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Abstract

Charm production is investigated in the H1 experiment at the electron-proton collider
HERA. The data of the years 1999 and 2000 are analysed, corresponding to an integrated
luminosity of 51.1 pb−1. Photoproduction is selected by detecting the scattered electron
at small angles, leading to photon virtualities Q2 < 0.01 GeV2 and photon-proton centre-
of-mass energies 171 < Wγp < 256 GeV. Charm is tagged by reconstruction of D∗ mesons
in the pseudorapidity range |η(D∗)| < 1.5 and for transverse momenta pt(D∗) > 2 GeV.
Differential cross sections as a function of pt(D∗), η(D∗) and Wγp are measured and
compared to QCD predictions in leading order, supplemented with parton showers, and
in next-to-leading order. Reasonable agreement is found.

In a further measurement a jet not containing the D∗ meson is required in addition
to the D∗. Jets down to pt(jet) > 3 GeV are shown to be reliably measurable in the
central detector region |η(jet)| < 1.5. Differential cross sections for variables characterising
the D∗, the jet and the D∗+jet system are determined. They reveal the presence of
radiative processes in addition to leading order photon-gluon fusion. The cross sections
are compared with QCD calculations in collinear and in kt-factorisation. Neither of them
describes all observed features.

Kurzfassung

Die Produktion von Charm-Quarks wird mit dem H1-Experiment am Elektron-Proton-
Speicherring HERA untersucht. Die Daten der Jahre 1999 und 2000 mit einer integrierten
Luminosität von 51.1 pb−1 werden analysiert. Durch den Nachweis des gestreuten Elek-
trons unter kleinen Winkeln werden Photoproduktionsereignisse mit einer Photonvirtu-
alität von Q2 < 0.01 GeV2 und einer Schwerpunktsenergie des Photon-Proton-Systems
von 171 < Wγp < 256 GeV ausgewählt. Der Nachweis von Charm-Quarks erfolgt durch
die Rekonstruktion von D∗-Mesonen mit einem Transversalimpuls von pt(D∗) > 2 GeV
und einer Pseudorapidität |η(D∗)| < 1.5. Differentielle Wirkungsquerschnitte werden in
Abhängigkeit von pt(D∗), η(D∗) und Wγp bestimmt. Die Übereinstimmung mit QCD-
Vorhersagen führender Ordnung mit Partonschauern und nächstführender Ordnung ist
zufriedenstellend.

In einer weiteren Messung wird zusätzlich zum D∗-Meson ein Jet selektiert, der nicht
das D∗ enthält. Jets können im zentralen Detektor, |η(jet)| < 1.5, ab Transversalimpulsen
von pt(jet) > 3 GeV gemessen werden. Differentielle Wirkungsquerschnitte werden für
Jet-, D∗- und kombinierte D∗+Jet-Größen bestimmt. Sie zeigen, dass Strahlungsprozesse
zusätzlich zur Photon-Gluon-Fusion in führender Ordnung wichtig sind. Die Messungen
werden mit QCD-Rechnungen in kollinearer und kt-Faktorisierung verglichen. Keine Rech-
nung kann alle beobachteten Eigenschaften beschreiben.
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Introduction

Elementary particle physics studies the smallest accessible constituents of matter and their
interactions. To date they are described by the so-called Standard Model where matter
consists of six quark flavours and six leptons. The observed strong and electroweak forces
between these elementary particles can be described by quantum field theories. The theory
of the strong interaction between quarks, mediated by gluons, is called Quantum Chro-
modynamics (QCD). The Standard Model describes very successfully almost all observed
phenomena in particle physics.

A characteristic feature of QCD is the “asymptotic freedom” which describes the fact
that with increasing energy (or decreasing distance) the strong coupling constant αs be-
comes smaller and smaller, leading to quasi free particles. The Nobel prize 2004 was
awarded for the theoretical discovery of asymptotic freedom.

The prediction of scattering amplitudes in quantum field theories is usually obtained
by a perturbative expansion in the coupling constant. The expansion series is truncated at
a fixed order or only the leading terms are resummed to all orders. This approach requires
a small coupling constant to ensure the convergence of the expansion which makes it
possible to neglect higher order terms which are very complicated to calculate.

Since the strong coupling constant is large at low energy scales, perturbative calcula-
tions in QCD require the presence of a large scale compared to the QCD parameter ΛQCD,
e. g. a large virtuality Q2, a large transverse momentum pt or large particle masses m.
Even the lightest of the heavy quark flavours, the charm quark, has a mass large enough
to provide such a scale, mc ∼ 1.5 GeV/c2. Therefore studying the heavy quark production
mechanism is an ideal testing ground of perturbative QCD even at small pt and low Q2.
Consequently charm production has been investigated in various particle collisions (e. g.
γp [1, 2], ep [3, 4], pp̄ [5], γγ [6]).

In this thesis charm production will be studied in electron-proton collisions at HERA
analysing data obtained by the H1 experiment in the years 1999 and 2000. Photoproduc-
tion events will be selected, a kinematical regime where the virtuality of the exchanged
photon is very low, Q2 ∼ 0. Charm is tagged via reconstruction of D∗ mesons from their
decay products. Previous measurements by the H1 [1] and ZEUS experiment [2,7] showed
that charm production cross sections can be reasonably described by the theory, taking
into account the uncertainties of the data and the theory. The main production mecha-
nism has been found to be photon-gluon fusion where the incoming photon interacts with
a gluon from the proton forming a charm-anticharm pair. But particularly when requiring
two jets in addition to the D∗ meson, as is done in ZEUS analyses [2, 8], in some regions
of phase space the agreement is worse, mainly if the “resolved” contribution is enhanced,
i. e. for events where the photon develops hadronic structure before the hard interaction.
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2 INTRODUCTION

Hence it is desirable to investigate the production process in more detail by tagging
more than one product of the hard interaction. The statistics in data is too low to allow the
reconstruction of two D∗ mesons. Even the reconstruction of the second charm quark via
its semileptonic decay producing a high momentum muon is very limited in statistics [9,10].
Therefore in this thesis jets are studied for the first time in charm photoproduction at the
H1 experiment. In addition to the D∗ meson a jet not containing the D∗ is selected.
Although the jet does not include a flavour tag, the correlations between the D∗ meson
and the jet test details of the production process.

The outline of the thesis is as follows: First an overview of the theoretical concepts
is given (chapter 1) and different approaches of perturbative QCD calculations of heavy
quark photoproduction are introduced (chapter 2). In chapter 3 the relevant components
of the H1 detector and the algorithm to combine track and cluster measurements are
described, followed by the methods to reconstruct D∗ mesons and to determine their
number (chapter 4). Chapter 5 presents the inclusive D∗ analysis resulting in a comparison
of differential cross sections with theoretical predictions. Subsequently jets are studied in
chapter 6 and D∗+jet cross sections are derived and confronted with the predictions. In
chapter 7 the results are summarised and discussed before the last chapter gives an outlook.



Chapter 1

Theoretical Overview

This chapter gives an overview of theoretical aspects relevant in photoproduction of D∗

mesons at HERA.
First a general introduction into electron-proton (ep) collisions at HERA is given and

the relevant kinematic quantities are presented. It is described how the interaction can
be understood in terms of Quantum Chromodynamics (QCD), the theory of the strong
interaction.

Thereafter photoproduction is described, a kinematical region where ep interactions
are mediated by a quasi real photon and hence can be viewed as photon-proton collisions.
Charm quark photoproduction is introduced and the charm fragmentation into observable
D∗ mesons is considered.

Furthermore jet algorithms are introduced along with D∗+jet pairs where the jet does
not contain the D∗ meson. Finally it is explained how D∗+jet quantities are related to var-
ious features of the charm production mechanism and how tests of theoretical calculations
can be done.

1.1 Electron-Proton Scattering at HERA

At HERA protons and electrons (or positrons1) collide at energies of Ep = 920 GeV and
Ee = 27.6 GeV. They interact by the exchange of the virtual gauge bosons of the electro-
weak force. The process is called neutral current interaction (NC) if a neutral boson, a
photon γ or a Z0, is exchanged. In charged current interactions (CC) the charged W±

boson is exchanged. In this case the electron transforms into a neutrino. Both NC and
CC processes are depicted in figure 1.1.

The following Lorentz invariant variables can be defined using the four-momenta of
the incoming proton P , the incoming electron k and the scattered lepton k′, respectively.

s = (k + P )2 (1.1)
Q2 = −q2 = −(k − k′)2 (1.2)

x =
Q2

2P · q (1.3)

y =
P · q
P · k (1.4)

1In the following positrons are implicitly included when electrons are mentioned.

3
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e+(k)

p(P)

γ(q)

e+(k′)

X

e+(k)

p(P)

Z0(q)

e+(k′)

X

e+(k)

p(P)

W+/−(q)

νe(k′)

X

a) b) c)

Figure 1.1: Neutral current (a,b) and charged current (c) positron-proton interactions in
leading order. At HERA energies the proton generally is destroyed.

Neglecting the particle masses, the centre-of-mass energy is given by
√

s =
√

4Ep · Ee ∼
320 GeV. The variable Q2 is the negative four-momentum transfer squared from the lepton
to the proton. In case of photon exchange it corresponds to the virtuality of the photon. In
a frame with an infinite proton momentum the Bjorken scaling variable x can be identified
(in the Quark Parton Model) with the fraction of the proton momentum that takes part
in the interaction. In the proton rest frame the inelasticity y is the relative energy loss of
the scattered lepton. Only three of these four variables are independent. Again neglecting
the particle masses they fulfil

Q2 = x · y · s. (1.5)

Due to their large mass the Z0 and the W± exchange can be safely neglected for
Q2 < 1000 GeV2. The differential neutral current cross section as a function of x and Q2

can be calculated in Quantum Electrodynamics (QED) without taking into account the
weak interaction,

d2σ(e±p → e±X)
dx dQ2

=
4πα2

xQ4
·
[
y2xF1(x,Q2) + (1 − y) · F2(x,Q2)

]
. (1.6)

Here α is the electromagnetic coupling constant. The structure functions F1(x,Q2) and
F2(x,Q2) parametrise the interaction of the exchanged photon with the proton without
any knowledge of the nature of the interaction. Introducing the longitudinal structure
function

FL = F2 − 2xF1, (1.7)

which is related to the exchange of a longitudinally polarised photon, eq. 1.6 can be written
as

d2σ(e±p → e±X)
dx dQ2

=
2πα2

xQ4
·
[ (

1 + (1 − y)2
) · F2(x,Q2) − y2 · FL(x,Q2)

]
. (1.8)

The contribution from FL is kinematically suppressed compared to F2 except for very
large inelasticities y and can be neglected elsewhere since it is smaller than F2 (eq. 1.7).

1.2 Factorisation and Parton Evolution

In the naive Quark Parton Model (QPM), assuming the proton to consist statically of
quarks and antiquarks, the structure function F2(x,Q2) does not depend on Q2 and eval-
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uates as
F2(x) = x

∑
i

e2
i · fi(x). (1.9)

The sum runs over all (anti-)quark flavours i with their electric charge ei. The quark
density fi(x) denotes the probability to find a quark i with the momentum fraction x in
the proton.

In Quantum Chromodynamics (QCD) the quarks in the proton radiate gluons (q → qg)
and the gluons themselves can radiate further gluons (g → gg) or split into quark-antiquark
pairs (g → qq̄). The calculation of these radiations and splittings in perturbative QCD
(pQCD) encounters difficulties. They are related to divergent integrals, e. g. for collinear
gluon radiation. The solution is to introduce a cut-off scale μf , the factorisation scale,
and to absorb the divergencies in parton density functions fi(x, μ2

f ). If μf is large enough,
μf � ΛQCD, reliable pQCD calculations are possible.

Also ultra violet divergencies occur in pQCD. They are absorbed into the running of the
strong coupling constant αs(μ2

r) which depends on the renormalisation scale μr � ΛQCD.
At a scale μr = ΛQCD the coupling αs diverges and the perturbative expansion cannot
converge. ΛQCD ≈ 200 MeV has been determined experimentally.

The absorption of the divergencies into the running of αs and the scale dependence of
the parton densities lead to a factorisation of the cross sections,

dσ(ep → eX) =
∑
i∈p

1∫
0

dx fi(x, μ2
f ) · dσ̂i

(
ŝ, αs(μ2

r), μr, μf

)
. (1.10)

Here σ̂i is the perturbatively calculable partonic cross section and
√

ŝ is the centre-of-mass
energy of the partonic system. The parton density function (PDF) fi(x, μ2

f ) of the parton
i in the proton is universal and independent of the process calculated in pQCD, according
to the factorisation theorem. The PDFs depend on a factorisation scheme, e. g. the DIS
scheme or the MS scheme, and the calculation of σ̂i has to adapt to the scheme used for
the PDFs.

Although pQCD does not predict fi(x, μ2
f ), it does predict the evolution to any scale

μf > μ0 once fi(x, μ2
0) is known at the starting scale μ0. In fact the PDFs are obtained

by fitting their input distribution at the starting scale μ0 such that after the evolution
F2(x,Q2) data from HERA and fixed target experiments are described. Here Q2 is the
relevant scale and μ2

f = Q2 is used. The evolution equations are derived considering the
possible gluon radiation and gluon splitting processes. Such processes can occur several
times which can lead e. g. to a gluon ladder as shown in figure 1.2.

Contributions from an arbitrary number of radiations have to be summed. Different
assumptions about the consecutive longitudinal momentum fractions xi, the transverse
momenta kt,i which are related to the virtualities k2

i , and the radiation angles θi result
in different approaches to the determination of parton density functions. The DGLAP,
BFKL and CCFM approaches will be briefly described in the following.

DGLAP The DGLAP approach [11–14] is the most common to describe the parton evolu-
tion. The main approximation is that the transverse momenta kt during consecutive
gluon radiation are strongly ordered, i. e. k2

t,i � k2
t,i−1. Furthermore the longitudinal

momenta xiP are supposed to be larger than the transverse momenta which is valid
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e

p

Q2

x

xi,ki

xi-1,ki-1

x1,k1

x0,k0

θ

θi

θi-1

θ1

Figure 1.2: General gluon ladder with the momentum fractions xi, the virtualities k2
i and

emission angles θi.

for not too small x. Then the virtualities k2
i (related to k2

t,i) before splitting can be
neglected compared to k2

i+1 after splitting and compared to the factorisation scale
μ2

f . The calculation of the splitting functions and the partonic cross section σ̂ can
thus be done on-shell.

Factorisation within these approximations is called collinear factorisation since the
kt-dependence of the parton densities is integrated out. The picture presented so far
(e. g. eq. 1.10) followed this approach.

BFKL At small x the collinear DGLAP ansatz is not appropriate. In the BFKL ap-
proach [15, 16] with zi = xi/xi−1 � 1 the longitudinal momenta are strongly or-
dered whereas the transverse momenta kt are free. They can be of the same order
of magnitude as the longitudinal momenta xiP . Since this approximation is valid
only for small x, only gluons have to be taken into account in the evolution and the
relevant proton momentum fraction of the gluon xg corresponds to xi in figure 1.2.
The gluon density function now depends on kt, F(xg, k

2
t ). Since kt �= 0 is considered

in all steps of the calculation, the partonic cross section σ̂ has to be taken off-mass-
shell. The cross section can still be written in a factorised form, but now involving
the kt-dependence (kt-factorisation).

CCFM The parton evolution according to CCFM [17–20] is an attempt of a unified
description both for small and large x. Instead of ordering the gluon ladder in kt or
z, colour coherence effects motivate the approximation of an ordering in q, a quantity
related to the angle θ of gluon emission. Similar to BFKL only gluons are taken into
account in the parton evolution. The gluon density function A(xg, k

2
t , μ

2
f ) is more
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complicated and depends on kt and the factorisation scale μf . The latter is related
to the maximum angle q̄t possible for any emission. Also CCFM takes into account
non-vanishing kt, applying kt-factorisation.

It has to be kept in mind that the different kinds of obtained PDFs are no physical
observables in contrast to cross sections and structure functions.

The DGLAP approach has been proven to describe the structure function measure-
ments at HERA [21, 22] successfully down to the smallest accessible x. Indications for
the need of kt-factorisation have been found so far only when considering the descrip-
tion of the hadronic final state at small x, e. g. for jets at large pseudorapidities η =
− ln (tan(θ/2)) [23].2 Also heavy quark production can be affected since relatively small
x-values around 10−3 are reached.

1.3 Photoproduction at HERA

If the virtuality Q2 of the exchanged photon is small, it is almost real. The electron is
scattered under a small angle and can be seen as the source of real photons. Experimentally
photoproduction at HERA is defined by the electron being scattered into the beam pipe
such that it escapes the detection in the main detector. This defines the kinematic region
of photoproduction to be Q2 < 1 GeV2, in contrast to deep inelastic scattering (DIS) with
Q2 > 1 GeV2. Since the cross section is proportional to 1/Q4 (eq. 1.6), photoproduction
dominates the total electron-proton cross section.

The centre-of-mass energy Wγp of the photon-proton system amounts to

W 2
γp = (q + P )2 = y · s − Q2 ≈ y · s (1.11)

where again P is the proton and q the photon four-momentum. For photoproduction at
high centre-of-mass energies

√
s ∼ 320 GeV, Q2 is negligible. The energy of the photon

“beam” differs from event to event, depending on the inelasticity y which corresponds to
the fraction of the energy of the incoming electron carried by the photon. The flux of
photons with the energy fraction y and up to a virtuality Q2

max can be calculated using
the Weizsäcker-Williams approximation

fγ(y,Q2
max) dy =

α

2π

[
1 + (1 − y)2

y
log

(
Q2

max

Q2
min

)
− 2m2

ey

(
1

Q2
min

− 1
Q2

max

)]
dy. (1.12)

The fine structure constant is denoted as α and Q2
min = m2

ey
1−y is the lower kinematic limit.

The quasi real photon can fluctuate into a quark-antiquark pair before the perturba-
tively calculable hard interaction. The quark-antiquark pair is subject to gluon radiation
and gluon splitting like partons in a hadron. Thus the photon acquires a hadronic structure
and parton density functions can be determined.

If a parton from the photon fluctuation takes part in the hard interaction, the process
is called resolved photoproduction in contrast to direct photoproduction where the photon
as a whole interacts. Both cases are sketched in leading order in figure 1.3. At next-to-
leading order (NLO) there is no unique distinction between direct and resolved processes.

2The pseudorapidity η is an approximation of the rapidity ŷ = 1
2

ln
(

E+pz
E−pz

)
. Both are identical for

massless particles with E = p.
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Figure 1.3: Direct (left) and resolved (right) photoproduction in leading order.

For example the splitting of the photon into a quark-antiquark pair (γ → qq̄) parametrised
in the photon density followed by a leading order process qg → qg leads to the same final
state as the NLO photon-gluon fusion process γg → qq̄g. Thus only the sum of direct and
resolved photoproduction is a physical observable.

The cross section calculation in photoproduction is assumed to factorise into the cross
section σ̂ij between the partons i and j, the parton densities in the proton fi/p and the
parton density in the photon fj/γ ,

dσγp =
∑
i∈p

∑
j∈γ

1∫
0

1∫
0

dxpdxγ fi/p(xp, μ
2
f ) · fj/γ(xγ , ν2

f ) · dσ̂ij

(
ŝ, αs(μ2

r), μr, μf , νf

)
. (1.13)

Here μf and νf are the factorisation scales on the proton and on the photon side, respec-
tively. For direct photoproduction the parton j in the photon γ is the photon itself and
the momentum fraction xγ is one.

1.4 Photoproduction of D∗ Mesons

In this analysis charged D∗ mesons3 are used to tag events with charm or anticharm
quarks. Therefore this section will first describe how charm or, more generally, heavy
quarks are produced in photon-proton collisions at HERA. Since bare quarks cannot be
observed due to confinement in QCD, they must fragment into hadrons like the D∗ meson.
The transition from partons to hadrons and the main theoretical concepts to describe this
fragmentation process will be discussed in the second part of this section.

1.4.1 Heavy Quark Production

Heavy quark production in the context of this thesis always means open charm and beauty
production in pairs of quarks and antiquarks. Open charm production means that charm
and anticharm are not bound in a single hadron as is the case e. g. in the J/Ψ meson.

3D∗± mesons with positive and negative charge are not treated separately. Therefore “D∗ meson”
denotes both charged mesons throughout this thesis.
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Figure 1.4: Leading order diagrams of charm production in direct (a) and resolved (b)
photon-gluon fusion and in charm excitation (c).

The top quark is too heavy to be pair-produced at HERA, 2 · mt >
√

s.4 Thus for top
quarks the dominant standard model production mechanism is single top production via
W± exchange which has a very low cross section.

The advantage of considering heavy quark production is that the heavy quark mass
always provides a hard scale mHQ � ΛQCD and perturbative QCD calculations are possible
down to very low Q2 or transverse momenta pt. On the other hand it complicates the
calculation if at least one of these additional scales is present [24]. Therefore heavy quark
production is an excellent testing ground of perturbative QCD.

The cross section for beauty quarks is about two orders of magnitude smaller than for
charm quarks due to their larger mass, mb ≈ 4.75 GeV compared to mc ≈ 1.5 GeV, and
their smaller charge, |qb| = 1/3 versus |qc| = 2/3. A further consequence of the larger
beauty mass is that perturbative QCD calculations are expected to be more reliable since
the mass provides a larger scale. The larger scale results in a smaller coupling constant
αs leading to a faster convergence of the perturbative expansion.

The first H1 measurement of D∗ meson cross sections [25] indicated that photon-gluon
fusion (PGF) shown in figure 1.4a) is the dominant charm production process in DIS
for Q2 > 10 GeV2. A recent ZEUS measurement of dijet angular distributions in charm
events [8] indicates that in photoproduction a sizeable contribution to the cross section
originates from processes like the one shown in figure 1.4c). In leading order collinear
factorisation these processes are treated as charm excitation, i. e. resolved processes where
a charm quark from the photon side interacts with a gluon from the proton. The lead-
ing order picture given in the ZEUS analysis is supported by very recent massless NLO
calculations [26]. Gluon splitting g → qq̄ in the fragmentation as a source of heavy quark
production is negligible at HERA due to the large quark masses.

Chapter 2 introduces different leading and next-to-leading order calculations which
the data of this analysis will be compared to, and their different approaches to handle the
multi-scale problem present in heavy flavour production.

1.4.2 Fragmentation

About 23.5% of the produced charm quarks can be observed as D∗ mesons as has been
measured in electron-positron collisions [27]. The transition from coloured partons to

4Throughout this thesis natural units are used with c = 1. As a consequence factors of c are dropped
and eV is the unit of energy, momentum and mass.
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Figure 1.6: Creation of quark-antiquark pairs in
independent fragmentation.

colourless, observable hadrons is called fragmentation. Sometimes the process is more
precisely divided into the fragmentation process, meaning radiation of the outgoing par-
tons of the hard process until their virtuality is small, and hadronisation, meaning the
transition of the partons into hadrons after radiation. The first step is calculable in per-
turbative QCD, using parton showering similar to the evolution of the incoming partons.
For the second step non-perturbative models must be used. This section introduces the
fragmentation models used in the theoretical calculations that will be introduced in chap-
ter 2.

One of the most successful fragmentation models is the Lund string model [28]. It
is usually applied after the perturbative final state parton showering in leading order
calculations. Colour strings connect quarks and antiquarks that move apart from each
other. Due to the QCD potential the energy stored in the string increases with increasing
distance. The string breaks up producing a quark-antiquark pair if the energy is large
enough, depicted in figure 1.5. Gluons create kinks in the strings.

