21 -0.52 -0.12 -0.86 -0.01
2 1.00E-03 1.97E-02 4.89E-01 0.29328 0.48871 4.26 1.88 3.14 2.18 -1.38 -0.14 0.58 -1.52 -0.41 -0.01
2 3.20E-03 6.16E-03 4.29E-01 0.32216 0.42862 5.17 1.65 3.13 3.78 -1.38 0.06 2.51 -2.47 -0.17 0
2 1.30E-02 1.52E-03 4.05E-01 0 0.40484 10.77 2.49 3.24 9.96 -1.26 -0.35 0.75 9.85 -0.16 0

2.5 3.66E-05 6.74E-01 9.20E-01 0.27271 1.00839 6.61 4.47 3.58 3.31 -0.17 -2.46 1.04 -0.18 0.99 -1.65
2.5 5.00E-05 4.93E-01 9.05E-01 0.27713 0.94423 4.07 2.17 3.17 1.36 -0.94 -0.62 0.34 -0.14 0.4 -0.54
2.5 8.00E-05 3.08E-01 8.85E-01 0.26673 0.89678 3.66 1.64 3.12 0.98 -0.68 -0.63 0.28 0.04 0.03 -0.13
2.5 1.30E-04 1.90E-01 8.02E-01 0.27407 0.80586 3.71 1.64 3.12 1.15 -0.92 -0.61 0.34 -0.05 0 -0.01
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Q2 [GeV]2 x y σred R F2 δtot% δstat% δunc% δcor% δee% δθ% δLAr% δNoise% δHadSpa% δγp%
2.5 2.00E-04 1.23E-01 7.82E-01 0.25789 0.78368 3.84 1.64 3.12 1.52 -1.44 -0.31 0.34 -0.15 0 -0.01
2.5 3.20E-04 7.71E-02 7.03E-01 0.26512 0.70393 4.13 1.75 3.13 2.04 0.14 -0.59 0.49 -1.16 -1.49 -0.01
2.5 5.00E-04 4.93E-02 6.09E-01 0.28826 0.60884 3.96 1.9 3.14 1.48 0.19 -0.94 -0.35 -0.73 -0.79 -0.01
2.5 8.00E-04 3.08E-02 5.83E-01 0.27136 0.58312 3.97 1.96 3.15 1.4 -0.1 -0.46 0.55 -1.14 -0.37 0
2.5 1.58E-03 1.56E-02 5.33E-01 0.27006 0.53251 4.46 1.45 3.11 2.84 -0.17 -0.5 1.2 -2.51 -0.17 0
2.5 5.00E-03 4.93E-03 4.55E-01 0.22286 0.45496 4.54 1.29 3.1 3.04 -0.1 -0.65 2.52 -1.57 -0.15 0
2.5 2.00E-02 1.23E-03 4.13E-01 0 0.41328 16.84 2.33 3.2 16.37 -0.11 -0.59 1.17 16.31 -0.13 0
3.5 5.12E-05 6.74E-01 1.10E+00 0.25508 1.20003 7.51 6.06 3.93 2.06 -0.72 -1.62 0.53 -0.04 0.47 -0.78
3.5 8.00E-05 4.32E-01 9.88E-01 0.282 1.01905 4.23 2.31 3.18 1.57 -0.8 -1.27 0.35 -0.11 0.15 -0.22
3.5 1.30E-04 2.66E-01 9.41E-01 0.27366 0.95075 3.83 1.8 3.14 1.26 -0.77 -0.93 0.35 -0.05 0 -0.05
3.5 2.00E-04 1.73E-01 8.56E-01 0.27998 0.85971 3.82 1.78 3.13 1.25 -1.04 -0.58 0.37 -0.11 0 -0.01
3.5 3.20E-04 1.08E-01 7.91E-01 0.27646 0.79226 4.02 1.8 3.14 1.76 -1.53 -0.75 0.4 -0.16 0 -0.01
3.5 5.00E-04 6.90E-02 7.23E-01 0.27794 0.72383 3.98 1.96 3.15 1.44 0.43 -0.68 -0.07 -0.88 -0.81 -0.01
3.5 8.00E-04 4.32E-02 6.56E-01 0.28134 0.65595 4.02 2.03 3.15 1.43 0.25 -0.6 0.33 -1.17 -0.41 0
3.5 1.30E-03 2.66E-02 6.03E-01 0.28191 0.60258 4.21 2.1 3.16 1.82 0.4 -0.86 0.43 -1.48 -0.22 0
3.5 2.51E-03 1.38E-02 5.74E-01 0.25054 0.57395 4.97 1.48 3.11 3.58 0.15 -0.51 1.81 -3.04 -0.14 0
3.5 8.00E-03 4.32E-03 4.84E-01 0 0.48361 4.24 1.39 3.11 2.53 0.3 -0.83 2.36 0.25 -0.11 0
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