A much simpler approach for charm and beauty quarks is the independent fragmen-
tation with the Peterson fragmentation function [29]. In this thesis it is implemented in
massive NLO calculations (cf. section 2.3). The basic idea is that the heavy quark picks
up a light antiquark from a fluctuation of the vacuum into a quark-antiquark pair. The
hadron formed by the heavy quark and the light antiquark loses energy with respect to
the bare heavy quark. Figure 1.6 shows the principle of the independent fragmentation
if extended to a cascade of vacuum fluctuations also for the remaining light quarks. The
process is continued until a cut-off energy is reached.

The relation between the heavy quark and hadron energies is expressed by a frag-
mentation function DH

Q (z). It denotes the probability of the heavy hadron H to retain
the energy fraction5 z = EH/EQ of the heavy quark Q. The Peterson fragmentation
function [29]

DH
Q (z) =

NA

z

(
1 − 1

z
− εQ

1 − z

)
(1.14)

is deduced considering the energies before and after the fragmentation. Although the
parameter εQ = m2

q/m
2
Q relates the masses of the heavy quark and the light antiquark,

in fact it is adjusted to describe the data. It is smaller (meaning harder fragmentation)

5The exact definition of z depends on the details of the implementation.
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if following an NLO calculation compared to following a leading order calculation since
in NLO the possibility of one gluon radiation is already included. NA normalises the
fragmentation function summing over all possible hadrons H and integrating over all z.
A different parametrisation of heavy quark fragmentation is the one according to Kartve-
lishvili [30].

The independent fragmentation model is not Lorentz invariant and needs an ad hoc
treatment of the remaining light quark and its colour. In general it does not describe the
full hadronic final state, but the Peterson function reproduces the heavy quark fragmen-
tation function quite well. Thus the Peterson fragmentation function is sometimes used in
conjunction with the Lund string model, e. g. in the leading order calculations compared
to data in this thesis (cf. section 2.1).

Fragmentation can also be described by fragmentation functions constructed like the
PDFs of hadrons. They depend on a scale μfr and can be evolved according to perturbative
evolution equations (here mainly DGLAP with collinear factorisation is used), but now
from higher scales down to a small scale μfr

0 . This evolution is responsible for the so called
final-state parton shower already mentioned in conjunction with the Lund model. The
NLO calculation in the zero-mass variable-flavour-number scheme (cf. section 2.2) apply
fragmentation functions derived in [31]. Their functional form at the scale μfr

0 is again
chosen to be Peterson-like.

1.5 Jets and Jet Algorithms

From a simple point of view a jet is just a bunch of particles which move into almost the
same direction. This bunch is related to a parton produced in the hard interaction which
splits into several hadrons in the fragmentation and subsequent particle decay. But the
picture gets less clear considering events with more or very broad bunches. How far away
from each other are sub-bunches to be split into two independent jets? How close should
two bunches be to be combined into one jet instead of two? To get a clear definition, a
well defined jet algorithm is applied. The algorithm groups the particles and defines the
four-momenta of the resulting jets.

Such an algorithm is also needed to compare the data with QCD calculations that do
not provide a set of colourless objects, but only a few coloured partons, usually two or
three. Figure 1.7 illustrates how this is done. In the data the algorithm is applied to the
measured objects which are a combination of tracks and clusters as will be described in
section 3.7. In the parton level calculation the algorithm is applied to the partons, e. g.
two quarks and a gluon. Here the algorithm mainly decides whether the radiated gluon
has to be merged with one of the quarks.

The connection between the data and the calculation is achieved using a simulation
that provides a full set of generated colourless particles (“hadron level”), tracks and clus-
ters resulting from the simulated interaction of these particles with the detector (“detector
level”) and the coloured partons before the hadronisation (“parton level”). The jet algo-
rithm is applied to all three sets of objects and an unfolding of the detector effects, e. g.
inefficiencies or energy smearing, as well as an unfolding of the effect of the hadronisation
is possible. Thus a comparison of data and theory at the “hadron level” can be achieved.

A good jet algorithm features a good correlation between the parton and hadron jets
and is infrared and collinear safe. Infrared and collinear safety mean that the output
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Figure 1.7: Application of a jet algorithm on different objects and its use to compare
detected data with parton level calculations.

|k|→0 θ→0

Figure 1.8: Infrared radiation (left) and collinear splitting (right).

of the algorithm, i. e. the set of jets and their four-momenta, must not be changed by
processes like radiation of a soft gluon or collinear splitting as depicted in figure 1.8.

The divergent cross section contribution of a process with infrared radiation |
k| → 0
or collinear branching θ → 0, cancels in NLO calculations with virtual corrections that
produce the same final state as a similar process without the radiation. Diagrams of
involved cross section contributions are illustrated in figure 1.9. For |
k| → 0 and θ → 0
they must contribute to the same jet configuration since the result of the jet cross section
calculation must not depend on the cut-off parameter chosen to avoid the divergencies.

In this analysis the inclusive kt-jet algorithm [32] is applied using the ΔR-resolution
and the pt-weighted recombination scheme. The algorithm will be explained in detail

a) b) c)

Figure 1.9: Feynman diagrams of leading order PGF (a), PGF with a radiated gluon (b)
and PGF with a virtual correction (c). The interference of a) and c) belongs to the NLO
contributions and leads to a negative contribution to the scattering amplitude. Divergencies
of b) cancel with the negative divergencies of this interference.
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below. It is infrared and collinear safe and – neglecting particle masses – invariant under
Lorentz boosts along the z-axis. Since in photoproduction the centre-of-mass system of the
hadronic system can be transformed into the laboratory frame by a longitudinal Lorentz
boost along the z-axis, the jet algorithm is applied in the laboratory frame.

The algorithm successively combines objects, so-called protojets, if they are close to
each other in pseudorapidity η and azimuth angle φ. The distance in η-φ space (ΔR) is
weighted with their transverse momenta pt such that low energetic objects are combined
first. If no other protojet is close, the protojet is considered as a jet. The algorithm starts
with all input objects as protojets and an iterative procedure follows6:

1. For each protojet i and each pair of protojets ij the distances

di = p2
t,i (1.15)

dij = min
(
p2

t,i, p
2
t,j

) · [(ηi − ηj)2 + (φi − φj)2
]
/R2

0 (1.16)

are calculated. R0 is related to the opening angle of the jets. In this analysis R0 = 1
is chosen as usual.

2. The minimum dmin of all di and dij is found.

3. If dmin is a dij , the protojets i and j are replaced by a new protojet k with the
merged kinematic quantities

pt,k = pt,i + pt,j , (1.17)

ηk =
pt,i · ηi + pt,j · ηj

pt,k
, (1.18)

φk =
pt,i · φi + pt,j · φj

pt,k
. (1.19)

4. If dmin is a di, the protojet i is considered as a final jet and is removed from the list
of protojets.

5. If there are protojets left, the procedure goes on with step 1.

Particle and protojet masses are neglected in all steps, resulting in massless jets. A
short overview of different recombination and resolution schemes for the inclusive kt-jet
algorithm is given in [33].

1.6 D∗+Jet Double Tag

The D∗ meson is used to select charm production and to approximate the kinematics of
the produced charm or anticharm quark. To achieve a more detailed understanding of the
charm production mechanism, it is desirable to investigate the hadronic final state. It is
of special interest to reconstruct a second object that is related to the production process.

The strategy of this analysis is to find a jet not containing the D∗ meson. This is
described here, followed by presenting combined D∗+jet quantities which are sensitive to
QCD effects related to higher orders in pQCD or to initial kt.

6All equations considering the azimuth φ are symbolic, the rotational behaviour of φ is treated properly.
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Figure 1.10: Leading order photon-proton processes and possible reconstruction via a
D∗+jet pair, photon-gluon fusion (a) and charm excitation in the photon (b).

1.6.1 The Jet as Second Tag

Reconstruction of a second D∗ meson is statistically very limited due to the small branching
ratio of the used decay chain c → D∗ → D0πs → Kππs, cf. section 4.1. In [9] the second
heavy quark of the photon-gluon fusion is reconstructed by identification of a muon track
coming from the semileptonic decay of a heavy hadron. There the correlation between the
D∗ meson and the muon is used to separate charm and beauty, but the statistics is very
limited.

In this analysis a more inclusive ansatz is chosen. Instead of identifying a second heavy
quark or hadron by its decay products, a second hard outgoing parton is reconstructed
by a jet. Figure 1.10 shows the dominant leading-order diagrams of charm production
in collinear factorisation, direct photon-gluon fusion and charm excitation, and illustrates
what kind of partons can be tagged by the D∗ meson and by a jet which does not contain
the D∗ meson.

The jet is supposed to tag an object which is not yet tagged by the D∗ and therefore
should not contain the D∗ meson. In case of direct photoproduction, figure 1.10a), there
are two possibilities. The charm can be tagged by a D∗+ meson and the anticharm by the
jet or – vice versa – the charm is tagged by the jet and the anticharm by a D∗− meson.
In case of charm excitation, figure 1.10b), there is only one possibility, at least as long
as the second (anti-)charm quark in the photon remnant is not scattered into the central
detector region.

It is not possible to distinguish whether the hard object reconstructed by the jet is a
heavy or light quark or even a gluon. Therefore different processes like direct photopro-
duction and charm excitation cannot be distinguished. The advantage using the jet tag is
the much larger statistics compared to (semi-)exclusive reconstruction for two hard final
state partons.

In the following the term “jet” always designates a jet not containing the D∗ meson,
in contrast to jets containing a D∗ meson which are denoted as “D∗-jet”. “D∗+jet” means
a pair of a D∗ meson and a (non-D∗-) jet.

1.6.2 Combined D∗+Jet Quantities

The measurement of a D∗+jet pair gives the possibility to test several quantities which
are sensitive to the production mechanism. The assumption is that the D∗ meson and the
jet approximate the kinematics of a charm or anticharm quark and another parton, be it
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the other (anti-)charm, a light quark or a gluon. The quantities characterising the D∗+jet
system are the φ-distance Δφ(D∗, jet), the transverse momentum pt(D∗+jet) and the in-
variant mass m(D∗+jet) of the D∗+jet pair, the pseudorapidity difference η(D∗) - η(jet)
and xγ(D∗+jet), which is related to the momentum fraction of the photon carried by the
parton entering the hard process.

Δφ(D∗, jet) and pt(D∗+jet)

In the centre-of-mass system of the interacting partons the two outgoing partons of a 2 → 2
process are back-to-back. Assuming that the interacting partons do not obtain a transverse
momentum kt with respect to the colliding photon and proton, in photoproduction the
difference between the laboratory frame and the frame of the partonic centre-of-mass
system is a longitudinal Lorentz boost along the beam axis z. The longitudinal boost does
not change the topology in the plane transverse to the boost axis.

Therefore the partons are still back-to-back in this plane, i. e. Δφ = 180◦, and balanced
in transverse momentum, 
pt(1) = −
pt(2) ⇒ |
pt(1 + 2)| = 0. Initial transverse momenta
kt of the incoming partons and higher order effects like gluon radiation distort these
correlations. Therefore the difference in φ between the D∗ and the jet

Δφ(D∗, jet) =
{ |φ(D∗) − φ(jet)| : |φ(D∗) − φ(jet)| < 180◦

360◦− |φ(D∗) − φ(jet)| : |φ(D∗) − φ(jet)| > 180◦ (1.20)

and the transverse momentum of the D∗+jet pair

pt(D∗+jet) =
√(

px(D∗) + px(jet)
)2 +

(
py(D∗) + py(jet)

)2 (1.21)

test the correct description of the higher order or kt-effects in the calculations. However,
especially the transverse momentum pt(D∗+jet) is smeared by the fragmentation of charm
into the D∗ meson leading to values different from zero, even for leading order processes
that are perfectly back-to-back in φ.

m(D∗+jet)

The invariant mass of the D∗+jet pair

m(D∗+jet) =
√(

E(D∗) + E(jet)
)2 − (


p(D∗) + 
p(jet)
)2 (1.22)

is an approximation of the invariant mass of the tagged partonic system. Here E and 
p
denote the energy and the three-momenta of the D∗ and the jet where E(jet) = |
p(jet)|
for a massless jet algorithm like in this thesis. In leading order m(D∗+jet) corresponds to
the centre-of-mass energy of the incoming partons

√
ŝ.

xγ(D∗+jet)

The quantity xγ denotes which fraction of the longitudinal photon momentum takes part
in the hard interaction, in analogy to the proton momentum fraction xg carried by the
gluon in photon-gluon fusion.
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In photoproduction using energy and momentum conservation xγ can be calculated as

xγ =
Et,1 exp(−ŷ1) + Et,2 exp(−ŷ2)

2Eγ
(1.23)

in a 2 → 2 process, e. g. photon-gluon fusion, neglecting the proton mass and initial
transverse momenta kt. Et,i =

√
E2

i − p2
z,i are the transverse energies and ŷi = 1/2 ln[(Ei+

pz,i)/(Ei − pz,i)] denote the rapidities of the outgoing partons. Eγ is the energy of the
photon and is in photoproduction directly related to the electron beam energy Ee and the
inelasticity y, Eγ = yEe. This leads to xγ = 1 in direct and xγ < 1 in resolved processes.
For processes calculated in kt-factorisation xγ can be smaller than 1 even without the
inclusion of a resolved component.

Using the sum over all hadronic final state (HFS) particles 2yEe =
∑

i∈HFS
(Ei−pz,i) [34]

and substituting Et exp(−ŷ) by E − pz results in

xγ(D∗+jet) =

∑
i∈D∗(E − pz)i +

∑
j∈jet(E − pz)j∑

k∈HFS
(E − pz)k

(1.24)

if the partons are approximated by the D∗+jet pair or rather by the sum of their daugh-
ters. Using this definition of an observable quantity related to xγ has the experimental
advantage that xγ(D∗+jet) is restricted to the physical range of 0 < xγ ≤ 1 even for
fluctuations in the measurement since the sums in the numerator are always a fraction of
the sum in the denominator.

In the next-to-leading order parton level calculations the photon remnant is not ac-
cessible and the jet contains very often only one parton. Therefore a slightly different
definition of xγ is used on parton level,

xγ(D∗+jet) =
(E − pz)D∗ + (p − pz)jet

2yEe
. (1.25)

A disadvantage of xγ(D∗+jet) compared to other xγ definitions in charm events using
two jets [8] is that it is convoluted with the c → D∗ fragmentation leading to xγ(D∗+jet) <
1 even for direct processes. But requiring only one jet increases the statistics and still
resolved processes have on average significantly smaller xγ(D∗+jet) than direct processes
as will be shown.

η(D∗) - η(jet)

Considering the D∗ meson and the jet as approximations of the outgoing partons, the
distribution of the pseudorapidity difference η(D∗) - η(jet) is in leading order sensitive
to the relative contributions of the direct and resolved photon-gluon fusion, figures 1.10a)
and 1.4b), compared to charm excitation, figure 1.10b). In the latter case the jet originates
from a gluon and the D∗ is generally closer to the photon direction (negative pseudora-
pidities η) than the jet, leading to η(D∗) - η(jet) < 0 being preferred. In the direct process
the D∗ tag and the jet tag are symmetric apart from possibly different kinematical cuts.

Apart from charm excitation processes in leading order collinear factorisation, also
hard gluon radiations can lead to an asymmetry. These radiations are possible in the
final state parton shower, as NLO processes or due to kt-unordered evolution of the initial
parton ladder from the proton side in kt-factorisation.
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The pseudorapidity difference η(D∗) - η(jet) is also related to the scattering angle θ∗

between the collision axis and the outgoing partons in the partonic centre-of-mass system
in a 2 → 2 process (figure 1.11),

cos(θ∗) = tanh
(

η(D∗) - η(jet)
2

)
. (1.26)

The cos(θ∗) distribution depends on the nature of the propagator of the involved matrix
element. For spin-1

2 propagators like the quark in the direct process the distribution rises
like (1−| cos(θ∗)|)−1 for | cos(θ∗)| → 1, e. g. θ∗ → 0. For spin-1 propagators like in the case
of the gluon in the charm excitation processes depicted in figure 1.10b) the distribution
rises more strongly like (1 − | cos(θ∗)|)−2 as indicated in figure 1.12.

The investigation of the cos(θ∗) distribution in charmed dijet events [8] showed that a
large fraction of the resolved contribution in leading order QCD has a gluon propagator
and thus is due to charm excitation processes. This importance of charm compared to
gluons originating from the photon is also seen in recent NLO calculations in the massless
scheme [26].

In the present analysis cos(θ∗) is not considered further since additional cuts are needed
in order not to bias its distribution by the momentum and pseudorapidity cuts required
for the D∗ and the jet. The pseudorapidity difference η(D∗) - η(jet) itself will be examined
since it is of its own interest as described above.



Chapter 2

QCD Calculations of D∗ and
D∗+Jet Cross Sections

In this thesis measurements of D∗ and D∗+jet photoproduction cross sections are pre-
sented. QCD predictions will finally be compared to the measurements.

As described in section 1.2 there are different approaches for QCD calculations, col-
linear and kt-factorisation. In collinear factorisation calculations in leading order and in
next-to-leading order (NLO) are available whereas QCD predictions in kt-factorisation
have not yet been extended beyond leading order. However, kt-factorisation implicitly
contains contributions of terms that are of higher order in collinear factorisation, as nicely
described in [9]. In leading order Monte Carlo simulations the calculation of the hard
matrix element is usually supplemented with so-called parton showers to approximate
higher order contributions. Recent theoretical developments established a procedure to
match also NLO calculations with a parton shower [35,36], but such calculations are not
available for HERA.

In the following different calculations will be considered in more detail. The leading
order approach including parton showers will be expounded, both in collinear and kt-
factorisation. Then different NLO approaches are explained and the FMNR program is
presented, a massive NLO calculation. Finally the contribution from beauty production
is considered.

2.1 Leading Order Calculations with Parton Showers

Leading order QCD calculations are usually implemented as Monte Carlo event genera-
tors. In subsequent steps full final state events are generated. Differential cross section
predictions follow from the distributions obtained from these events.

The generator steps are depicted in figure 2.1: The hard matrix element (ME) is
calculated in leading order. Initial parton showers (PS) evolve the parton entering the hard
process from the proton side and final parton showers simulate QCD radiation down to a
cut-off scale. These perturbatively described phenomena are followed by the hadronisation
of the gluons and quarks into observable mesons and baryons which is non-perturbative
and has to be modelled.

In this analysis two Monte Carlo event generators are used, PYTHIA [37] and CAS-
CADE [38, 39]. The cross section predictions of PYTHIA version 6.15 and CASCADE

18
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Figure 2.1: Sketch of the subsequent steps of an event generator: Initial and final parton
shower (PS), matrix element (ME) and hadronisation.

version 1.20 [40] will be compared to the data. PYTHIA version 6.15 is used to determine
the efficiency and acceptance corrections applied to the data. As a cross check these cor-
rections will also be determined by CASCADE 1.00. Both generators use the PYTHIA
implementation of the final parton shower and the hadronisation step. The partons are
fragmented according to the Lund string fragmentation [28]. The heavy quark fragmen-
tation is chosen to follow the Peterson fragmentation function [29] with the parameter
εpet = 0.078 for the c → D∗ transition which is appropriate for a leading order matrix
element.

PYTHIA and CASCADE differ significantly in the treatment of the matrix element and
the initial parton shower. PYTHIA computes the matrix element and the initial parton
shower in collinear factorisation, i. e. using the DGLAP evolution and an on-shell matrix
element. Three different processes are generated separately and added afterwards: direct
photon-gluon fusion, resolved processes with a light quark or a gluon from the photon and
charm excitation processes where a charm quark from the photon enters the hard scatter
(cf. figure 1.4). In the latter process the charm quark is treated as a massless parton like
the light quarks whereas in the other processes the charm mass is set to mc = 1.5 GeV. The
cross section of the resolved processes with light partons from the photon is smaller by an
order of magnitude in the visible range of this analysis (pt(D∗) > 2.0 GeV, |η(D∗)| < 1.5,
table 5.6) compared to the cross section of the other two processes. The parton density
parametrisations used are CTEQ5L [41] for the proton and GRV-G LO [42] for the photon.
Multiple interactions are incorporated in PYTHIA by default.

CASCADE uses kt-factorisation. The initial parton cascade is evolved according to
the CCFM equation, i. e. without ordering in kt and considering only gluons. This leads
to an unintegrated gluon density which in contrast to the integrated parton densities in
collinear factorisation explicitly depends on kt. Without the restriction of kt ordering the
virtuality of the incoming gluon cannot be neglected and the matrix element has to be
calculated off-shell. Only direct photon-gluon fusion processes are taken into account, but
without ordering in kt some effects of charm excitation processes are implicitly included,
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as illustrated in [9]. Multiple interactions are not treated in CASCADE.
For the CASCADE 1.20 calculations the renormalisation scale μ2

r = 4m2
c +p2

t is chosen
and the gluon density set A0 [43] is used. Since the renormalisation scale is an unphysical
parameter, the full QCD calculation summing all orders of the perturbative expansion
must not depend on its choice. The importance of higher order terms is estimated by
using the sets A0+ and A0- instead which apply the renormalisation scale multiplied and
divided by two, respectively. Separately the charm mass has been varied from the default
value mc = 1.5 GeV to mc = 1.3 and mc = 1.7 GeV. The largest deviations of these four
calculations from the default set define the upper and lower bound of the uncertainties of
the CASCADE calculation. In most regions of phase space considered in this analysis the
mass variations have the largest effect.

The PYTHIA implementation of the hadronisation used in both generators leads to a
hadronisation factor of H(c → D∗) = 0.297 whereas H(c → D∗) = 0.235 ± 0.007 ± 0.007
is obtained from measurements [27]. The branching ratio of D∗ mesons in the analysed
decay chain D∗± → D0π±

s → K∓π±π±
s is BR(D∗ → Kππ) = 0.0250 in the generators,

but BR(D∗ → Kππ) = 0.0257 ± 0.0006 is the measured world average [44]. Therefore D∗

cross section predictions of PYTHIA and CASCADE will be multiplied with a correction
factor fcor when compared to the data to correct for these effects. For PYTHIA it is
fcor = 0.813, since only D∗ mesons in the analysed decay have been generated, and for
CASCADE it is fcor = 0.791, correcting only H(c → D∗).

2.2 Next-to-Leading Order Calculations

Different approaches have been followed in the literature to calculate charm photoproduc-
tion cross sections at next-to-leading order QCD in collinear factorisation. They differ
mainly in the treatment of the charm mass by neglecting or resumming different higher
order terms of the perturbative expansion series.

In the massive or fixed-flavour-number scheme [45,46] one assumes that only the gluon
and the light quarks (u,d,s) are active flavours in the proton and in the (resolved) photon.
The charm mass is explicitly taken into account, but it is assumed that the mass and
the transverse momentum, i. e. the second hard scale involved, are of the same order. In
this way terms ∝ αs ln (p2

t /m
2
c) are neglected and the theory should be applicable for

pt >∼ mc only. Details about massive NLO predictions by the FMNR program which will
be compared to the data follow in section 2.3.

In the zero-mass variable-flavour-number scheme (ZMVFNS) the charm quark is
treated as massless like the light flavours. In contrast to the massive scheme, the charm
quark is considered also as an incoming parton of the hard matrix element, originating
from the proton or the photon. Fragmentation of the charm quark into observable mesons
is performed by a fragmentation function adopted to this scheme [31]. Since terms of the
order m2

c/p
2
t are neglected, the predictions are expected to be reliable at large transverse

momenta only.
Nevertheless, the cross sections obtained in this analysis will be compared with a

massless calculation in this scheme [26, 47]. The scales are chosen to be μ2
r = m2

c + p2
t

for the renormalisation and μ2
f = 4 · (m2

c + p2
t ) for the factorisation with the charm mass

mc = 1.5 GeV.
The uncertainty of the calculation is estimated by considering the influence of varying
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ZMVFNS Fragmentation μf μr p-PDF γ-PDF
decreasing σ 1.25 · mt 2 · mt

default BKK O [31] 2 · mt mt MRST03 [48] AFG04 [49]
increasing σ 4 · mt mt

Table 2.1: Main parameters of the ZMVFNS next-to-leading order QCD calculation with
their default settings and variations which lead to an increasing and decreasing prediction
of the total visible cross section, respectively. The treatment of the charm fragmentation
into D∗ mesons, the factorisation and renormalisation scales μf and μr and the parton
density parametrisations of the proton and the photon are given. The transverse mass is
defined as mt =

√
m2

c + p2
t (D∗) with the charm mass mc = 1.5 GeV.
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Figure 2.2: Gluon densities at a scale μ2
f = 10 GeV2. The CTEQ5M [41] and MRST03 [48]

parametrisations are used in NLO calculations which will be compared to the data in this
thesis. CTEQ6M [50] is given for reference only.

these scales. For this massless calculation a usual way is to multiply the scales with a factor
2 or 0.5. The largest deviations from the central choice obtained by all combinations of
variations define the lower and upper bound of the uncertainties. Mostly these are the
diagonal scale variations, i. e. factor 2 for μr combined with factor 0.5 for μf and vice
versa. The lowest minimal transverse momentum in this analysis, pt(D∗) = 2 GeV, would
lead to scales smaller than the parton density parametrisations are applicable for and
smaller than the perturbative expansion is expected to work with. Therefore here smaller
variations are chosen. They are listed in table 2.1 with further details.

It has to be remarked that the MRST03 parton densities of the proton used in the
ZMVFNS calculation differ from other parametrisations. Particularly the gluon density at
lower scales and relatively small x ≈ 10−3 is lower than in other parametrisations as shown
in figure 2.2. Indeed, calculations using CTEQ5M [41] instead, but all other parameters as
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FONLL Fragmentation H(c → D∗) μf μr p-PDF γ-PDF
decreasing σ mt 2 · mt

default Kartvelishvili [30,54] 0.235 mt mt CTEQ5M [41] GRV [42]
increasing σ mt 0.5 · mt

Table 2.2: Main parameters of the FONLL next-to-leading order QCD calculations with
their default settings and variations. The treatment of the charm fragmentation into D∗

mesons, the charm hadronisation fraction, the factorisation and renormalisation scales μf

and μr and the parton density parametrisations of the proton and the photon are given.
The transverse mass is defined as mt =

√
m2

c + p2
t,c with the charm mass mc = 1.5 GeV.

for the central prediction, are approximately as large as the upper bound using MRST03.
As reviewed in [24], the conceptually most promising approach to calculate heavy quark

cross sections is to combine the benefits of the massive and the massless scheme. In the
FONLL [51,52] approach the calculation at low momenta pt ≈ mc is effectively performed
in the massive scheme and at high momenta in the massless scheme. A transition is defined
to avoid double counting of common terms. A further merged approach compared to D∗

photoproduction at HERA can be found in [53]. The inclusive differential dσ/dpt(D∗) cross
section obtained in this analysis will be compared to a FONLL calculation. Table 2.2 shows
the choice of the most important parameters.

2.3 The FMNR Program

An implementation of the massive next-to-leading order QCD calculations for heavy quark
photoproduction [45, 46] has been made available to the H1 and ZEUS collaborations by
the authors. The program is organised like an event generator such that it provides
“events” containing kinematical information of either one heavy quark (single differential
mode) or of both the heavy quark and antiquark and a possible third parton, a gluon or
a light quark (double differential mode). Each event has to be taken into account with its
weight which may be negative. These negative weights correspond to interference terms
of leading order diagrams with virtual correction diagrams considered in next-to-leading
order, cf. figure 1.9.

Two separate calculations have to be performed for the direct and the resolved part
of the cross sections, only the sum is a physical observable. The following settings can be
chosen by the user:

• the heavy quark type, i. e. charm or beauty,

• the mass mQ of the heavy quark Q,

• the factorisation and renormalisation scales as a multiple of the transverse
mass mt =

√
m2

Q + (p2
t,Q,1 + p2

t,Q,2)/2 for the double differential mode and mt =√
m2

Q + p2
t,Q for the single differential mode, respectively,

• the types of the colliding beam particles, e. g. ep or γp collisions,

• the centre-of-mass energy Ecms,
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FMNR μr μf mc [GeV ] εpet p-PDF γ-PDF
decreasing σ 2 · mt mt 1.7 0.042
default mt 2 · mt 1.5 0.035 CTEQ5M GRV-G HO
increasing σ 0.5 · mt 4 · mt 1.3 0.028

Table 2.3: Renormalisation (μr) and factorisation (μf ) scales, the charm pole mass (mc),
the Peterson parameters (εpet) and the parton density parametrisations of the D∗ cross
section calculations with the FMNR program with their default settings and variations.
The transverse mass is defined as mt =

√
m2

c + p2
t,c for single differential and mt =√

m2
c + (p2

t,c,1 + p2
t,c,2)/2 for double differential calculations.

• the parton density parametrisations of the colliding particles; for a correct
subtraction of terms which in leading order contribute to resolved and at NLO to
direct processes, the factorisation scheme used for the photon density, e. g. DIS
or MS, is needed in the direct calculation,

• the ΛQCD parameter

• and the number of iterations of the numerical integration and the number of
events generated to achieve the result.

For the resolved calculation in ep mode the photon density has to be folded with the
photon flux from the positron (eq. 1.12) for the specific range of the inelasticity y [55]. If the
information about y in the resolved calculation is needed (dσ/dWγp and dσ/dxγ(D∗+jet)),
the calculation is performed in γp mode at a photon-proton centre-of-mass energy Wγp

corresponding to a fixed value of y = W 2
γp/s. Then the result has to be multiplied with

the integrated photon flux of a small range around the fixed y.
To take into account the fragmentation of charm quarks into D∗ mesons, the final

result is multiplied by the charm hadron production fraction of D∗ mesons, H(c → D∗) =
0.235 [27]. The fragmentation of the quarks into the observable D∗ mesons is performed
by the Peterson fragmentation [29]. This means that the meson momentum is achieved
by downscaling the quark momentum. The downscaling factor is obtained from a random
distribution according to the Peterson function which depends on a single parameter εpet.
The scaling is done in the centre-of-mass frame of the partonic system (single differential
mode) and in the frame defined by pz(Q) = −pz(Q) (double differential mode), respec-
tively. The generation of a transverse momentum relative to the quark direction by parton
radiation in the fragmentation process is neglected.

For the D∗+jet analysis the inclusive kt-jet algorithm is applied to the two or three
outgoing partons. The D∗-jet is identified as the jet which contains the quark fragmenting
into the D∗ meson. This jet is not taken into account here since the jet is intended to tag
a parton different from the D∗ tagged charm quark. The effect of the transition from a
jet on the parton level to jets built from observable hadrons and the necessary corrections
will be studied in section 6.7.

The importance of higher order terms in the NLO calculations is estimated by varying
the scales by factors 0.5 and 2. Table 2.3 shows the chosen scales and other relevant
parameters for the calculation of D∗ cross sections. The central choice of the renormalisa-
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tion (μr) and factorisation (μf ) scales and of the charm pole mass are the same as for the
latest H1 publication [1] and as the choice of the FMNR authors. The default Peterson
parameter εpet is taken from [56]. As parton densities the parametrisations CTEQ5M [41]
and GRV-G HO [42] are used for the proton and the photon, respectively. The former
is parametrised in the MS, the latter in the DIS scheme. The ΛQCD parameter is set to
Λ(5)

QCD = 0.226 GeV to match the CTEQ5M parametrisation.
In the following the effect of the negative weights occurring for interference terms

and the sensitivity of the cross section calculation on the parameters will be investigated
exemplarily for the pt(D∗+jet) distribution.

Figure 2.3a) shows the cross section prediction of the direct and the resolved part in
very small bins. The essential observation is the occurrence of the negative values for
pt(D∗+jet) < 1 GeV. They can be understood since negative weights of interferences of
diagrams like those shown in figure 1.9a+c) belong to final states with only two outgoing
partons, namely the charm and the anticharm quark. These partons must be balanced
in pt, leading to a vanishing transverse momentum of the parton-parton pair. Due to
the fragmentation of one of the quarks into the D∗ meson this pt balance is deteriorated
and the negative weights do not accumulate at exactly zero. This behaviour is typical
for all quantities which are not “infrared safe” at next-to-leading order like pt(D∗+jet)
and Δφ(D∗, jet). Nevertheless, by integrating the problematic region in larger bins a valid
prediction can be made as shown in figure 2.3b). However, the effect of varying the
perturbative scales is large.

Both figures 2.3a-b) show that the resolved part of the predictions is very small. In
figure 2.3b) also the variation of the prediction when varying the renormalisation scale
by factors of 0.5 and 2 is shown. This has a large influence on the result, indicating the
importance of higher order terms. A lower renormalisation scale leads to a larger coupling
constant αs(μr). This generally increases the cross section prediction. But in special
regions in phase space the opposite behaviour can be seen: At low pt(D∗+jet) the cross
section decreases due to the higher probability of gluon radiation which deteriorates the
pt balance.

The figures 2.3c-f) illustrate the influence of varying the different parameters of the
calculation listed in table 2.3. The relative deviation between the default values and
varying each parameter individually up or down is shown. The renormalisation scale μr has
the largest influence, up to 60%. Varying the factorisation scale μf leads to changes in the
opposite direction of varying μr. A larger scale generally increases the cross section because
larger scales lead to increasing parton densities. But also here there are exceptions, at low
pt(D∗+jet) both halving and doubling the scale leads to a slightly decreased prediction.
Generally the effect is of the same order of magnitude as varying the charm mass mc ±
0.2 GeV, up to 15%. Varying the Peterson parameter εpet by 20% has only a negligible
effect up to about 5%.

Varying these parameters qualitatively shows the same effects for all other D∗ and
D∗+jet quantities considered in the analysis of this thesis: The renormalisation scale μr

generally has the largest influence and varying the Peterson parameter is negligible. An
exception are the inclusive D∗ calculations where halving μf leads to a slightly lower cross
section than doubling μr.

In the recent H1 publication measuring beauty cross sections using the semileptonic
decay of B hadrons into muons [57] the uncertainties of the FMNR calculations are es-
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Figure 2.3: Results of the next-to-leading order QCD calculations of the FMNR program
as a function of the combined D∗+jet quantity pt(D∗+jet) (a,b) and the relative effect of
varying (cf. table 2.3) the renormalisation and the factorisation scales, the charm mass
and the Peterson parameter (c-f).
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Figure 2.4: Ratio of the beauty contribution to D∗ and D∗+jet cross sections in CAS-
CADE 1.2, for the inclusive D∗ cross section as a function of η(D∗) (a) and for the
D∗+jet cross section as a function of pt(D∗+jet) (b).

timated by varying both scales simultaneously up or down and varying the heavy quark
mass at the same time. Also in the calculation of charm cross sections using D∗μ cor-
relations [10] both scales are varied simultaneously, but the effect of varying the heavy
quark mass only is added in quadrature. But when varying both scales simultaneously
in the same direction the effects on the cross section partially cancel. On the other hand
for single bins the effect of varying μr (which in general leads to the largest effect) can
be small due to the cancellation of contrary effects as described for low pt(D∗+jet). Thus
the uncertainty of the cross section prediction of the FMNR calculation will be estimated
as follows: For each calculated bin the maximal deviation up- and downward obtained by
individually varying the renormalisation scale, the factorisation scale and the charm mass
as stated in table 2.3 define the upper and lower bound of the prediction.

2.4 Contribution from Beauty Production

D∗ mesons are produced, in addition to the fragmentation of charm, in the decay of
hadrons containing beauty quarks. In this way beauty production contributes to D∗ and
D∗+jet cross sections.

The beauty contribution is calculated in two different approaches: In the visible range
of this analysis (table 5.6) CASCADE 1.2 predicts σ(ep → bb̄ → D∗) = 0.20 nb which is
3.6% of the charm prediction σ(ep → cc̄ → D∗) = 5.52 nb. This increases slightly to 5.4%
considering D∗+jet cross sections. PYTHIA predicts a beauty contribution of below 3%
even for D∗+jet.

As an example, figure 2.4 shows the ratio of the beauty contribution as a function of
the pseudorapidity of the D∗ (without jet requirement) and as a function of the transverse
momentum of the D∗+jet pair. It rises in the forward direction up to 6% which is the
largest value for all inclusive D∗ distributions considered in this analysis. In the forward
direction the charm cross section decreases, whereas in the backward direction beauty is
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kinematically suppressed since its higher mass needs more energy from the photon side
(larger inelasticities y) to be produced closer to the photon direction.

Larger transverse momenta of the D∗+jet pair are particularly preferred in beauty pro-
duction. The decay of the beauty hadron into a D∗ meson causes an additional momentum
loss of the D∗ relative to the initial beauty quark. This leads to a larger transverse mo-
mentum of the D∗+jet system. The reason is similar to what caused the negative dip in
the FMNR calculation of this distribution (figure 2.3a)) to be not exactly at zero.

The beauty ratio in all other distributions is smaller than 10%, the largest seen at
large pt(D∗+jet). An exception are medium xγ(D∗+jet) and large pt(jet) where it reaches
15%. Compared to other uncertainties in the calculations and in the data the beauty
contribution is not significant in any measured region of phase space. This is even true in
case the prediction of the beauty cross section needs an extra normalisation factor of ∼1.5
as recently measured [57]. Hence for simplicity the beauty contribution will be neglected
when comparing theoretical predictions to the data.



Chapter 3

The H1 Experiment at HERA

The H1 detector is a general purpose detector, measuring energy and momentum of
charged and neutral particles, production vertices, the luminosity of the colliding beams
and providing information useful for particle identification. It is located at the Hadron-
Electron-Ring-Anlage HERA of the DESY laboratory in Hamburg, Germany. HERA ac-
celerates protons to energies of 920 GeV (820 GeV before 1998) and electrons (or positrons)
to energies of 27.6 GeV, yielding a centre-of-mass energy of

√
s ≈ 319 GeV. Electron and

proton bunches collide every 96 ns in the two interaction regions where the experiments
H1 and ZEUS are located, H1 in the northern and ZEUS in the southern hall.

A schematic side-view of the H1 detector is given in figure 3.1. The beam pipe (not
shown) is surrounded by the tracking detectors which are followed by the calorimeters.
The superconducting solenoid (not shown) comprises the calorimeters. It provides the
magnetic field of ∼ 1.15 T needed to measure momenta with the tracking detectors. In
this way the amount of dead material in front of the calorimeters is reduced compared to
a setup where the solenoid is placed in between the trackers and the calorimeters. The
whole apparatus is surrounded by an iron yoke to return the magnetic flux of the solenoid.
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Figure 3.1: Schematic longitudinal section of the H1 detector and its coordinate system.
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Figure 3.2: Cut-out of the radial view of the central trackers. The CIP and the COP
are not shown, they are located close to the CIZ and in between the COZ and the CJC2,
respectively.

The iron yoke is instrumented and used as central muon detector.
The z-axis of the right handed H1 coordinate system is defined by the beam axis with

positive values in the direction of the colliding protons. The x-axis points towards the
centre of the HERA ring and the y-axis points perpendicular upwards. The origin is the
nominal interaction point. The azimuthal angle φ lies in the xy-plane and the polar angle
θ is measured from the z-axis as depicted in figure 3.1.

Due to the different beam energies the H1 detector is instrumented asymmetrically.
The forward direction, defined by positive z-values, has an enhanced instrumentation, e. g.
the forward tracker, the forward muon system and finer granularity of the calorimeter. On
the other side, in the backward direction, the spaghetti calorimeter SpaCal is especially
designed to detect and to trigger the scattered electron in neutral current events up to
Q2 = 100 GeV2.

The H1 experiment is completed by several small detectors close to the beamline, in
the forward direction to detect the scattered proton or its remnant and in the backward
direction to tag electrons scattered under small angles and to measure the luminosity.

The H1 detector is described in many theses, e. g. [9, 58], and – as operational before
1995 – in [59,60]. In the following the components relevant for this analysis will be briefly
described before it will be introduced how information about particle identification can be
obtained from the tracking detectors. Then some aspects of the detector simulation and
of the reconstruction of the hadronic final state from tracks and energy depositions in the
calorimeters will be discussed.

3.1 Central Tracking Detectors

The central tracking system consists of the central jet chamber (CJC), the central silicon
tracker (CST) and the central inner and outer z-chambers (CIZ/COZ) which are shown in a
radial view in figure 3.2. The central inner and outer proportional chambers (CIP/COP)
are not shown. They are used for triggering only and are close to the CIZ and COZ,
respectively.

The main tracking device is the CJC which consists of two gas-filled coaxial cylinders
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along the beam axis from z = −1.1 m to z = +1.1 m. The inner chamber (CJC1) covers
the angular range 11◦ < θ < 169◦ and the outer chamber (CJC2) covers 26◦ < θ < 154◦.
Sense- and several kinds of field-wires are clamped parallel to the z-axis.

Charged particles traversing the CJC ionise the CJC gas. The released electrons drift
towards the sense-wires and cause an electron cascade, driven by the electric field between
the sense- and the field-wires. The drift velocity and the time at which the charge collected
by the sense-wires is measured, define the position of the hits in the rφ-plane. A resolution
of σrφ = 130 μm is achieved [61]. The charge is read out at both ends of the sense-wires.
In this way the z-position of a hit can be determined using the principle of charge division.
The resolution is not as good as in the rφ-plane and reaches σz = 22 mm.

The magnetic field of the solenoid is parallel to the z-axis and the trajectory of a
charged particle follows a helix. Pattern recognition is applied to find tracks. Helices
are fitted to the measured hits to determine the track parameters. Effects like multiple
scattering and energy loss in the traversed matter or slight inhomogeneities of the mag-
netic field result in small deviations from the helix. They are taken into account in the
determination of the track momentum at the event vertex. Constraining the tracks to
such a common vertex improves the momentum resolution significantly.

To further improve the z-resolution, hits in the CIZ and the COZ are taken into account
in the track reconstruction. They are located inside the CJC1 and in between the CJC1
and CJC2, respectively. Their signal-wires are perpendicular to the z-axis resulting in a
z-resolution better by two orders of magnitude compared to the CJC alone.

The central silicon tracker (CST) [62] is the innermost track detector. It consist of two
layers with a polar coverage of 30◦ < θ < 150◦. In rφ a hit resolution of σrφ = 12 μm is
achieved. This allows the reconstruction of secondary vertices e. g. from D0 decays [63],
a feature that is not exploited in this analysis. But including the precise CST rφ-hits in
the track fit improves the transverse momentum resolution due to the good hit resolution
and due to the extension of the measured arc length in the rφ-plane.

3.2 Calorimeters

The two most important calorimeters of the H1 experiment are the liquid argon calorimeter
(LAr) and the spaghetti calorimeter (SpaCal).

The LAr calorimeter [64] encloses the forward and the central part of the detector with
a polar coverage of 4◦< θ < 154◦. It is a sampling calorimeter with absorbers of lead in the
inner electromagnetic and of stainless steel in the outer hadronic part. The electromagnetic
and hadronic parts of the calorimeter can be seen in figure 3.3 in a longitudinal section
of the upper half of the LAr. Altogether it has more than 44000 readout channels, called
calorimeter cells.

The LAr is a non-compensating calorimeter, it has on average a larger response for
electromagnetic compared to hadronic energy depositions. A software weighting algorithm
is applied to correct for the electromagnetic shower fraction of energy depositions caused by
hadrons, examining shower shapes. Since the shape of low energetic hadronic depositions
is irregular, for energy depositions below ∼ 7−10 GeV in a specific cone weighting factors
are applied without detailed analysis of the shower shape.

The reconstruction software provides energy measurements with and without this cor-
rection of hadronic energies. The hadronic energy level applies the individual hadronic
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Figure 3.3: The upper half of the LAr calorimeter. The names of electromagnetic sec-
tions end with “E”, those of hadronic sections with “H”. The horizontal and vertical lines
indicate the orientation of the absorber plates.

weighting factor for each calorimeter cell. The electromagnetic energy level assumes the
energy deposition to be purely electromagnetic and only corrections for dead material in
front of the calorimeter are applied. Finally the cells are grouped into clusters.

An energy resolution of σ(E)/E ∼ 12%/
√

E/GeV ⊕ 1% in the electromagnetic part
and of σ(E)/E ∼ 50%/

√
E/GeV ⊕ 2% in the hadronic part is achieved.

The SpaCal [65] completes the calorimetric coverage in the backward direction with
an angular acceptance of 153◦ < θ < 178◦. It is a lead/scintillating fibre calorimeter with
an electromagnetic and a hadronic layer. The SpaCal is designed to trigger, detect and
identify the scattered electron in neutral current DIS events reaching Q2 = 100 GeV2. An
energy resolution of σ(E)/E = 7.1%/

√
E/GeV ⊕ 1.0% is reached in the electromagnetic

section [66].

3.3 Luminosity System and Electron Taggers

The luminosity system of H1 consists of TlCl/TlBr crystal Čerenkov calorimeters located
close to the beam pipe further away from the H1 detector in direction of flight of the
electrons. The luminosity is measured by detection of Bethe-Heitler processes ep → epγ
for which the cross section is precisely known. Electrons are detected in the electron tagger
at z = −33.4 m (ET33), photons in the photon detector at z = −102.9 m (PD). For an
online determination of the luminosity the rate of coincident detection in both detectors
is used. After offline calibration the luminosity is determined more precisely from the
photon rate in the PD only [67]. A precision better than 1.5% is reached for the data set
analysed in this thesis.

The ET33 is also used to trigger and to detect electrons in photoproduction events
where the electrons are scattered under a very small angle. Electrons in events with
Q2 < 0.01 GeV2 and 0.2 <∼ y <∼ 0.7 can reach the ET33. Further electron taggers are
placed at z = −43.2 m and z = −8.0 m accepting lower and higher inelasticities y,
respectively. Their acceptance is not understood as well as that of the ET33 and therefore
they are not used in this analysis.
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3.4 The Trigger System

Electron and proton bunches collide every 96 ns leading to a rate of 10.4 MHz. The rate of
physically interesting ep reactions is much lower. The total photoproduction cross section
σtot

γp ≈ 165 μb [68] combined with a luminosity L = 1.5 · 1031 cm−2s−1, reached in 2000
data taking, leads to an event rate of the order of kHz. The rate of DIS events is much
lower, in the order of a few Hz. In addition there is a rate of about 50 kHz from beam-gas
collisions.

Since it is not possible to read out the total detector within 96 ns and to select the in-
teresting events afterwards, fast hardware and software algorithms have to decide whether
to keep an event or not. This is done by a multilevel trigger system which selects the
relevant ep events and reduces the background rates in several steps. The input rate de-
creases from about 100 kHz at the first level (L1) down to 50 Hz at the fourth level (L4)
which has a maximal output rate of 10 Hz.

The H1 trigger system consisted of the following trigger levels when the data analysed
in this thesis have been recorded:

L1: The L1 decision is based on special trigger signals of various detector components.
These 256 so-called trigger elements are logically combined to 192 subtriggers. An event is
kept at L1 if at least one of the 192 subtriggers gives a positive decision. To allow sufficient
time to acquire the individual signals, they are first fed into a pipeline, bunch crossing
by bunch crossing. The decision to keep an event comes 24 bunch crossings later. The
pipelines are stopped if the decision is positive. Until the pipelines are restarted, so-called
dead time accumulates in which no data can be collected.
If a specific subtrigger has a too large rate, it can be scaled down by a factor n. This means
that only every n-th positive decision of this subtrigger is taken into account, effectively
reducing the integrated luminosity seen by the subtrigger.
The L1 output rate is of the order of a few kHz.

L2: Neural networks and topological triggers are implemented on L2. Within 20 μs the
decision has to be made whether to start the full detector readout or to reject the event
and to restart the pipelines. The L1 subtriggers selected in this analysis do not require an
L2 condition to be fulfilled.
The L2 output rate has to be below 50 Hz since L3 was not yet operational for the data
analysed here.

L4: On the fourth trigger level an online event reconstruction is performed. This does
not contribute further to the dead time since an asynchronous event buffer is used.
If the L1 and L2 trigger decisions can be validated, the events are classified into L4 classes.
They belong to at least one of the physics event classes if they provide a “hard scale”, e. g.
a scattered electron with a sufficiently large Q2, or if specific final state finders select them.
There are event classes selecting e. g. “high Q2”, “diffraction” or “open charm” events.
All events assigned to physics classes are kept. The remaining events are downscaled. For
the kept fraction of the downscaled events an according weighting factor is stored, the
L4-weight. The maximal allowed decision time of L4 is 100 ms.

L5: A complete offline event reconstruction is performed and its output is permanently
stored on tapes.
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3.5 Particle Identification using Energy Loss: dE/dx

Moderately relativistic charged particles other than electrons lose energy passing matter
primarily by ionisation and atomic excitation. Their mean energy loss per path is given
by the Bethe-Bloch equation [44]

−
〈

dE

dx

〉
= 4πNAr2

emec
2z2 Z

A

1
β2

[
1
2

ln
2mec

2β2γ2Tmax

I2
− β2 − δ

2

]
. (3.1)

NA denotes Avogadro’s number, re the classical electron radius, me the electron mass,
z the charge of the incident particle in units of the elementary charge, Z (A) the atomic
number (mass) of the traversed matter and Tmax = 2mec2β2γ2

1+2γme/M+(me/M)2
is the maximum

kinetic energy that can be imparted to a free electron in a single collision of the particle
with mass M and I is the mean excitation energy. The Lorentz variables β = p/E and
γ = 1/

√
1 − β2 are defined as usual. The density effect correction δ/2 is introduced to

account for polarisation effects that effectively truncate the electric field extension of high
energetic particles.

Measuring the energy loss dE/dx of particles allows to identify them because the dE/dx
value in a given medium depends only on β but not independently on their mass and
momentum. The energy loss according to the Bethe-Bloch equation always shows the
same behaviour, namely a steep decrease at low βγ before the minimum value is reached,
followed by a slow increase at large βγ. The curve as a function of the momentum differs
for particles with different masses, mainly at relatively low momenta.

The dE/dx of a track can be determined from the dE/dx values of the track hits. The
process of energy loss is of stochastic nature. The probability density function of losing
the energy ΔE while passing through a material of thickness x, f(ΔE, βγ, x), is usually
called the Landau distribution. This distribution has a very long tail towards high values
of ΔE due to possible single collisions with high energy transfer and the mean value is
significantly higher than the most probable value. This effect is prominent especially for
a small thickness x and thus complicates the determination of the dE/dx value of a track
from the single hit values.

The dE/dx value in the CJC is measured by combining the measured charge collected
by those hits of a track that fulfil certain quality criteria. A mean dE/dx value of the
track is determined by transforming the distribution of energy depositions of single hits
like dE/dx → 1/

√
dE/dx and finally re-transforming the mean of this more symmetric

distribution. To take into account the path length of a track that contributes to the
collected charge of each hit, the obtained value has to be multiplied with sin θ where θ is
the polar angle.

The obtained dE/dx values do not obey the Bethe-Bloch equation exactly for several
reasons. The mean value may be distorted due to a threshold requirement in the hit
acceptance. The values are improved by run dependent constants and instead of the
Bethe-Bloch equation the dE/dx parametrisation [69]

f dE
dx

= p1 · z2

βp2

[
1.0 + p3 · e−p4·log10(0.25+βγ)

]
(3.2)

is used. The dE/dx values are normalised such that fdE/dx = 1 for minimum ionising
particles (m.i.p.). If a track has less than 10 hits usable for the dE/dx measurement, the
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dE/dx value cannot be determined reliably. Figure 3.4a-b) shows the measured values
for tracks in events with a selected D∗ meson in the signal region together with the
parametrisation eq. 3.2 for pions, kaons and protons.

The likelihood of a track to be a specific particle can now be defined via the integral
of the χ2 density for one degree of freedom

LH =
1√
2π

∫ ∞

χ2

e−t/2 · 1√
t

dt, (3.3)

χ2 =

(
dE/dx − f dE

dx
(p,m)

)2

s2
dE/dx + s2

p

, (3.4)

sdE/dx = σdE/dx · f dE
dx

(p,m),

sp =
(
f dE

dx
(p + σp,m) − f dE

dx
(p − σp,m)

)/
2.

The absolute uncertainty of the momentum measurement, σp, is obtained from the track
fit and the relative resolution of the dE/dx measurement, σdE/dx, depends on the number of
hits used and is parametrised as in [69]. Therefore sdE/dx and sp represent the uncertainty
contribution of the dE/dx and the momentum measurement, respectively. The latter
usually is small.

A flat distribution of LH is expected for particles that have been assigned the correct
mass hypothesis. Wrong particle hypotheses accumulate close to zero. This behaviour can
be clearly seen in the figures 3.4c-d) which show the LH distribution for the tracks of the
kaon and pion from the decay of the D0 for D∗ candidates in the signal region.

3.6 Detector Simulation

The efficiency of reconstructing and triggering D∗ mesons and D∗+jet pairs will be deter-
mined with a simulation of the H1 detector using Monte Carlo event generators.

Events are generated e. g. by PYTHIA resulting in four-vectors and particle types of
the produced particles. For these particles decay and passage through the detector and
the corresponding detector response is simulated by the standard H1 detector simulation
which is based on GEANT 3 [70]. The trigger response is also simulated. The resulting
detector signals are passed through the same reconstruction program that is also used for
the data.

In this way the reconstructed events can directly be compared to the “real” (generated)
events. Efficiencies can be determined as the ratio between the number of reconstructed
and generated events in the considered kinematical region. To apply this simple unfolding
method it has to be ensured that the data are well described by the reconstructed quantities
of the simulation.

The simulation has to take into account that the status of the detector may differ
slightly from run period to run period. This is achieved by simulating for each such period
a fraction of the generated events that is proportional to the integrated luminosity for
which the detector condition is valid. In this way e. g. temporarily broken sectors of the
CJC affecting the track reconstruction in a specific region are properly taken into account.

An exception is the electron tagger ET33. Frequent small variations of the beam
conditions have a strong influence on the acceptance of the ET33. For this reason it is
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Figure 3.4: Measured dE/dx values for central tracks in events with a reconstructed D∗

candidate in the signal region 143 < Δm < 148 MeV (a) and for tracks taken as the slow
pion πs (b). The dash-dotted line indicates the cut which will be applied to remove those
particles that obviously are not pions.
For the kaon tracks of the D0 candidates the distribution of the resulting likelihood values
to be a kaon, LH(K), is shown in a logarithmic scale (c) and in an analogous manner
LH(π) of the pion tracks of the D0 candidates in a linear scale (d). Values above one
indicate tracks without a dE/dx measurement. For the D∗ selection see section 4.2.
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not fully simulated in the H1 simulation software and no reliably reconstructed energy
deposition in the ET33 is available. The H1 collaboration has determined the acceptance
of the ET33 as a function of the inelasticity y and averaged over certain run ranges as will
be shown in figure 5.2. This finite acceptance of the electron tagger is taken into account
by applying weights to the simulated events according to the acceptance function.

3.7 Combining Tracks and Clusters

Measuring particles as tracks in the tracking chambers or as energy depositions in the
calorimeters has different advantages. In general tracks can be measured precisely in the
regime of relatively low transverse momenta pt up to a few GeV. The precision decreases
with increasing pt. Only charged particles can be detected, thus on average about one
third of the produced particles are not detected. In contrast both charged and neutral
particles (except neutrinos) can be detected in the calorimeters and the uncertainty of
their energy measurement decreases with increasing energy.

To exploit the full energy and momentum range the measurements of both kinds of
detectors are combined. An important requirement of an algorithm providing this com-
bination is to avoid double counting of energy. This problem arises from particles which
both are detected in the tracking detectors and deposit energy in the calorimeters.

In this analysis the HADROO2 [71] algorithm is used to define so-called Hadronic Final
State (HFS) objects. These HFS objects are built as combinations of tracks and energy
clusters which are identified to belong to the same particle. An HFS object can be built
either from a combination of a track with clusters, from a track only or from clusters only.

For each combined HFS object the algorithm decides whether the transverse momen-
tum measurement of the track or the cluster energy defines the four-vector. For track
measurements the pion mass is assumed1. For measurements from clusters the treatment
of the mass of the resulting HFS object depends on whether the cluster is found to be
hadronic or electromagnetic. If it is hadronic, the cluster four-vector is calculated as the
four-vector sum of its cells which are assigned no mass. This results in massive cluster
four-vectors. For electromagnetic clusters the momentum is scaled to the measured energy
leading to massless clusters.

The main steps of the algorithm are the following:

• selection of tracks without double counting of different track hypotheses,

• removal of clusters which are identified as noise,

• temporary removal of tracks and clusters which are already identified as leptons,

• loop over the tracks starting with the lowest pt,

• extrapolation of each track into the calorimeters,

• matching of clusters to the extrapolated track,

• comparison of the track and cluster measurements including a check whether they
agree with each other within their uncertainties,

• build an HFS object according to the comparison and the cluster properties,

• if clusters are left after extrapolation of all tracks, build HFS objects for them,
1The mass for tracks matched with clusters has erroneously been set to zero in the H1 analysis software.
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Track selection
reconstructed with CJC, CST, CIZ, COZ
fitted to a vertex
prefer primary vertex hypothesis

pt > 120 MeV
20◦≤ θ ≤ 160◦

d′ca ≤ 2 cm
rstart ≤ 50 cm

rend − rstart > 10 cm (θ < 150◦)
rend − rstart > 5 cm (θ > 150◦)

Table 3.1: Selection criteria for tracks considered by the HFS algorithm HADROO2. The
distance of closest approach d′ca is calculated in the rφ-plane as the distance of the non
vertex fitted hypothesis of a track to the vertex which the track is fitted to, rstart and rend

and are the radii of the first and the last CJC hit of a track.

• add all identified leptons to the list of HFS objects2.

The track selection is based on vertex fitted tracks reconstructed in the central tracking
detectors.3 The selection is based on [72], the details are listed in table 3.1. If a track
has several hypotheses fitted to the primary vertex and to secondary vertices, the primary
vertex hypothesis is chosen.

Only the LAr and the SpaCal calorimeters are used. The reconstructed clusters still
contain noise. The main noise suppression algorithm on top of the global reconstruction
code is to remove clusters which consist of one cell only or which have an energy deposition
measured on the electromagnetic scale of Eclu < 0.2 GeV in the LAr and Eclu < 0.1 GeV
in the SpaCal, respectively. More advanced algorithms suppress isolated clusters below a
θ dependent energy threshold and clusters which show beam halo or cosmic patterns.

The track parameters at the vertex are extrapolated assuming a constant magnetic
field along the z-axis and neglecting multiple interaction and energy loss in the traversed
matter. The extrapolation stops at the surface of the calorimeters. If a track can be
extrapolated more than half the circumference of the projection of its helix in the rφ-plane
without reaching the calorimeter surface, it defines an HFS object by itself. This happens
for a track with such a low transverse momentum that it cannot reach the calorimeter
radius. The mathematical helix extrapolation would lead to a track impact in the SpaCal
or the IF wheel of the LAr, depending on the sign of pz.

All tracks that reach the calorimeter are first classified as good or bad. Good tracks
are those where the error on the track energy, propagated from the track fit assuming the
pion mass, is smaller than the error of the expected energy deposition of the track in the
calorimeter. Then the measurement of the track is assumed to be more reliable than that
of the calorimeter. The energy of a track is Etr =

√
p2

tr + m2
π and the uncertainty σEtr is

propagated from the track parameters. Since the uncertainty of the energy measured in

2Since in this analysis photoproduction events are identified by detection of the scattered electron in
an electron tagger, even an electron erroneously identified as scattered electron inside the main detector is
added to the HFS.

3The original HADROO2 also uses tracks from the forward tracker and combined fits from both.
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the (LAr-) calorimeter has been determined to behave like σE/E ≈ 0.5/
√

E/GeV [60], a
track is good, if it fulfils

σEtr

Etr
<
(σE

E

)expect.

LAr
=

0.5√
Etr/GeV

, (3.5)

and bad otherwise. Tracks up to p ≈ 20 GeV mostly are good.
Clusters are matched to an extrapolated track if they lie in a cylinder around the

track direction at the calorimeter surface. The cylinder radius is 25 cm for clusters in the
electromagnetic and 50 cm for clusters in the hadronic part of the calorimeter.

If the track is good or if the track energy is below the measured cluster energy or
compatible with it, an HFS object is created based on the track measurement. The track
energy is called compatible with or below the cluster measurement, if

Etr < Ecl + 1.96 · σEcl
= Ecl + 1.96 ·

(
0.5

√
Ecl/GeV GeV

)
. (3.6)

This means that the probability of Ecl being fluctuated upwards from Etr is below 2.5%,
assuming a Gaussian distribution based on the cluster measurement.

Now if in addition the probability that Ecl is an upward fluctuation of the “real” energy
Etr, based on the track measurement, is below 2.5%,

Ecl < Etr

⎡
⎢⎣1 + 1.96 ·

√√√√(
σEtr

Etr

)2

+

(
0.5√

Etr/GeV

)2
⎤
⎥⎦ , (3.7)

all clusters in the considered cylinder are not used further in the algorithm. Otherwise the
energy difference Ecl −Etr probably belongs to an additional neutral particle or is caused
by another track extrapolated into the same calorimeter region. To avoid double counting
the track energy must be subtracted from the matched clusters and only the remaining
energy Ecl − Etr is made available for further use in the algorithm.

If a track is bad, the cluster energy in the cylinder behind the extrapolated track defines
the HFS object using the hadronic energy scale.

Neutral HFS objects are created for the remaining clusters which no track could be
matched with. If more than 95% of the energy of a cluster is deposited in the electromag-
netic part and more than 50% in the first two layers of the calorimeter, the cluster may be
a photon and an HFS object is created using the electromagnetic energy scale. Otherwise
the hadronic scale is applied.

The Hadronic Final State algorithm as described above is well suited to be applied
to an analysis that covers the central detector region and is kinematically dominated by
relatively low energies as is the case in charm production. This is illustrated in figure 3.5
which shows the correlation between the total generated and reconstructed energies in the
central detector region 30◦ < θ < 150◦. The energy of generated particles is counted only
if either they have an energy above the noise threshold or they are charged particles in the
central region above the minimal transverse momentum required for the track selection.
Neutrinos are excluded as well. The generated energy can be reconstructed quite well, the
ratio Erec/Egen is close to one.

A drawback of the HADROO2 algorithm presented above is the fact that the match-
ing of clusters and tracks depends on the sequence in which the tracks are treated. If
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Figure 3.5: Correlation between the total generated and reconstructed energy the central
detector region for HADROO2 in in charm events generated with CASCADE. Note that
the box sizes increase logarithmically.

the extrapolation cylinders of two tracks overlap, a cluster may be associated to the track
treated first, although it was caused by the second track. For the total energy flow this
is problematic if the cluster falsely associated with the first track is interpreted as an
upward fluctuation leaving no cluster to be matched with the second track. But only if
this coincides with the second track being bad, the energy is lost for the total energy flow.
For particle identification the association of clusters to a wrong track is more problematic,
especially if the cluster shape is used for the identification. Therefore in [73] an HFS algo-
rithm has been developed which is independent of the order of the track cluster matching.
It is used for the identification of electrons within jets to select heavy quark events. For
these events also the reconstruction of the inelasticity y, based on the hadronic final state,
is slightly better compared to HADROO2.



Chapter 4

Reconstruction of D∗ Mesons

This chapter describes how D∗ mesons are selected in the data collected with the H1 detec-
tor. First a short overview over the decay of the D∗ meson is given, followed by the chosen
D∗ reconstruction method. Finally the determination of the number of reconstructed D∗

mesons in the data and in the Monte Carlo simulations is discussed in detail.

4.1 Decay of D∗ Mesons

The probability that a charm quark hadronises into a D∗+ meson is experimentally deter-
mined to be [27]

f(c → D∗+) = (0.235 ± 0.007 ± 0.007). (4.1)

The D∗+ (D∗−) meson is an excited cd̄ (c̄d) state with a mass of m(D∗) = 2010.0 ±
0.5 MeV [44].1 It decays via the strong interaction leading to a very short lifetime.
The decay channels and branching ratios are listed in table 4.1. The D∗ mainly de-
cays into a D0 meson and a charged pion. The mass difference between the D∗ and the
D0, m(D∗) − m(D0) = 145.421 ± 0.010 MeV [44], is only slightly above the pion mass

1In the following charge conjugated states are always implicitly included.

D∗+

Channel BR [%]
D0π+ 67.7± 0.5
D+π0 30.7± 0.5
D+γ 1.6± 0.4

D0

Channel BR [%]
K−π+π0 13.0± 0.8
K

0
π+π−π0 10.9± 1.3

K−π+π+π− 7.46± 0.31
K

0
π+π− 5.4± 0.4

K−π+π+π−π0 4.0± 0.4
K−π+ 3.80± 0.09
K−e+νe 3.58± 0.18
K−μ+νμ 3.19± 0.17

Table 4.1: Decay channels and branching ratios BR of the D∗+ and of the D0 meson [44].
For the D0 only a selection is given.

40
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m(π±) = 139.57018 ± 0.00035 MeV [44]. Therefore the pion has a very small momen-
tum in the restframe of the decaying D∗, a fact which is transferred into the laboratory
frame [74]. For this reason the pion of this D∗ decay channel is usually referred to as
“slow” pion and denoted as π±

s .
The D0 meson decays via the weak interaction. Several important decay channels are

listed in table 4.1. They involve a charged or neutral kaon carrying the strange quark which
the charm has decayed into via radiation of a W± boson. In this thesis only the decay into a
negatively charged kaon and a positively charged pion is considered. For other decays into
more charged particles an increased combinatorial background is expected. Furthermore
the systematic uncertainty due to an imperfect knowledge of the track reconstruction
efficiency increases. Reconstructing neutral D0 decay products in events with a relatively
large particle multiplicity typical for D∗ events is difficult (π0 → γγ) or results in an
even smaller overall branching ratio (K0 → K0

S → π+π−). Thus the decay channel
D0 → K−π+ is a good compromise despite its low branching ratio BR = 3.80 ± 0.09%.

Altogether the branching ratio obtained for D∗ mesons decaying via the chosen decay
channel amounts to

BR(D∗+ → K−π+π+
s ) = BR(D∗+ → D0π+

s ) · BR(D0 → K−π+) = (2.57± 0.06)%. (4.2)

Reconstructing charm via the D∗ meson rather than via other charmed mesons like the
D0 exhibits a special advantage due to the small mass difference m(D∗) − m(D0). This
will become clear in the next section.

4.2 D∗ Meson Selection

The D∗ mesons are reconstructed via the decay chain D∗+ → D0π+
s → K−π+π+

s and the
charge conjugate process. The decay particles K, π and πs are reconstructed as tracks in
the central tracking devices CJC, CIZ/COZ and CST. Only tracks fitted to the primary
vertex are taken into account. In each event, tracks with opposite charges are combined in
pairs, one assigned the pion, one the kaon mass. The invariant mass, m(Kπ), is calculated.
If the result is consistent with the D0 mass mD0 = 1.8646 ± 0.0005 GeV [44] within the
detector resolution, the remaining tracks with an opposite charge to that taken as a kaon
are added assuming the pion mass to form a D∗ candidate. The D∗ candidate is accepted
if it lies in the central region |η(D∗)| < 1.5, has a minimal transverse momentum of
pt(D∗) ≥ 2.0 GeV and if the mass difference Δm = m(Kππs) − m(Kπ) is not too far
above the nominal mass difference Δm = 145.421 ± 0.010 MeV [44].

The track selection is based on the selection used for the construction of the hadronic
final state objects (cf. table 3.1). Table 4.2 lists the additional cuts applied for the D∗

decay tracks and the cuts for the D∗ candidates. The cuts on the transverse momentum of
the D∗ meson and its decay tracks reduce the combinatorial background [74]. The signal
of D∗ mesons is visible in the Δm distribution shown in figure 4.1 whereas the signal would
be less clear in the invariant mass distribution m(Kππs), as first exploited in [75]. The
mass difference between the D∗ and the D0 meson is only a few MeV above the pion mass
restricting the phase space for combinatorial background. The signal in Δm sits on top of
a relatively small (but unfortunately steeply rising) background. Effects of the finite track
resolution of the kaon and the pion from the D0 decay partly cancel in the mass difference
resulting in a small width of the signal.
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Additional track selection
primary vertex tracks

K, π rend − rstart > 17 cm
pt > 300 MeV

πs rend − rstart > 11 cm
D∗ candidate selection

D0 |m(Kπ) − m(D0)| < 80 MeV
D∗ Δm = m(Kππs) − m(Kπ) < 167.5 MeV

pt(D∗) ≥ 2.0 GeV
|η(D∗)| < 1.5

Table 4.2: Selection criteria in addition to table 3.1 for the tracks considered as decay
products of the D∗ meson and for the D∗ candidate itself. The radii rstart and rend are
those of the first and the last CJC hit of a track.

4.3 Determination of the Number of D∗ Mesons

The number of D∗ mesons is determined by fitting the function

f(Δm) =
N (D∗)√

2π σ
exp

(
−(Δm − μ)2

2σ2

)
+

un

Nnorm
· (Δm − mπ)ue ·

(
1 − us · (Δm)2

)
(4.3)

to the measured Δm distribution. The function is a sum of a Gaussian for the signal and a
background term. N(D∗) represents the number of D∗ mesons, σ and μ are the width and
the mean of the signal.2 The background term starts at the phase space border mπ and
rises with an exponent ue which is a free parameter of the fit. A quadratic correction term
with the parameter us improves the description of the data in the high-Δm region [61].
This is important since otherwise the background parameters would be strongly influenced
by the high-Δm region, leading to a bias in the region below the signal. The normalisation
1/Nnorm depends on the background parameters such that the parameter un represents
the number of D∗ candidates in the background up to the fit limit.3 The fit is performed as
a Likelihood-fit in the range mπ < Δm < 167.5 MeV, the result can be seen in figure 4.1.

In the following the signal-to-background ratio of this D∗ fit is calculated as the ratio
of the integrals of the resulting Gaussian and the background term within 2σ around the
mean value of the Gaussian.

The Δm distributions of small subsets of the data often have low statistics. In this
case a fit of all six parameters may give unreasonable results for the signal width σ which
strongly influences the resulting number of D∗ mesons N(D∗). Therefore fits in subsets
of the data are performed with fixed parameters μ, σ and us. If the number of entries
in a Δm distribution is less than 200, also ue is fixed. The fixed values are taken from a
fit to a reference distribution. If not quoted differently, the inclusive D∗ photoproduction
sample is used as this reference.

Other methods to determine N(D∗) will be discussed later.
2Since the function is fitted to a binned distribution, the Gaussian term needs as additional factor the

bin width to make the fit parameter N(D∗) represent the real number of D∗ mesons.
3Also the background term needs the bin width as additional factor. The upper fit limit mu leads to

Nnorm =
(
1 − usm

2
π

)
(mu−mπ)ue+1

ue+1
− us

(
(mu−mπ)ue+3

ue+3
+ 2mπ(mu−mπ)ue+2

ue+2

)
.
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Figure 4.1: Distribution of the difference Δm between the invariant mass of the D∗ can-
didate and the D0 candidate. No photoproduction or trigger selection is applied. The
number of D∗ mesons N(D∗) is determined by the fit as described in the text.

4.3.1 Monte Carlo Treatment

Events from the Monte Carlo generators are usually fed into the simulation only if at
least one generated D∗ meson in the decay channel D∗± → K∓π±π±

s has been generated.
Therefore the reconstructed Δm distribution contains only a very small background from
random combinations. For this distribution the fit as described above is not adequate. A
first ansatz to determine the number of reconstructed D∗ mesons would be to determine the
signal width in the simulation and integrate over all bins within three standard deviations
σ. Unfortunately the combinatorial background is too large to be neglected in this way.
Therefore also in the simulation a fit is performed, but modified such that the background
parameter us = 33.0 is fixed. The result of such a fit in almost background free Monte
Carlo distributions is verified with an inclusive Monte Carlo sample of deep inelastic
scattering, Q2 > 1 GeV2, containing the combinatorial background. Figure 4.2a) shows the
Δm distribution from the total sample, figure 4.2b) only those D∗ candidates contribute
that have a generated D∗ meson with the same minimal cuts as applied in the usual
simulated Monte Carlo data sets. The left distribution is fitted like the real data and the
right with us = 33.0 fixed. The fit of the backgroundless distribution does not describe
the distribution very well, resulting in a very large χ2 value compared to the number of
degrees of freedom.

The assumption of a simple Gaussian signal in the Δm fit is a simplification. Tails on
both sides of the signal can be seen. This indicates that the signal is a composition of track
combinations from tracks with different resolutions. The same effect is also visible in the
inclusive Monte Carlo distribution and in real data, but less prominent due to statistical
fluctuations of the background. Therefore it is neglected because the fitted number of
D∗ mesons of the background free Monte Carlo distribution satisfactorily reproduces the
number obtained from the fit with background. This is also valid when comparing fit
results in differential distributions.
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Figure 4.2: Inclusive Monte Carlo sample: Δm distributions without (a) and with (b)
requiring a generated D∗ meson. The numbers of reconstructed D∗ mesons resulting from
the fits differ by 1%, but are compatible within their uncertainty.

The signal width in the Monte Carlo simulation is slightly smaller than in the data
(figure 4.1 and figure 5.4 for the final D∗ photoproduction sample). This indicates that
the track resolution in the simulation is overestimated. Fortunately this has no influence
on the fit result as the width is a free parameter.

As described in section 5.4 Monte Carlo distributions are corrected for the acceptance
of the electron tagger by applying event weights. For that reason a Likelihood fit is not
applicable because the entries of the histogram bins do not follow the Poisson statistics.
A χ2 fit is used instead where the error of each bin is the square root of the sum of squares
of the filled weights. In order to take account of the information from empty bins in
distributions with low statistic, the error of these bins is set to the mean of the error of
the next non-empty bins. The decision whether to fit with more fixed parameters is based
on the effective number of entries in the histogram, Neff = (

∑
wi)

2 /
∑

(w2
i ), where wi are

the filled weights.

4.3.2 Alternative Methods

To get a better handle on the shape of the background distribution, especially below the
D∗ signal, one could make use of so called “wrong charge” D∗ candidates. Instead of
combining a positively and a negatively charged track to form the D0 meson, two like
sign tracks are taken and combined with a third, now oppositely charged track as slow
pion: K±π±π∓

s instead of K∓π±π±
s . This “wrong charge” combinations in principle yield

a similar distribution like the background in the real Δm distribution because the combi-
natorics is almost the same: If N+ and N− are the number of positively and negatively
charged tracks, there are N+ · (N+ − 1) + N− · (N− − 1) possibilities to combine two
random tracks with the same charge to build a “wrong charge” D0 candidate compared to
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N+ ·N++N−·N− in the correct charge combination.4 The amount of real D0 mesons com-
bined with a random track as slow pion is negligible. Unfortunately these wrong charged
combinations are not considered at the L4 trigger level. Thus events of the background
type are only accepted if they have been triggered by another D∗-independent trigger.
Therefore the number of events is significantly smaller even if the L4 trigger requirement
is omitted. Nevertheless one can make use of this “wrong charged” Δm distribution in
two ways. The first is to fit both the wrong charged and the real Δm distribution simulta-
neously with an additional parameter for the relative normalisation. The additional data
points from the wrong charge combinations reduce the uncertainty of the fitted parame-
ters. The second way is to scale the wrong charge combinations such that the integral of
both distributions match in a Δm region far from the signal, say 153 < Δm < 167.5 MeV.
Then one can subtract the wrong from the correct charged distribution in the signal range
143 < Δm < 148 MeV and the resulting number of D∗ mesons is independent of the
exact shape of the signal. Since it is not possible to select correct and wrong charged
distributions triggered in a similar way, both these ansätze are not chosen here.

Besides the simple wrong charge subtraction method mentioned above there is a fur-
ther way of determining the number of D∗ mesons that is less dependent on the exact
signal shape than a fit assuming a Gaussian form as in eq. 4.3. Instead of taking the
number directly from the fit it can be calculated as the difference of the number of D∗

candidates and the integral of the background term of the fitted function within e. g. three
standard deviations around the fitted mean value. This method will be used to estimate
the systematic uncertainty of the signal extraction.

4The slow pion has another momentum spectrum and so plays a minor role in this combinatorial
consideration.



Chapter 5

Inclusive D∗Meson Measurements

This chapter presents the inclusive D∗ meson analysis. The selection of data taking periods
and the calculation of the integrated luminosity is presented, followed by the basic selection
of photoproduction events. It is described how the achieved D∗ signal can be improved,
for example by particle identification. To derive cross section measurements from the
obtained number of D∗ mesons, correction factors have to be applied. The procedure to
obtain these factors is explained in detail.

Finally the resulting cross section in the visible range and differential cross sections
as a function of the transverse momentum pt(D∗), the pseudorapidity η(D∗) and the
photon-proton centre-of-mass energy Wγp are compared with several QCD calculations.

5.1 Run Selection and Luminosity Determination

This analysis uses data recorded with the H1 detector in the years 1999 and 2000 when
HERA collided positrons of 27.6 GeV with protons of 920 GeV. Data taking periods with
non standard operation like a shifted interaction point or a minimum bias trigger setup
are excluded as well as runs declared “poor”. A run is considered as “poor” if either the
liquid argon calorimeter (LAr), the spaghetti calorimeter (SpaCal), the luminosity system
or both the central jet chambers (CJC1 and CJC2) and the central silicon tracker (CST)
are out of operation. A few further runs in the beginning of the 1999 data taking are
excluded because of missing output of the level 4 trigger (L4) used in this analysis.

For all events considered, the following detector components have to be operational
in terms of read out and high voltage settings: CJC1 and CJC2, central and forward
proportional chambers (CIP, COP and FPC), LAr, time-of-flight system (ToF) and the
whole luminosity system (Lumi) including the electron taggers (ET).

As the positron and proton beams also contain so called satellite bunches before and
after the colliding bunches, a cut on the z-coordinate of the reconstructed primary vertex is
applied. The z-distance of the vertex from the nominal interaction point has to be smaller
than 35 cm. This cut suppresses background events from interactions in the satellite
bunches. The loss of events is corrected for in the luminosity calculation.

For all the remaining runs the integrated luminosity is calculated. Each run with a
luminosity Lint > 0.1 nb−1 is taken. Lower integrated luminosities are not accurately
measured. The total integrated luminosity amounts to 59.3 pb−1. Table 5.1 summarises
the run selection and the resulting integrated luminosity.

46
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Data taking period 1999, 2000 nominal e+p
Quality of runs medium or good

Operational detector components CJC, CIP, COP, FPC,
LAr, ToF, Lumi, ET

Removal of satellite bunches |zvtx − znom| < 35 cm
Minimal luminosity of runs Lint(run) > 0.1 nb−1

Total integrated luminosity Lint = 59.3 pb−1

Prescale corrected luminosity Lint
pc = 51.1 pb−1

Table 5.1: Basic run and event selection and resulting integrated luminosity. The last line
shows the luminosity after correcting for trigger prescales as described in section 5.2.

5.2 Photoproduction Selection and Trigger Requirements

Photoproduction is selected through detection of an energy deposition in the electron
tagger at z = −33.4 m (ET33). This means that the positron is scattered by a very
small angle (π − θe′) < 5 mrad, such that the kinematic variables of the event can be
reconstructed using the reconstructed energy of the scattered positron Ee′ and the positron
beam energy Ee,

Q2
e = 4 · Ee · Ee′ · cos2

(
θe′

2

)
< 0.01 GeV2, (5.1)

ye = 1 − Ee′

Ee
· sin2

(
θe′

2

)
≈ 1 − Ee′

Ee
. (5.2)

To get a reliable measurement of Ee′ the energy deposition must be fully contained in the
ET33. This is assured if the x-coordinate of the deposited energy fulfils |x33| < 6.5 cm [68].

The events are selected by the subtrigger S83. It is a combination of level 1 (L1) trigger
elements from the z-vertex trigger, the DCRPh trigger and the luminosity system without
any level 2 (L2) conditions:

The z-Vertex Trigger is based on the CIP, COP and the FPC to provide a rough infor-
mation about the z-vertex position of an event. This is done by building rays from
the hits of the 16 φ-sectors of the chambers. The intersections of these rays with the
z-axis are filled into a histogram. Rays from real particles from a real interaction
end up in the same or adjacent bins whereas combinatorial background is randomly
distributed as can be seen from figure 5.1. More details can be found in [76, 77].
The subtrigger S83 uses the trigger element zVtx_sig_1 which fires if the histogram
shows a significant peak.

The DCRPh Trigger uses 10 wire layers of the CJC. The signals of these wires are com-
pared with predefined track masks corresponding to charged particle trajectories in
the rφ-plane. The number of negative and positive tracks above two programmable
transverse momentum thresholds are counted separately. The DCRPh trigger is de-
scribed in more detail in [78, 79]. The subtrigger S83 requires the trigger element
DCRPh_Tc which fires if at least three track masks above >∼ 450 MeV are found.
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Figure 5.1: The z-vertex trigger: Particle trajectories (full lines) cause hits in the double
layers of CIP, COP and FPC. Rays through the pads (dotted lines) are extrapolated to
the z-axis. Only rays from particle trajectories form a significant peak in the z-vertex
histogram.

The Luminosity System Trigger provides the trigger elements LU_ET and LU_PD_low.
The former fires if an energy deposition above a variable threshold (Ethr ≈ 6−9 GeV)
is found in the ET33. The latter is related in a similar way to energy in the photon
detector, here the threshold is Ethr ≈ 5− 7 GeV. To trigger events with a scattered
positron in the ET33 and to veto events from Bethe-Heitler processes, S83 uses
(LU_ET && ¬LU_PD_low).

In addition the subtrigger S83 contains trigger elements from the time-of-flight system as
a veto to suppress background from beam-gas and beam-wall events coming from outside
the interaction region.

Because of high rates a prescale factor p is applied to the subtrigger 83. This means that
only every p-th time the subtrigger has fired the event is accepted. The mean prescale in
the analysed data is 〈p〉 = 1.16. This is taken into account by downscaling the luminosity
by this factor leading to a prescale corrected integrated luminosity of Lint

pc = 51.1 pb−1,
as already mentioned in table 5.1.

Due to geometry and beam optics the ET33 has only a limited acceptance for positrons
from photoproduction events. Besides the restriction of Q2 < 0.01 GeV2 due to the
small scattering angle this acceptance is highly dependent on the inelasticity y and the
exact beam parameters. A parametrisation of the acceptance has been determined by the
H1 collaboration for several run periods as in [68] and is available for analysis from the
H1 database. Figure 5.2 shows the y-dependence of the acceptance for all run periods
considered in this analysis. Due to different beam conditions the acceptance has been
slightly lower in 2000 than in 1999. Requiring 0.29 < ye < 0.65 assures that the acceptance
is above 10% for all events in all run periods.

In the fourth trigger level (L4) the subtriggers from L1 and L2 are verified and the
“open charm finder” HQSEL [80] is applied. Among various D mesons and the Λc in
different decay channels, the D∗ meson is searched for in the channel used in this analysis:
D∗± → D0π±

s → K∓π±π±
s . The vertex fitted tracks reconstructed from the CJC and

the inner and outer z-chambers (CIZ, COZ) are used without using information from the
CST. Different sets of cuts are applied for DIS and photoproduction. In this analysis
events are accepted if a D∗ candidate is found in the proper decay channel in the tagged
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Figure 5.2: a) Acceptance of the ET33 for different run periods as a function of the
inelasticity y. The parametrisations include also inefficiencies due to requiring the trigger
elements (LU ET && ¬LU PD low) and due to the cut |x33| < 6.5 cm. Vertical lines
indicate the selected y-region to achieve AET33 > 10%, shown as horizontal line.
b) Distribution of the difference Δm between the invariant mass of the D∗ candidate and
the D0 candidate after photoproduction selection and trigger requirements.

photoproduction mode. The applied cuts are listed in table 5.2. In the Monte Carlo
simulation no L4 condition is required because the electron taggers are not fully simulated
and therefore the prerequisite of HQSEL, significant energy in any of the electron taggers,
cannot be properly taken into account. Therefore the L4 efficiency has to be determined
from data.

Table 5.3 summarises all trigger and photoproduction conditions that an event must
fulfil to be analysed further. Figure 5.2b) shows the resulting Δm distribution. The
signal is on top of a high background. In section 5.3 it will be shown how the signal-to-
background ratio can be improved by particle identification and further cuts on the D∗

decay products and the event topology.

5.3 Improving the D∗ Signal

5.3.1 Cuts Based on Particle Identification

The principles of particle identification using the specific energy loss per path dE/dx have
been introduced in section 3.5. The likelihood LH of a track to be a specific particle has
been defined in eq. 3.3.

To suppress combinatorial background from tracks assigned an obviously wrong mass
hypothesis a cut on the LH values is applied for the tracks from the D0 decay: LH(K,π) >
0.01. For kaons with momenta 0.8 < p(K) < 2.0 GeV the cut is lowered to LH(K) > 0.002
as will be explained in section 5.5.4. Because the parametrisation of eq. 3.2 does not
describe the dE/dx-spectrum of pions with low momenta very well (figure 3.4b)) and
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Prerequisites
subtrigger 1, 2, 4, 43, 44, 45, 61, 82, 83, 84, 100 or 108
tagged γp E33 > 3 ‖ E44 > 5 ‖ E8 > 5 GeV
z-vertex |z| < 40 cm

Track requirements
K, π |d′ca| < 4 cm

rend − rstart > 15 cm
χ2

xy < 50
pt > 200 (250) MeV

πs rend − rstart > 10 cm
pt > 100 MeV

D∗ decay selection
D0 1.764 < m(Kπ) < 1.964 GeV
D∗ pt > 1.4 GeV

Δm = m(Kππs) − m(Kπ) < 170 MeV

Table 5.2: Cuts of the L4 open charm finder HQSEL applied in tagged photoproduction
mode for the channel D∗± → D0π±

s → K∓π±π±
s . The higher pt-cut on K and π tracks

shown in brackets has been applied during the main part of 1999 data taking. Besides the
χ2 of the track fit in the xy plane all cuts are softer than in the final analysis where the
cut on the energy E33 in the ET33 is achieved implicitly by the cut on ye.

ET33 Q2 < 0.01 GeV2 implicit by small scattering angle
0.29 < ye < 0.65 achieves AET33 > 10%
|x33| < 6.5 cm reliable Ee′ for y measurement

L1: S83 zVtx_sig_1 significant peak in z-vertex histogram
DCRPh_Tc 3 track masks with pt >∼ 450 MeV
LU_ET energy in ET33

¬LU_PD_low no Bethe-Heitler process

L4: HQSEL D∗± → D0π±
s → K∓π±π±

s in tagged γp mode

Table 5.3: Photoproduction selection and required trigger conditions.

because around 10% of them have no dE/dx measurement, no cut is applied on LH(πs).
To remove obvious kaons and protons, tracks with a very high dE/dx value are rejected,
dE/dx(πs) < fdE/dx(p(πs),mπ) + 1 (cf. figure 3.4b)). Tracks without a reliable dE/dx
measurement, i. e. with less than 10 usable hits, are always accepted.

The signal-to-background ratio improves from 0.26 (figure 5.2b)) to 0.34 (figure 5.4a)).
The dE/dx-cuts are not applied in the Monte Carlo simulation because no appropriate
dE/dx simulation was available. Their efficiency will be determined from data.

5.3.2 Further Background Suppression

If D∗ mesons evolve from charm quarks produced in the hard interaction, they carry
a major part of the produced transverse energy. This event property can be used to
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Figure 5.3: Distribution of the values pt(D∗)/SEt (a) and pt(K)+pt(π) (b) after the cut on
the other quantity, normalised to the total number of D∗ mesons. The cuts are indicated
by dashed vertical lines. The signal-to-background ratios of the D∗ fits of the data in each
bin are shown in (c) and (d).
The CASCADE distributions are corrected as introduced in the next section.

distinguish combinatorial background from the signal. Therefore the scalar sum of the
transverse energy of all particles in the hadronic final state (HFS),

SEt =
θ>10◦∑
HFS

sin θiEi, (5.3)

is compared with the transverse momentum of the D∗ candidate [7], as shown in fig-
ure 5.3a). In order not to pick up any proton remnant, the sum is restricted to HFS
particles with θ > 10◦. Without losing much of the signal the cut pt(D∗)/SEt > 0.10 is
applied to the D∗ candidates.
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Particle identification
K LH > 0.002, 0.8 < p(K) < 2.0 GeV

LH > 0.01, p(K) < 0.8 || p(K) > 2.0 GeV
π LH > 0.01
πs dE/dx(πs) < fdE/dx(p(πs),mπ) + 1

D∗ properties
pt(D∗)/SEt > 0.10

pt(K) + pt(π) > 2.2 GeV

Table 5.4: Summary of the cuts applied to improve the D∗ signal. The cuts for particle
identification are applied only to tracks with a dE/dx measurement.

As the πs carries only a small fraction of the transverse D∗ momentum, most of it has
to come from the K and π tracks as shown in figure 5.3b). For that reason a requirement
on the scalar sum of their transverse momenta, pt(K)+pt(π) > 2.2 GeV, further suppresses
background [81].

Data and Monte Carlo distributions of both quantities agree satisfactorily within the
uncertainties. In the figures 5.3c-d) the signal-to-background ratios of the D∗ fits resulting
in the distributions of the figures 5.3a-b) can be seen. It indicates a small loss of real D∗

mesons for the proposed cuts. Together with the fact of a large background at low values
of pt(D∗)/SEt and (pt(K) + pt(π)) an improvement in the overall signal-to-background
ratio is achieved. This can be seen comparing the figures 5.4a-b) which show the Δm
distributions before and after both cuts.

Tightening these cuts would further increase the background suppression. But the
quantities are not very well reproduced by the simulations and even behave slightly differ-
ent for PYTHIA and CASCADE. To avoid a systematic dependence of the resulting cross
sections, the proposed soft cuts are chosen. The signal-to-background ratio improves from
0.34 (figure 5.4a)) to 0.47 (figure 5.4b)).

Table 5.4 summarises the cuts applied to improve the D∗ signal. The final D∗ sample
with all cuts applied that are listed in the tables 3.1, 4.2, 5.3 and 5.4 is shown in figure 5.4b).
In total 24578 D∗ candidates satisfy the cuts, resulting in 1154 ± 84 D∗ mesons from the
fit.

5.4 Comparison of Data and Simulation

To determine the efficiencies of the D∗ reconstruction and the L1 triggers a simulation of
the H1 detector is used as described in section 3.6. Therefore it has to be ensured that
the simulation describes the data.

In this section first the track resolution is investigated by means of the D0 width
and then the distribution of quantities relevant for reconstruction efficiencies is compared
between data and simulation.



5.4. COMPARISON OF DATA AND SIMULATION 53

Entries  35794
 / ndf 2χ  75.54 / 50
    nU  207± 3.454e+04 

  expU  0.0152± 0.4278 
  sqrU  1.46± 18.73 

      μ  0.0001± 0.1455 
   σ  0.00008± 0.00086 

N(D*)     98.8±  1251 

) [GeV]π) - m(Ksππm(K
0.14 0.145 0.15 0.155 0.16 0.165

0

100

200

300

400

500

600

700

800

Entries  35794
 / ndf 2χ  75.54 / 50
    nU  207± 3.454e+04 

  expU  0.0152± 0.4278 
  sqrU  1.46± 18.73 

      μ  0.0001± 0.1455 
   σ  0.00008± 0.00086 

N(D*)     98.8±  1251 

Entries  24578
 / ndf 2χ   61.3 / 50
    nU  171± 2.342e+04 

  expU  0.0180± 0.4298 
  sqrU  1.45± 20.59 

      μ  0.0001± 0.1455 
   σ  0.0000721± 0.0008468 

N(D*)     83.7±  1154 

) [GeV]π) - m(Ksππm(K
0.14 0.145 0.15 0.155 0.16 0.165

0

100

200

300

400

500

600

700

Entries  24578
 / ndf 2χ   61.3 / 50
    nU  171± 2.342e+04 

  expU  0.0180± 0.4298 
  sqrU  1.45± 20.59 

      μ  0.0001± 0.1455 
   σ  0.0000721± 0.0008468 

N(D*)     83.7±  1154 

a) b)

Figure 5.4: Distributions of Δm and results of the D∗fit: after the cuts for particle
identification, but before the cuts on pt(D∗)/SEt and pt(K) + pt(π) (a), and for the final
D∗ meson selection (b).

5.4.1 Track Resolution: D0 Width

The D∗ and D0 mesons both have widths far below the experimental resolution. From the
D∗ signals in the Δm distributions in simulation and data (see figures 4.2 and 5.4) it can
be deduced that the track resolution is overestimated in the simulation. This influences
the width of the D0 signal, shown in figure 5.5. In order not to bias the distribution in data
by the cut on m(Kπ), applied in the L4-finder HQSEL (cf. table 5.2), for this comparison
events in data are taken only if on L4 they have been triggered independently of HQSEL.

The standard deviation of the Gaussian D0 signal is fitted to be σ = 27.7 ± 2.7 MeV
in the data and σ = 23.7 ± 0.7 MeV in the simulation, as can be seen in figure 5.5. The
cut of ±80 MeV around the nominal D0 mass is almost three times larger than the width
of the data. Assuming a perfect Gaussian signal, only less than 0.5% of the signal is cut
in data and in the simulation the smaller width leads to a loss smaller than 0.1%. This
difference is negligible compared to other uncertainties and is not considered further.

5.4.2 Quality of D∗ and Track Simulation

In this section distributions of D∗ and track quantities are compared between data and the
simulation of events generated by the Monte Carlo generators PYTHIA and CASCADE.

The events in the data are selected as described above. In the simulation the accep-
tance of the electron tagger is taken into account as described in section 3.6. Additional
weights are applied to take into account the different mean prescale factors of the sub-
trigger 83, averaged for each period that has its own acceptance parametrisation. This is
needed since the assignment of a specific amount of generated events to be simulated under
specific detector conditions as described in 3.6 takes into account the luminosity without
considering prescales. After applying these additional weights the generated events finally
are effectively distributed over the different run periods in the same way as the luminosity
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Figure 5.5: The D0 signal in the invariant mass distribution of the kaon-pion pair of an
L4-unbiased sample in data on the left and in the inclusive Monte Carlo simulation on the
right. Vertical lines indicate the cut ±80 MeV around the nominal D0 mass applied in the
D∗ selection. The distribution is fitted to a Gaussian for the signal and an exponential for
the background.

of the data. The mean prescale factors vary between 1.02 and 1.38 and are <p>= 1.04 for
1999 and <p>= 1.20 for 2000.

Since the parametrised tagger acceptance includes the efficiency of the trigger elements
of the luminosity system, LU_ET and LU_PD_low, only the trigger elements zVtx_sig_1
and DCRPh_Tc are required in the simulation. The level 4 trigger requirements are also
ignored since the L4 efficiency is quite flat as shown in section 5.5.2.

For the PYTHIA generator, different charm production processes have been gener-
ated separately, i. e. direct, resolved and excitation. For the comparison of the combined
sample with the data, the Δm distributions for each process and each analysis bin are
normalised to the individual cross section of the process1 and then added. The number of
reconstructed D∗ mesons per luminosity, N(D∗)/L, is determined for each bin by the fit
described in section 4.3.1.

Finally a shape comparison of the data and the Monte Carlo is achieved by normalising
all distributions to the total number of reconstructed D∗ mesons, N(D∗) and N(D∗)/L
respectively.

In figure 5.6a) the pt(D∗) distribution is shown and compared to predictions of the
CASCADE and PYTHIA event generators. CASCADE produces a harder spectrum than
the data. Therefore the prediction of CASCADE is modified.

The modification is obtained by calculating the cross section as a function of pt(D∗)
and fitting an exponential function to the ratio of the result and the CASCADE prediction.
The correction factor lies between 1.2 for pt(D∗) ≈ 2 GeV and 0.2 for pt(D∗) ≈ 14 GeV
and is applied as an additional event weight for the events simulated by CASCADE.

1This is done by dividing through the integrated luminosity L which is calculated from the total number
of generated events and the total cross section computed by the Monte Carlo generator.
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Figure 5.6: Comparison of pt(D∗), η(D∗) and inelasticity y in the data and in the
simulations PYTHIA and CASCADE. Figure (a) shows pt(D∗) before the correction of
the CASCADE simulation that is applied in the other shown distributions.

Figure 5.6b) shows the pt(D∗) distributions of the data and the simulations after the
correction for CASCADE. Better agreement of CASCADE with the data is achieved, the
largest remaining difference is seen in the lowest pt bin, for both PYTHIA and CASCADE.
In the following, all distributions of reconstructed quantities of the CASCADE simulation
use this correction.

Figure 5.6c-d) compare the distributions of the pseudorapidity η(D∗) and the inelas-
ticity y of the data and the simulations. The inelasticity is well reproduced by the simula-
tions, but mainly CASCADE falls too steeply towards high η. This effect is a little more
pronounced after the pt-correction.

To test the detector simulation and the PYTHIA and CASCADE models in more
detail, in figure 5.7a-d) the distributions of the radial track length, the azimuthal and the
polar angles and the transverse momentum of the kaon track in the data are compared
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Figure 5.7: The polar angle θ, the azimuthal angle φ, the radial length rend − rstart and
the transverse momentum pt of the kaon track are shown in (a-d). Figures (e-f) show the
radial length and the transverse momentum of the slow pion track.
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with the simulations of both Monte Carlo event generators PYTHIA and CASCADE.
Since the pion track from the D0 decay shows similar properties as the kaon, it is not
shown separately. However, the slow pion track has a different momentum range and its
track length and transverse momentum distributions are shown in figure 5.7e-f).

All distributions are reasonably reproduced by the simulations, PYTHIA is closer
to the data than CASCADE. The φ(K) distribution is almost flat as expected. A small
asymmetry of the simulated distribution is caused by taking into account temporary broken
sectors of the central tracking detectors.

The majority of the kaon tracks are longer than 50 cm, thus passing both parts of
the CJC. Due to lower momenta this effect is less prominent for slow pion tracks. The
tendency that tracks are shorter in data than in the simulations might be caused by
problems in linking track segments in CJC1 with segments in CJC2 due to imperfect
alignment of the chambers.

The pt and mainly the θ distributions of the tracks show differences between both
simulations. For CASCADE the pt-spectrum is slightly harder than for PYTHIA, but
both are consistent with the data. The fact that both simulations have a steeper rise
towards large θ(K) than the data reflects that η(D∗) falls more steeply towards large η.
Both effects are less prominent for PYTHIA than for CASCADE.

Finally it can be concluded that the Monte Carlo simulation based on the PYTHIA
generator describes the data reasonably well and can be used to determine efficiencies.
CASCADE generates a transverse momentum distribution for the D∗ meson that is too
hard and has to be adjusted to the data. The pseudorapidity distribution falls too steeply
towards higher η in both simulations.

5.5 Correction Factors

To obtain cross section measurements from the selected D∗ mesons, their number has to
be corrected for inefficiencies in triggering, reconstruction and event selection and due to
the limited acceptance of the electron tagger. This will be done by applying the efficiency
ε obtained by a combination of the different sources:

ε = εL1 · εL4 · εrec · AET33. (5.4)

Here εL1 and εL4 are the efficiencies of the trigger levels L1 and L4, respectively, εrec is the
reconstruction efficiency and AET33 the acceptance of the ET33. They are determined in
the following.

Whenever a quantity is determined from Monte Carlo simulation, the PYTHIA sample
is used and the different processes are combined as described in section 5.4.

5.5.1 L1 Trigger Efficiency

The level 1 trigger efficiency εL1 covers the efficiency of the trigger elements zVtx_sig_1
and DCRPh_Tc. The trigger elements of the luminosity system are contained in the electron
tagger acceptance and the veto trigger elements are assumed to be 100% efficient.

The trigger efficiency is determined from the simulation as the ratio of the number of
reconstructed D∗ mesons with a positive trigger decision and the number of reconstructed
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D∗ mesons in total. The combinatorial background in Monte Carlo is small and has
similar kinematic properties as the signal because it also comes from charm production
events. Therefore, and to avoid possible fluctuations from the D∗ fit, all reconstructed D∗

candidates in the signal region, 143 < Δm < 148 MeV, are taken into account.
To cross check the trigger simulation with data, events are selected that have been

triggered by one of the subtriggers 50, 67 or 101. These subtriggers are mainly based on
energy depositions in the LAr and the SpaCal. Since the L4 finder HQSEL is not applied
to these subtriggers, it is ensured that the events passed L4 independent of HQSEL. Oth-
erwise the event sample would not be independently triggered. Due to the low statistics,
all D∗ candidates up to Δm < 165 MeV are counted. As the background events of the data
have other event signatures and possibly slightly different trigger efficiencies, the selected
sample is only a rough cross check.

The total trigger efficiency in data is εdata
L1 = (93.3+1.0

−1.1)% which is slightly higher
than the result obtained from Monte Carlo, εmc

L1 = 90.9%. This effect is also observed in
figure 5.8 which shows efficiencies of both trigger elements, zVtx_sig_1 and DCRPh_Tc,
separately as functions of pt(D∗), η(D∗) and Wγp. This discrepancy cannot be attributed
to one trigger element or to a specific region of phase space. It could well be due to
different kinematic properties of the independent reference sample and the selected D∗

data or even due to statistical fluctuations in the reference data sample.
A systematic uncertainty of 4% is attributed to the trigger efficiency determined from

the PYTHIA simulation. This covers the observed difference between data and simulation
of the total efficiency as well as fluctuations relevant for different regions of phase space.

5.5.2 L4 Trigger Efficiency

The tracks available for this analysis are improved by offline calibration of the tracking
devices and by including CST hit information in the track fit. Thus they differ slightly
from the tracks which the software filter HQSEL uses for triggering on level 4 (L4) and
some events are lost on L4.

The efficiency that a D∗ meson is found in HQSEL in the decay chain used is deter-
mined from the data as a global factor. A reference sample of D∗ events is defined that
have been triggered on L4 independently from HQSEL. This is done by selecting events
that belong to at least one of the event classes 4, 8 or 13. Class 4 (“high Q2”) and 8 (“high
pt central”) both require a hard scale in the event and class 13 (“diffraction”) selects events
with a rapidity gap.

The number of D∗ mesons in the reference sample and in the subset with a positive
HQSEL decision is determined by a D∗ fit with fixed parameters μ, σ and us. The result
is εL4 = (96.9±3.9)%. To calculate the error, the correlation between the fitted number of
D∗ mesons with and without the positive HQSEL decision is taken to be ρ = σ2

with/σ2
w/o.

In addition the uncertainty from binomial statistics is added in quadrature.
The application of a global efficiency εL4 is valid only if the efficiency is independent

of quantities like the transverse momentum or the pseudorapidity of the D∗ meson. To
verify this figure 5.9 shows the result of a determination of εL4 as a function of these
quantities. Due to low statistics in the data the efficiency is calculated once in the same
way as the overall efficiency and once by just counting events in the signal region instead of
performing a D∗ fit. The values determined in the signal region are below the values from
the fits, but the latter are close to the global value. This indicates that the efficiency is
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Figure 5.8: Trigger efficiencies as determined from Monte Carlo compared with the cross
checks obtained from data, trigger element zVtx sig 1 on the left and DCRPh Tc on the
right. Note that the ordinate starts at 0.85.
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Figure 5.9: Efficiencies of the trigger level 4 as a function of pt(D∗) (a) and η(D∗) (b)
determined from data by D∗ fits and by counting events in the signal region (SR) compared
with the result of the PYTHIA simulation. Note the suppressed 0 on the scales of the y-
axes.

lower for the background: Random track combinations in the background can migrate out
after the improved track reconstruction and calibration, but new random combinations
can hardly migrate in because they have already been lost at L4.

At high η and low pt the efficiency determined by fits reaches unphysically high values
εL4 > 1. These are the regions with the worst signal-to-background ratios and the largest
relative uncertainties of the fit result. This leads to large uncertainties of εL4 such that
even these unphysical values are consistent with the global value.

Concluding, the assumption of εL4 being independent of other quantities is valid within
the stated error. This is also confirmed by the efficiency determined from the PYTHIA
simulation which is also shown in figure 5.9.

The systematic uncertainty assigned is the error which results from the fits and is
propagated as stated above, i. e. it amounts to 4%.

5.5.3 Electron Tagger Acceptance

The acceptance of the electron tagger is calculated as a mean acceptance by integrating
the acceptance function over the visible range (cf. table 5.6) using a Monte Carlo event
generator:

AET33 =

Ngen∑
wi · a33(yi, ri)
Ngen∑

wi

. (5.5)

Here Ngen is the number of generated events in the considered kinematic region, a33

is the acceptance parametrised as a function of the inelasticity y and the run period r
(cf. figure 5.2). This acceptance includes inefficiencies of the trigger elements LU_ET and
LU_PD_low. The inelasticity and the run period of the generated event are denoted yi and
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Figure 5.10: Mean acceptance of the electron tagger in bins of the centre-of-mass energy
Wγp (a) and the pseudorapidity η(D∗) (b). The systematic uncertainties are indicated as
error bands.

ri. The weights wi are the inverse mean prescale factors of S83 for each run period. Thus
the generated events are effectively distributed over the different run periods in the same
way as the luminosity of the data.

The total acceptance in the visible range amounts to AET33 = 38.6%. Figure 5.10 shows
the acceptance in bins of Wγp and η(D∗). The former reflects the trivial relation between y
and Wγp and the latter indicates that the pseudorapidity distribution also depends slightly
on y. Other AET33 distributions are flat.

The uncertainty of the absolute energy scale of the electron tagger, σ(Ee′)/Ee′ ≈ 1.5.%,
and uncertainties in the knowledge of the exact beam optics of the HERA machine lead
to a systematic uncertainty of the tagging acceptance. Its size is determined by varying
the energy scale and the beam parameters within their errors as described in [68]. The
result is a systematic uncertainty of 5.8% for the visible range in total and varies between
2.9% and 11.9% for bins in Wγp as indicated in figure 5.10a).

5.5.4 Reconstruction Efficiency

The reconstruction efficiency is determined as a product of efficiencies, εrec = ε′rec · εdEdx.
Here εdEdx denotes the efficiency of the cuts for particle identification which is determined
from the data and ε′rec is the efficiency of all other selection cuts and the event reconstruc-
tion itself. It is determined from the simulation as

ε′rec =
N rec

Ngen

∣∣∣∣
vis

. (5.6)

Here N rec is the number of reconstructed D∗ mesons determined by the D∗ fit as described
in section 4.3.1 and Ngen is the number of generated D∗ mesons in the analysed decay
chain. Both numbers are determined in the visible range (table 5.6) and for differential
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Figure 5.11: Reconstruction efficiencies as determined from the PYTHIA and the CAS-
CADE simulations in bins of pt(D∗) (a) and η(D∗) (b). The error bars indicate the
uncertainty of the number of reconstructed D∗ mesons obtained by the D∗ fit.
The detector acceptance which is a part of the efficiency is shown in (c) and (d).

efficiencies in the corresponding bin. In this way possible migration effects are also taken
into account, though they are small and of the order of a few per cent for D∗ quantities.

The chosen definition of the reconstruction efficiency corrects simultaneously for two
effects, the efficiency of reconstructing vertex fitted tracks and the limited detector accep-
tance for D∗ mesons due to the cuts on the transverse momenta pt and the polar angles
θ of the D∗ decay tracks.

The acceptance only, Adet = Nacc
gen/Ngen, is shown as a function of pt(D∗) and η(D∗) in

the figures 5.11c-d). Nacc
gen denotes the number of those generated D∗ mesons whose decay

tracks fulfil the momentum and angular requirements (cf. table 4.2). The acceptance is
lowest (≈ 60%) at low pt(D∗) where the decay tracks also have low momentum and do not
fulfil the minimal transverse momentum cuts. The acceptance is also reduced at large and
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small pseudorapidities since the decay tracks can have polar angles θ outside the required
region 20◦ < θ < 160◦. The acceptance as a function of η(D∗) has been calculated with
CASCADE before and after the pt correction. The result is shown in figure 5.11d). The
effect of the correction is of the same size as the difference that remains between PYTHIA
and the corrected CASCADE, but is apparent for all η(D∗). As expected the pt correction
has no effect on the acceptance as a function of pt(D∗). Here PYTHIA and CASCADE
agree with each other very well (figure 5.11c)).

The reconstruction efficiency in the total visible range amounts to ε′rec = 41.1% if
determined with the PYTHIA simulation and to ε′rec = 42.2% if determined with the
pt-corrected CASCADE simulation (43.7% without the pt correction).

The figures 5.11a-b) show the reconstruction efficiency as a function of the transverse
momentum pt(D∗) and the pseudorapidity η(D∗). Comparing the efficiencies and the de-
tector acceptances, the inefficiencies of the track reconstruction and of the track quality
requirements can be deduced. In general between one half and one third of the inefficiency
is due to the limited detector acceptance. The track reconstruction efficiencies are largest
at low transverse momentum and large absolute values of the pseudorapidity. Low momen-
tum tracks can be lost due to multiple interaction or fail in the vertex fit. At large |η(D∗)|
the D∗ decay tracks can have small radial lengths and either fail to be reconstructed or do
not fulfil the track length requirement. At large pt(D∗) D∗ candidates fail the selection
due to the cut around the D0 mass due to reduced track resolution.

The uncertainty of the simulation is taken into account by assigning a systematic un-
certainty of 11%. This value is taken from [81] and results from the following consideration:
In the simulation about 6% of charged particles in the momentum range of the kaon and
pion from the D0 decay and about 10% of charged particles in the momentum range of
the πs are not reconstructed due to interaction with matter or because the vertex fit is not
acceptable. To account for these effects being properly described by the simulation, half of
the inefficiency is taken as systematic uncertainty. Assuming these values are maximally
correlated they have to be added to derive the uncertainty of the reconstruction efficiency
of D∗ mesons.

The detector acceptances and therefore the reconstruction efficiencies differ between
both simulations CASCADE and PYTHIA. Since it is unknown which model is correct, an
uncertainty has to be assigned on the decision to use PYTHIA to determine the efficiency.
This model uncertainty includes also the (small) model dependencies of the determina-
tion of the trigger efficiencies and the electron tagger acceptances and is quantified in
section 5.6.

Efficiency of the dE/dx Cuts

The cuts on dE/dx and the likelihood LH derived from dE/dx are designed to remove only
obviously misidentified particles without losing any signal.

From figure 3.4b) it can be seen that the cut on the dE/dx value of the πs does not
reject real pions and thus its efficiency is 100%.

This is different for the LH values. Assuming that the parametrisation given in eq. 3.2
exactly describes the mean values of dE/dx for all momenta p, the LH values of correctly
identified pions and kaons are equally distributed between 0 and 1. Thus a cut at LH >
0.01 would be 99% efficient for each particle type.

To test that the LH distribution for correctly identified particles is really flat, the
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Figure 5.12: Number of D∗ mesons obtained by the D∗ fit in bins of the LH value for
pions (a) and kaons (b). The number of D∗ mesons with a pion or kaon track without a
valid dE/dx measurement, represented by values above 1, can be neglected.

number of D∗ mesons is determined by the D∗ fit in bins of LH. The result2 is shown
in figure 5.12. For pions a flat distribution is achieved, which has been verified also in
different ranges of the pion momentum p(π) separately. However, for too many kaons
a low LH value is determined. This indicates that eq. 3.2 is a worse approximation for
kaons than for pions. Further investigations reveal that the excess of kaons with LH < 0.1
mainly has momenta between 0.8 < p(K) < 2.0 GeV. The number of D∗ mesons in
this momentum range is determined by the D∗ fit once for 0 < LH < 0.1 and once for
0.01 < LH < 0.1. The difference reveals that about 5% instead of only 1% of the kaons
have LH < 0.01. To approximately compensate this effect, the LH cut is chosen to be
LH > 0.002 for 0.8 < p(K) < 2.0 GeV whereas it is LH > 0.01 for kaons with other
momenta and for pions.

Thus the efficiency of both pions and kaons can be estimated to be 99% leading to
εdEdx = 0.98. This will be applied as an overall factor. Fitting the number of D∗ mesons
before and after the dE/dx cuts without fixing any fit parameter gives the same result. The
systematic uncertainty introduced by the determination of εdEdx is assigned a value of 2%.
It covers the uncertainty based on the fact that all tracks without a dE/dx measurement
are accepted and that eq. 3.2 turned out to be a worse approximation for kaons than for
pions.

5.6 Systematic Uncertainties

In addition to the statistical uncertainty resulting from the D∗ fit, several effects exist that
lead to further, systematic uncertainties of the resulting cross sections. In the following
those effects will be discussed that have not yet been mentioned in the previous sections.

2To get more stable fit results, pt(D
∗)

SEt
> 0.15 is required.
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σsys[%]
source total differential
L1 trigger 4
L4 trigger 4
ET33 acceptance 6 3 .. 12
D∗ reconstruction 11
particle identification 2
BR(D∗+ → K−π+π+

s ) 2.5
reflections 1.5
signal extraction 3
model dependence 1 1 .. 3
luminosity L 1.5
in total 14.5 13.5 .. 18

Table 5.5: Relative systematic uncertainties of the total and the differential cross sections.
Sources above the line have already been quantified in section 5.5.

Table 5.5 summarises all different sources of systematic uncertainties. They are added in
quadrature and result in a systematic uncertainty of 15% for the total sample and vary
between 14 and 18% for the differential distributions.

D∗ Branching Ratio
The D∗ meson is reconstructed in the decay chain D∗+ → D0π+

s → K−π+π+
s and

its charge conjugate. To achieve D∗ cross sections the number of D∗ mesons has to
be corrected for the branching ratio of this specific decay chain. The branching ratio
is measured to be BR(D∗+ → K−π+π+

s ) = (2.57 ± 0.06)% (eq. 4.2), resulting in a
relative uncertainty of 2.5%.

Reflections
Decay channels other than D∗ → D0πs → Kππs can contribute to the Δm signal.
For example in a D0 → K+K− decay one of the kaon tracks can be wrongly identified
as a pion. Despite the wrong mass assignment it is possible that the resulting D0

mass m(Kπ) fulfils the cut of ±80 MeV around the nominal D0 mass and the decay
produces an entry in the Δm distribution. The decay modes that can wrongly
contribute to the signal are summarised as reflections. In [1,58] their contribution to
the signal has been determined to be r = (3.5 ± 1.5)%. The number of D∗ mesons
obtained from the fit will be corrected, the systematic uncertainty of this correction
is 1.5%.

Signal Extraction
The D∗ fit as described in section 4.3 assumes a single Gaussian for the signal. To
estimate the uncertainty of the determination of the number of D∗ mesons in data
that is introduced by this assumption, the number of D∗ mesons has been determined
with the method described in the end of section 4.3.2, i. e. by subtracting the integral
of the fitted background function from the number of entries in the signal region of
the Δm distribution. The resulting number is 6% higher, to be compared with 7%
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relative statistical uncertainty from the fit. In bins of η, pt and Wγp the deviation of
the number of D∗ mesons determined by this subtraction method is always consistent
with the statistical uncertainty, although the same tendency to higher values than
from the fit can be observed.

The systematic uncertainty is taken to be 3%, i. e. half of the deviation for the
total sample. No distinction is made between the total sample and the differential
distributions.

Model Dependence
The L1 trigger efficiency εL1, the reconstruction efficiency ε′rec and the electron tagger
acceptance AET33 are determined from the simulation based on the PYTHIA event
generator. Using the corrected CASCADE instead gives a total cross section that
is smaller by 2%. The largest deviations observed in bins of η, pt and Wγp is 6%,
reached at large pt and medium η.

The systematic uncertainty is assigned half of the deviation (in bins at least half of
the deviation of the total sample), i. e. 1% for the total sample and 1% to 3% for the
differential distribution.

Luminosity
The measurement of the integrated luminosity at the H1 experiment has a precision
of 1.5%.

5.7 Cross Sections

The number of events N and the cross section σ of a process are related via the integrated
luminosity L, N = σ · L. To measure the cross section of a distinct process via the
number of observed events, this number has to be corrected for effects like inefficiencies,
acceptances and migrations. The visible cross section of D∗ meson production can be
calculated from N(D∗), the number of D∗ mesons obtained in the fit,

σvis(ep → e′D∗X) =
N(D∗) · (1 − r)

BR(D∗ → Kππs) · L · ε . (5.7)

Here (1− r) denotes the correction for reflections from other D0 decays in the Δm distri-
butions, BR(D∗ → Kππs) is the branching ratio of the analysed D∗ decay chain, L is the
integrated luminosity after correction for trigger prescales and ε is the product of the effi-
ciencies of the reconstruction, triggering and the electron tagger acceptance as introduced
in section 5.5.

The D∗ cross section in the visible range, described in table 5.6, amounts to

σvis(ep → e′D∗X) = (6.20 ± 0.45 ± 0.90) nb. (5.8)

The first error represents the statistical and the second the systematic uncertainty. All
contributing factors are summarised in table 5.7.

In table 5.8 the result is compared with the predictions of the collinear leading order
calculation supplemented with parton showers of PYTHIA, the kt-factorisation approach
in CASCADE 1.2 and collinear next-to-leading order calculations in the massive scheme
(FMNR) and in the massless scheme (ZMVFNS). The predictions and their uncertainties
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Visible range
Q2 < 0.01 GeV2

0.29 < y < 0.65
(⇒ 171 < Wγp < 256 GeV)
pt(D∗) > 2.0 GeV
|η(D∗)| < 1.5

Table 5.6: Visible range of the
D∗ measurement.

N(D∗) (1 − r) BR L [pb−1] ε

1154 ± 84 0.965 0.0257 51.1 0.137
εL1 εL4 ε′rec εdEdx AET33

0.909 0.969 0.411 0.980 0.386

Table 5.7: Summary of the factors contributing to the
total visible cross section. The first row shows all factors
mentioned in eq. 5.7. The efficiency ε is decomposed
into the different contributions in the second row.

σvis(ep → e′D∗X) ± sσ [nb] sσ/σ PDF scales
Data (6.20 ± 0.45 ± 0.90) ±16% p γ μ2

r μ2
f

FMNR
(
5.4+2.1

−1.3

)
+39%
−24% CTEQ5M GRV m2

t 4m2
t

ZMVFNS
(
9.0+2.8

−3.4

)
+31%
−38% MRST03 AFG04 m2

t 4m2
t

CASCADE 1.2
(
5.52+0.73

−0.66

)
+13%
−12% A0 – 4m2

c + p2
t –

PYTHIA 8.0 CTEQ5L GRV m2
t m2

t

Table 5.8: The total visible D∗ cross section σvis(ep → e′D∗X) and their uncertainty sσ

compared with theoretical predictions. The parton densities of the proton and the photon
and the chosen scales are given for the calculations which all use the charm mass mc =
1.5 GeV. The transverse mass is defined as mt =

√
m2

c + p2
t . For the relative uncertainties

sσ/σ the statistical and systematic uncertainties of the data are added in quadrature.

are determined as described in chapter 2. For FMNR the charm mass and the chosen
factorisation and renormalisation scales have been varied independently as summarised in
table 2.3. This results in an upper bound from μr/2 and a lower bound from μf/2 where
μr and μf denote the renormalisation and factorisation scales, respectively. For ZMVFNS
the scales have been simultaneously varied as described in table 2.1. For CASCADE
varying the charm mass has a larger effect than varying the renormalisation scale and
therefore sets the upper and lower uncertainty. No uncertainties have been determined for
PYTHIA.

The FMNR and CASCADE predictions are slightly below the data, but they agree
with the data within the experimental and theoretical uncertainties. The central value of
the ZMVFNS prediction is far above the data. But since its uncertainty is very large – a
factor two between the lower and the upper bound – it is still compatible with the data.
The PYTHIA prediction is almost two standard deviation above the data.

5.7.1 Differential Cross Sections

The bin averaged differential cross section in a variable Y is calculated in analogy to
eq. 5.7,

dσvis(ep → e′D∗X)
dY

=
N(D∗) · (1 − r)

ΔY · BR(D∗ → Kππs) · L · ε . (5.9)
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ΔY stands for the width of the considered bin and N(D∗) is the number of D∗ mesons in
this bin.

Figure 5.13 shows the differential cross sections dσ/dpt(D∗), dσ/dη(D∗) and dσ/dWγp in
comparison with predictions from PYTHIA, CASCADE and next-to-leading order calcu-
lations in the massive (FMNR) and in the massless (ZMVFNS) scheme. The inner error
bars of the data indicate the size of the statistical uncertainties from the D∗ fit and the
outer error bars represent the statistical and systematic uncertainties added in quadra-
ture. The shaded and hatched areas indicate the uncertainty bands of the CASCADE,
ZMVFNS and FMNR calculations. They are obtained as described in chapter 2.

The measured cross section steeply falls with increasing pt(D∗). Also the pseudora-
pidity distribution generally falls towards larger η(D∗), but at η(D∗) ≈ 0.5 it is slightly
higher than for a continuously falling distribution. For dσ/dWγp a slow decrease with in-
creasing photon-proton centre-of-mass energies Wγp is observed. This can be understood
as a convolution of the photon-proton cross section which slightly increases with increasing
energies Wγp, with the decreasing photon flux for increasing inelasticities y =

√
Wγp/s.

For the leading order calculations the same tendencies can be observed as in the direct
comparison of the number of reconstructed D∗ mesons in section 5.4.2.3 In dσ/dpt the
spectrum predicted by CASCADE is too hard. PYTHIA matches quite well apart from
the lowest pt. Here PYTHIA falls more steeply than the data. In dσ/dη both predictions
tend to fall too steeply towards positive η. Due to their different total visible cross sections
– PYTHIA is above the data and CASCADE below – PYTHIA overestimates the backward
direction (negative η) whereas CASCADE underestimates the forward direction. Without
its large resolved component (dominated by charm excitation processes) the shape of the
PYTHIA prediction would be even more different from the data. The shape of dσ/dWγp

is well reproduced by PYTHIA as well as by CASCADE.
The FMNR calculations describe the data quite well within the large theoretical uncer-

tainties. Around pt(D∗) ≈ 3 GeV and for η(D∗) ≈ 0.5 the data are slightly underestimated
by the predictions. The central values of the ZMVFNS calculation all lie significantly above
the data whereas the lower bound describes the data as well as FMNR.

The values of the FONLL calculation in figure 5.14 are those calculated for [82] and
thus no values below pt(D∗) = 2.5 GeV can be shown. No significant difference between
the massive FMNR and the matched FONLL calculation can be seen.

5.7.2 Double Differential Cross Sections

The statistics of the data makes a more detailed look into the D∗ meson distributions
possible. The pt(D∗) dependence of the cross section in three different η(D∗) bins is
shown in figure 5.15. The data are compared with predictions of FMNR and PYTHIA.
The predictions are compatible with the data within the uncertainties, but again it can
be seen that in forward direction (figure 5.15c)) the data tend to lie above the predictions
and that in PYTHIA the resolved contribution increases.

As we will see in the next chapter, requiring a jet in addition to the D∗ gives more
conclusive information on the charm production mechanism.

3Note that for the comparison of reconstructed quantities CASCADE 1.0 has been used instead of
CASCADE 1.2 considered here.
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Figure 5.13: Differential D∗ production cross sections in bins of pt(D∗) (a,b), η(D∗) (c,d)
and Wγp (e,f) compared with the predictions of the leading order calculations supplemented
with parton shower PYTHIA and CASCADE on the left and compared with next-to-leading
order calculations in the massive scheme (FMNR) and massless scheme (ZMVFNS) on
the right. For PYTHIA the sum of the resolved and excitation processes of the prediction
is shown separately and labelled as “res.”.
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Figure 5.14: Differential D∗ production cross sections in bins of pt(D∗) compared with
the predictions of the massive next-to-leading order calculation FMNR and the matched
calculation FONLL.
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Figure 5.15: Differential D∗ cross sections as a function of pt(D∗) for three bins in η(D∗).
The results are compared with the predictions of PYTHIA and the massive next-to-leading
order calculation FMNR. For PYTHIA the sum of the resolved and excitation processes
of the prediction is shown separately and labelled as “res.”.



Chapter 6

Measurement of D∗ Mesons
Associated with a Jet

In the previous chapter inclusive D∗ production cross sections have been presented and
compared with QCD predictions. To achieve a more detailed understanding of the charm
production mechanism, it is desirable to investigate the hadronic final state. This is done
by requiring a jet which does not contain D∗ meson, as introduced in section 1.6.

6.1 Jet Selection

Jet Definition

Jets are defined by the inclusive kt-algorithm [32] in the pt-recombination and ΔR-distance
scheme (cf. section 1.5). The input of the jet algorithm are the combined hadronic-final-
state objects (HFS) as defined in section 3.7. The algorithm is run in the laboratory frame.
Since the algorithm is invariant under longitudinal Lorentz boosts, in photoproduction the
result is the same as if the algorithm would be applied in the photon-proton centre-of-mass
system.

To ensure that all decay particles of the D∗ candidate end up in the same jet, the HFS
objects of the D∗ decay tracks are replaced by the D∗ candidate itself, i. e. the four-vectors
that belong to the D∗ decay tracks are replaced by the sum of the momenta of the tracks
assigning the kaon and pion mass respectively.

In events which contain more than one D∗ candidate, the jet algorithm is run separately
for each candidate. For each candidate only its own decay tracks are replaced by the D∗

candidate. Since most candidates are random track combinations of the background, the
jet finding would be biased by random existence of the second candidate otherwise.

The minimal required transverse momentum is pt(jet) > 3 GeV. To ensure a satisfying
transverse momentum measurement even at these low values of pt, jets are restricted to
the central detector region |η(jet)| < 1.5 where well measured tracks dominate the HFS
objects.

For hadron level jets of a Monte Carlo event generator the input of the algorithm
consists of stable particles excluding the scattered positron. Also here the D∗ meson
replaces its decay products, i. e. D∗ mesons decaying in the analysed chain are treated as
stable particles.

71
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Figure 6.1: Normalised number of reconstructed jets not containing the D∗ meson (a) and
Δm distribution of D∗ mesons associated with at least one jet (b).

Jet Algorithm and Input Visible Jet Range
inclusive kt-algorithm pt(jet) > 3.0 GeV

pt-weighted reconstruction scheme |η(jet)| < 1.5
ΔR angular scheme D∗ /∈ jet
laboratory frame highest-pt jet if N(jet) > 1

D∗ replaces K, π, πs in HFS
Reconstruction Cut

Ndaug(jet) > 1

Table 6.1: Definition and selection of the jets of the D∗+jet sample.

Selection of Jets Associated to D∗ Mesons

The basis of the D∗+jet analysis is the selection of D∗ candidates as described for the
inclusive D∗ measurement of the previous chapter.

Due to the replacement of the D∗ decay particles by the D∗ candidate and since the
transverse momentum of the D∗ candidate is at least 2 GeV, often one of the jets defined by
the jet algorithm contains the D∗ candidate. To investigate the production process further,
the jet which contains the D∗ candidate is excluded. The small amount of jets containing
one particle only are excluded in data and on reconstruction level in the simulation.

Figure 6.1a) shows the multiplicity of the (non-D∗-) jets. For about 50% of the D∗

mesons at least one jet is found. If more jets are found, like in about 10% of the cases,
the jet with the highest transverse momentum is selected for further analysis.

Table 6.1 summarises the jet definition and selection criteria. The Δm distribution of
the D∗ candidates which a jet has been found for can be seen in figure 6.1b). The D∗

fit gives 588 ± 46 D∗+jet combinations with a signal-to-background ratio of 0.45. The
fit parameters μ = 0.1455 GeV, σ = 0.8468 MeV and us = 20.59 are fixed to the values
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obtained from the fit of the Δm distribution of the inclusive D∗ sample. If not stated
otherwise, in the following all distributions will be obtained from such D∗ fits in each
shown bin.

6.2 Comparison of Data and Simulation

In this section the quality of the description of the data by the simulations is tested with
respect to quantities related to the D∗+jet selection described above.

First the distributions of kinematical quantities of the jets and the D∗ mesons asso-
ciated with a jet (e. g. η(jet)) are considered as well as quantities derived from those like
η(D∗) - η(jet).

Secondly the contributions of tracks, electromagnetic or hadronic energy depositions
in the calorimeters to the jet transverse momentum are compared between data and sim-
ulation.

6.2.1 D∗ and Jet Quantities

To compare the simulations with the data, normalised distributions are used (cf. sec-
tion 5.4.2).

The transverse momentum and the pseudorapidity distributions of the selected jets
are shown in figure 6.2a-b) together with the simulations based on the PYTHIA and the
modified CASCADE predictions. CASCADE has a slightly harder pt(jet) spectrum than
PYTHIA, but both describe the distribution of the data within the uncertainties. Also
the η(jet) distribution is described well.

Figure 6.2c-d) compares the transverse momentum and the pseudorapidity distribu-
tions of D∗ mesons that are associated with a jet. For the pt(D∗) distribution the obser-
vation is the same as for pt(D∗). The η(D∗) distribution shows the same tendency as the
inclusive D∗ sample, i. e. low η are overestimated by the simulations and the data exceed
the simulations in the medium forward region, η(D∗) ≈ 0.5.

Having shown that the simulations satisfactorily describe the single D∗ or jet quantities
in the data within the uncertainties, the combined D∗+jet quantities are investigated: The
differences in pseudorapidity η(D∗) - η(jet) and in azimuthal angle Δφ(D∗, jet) between
the D∗ and the jet. Also investigated are the transverse momentum pt(D∗+jet) and the
invariant mass m(D∗+jet) of the D∗-jet pair and xγ(D∗+jet).

With xγ(D∗+jet) an approximate measure of the fraction of the photon momentum
entering the hard process can be defined which has already been discussed in section 1.6.2:

xγ(D∗+jet) =

∑
i∈D∗(E − pz)i +

∑
j∈jet(E − pz)j∑

k∈HFS
(E − pz)k

(6.1)

The sums in the numerator include the decay particles of the D∗ meson and the daughter
particles of the jet, respectively. Thus the E−pz contribution of the jet differs from E−pz

of the massless jet four-vector. If the HFS algorithm assigns a momentum to a D∗ decay
track that is different from the track measurement, the momentum defined by the HFS
algorithm is taken. In this manner all reconstructed xγ(D∗+jet) values are restricted to
the physical range between 0 and 1.



74 CHAPTER 6. MEASUREMENT OF D∗ MESONS ASSOCIATED WITH A JET

(jet) [GeV]tp
4 6 8 10 12 14 16

n
(D

*+
je

t)
/N

0.01

0.02

0.03
0.04
0.05
0.06

0.1

0.2

0.3
0.4
0.5
0.6 Data

Pythia
cor.Casc. 

(jet)η
-1.5 -1 -0.5 0 0.5 1 1.5

n
(D

*+
je

t)
/N

0

0.05

0.1

0.15

0.2

0.25

0.3

Data

Pythia
cor.Casc. a) b)

(D*) [GeV]tp
2 3 4 5 6 7 8 9 10 11

n
(D

*+
je

t)
/N

0.007
0.01

0.02

0.03
0.04
0.05

0.1

0.2

0.3
0.4
0.5 Data

Pythia
cor.Casc. 

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

n
(D

*+
je

t)
/N

0

0.05

0.1

0.15

0.2

0.25

0.3

Data

Pythia
cor.Casc. c)

d)

Figure 6.2: Comparison of the normalised distributions of pt (a) and η (b) of the selected
jets and of pt (c) and η (d) of the D∗ mesons associated with a jet in the data with the
simulations PYTHIA and CASCADE.

Figure 6.3 compares the distributions of the combined D∗+jet quantities in the data
and the simulations. The description of the data by the simulations is not as good as for the
single D∗ or jet kinematic quantities. Especially xγ(D∗+jet) rises much steeper towards its
maximum at about 0.8. Here and in the other combined quantities the differences between
the models PYTHIA and CASCADE are more pronounced than for the single D∗ or jet
quantities. But within the statistical uncertainty of the data both models describe the
data.

6.2.2 Composition of the Transverse Jet Momentum

The input of the jet algorithm are the combined hadronic-final-state objects (HFS) as
defined in section 3.7. The algorithm combines tracks measured in the tracking devices
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Figure 6.3: Comparison of the normalised distributions of the combined D∗+jet quantities
η(D∗) - η(jet) (a), Δφ(D∗, jet) (b), pt(D∗+jet) (c), m(D∗+jet) (d) and xγ(D∗+jet) (e) in
the data with the simulations PYTHIA and CASCADE.
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Figure 6.4: Mean transverse momentum fractions of the jets in the data and in the
PYTHIA simulation as a function of pt(jet) and η(jet): track, electromagnetic (em) and
hadronic (had) measurement.

with energy depositions in the calorimeters to avoid double counting of energy. For each
combined object the algorithm defines whether the four-vector is computed from the track
or the calorimeter measurement. In the latter case it is also decided whether the energy
deposition has to be interpreted at the electromagnetic or the hadronic energy scale.
This defines three types of momentum measurement, i. e. type track, if the momentum is
defined by the track, type em and type had, if the energy is measured in the calorimeter
and interpreted as electromagnetic and hadronic, respectively.

Since the transverse momentum of a jet defined by the pt-weighted reconstruction
scheme is just the sum of the transverse momenta of its daughters (cf. eq. 1.17), one can
define transverse momentum fractions of a jet,

pt(type)
pt(jet)

:=

∑type

jet pt

pt(jet)
, type = track, em or had. (6.2)

The sum runs over all particles inside the jet whose momentum measurement is of type
track, em or had.

Figure 6.4 compares the mean fractions in bins of the transverse momentum and the
pseudorapidity of the jets between the data and the simulation. To get better statistics
in the data, no D∗ fit is performed, but all jets associated to a D∗ candiate in the signal
region 143 < Δm < 148 MeV (SR) are counted.

The track fraction dominates and reaches almost 2/3. This indicates that charged
particles are mainly reconstructed as tracks and their energy depositions in the calorimeter
are ignored. In the backward direction (η(jet) < −0.8) the track fraction is larger. There
the calorimetric coverage is worse than in the central and more forward region (η > 0)
and neutral particles can be lost. The electromagnetic fraction is almost 1/3 whereas the
hadronic fraction plays a minor role.
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The fractions are of the same size in the simulation, but the track fraction is slightly
overestimated, especially at higher transverse momenta. This can be attributed to the fact
that the track momentum errors are smaller in the simulation than in the data. At higher
momenta the errors are relatively large and the particles of the jet enter the calorimeter
closer to each other. Then it can happen that the energy depositions in the cone around
the extrapolated track are compatible with the track momentum although in addition to
the charged particle also a neutral particle deposited energy. In these cases the neutral
particle would be lost for the HFS.

In addition to the mean transverse momentum fractions that have been considered
so far the figures 6.5 and 6.6 show distributions of the transverse momentum fractions,
for all jets and in bins of pt(jet) (figure 6.5) and in bins of η(jet) (figure 6.6). Due to
limited statistics in data, the highest pt(jet) bin shown in figure 6.4 cannot be examined
differentially. The simulation follows the data quite closely, besides the general trend of
underestimating the track fraction.

6.3 Resolution of Jet Quantities

Since the composition of the measured jet momentum is dominated by track measurements
and reasonably described by the simulation, the quality of the transverse momentum and
pseudorapidity reconstruction can be investigated.

The transverse momentum resolution is defined as (prec
t − pgen

t )/pgen
t . To ensure that

the reconstructed and generated jet are identical, they are considered only if they are
close to each other, ΔR =

√
η2 + φ2 < 1. In order not to introduce a bias at low prec

t , no
minimal pt requirement is applied to the generated jets.

The result is shown in figure 6.7 in bins of the transverse momentum and the pseu-
dorapidity of the jet. All distributions peak slightly below zero, but have a tail towards
large values such that the mean value generally is above zero.

The reconstruction of the pseudorapidity η(jet) is investigated in figure 6.8. The differ-
ence between the reconstructed and the generated pseudorapidity are shown for generated
and reconstructed jets that can be matched with each other within Δφ < 1. To avoid a bias
at the acceptance range in pseudorapidity, generated jets are considered in an extended
region |η(jet)| < 2.5. Over the entire pt-range the distributions peak at zero and have a
full width at half maximum (FWHM) around 0.2. But especially at low pt large tails are
observed. This indicates that despite of the φ-matching at low pt the reconstructed jet is
not identical to the generated.

In general the transverse momentum and pseudorapidity resolution are reasonably
described for all considered transverse momenta and pseudorapidities.

6.4 Transverse Energy Flow Relative to the Jet

In this section the transverse energy flow relative to the jet axis is investigated to gain ad-
ditional insight into D∗+jet events. The energy flow is displayed in jet profiles. They show
how energy inside and outside the jet is distributed and thus are sensitive to phenomena
like multiple scattering and underlying event [83].

The profile histograms show the mean momentum of HFS objects transverse to the
proton direction. The mean transverse momentum is plotted as a function of the distance
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Figure 6.5: Fractions of the jet transverse momentum measurement: track fraction on the
left, electromagnetic fraction in the middle and hadronic fraction on the right. The first
row shows the normalised distributions for all jets whereas the other rows show different
pt(jet) bins.
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Figure 6.6: Fractions of the jet transverse momentum measurement: track fraction on the
left, electromagnetic fraction in the middle and hadronic fraction on the right. Each row
shows the normalised distributions for different η(jet) bins.
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Figure 6.7: Resolution of the transverse momentum measurement of the jet in bins of
prec

t (jet) (a-d) and ηrec(jet) (e-h). All distributions are normalised to one.
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Figure 6.8: Difference between the reconstructed and generated pseudorapidity of the jets
in bins of prec

t (jet). All distributions are normalised to one.

in azimuth φ or pseudorapidity η relative to the jet axis. Therefore the transverse mo-
mentum of HFS object iHFS is filled as a weight and finally the histogram is normalised
to the number of jets. To achieve profiles of the jets in D∗+jet events, both the sum of
weights and the normalisation result from D∗ fits.

The φ-profile displays the transverse momentum of HFS objects at a φ-distance
|Δφ(jet, iHFS)| from the jet. Only HFS objects close to the jet in pseudorapidity,
|η(jet)-η(iHFS)| < 1, are taken into account.

In a similar way the η-profile displays the transverse momentum of HFS objects at
an η-distance η(iHFS)-η(jet) from the jet. Here only HFS objects close to the jet in φ,
|Δφ(jet, iHFS)| < 1, are taken into account. Thus particles from any other jet balancing
the transverse momentum are excluded.

In figure 6.9 the jet profiles for all selected jets are shown1 and compared with the
simulations. The peaks close to zero originate from the particles of the jet itself. They are
well described by the simulations.

The η-profile shows that both simulations lie above the data for energy flow more
forward than the jet, η(iHFS)-η(jet) > 0. The φ-profile exhibits a second peak close to π.

1To get more stable fit results in the data, the background exponent ue is fixed for all profiles in data.
In the simulations all D∗ candidates in the signal region are counted.
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Figure 6.9: Jet profiles in φ and η. The error bars denote the statistical error from the
D∗ fit.

It can be attributed to the D∗-jets which are opposite in φ to the selected jets.
The behaviour of the energy flow in φ with respect to the jet axis is investigated in

bins of pt(jet) and η(jet) in figure 6.10. The two-peak structure becomes clearer with
increasing transverse momentum pt(jet) (figures 6.10a-c)). Figures 6.10d-h) show the
profiles for different η(jet). They reveal that in the forward direction (η(jet) > 0) the
second peak becomes smaller and almost vanishes, which means that the D∗-jet is further
away in η than |η(jet)-η(iHFS)| < 1.

In general the energy flow shown in the φ profiles is reasonably described by the
simulations, even the pedestal between the peaks2. But at higher pt(jet) the data show
more energy in the second peak at π. At η(jet) ≈ 0.5 the second peak is less clear than
the simulations predict. This is the same η-region where also the number of D∗ mesons in
the data exceeds those observed in the simulations whereas the number of jets is slightly
below the simulations (cf. figures 6.2b+d)). Comparing PYTHIA and CASCADE reveals
that the second peak is always more dominant in PYTHIA than in CASCADE. But the
statistical precision of the data is too limited to distinguish between the models.

6.5 Correction Factors, Purities and Stabilities

To extract cross sections for the D∗+jet sample, the efficiency correction ε = εL1 · εL4 · ε′rec ·
εdEdx · AET33 (eq. 5.4) has to be determined. This is done in analogy to the determination
of the correction factors for the inclusive D∗ sample, described in section 5.5. The results
will be shown in this section.

The resolution of the transverse momentum measurement of the jet (section 6.3) is
worse than for the D∗ meson. Especially at low pt(jet) it is possible that the selected jet
measured at detector level is not identical to the one generated, i. e. they have different

2The low values around Δφ = 1 in the data may be influenced by the low signal-to-background ratios
of the D∗ fits in these bins.
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Figure 6.10: Jet profiles in φ for different pt(jet) (a-c) and η(jet) (d-h). The error bars
denote the statistical error from the D∗ fit.
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directions. To quantify the amount of migrations and to demonstrate that an efficiency
correction based on the definition of ε′rec in eq. 5.6 is still possible, the purity P and the
stability S are presented together with the efficiencies. They are defined as

P =
N rec

gen

N rec

∣∣∣∣
bin

, (6.3)

S =
N rec

gen

Ngen

∣∣∣∣
bin

. (6.4)

P and S are calculated under the condition that both a generated D∗ meson and a recon-
structed D∗ candidate are found within the visible range of the inclusive D∗ measurement
(cf. table 5.6). The reconstructed candidate must lie in the signal region 143 < Δm <
148 MeV and have the same charge as the generated D∗ meson. Under these conditions

Ngen is the number of generated D∗+jet combinations in a bin,

N rec is the number of reconstructed D∗ meson candidates associated with a reconstructed
jet in a bin and

N rec
gen is the number of reconstructed D∗+jet combinations in a bin with a generated D∗+jet

combination in the same bin.

In the following the purity P , the stability S and the efficiencies εL1 and ε′rec are
presented first for the total D∗+jet sample, then in bins of the measured jet and D∗

quantities and finally in bins of the combined D∗+jet quantities.

6.5.1 Total D∗+Jet Sample

The overall factors εL4 = 0.969 and εdEdx = 0.98 are taken as determined for the inclusive
D∗ sample.

The electron tagger acceptance of the D∗+jet sample has been determined to AET33 =
39.2% and shows only very small variations for the D∗+jet quantities considered. This
value is a little higher than for the inclusive D∗ sample, indicating a slightly different
inelasticity distribution.

The L1 trigger efficiency of the D∗+jet sample is εL1(D∗+jet) = 94.8%, to be compared
with εL1(D∗) = 90.9% for the inclusive sample, the reconstruction efficiency amounts to
ε′rec(D

∗+jet) = 42.0%, determined with the PYTHIA simulation. Using CASCADE results
in ε′rec(D

∗+jet) = 42.7% if modified according to pt(D∗) and ε′rec(D
∗+jet) = 44.2% without

this correction.
The trigger and reconstruction efficiencies are expected to be slightly higher than for

the inclusive D∗ sample: Requiring a jet in addition to the D∗ meson selects a subset of the
D∗ events with higher transverse momenta on average. Higher transverse momenta give
a higher efficiency for the DCRPh trigger. In addition the pt(jet) > 3 GeV requirement
selects D∗ mesons with higher average transverse momenta balancing pt(jet). Higher
average pt(D∗) leads to a higher reconstruction efficiency.

The purity and stability of finding a jet in events with a D∗ meson are P = 86% and
S = 81% for PYTHIA and P = 89% and S = 83% for CASCADE. This means that
almost 90% of the D∗ candidates that are associated with a reconstructed jet also have
a jet on the generator level and that more than 80% of the generated D∗+jet pairs are
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Figure 6.11: Efficiencies of D∗ mesons associated with a jet.

also reconstructed. The slightly higher values for CASCADE can be related to the flatter
pt(jet) spectrum resulting in smaller migration losses due to the pt(jet) cut.

6.5.2 Single D∗ and Jet Quantities

The L1 trigger and the reconstruction efficiencies of D∗+jet combinations are shown in
figure 6.11 as functions of pt(D∗)and η(D∗). They follow the same trend as the inclusive
D∗ sample, presented in sections 5.5.1 and 5.5.4. The trigger efficiency is nearly constant,
rising slightly with increasing pt. The reconstruction efficiency rises with increasing pt,
but drops again for the highest pt. At larger |η(D∗)| it is lower than in the central region.

The figures 6.12a+d) show the efficiencies in bins of pt(jet) and η(jet). The dependence
on pt(jet) is similar to that on pt(D∗), but less prominent since the transverse momentum
of the jet and of the D∗ are correlated due to the pt-balance between the jet and the D∗.

Figures 6.12b-c) show the purities and stabilities in bins of pt(jet). These bins are
chosen such that the purity is of the same size for all bins. This is achieved by increasing
the bin width with increasing pt(jet): The relative resolutions (figure 6.7) stay almost
constant with pt, which means that the absolute resolutions increase with pt. The purities
and stabilities as a function of η(jet) are shown in figure 6.12e-f). Since there are relatively
few jets found for η < 0 compared to η > 0 (cf. figure 6.2b)), there are fewer possibilities
to reconstruct erroneously a jet in backward direction, leading to larger purity and lower
stability in the backward direction.

Purity P and stability S are generally at least P = 60% and S = 50%.

6.5.3 Combined D∗+Jet Quantities

The efficiencies, purities and stabilities of the combined D∗+jet variables are shown in
figure 6.13. They are generally lower than those of the single jet measurement since
migration effects are more prominent when combining several measured quantities like
momenta and angles of the D∗ and the jet. The purities and stabilities are relatively
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Figure 6.12: Efficiencies (a+d), purity (b+e) and stability (c+f) in bins of the transverse
momentum and the pseudorapidity of the jets.

high for η(D∗) - η(jet). For Δφ(D∗, jet) they are at the 60% level for CASCADE, but
significantly lower for PYTHIA, especially for small Δφ(D∗, jet). Since there are only
few D∗+jet pairs with small Δφ(D∗, jet), “wrong” jets, i. e. different jet directions on
reconstruction and generator level, deteriorate the purity. In xγ(D∗+jet) the bins are
chosen such that the purity is 60%. In bins of pt(D∗+jet) purity and stability are around
50% only, but for m(D∗+jet) they are higher again, around 60%.

Generally the purities and stabilities of the combined D∗+jet quantities are above
50% with exceptions in Δφ(D∗, jet) and pt(D∗+jet) where they are still above 40%. This
guarantees a sufficient correlation between the generated and reconstructed quantities
making the application of the efficiency correction possible.

6.6 Systematic Uncertainties

The sources of systematic uncertainties in the D∗+jet cross section analysis are mostly
the same as for the inclusive D∗ analysis. Therefore they do not have to be estimated
separately, but can be adopted from the inclusive analysis, section 5.6. This is the case for
the L1 and L4 trigger efficiencies (both 4% uncertainty), the electron tagger acceptance
(6%), the reconstruction efficiency (11%), the efficiency of the particle identification (2%),
the branching ratio BR(D∗+ → K−π+π+

s ) (2.5%), the reflection correction (1.5%) and
the luminosity determination (1.5%).

To determine the systematic uncertainty of the signal extraction the procedure de-
scribed in section 5.6 has been applied. Again no large deviations above the statistical
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Figure 6.13: Efficiencies, purities and stabilities of the combined D∗+jet quantities
η(D∗) - η(jet), Δφ(D∗, jet), pt(D∗+jet), m(D∗+jet) and xγ(D∗+jet).
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uncertainty are observed. Thus the uncertainty is estimated to 3%, the same as for the
inclusive sample.

Also the uncertainty introduced by the model dependence of the efficiency determina-
tion is estimated in the same way as for the inclusive D∗ sample (cf. section 5.6), i. e. using
the corrected CASCADE instead of PYTHIA for the determination of εL1, ε′rec and AET33

and assigning the uncertainty half of the deviation. The result is 1% for the total D∗+jet
sample and varies between 1% and 9% for the differential distributions. Values above
6% are reached only for the lowest xγ(D∗+jet), the lowest Δφ(D∗, jet) and the largest
η(D∗) - η(jet) bins.

The jet measurement has an additional uncertainty due to the uncertainty of the ab-
solute energy scale of the calorimeters and the calorimeter simulation since they are used
for constructing the HFS objects. As a first estimate of the influence of this uncertainty
on the result, the energy measurement on the hadronic and electromagnetic reconstruc-
tion levels have been varied, by ±4% and ±2% in the LAr calorimeter and by ±8% and
±1% in the SpaCal, respectively. The hadronic and electromagnetic energy scales of the
calorimeters are known to about that precision. The resulting cross section changes are
smaller than the statistical uncertainty and thus cannot be used to quantify the influence
of the energy scale uncertainty on the cross sections.

Therefore the uncertainty is estimated by the following consideration: On average 30%
of the jet transverse momentum measurement is taken from the electromagnetic energy
scale, 10% from hadronic scale and the rest is determined from tracks (cf. section 6.2.2).
Multiplying these fractions with the scale uncertainties of the LAr leads to an average
uncertainty of 1%. The SpaCal can be neglected. This consideration ignores that the track
fraction depends on the energy measurements in the calorimeters. Thus the systematic
uncertainty introduced by the uncertainty of the calorimeter energy scale is conservatively
estimated to be 1.5%.

Adding all systematical uncertainties quadratically results in a systematic uncertainty
of 14.7% for the total D∗+jet sample and varies from 14.7% to 17.2% for the differential
distributions.

6.7 Hadronisation Corrections

Before comparing the next-to-leading order (NLO) QCD calculations as described in sec-
tion 2.3 to the D∗+jet measurements, the calculations have to be corrected for hadronisa-
tion effects, i. e. the influence of the transition from partons to observable mesons on the
result of the jet algorithm.

The hadronisation corrections will be determined as bin-by-bin corrections from hadron
level calculations supplemented by parton showers, PYTHIA and CASCADE. The proce-
dure is similar to the determination of the efficiencies. The hadronisation correction factor
is defined as

Chad =
Ngen(D∗+jet)
Nps(D∗+jet)

∣∣∣∣
vis

. (6.5)

Here Nps(D∗+jet) is the number of D∗+jet pairs after the parton shower, but before the
hadronisation, and Ngen(D∗+jet) is the number after the hadronisation, both in the visible
range (table 6.2) and for differential efficiencies in the corresponding bin. This procedure
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Figure 6.14: Hadronisation correction in bins of pt(D∗) and η(D∗).

is an approximation since it assumes that the parton level of PYTHIA and CASCADE is
similar to that of the NLO calculations.

To determine Nps(D∗+jet) the jet algorithm is applied to all partons before the hadro-
nisation. These can be identified since their “daughter particles” are labelled as “strings”
or “clusters”. Since the D∗ fragmentation is already taken care of in the NLO calculation,
even for Nps(D∗+jet) the D∗ meson is considered instead of the charm quark before the
fragmentation. The D∗-jet is identified as the jet which contains the charm quark which
fragmented into the considered D∗ meson.

The charm excitation process in PYTHIA is calculated with massless charm quarks,
including a massless treatment of the charm quark in the simulation of parton radiation in
the parton shower. This leads to events where the charm quark after the parton shower is
highly virtual with energies which may even be far below the nominal charm mass of mc =
1.5 GeV. As a consequence the direction of the charmed hadron after the hadronisation
is hardly correlated with the charm quark. This behaviour is considered as unphysical
and events where the charm energy is below its mass are not taken into account for the
calculation of the hadronisation correction.

The resulting hadronisation corrections are Chad = 0.89 for PYTHIA and Chad = 0.86
CASCADE. Figure 6.14 shows the hadronisation corrections in bins of pt(D∗) and η(D∗).
The largest deviations from one are found for low transverse momenta. Since negative
pseudorapidities are dominated by low transverse momenta, also there Chad is lower than
one. The difference between PYTHIA and CASCADE is also largest for low momenta
and negative pseudorapidities.

Since both PYTHIA and CASCADE use the same hadronisation model, the difference
must be due to differences in the parton state. Like for the correction of the detector
effects by the efficiencies, the results from PYTHIA will be used. They are generally
closer to one. Nevertheless, for comparison the CASCADE results will also be shown in
the following differential distributions.

Purity and stability of the total sample, calculated in analogy to eq. 6.3 and 6.4,
amount to Phad = 85% and Shad = 76% for PYTHIA and Phad = 89% and Shad = 76% for
CASCADE, respectively. The stability Shad being lower than the purity Phad is consistent
with Chad being below one since it indicates that more often D∗+jet combinations migrate
out of the visible range than migrate into the visible range.
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Figure 6.15: Hadronisation correction in bins of pt(jet) and η(jet) and the corresponding
purities and stabilities.

In figure 6.15 the hadronisation corrections and the corresponding purities and stabili-
ties are shown for the bins in pt(jet) and η(jet). Apart from low η(jet) Chad is quite stable.
The purities and stabilities are above 50% except for the most negative pseudorapidities.
They both increase with the transverse momentum, which is related to the increasing bin
widths.

The hadronisation corrections, purities and stabilities for the combined D∗+jet quan-
tities are shown in figure 6.16. For η(D∗) - η(jet), pt(D∗+jet) and m(D∗+jet) the situation
is similar to the jet-only quantities, although purities and stabilities are slightly lower.
In Δφ(D∗, jet) the purities and stabilities differ significantly between PYTHIA and CAS-
CADE, but the correction is of similar size and is large only for very low Δφ(D∗, jet).
The two last bins used in the measurement are combined because the NLO calculations
cannot provide smaller bins in this infrared sensitive region as discussed in section 2.3. In
xγ(D∗+jet) the corrections are up to 40%, but the purities and stabilities are not smaller
than for the other quantities: The fragmentation leads to migrations towards lower values
of xγ(D∗+jet) only.

The purities and stabilities of the hadronisation corrections are slightly lower than
those of the efficiency corrections (section 6.5). But they are all at least almost 40%.
Only the first bin in Δφ(D∗, jet) has a lower stability, a bin where also the statistical
uncertainty of the data is very large.

The hadronisation corrections obtained from PYTHIA will be applied to the next-to-
leading order calculations before the comparison with the data in the next section.
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Figure 6.16: Hadronisation corrections, purities and stabilities in bins of the combined
D∗+jet quantities η(D∗) - η(jet), Δφ(D∗, jet), pt(D∗+jet), m(D∗+jet) and xγ(D∗+jet).
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Visible range: D∗+jet
Q2 < 0.01 GeV2

0.29 < y < 0.65
(⇒ 171 < Wγp < 256 GeV)
pt(D∗) > 2.0 GeV
|η(D∗)| < 1.5
pt(jet) > 3.0 GeV
|η(jet)| < 1.5

D∗ /∈ jet
jet with highest pt

Table 6.2: Visible range of the D∗+jet measurement.

6.8 Cross Sections

This section presents the cross sections of the D∗+jet sample and compares them with
the QCD predictions, first the total visible D∗+jet cross section, followed by bin averaged
differential cross sections as a function of the transverse momentum and the pseudora-
pidity of the D∗ and the jet as well as combined D∗+jet quantities. The visible range is
summarised in table 6.2.

To calculate the cross sections, eq. 5.7 and 5.9 are applied, respectively, now using the
number of D∗+jet pairs N(D∗+jet). The result of the total visible D∗+jet cross section is

σvis(ep → e′D∗ jet X) = (2.96 ± 0.23 ± 0.43) nb. (6.6)

The first uncertainty denotes the statistical uncertainty of the D∗ fit3 and the second
the systematical uncertainty. The ratio of this D∗+jet to the inclusive D∗ cross section
amounts to σ(D∗+jet)/σ(D∗) = 47.7%.

In table 6.3 the result is compared with the predictions of the collinear leading order cal-
culation from PYTHIA, the kt-factorisation calculation with CASCADE 1.2 and collinear
next-to-leading order calculations in the massive scheme (FMNR) and in the massless
scheme (ZMVFNS), cf. chapter 2. The results of the NLO calculations are stated before
and after applying the hadronisation correction determined in section 6.7. The positive
and negative uncertainties indicate the upper and lower bound of the prediction obtained
by varying the scales and the charm mass as explained in chapter 2. The largest vari-
ations from the central prediction are obtained from the same variations which defined
the uncertainty of the inclusive D∗ cross section given in section 5.7. An exception is the
lower bound of the FMNR prediction which is set by doubling the renormalisation scale.
The relative size of the theoretical uncertainties for the D∗+jet cross section is lower than
for the inclusive cross section by at least one third. For ZMVFNS the reduction is even
larger.

The FMNR prediction after applying the hadronisation correction is below the data.
Unlike for the inclusive D∗ cross section only the upper bound of the theoretical uncer-
tainties is compatible with the data within the experimental uncertainties. The ratio of

3The D∗ fit is performed with the parameters μ, σ and us fixed to their values obtained from the
inclusive D∗ sample.



6.8. CROSS SECTIONS 93

σvis(ep → e′D∗ jet X) ± sσ [nb] sσ/σ σ(D∗+jet)/σ(D∗)
Data (2.96 ± 0.23 ± 0.43) ±16% 47.7%

FMNR ⊗ had. corr.
(
2.27+0.62

−0.38

)
42.0%

FMNR
(
2.55+0.69

−0.43

) +27%
−16% 47.2%

ZMVFNS ⊗ had. corr.
(
2.44+0.48

−0.47

)
27.2%

ZMVFNS
(
2.73+0.54

−0.52

) +20%
−19% 30.3%

CASCADE 1.2
(
3.06+0.25

−0.26

)
+8.0%
−8.5% 55.4%

PYTHIA 3.65 45.7%

Table 6.3: The total visible D∗+jet cross section σvis(ep → e′D∗ jet X) and its uncertainty
sσ compared with theoretical predictions. The FMNR and ZMVFNS predictions before ap-
plying the hadronisation correction are given for reference only. The last but one column
states the relative uncertainties, where for the data the statistical and systematic contribu-
tions are added in quadrature. The right column shows the ratios between the D∗+jet and
the inclusive D∗ cross sections. The chosen scales and particle density parametrisations
of the calculations are given in table 5.8.

the D∗+jet and the inclusive D∗ cross section, σ(D∗+jet)/σ(D∗), is underestimated, too.
The ZMVFNS prediction now is below the data, but it is almost compatible with the
data within either uncertainties. Since the inclusive D∗ cross section was significantly
overestimated, the ratio σ(D∗+jet)/σ(D∗) is significantly lower than for the data.

The CASCADE prediction now is closer to the data than for the inclusive sample where
it was below. This can be understood since the pt-spectrum of CASCADE has already
been found to be too hard and since the jet requirement selects higher transverse momenta.
PYTHIA overestimates the D∗+jet measurement only slightly and its σ(D∗+jet)/σ(D∗)
ratio is the closest to that in data.

Differential D∗+jet cross sections are shown in the figures 6.17, 6.18 and 6.19, compared
with the theoretical predictions. To indicate the size of the hadronisation correction,
FMNR is shown once before and once after applying these corrections. The shaded and
hatched bands indicate the upper and lower bound of the predictions. The contribution
from the direct and resolved part of PYTHIA is also indicated. The resolved part is
dominated by the charm excitation process.

The Transverse Momenta pt(D∗), pt(jet) and pt(D∗+jet)

The differential cross sections as a function of the transverse momentum of the D∗ and
the jet are shown in the figures 6.17a-d). The pt distributions of the D∗ and the jet show
the same behaviour as the inclusive pt(D∗) (figures 5.13a+b)). They are steeply falling
with increasing pt, the pt(jet) distribution is even steeper.

Again the CASCADE predictions are too hard and PYTHIA is above the data mainly
at low pt. Within the uncertainties both next-to-leading order calculations can describe
the pt distributions, but both tend to be below the data for low pt.

The pt(D∗+jet) distribution (figures 6.17e-f)) peaks around 2.5 GeV. This is well de-
scribed by CASCADE, besides the largest observed pt(D∗+jet) where it is almost two



94 CHAPTER 6. MEASUREMENT OF D∗ MESONS ASSOCIATED WITH A JET

(jet) [GeV]tp
4 6 8 10 12 14 16

(j
et

) 
 [

n
b

/G
eV

]
t

 / 
d

p
σd

-210

-110

1 Data
Cascade 1.2
Pythia
Pythia (res.)

Data
Cascade 1.2
Pythia
Pythia (res.)

(jet) [GeV]tp
4 6 8 10 12 14 16

(j
et

) 
 [

n
b

/G
eV

]
t

 / 
d

p
σd

-210

-110

1 Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

a) b)

(D*) [GeV]tp
2 3 4 5 6 7 8 9 10 11

(D
*)

  [
n

b
/G

eV
]

t
 / 

d
p

σd

-210

-110

1

Data
Cascade 1.2
Pythia
Pythia (res.)

Data
Cascade 1.2
Pythia
Pythia (res.)

(D*) [GeV]tp
2 3 4 5 6 7 8 9 10 11

(D
*)

  [
n

b
/G

eV
]

t
 / 

d
p

σd

-210

-110

1

Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

c) d)

(D*+jet) [GeV]tp
0 1 2 3 4 5 6 7 8 9

(D
*+

je
t)

  [
n

b
/G

eV
]

t
 / 

d
p

σd

0

0.2

0.4

0.6

0.8

1
Data
Cascade 1.2
Pythia
Pythia (res.)

Data
Cascade 1.2
Pythia
Pythia (res.)

(D*+jet) [GeV]tp
0 1 2 3 4 5 6 7 8 9

(D
*+

je
t)

  [
n

b
/G

eV
]

t
 / 

d
p

σd

0

0.2

0.4

0.6

0.8

1
Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

Data

 Had⊗FMNR 

FMNR

 Had⊗ZMVFNS 

e) f)

Figure 6.17: D∗+jet cross sections in bins of the transverse momentum of the jet (a,b), of
the D∗ meson (c, d) and of the combined D∗+jet system (e, f) compared with the predictions
of PYTHIA and CASCADE on the left and of next-to-leading order calculations on the
right. FMNR is a massive and ZMVFNS a massless calculation. For PYTHIA the sum
of resolved and excitation processes is shown separately and labelled as “res.”.
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standard deviations above the data. At large values of pt(D∗+jet) the resolved fraction of
PYTHIA is large and PYTHIA’s overshoot in the total cross section seems to accumulate
at small pt(D∗+jet) < 2.0 GeV. Both next-to-leading order calculations tend to underes-
timate pt(D∗+jet) > 2.0 GeV. For lower values the predictions match the data, but the
uncertainties are very large. This is due to the fact that pt(D∗+jet) is an infrared sensitive
quantity. Small variations of the perturbative scales lead to large variations as has been
discussed in section 2.3. Therefore the good agreement of the central prediction with the
data at low pt(D∗+jet) might be by chance.

The Pseudorapidities η(D∗), η(jet) and Their Difference η(D∗) - η(jet)

Figure 6.18 shows differential D∗+jet cross sections as a function of the pseudorapidities
η(D∗), η(jet) and their difference η(D∗) - η(jet). The pseudorapidity distributions of the
D∗ and the jet differ significantly: The η(D∗) distribution falls steeply with increasing
values η, similar to the inclusive analysis (figures 5.13c+d)), whereas η(jet) is almost flat.
This difference is not caused by the slightly different kinematic cuts for the D∗ and the
jet as can be seen from the η(D∗) - η(jet) distribution of the direct PYTHIA component in
figure 6.18e): It is symmetric as expected for direct processes (cf. section 1.6.2). It can be
concluded that the jet in the forward direction is often caused by a gluon or a light quark,
but not by a charm quark. The asymmetry between the η(D∗) and η(jet) distributions
is reflected in the distribution of the pseudorapidity difference η(D∗) - η(jet) which peaks
below zero.

CASCADE describes all η distributions reasonably well. PYTHIA is above the data at
negative η(D∗) as for the inclusive sample and slightly above in the medium η(jet) range.
The necessity of the inclusion of PYTHIA’s resolved contribution to describe the data is
clearly visible, especially for η(jet) and η(D∗) - η(jet).

Within their large uncertainties both next-to-leading order calculations reasonably de-
scribe the data. In the forward direction again the cross section is slightly underestimated
for D∗ mesons. The uncertainties of the predictions for jets in the forward direction are
large and are transferred to negative η(D∗) - η(jet), too. They can be understood by the
following consideration: The asymmetry between η(D∗) and η(jet) indicates that most of
the jets in the forward direction are produced by gluons and not by charm quarks. The
amount of hard gluon radiation depends on the strong coupling constant αs which itself
depends on the renormalisation scale. Therefore varying this scale in the next-to-leading
order calculations leads to significantly more or less hard gluon radiation, resulting in large
variations in forward direction.

The D∗+Jet Quantities Δφ(D∗, jet), m(D∗+jet) and xγ(D∗+jet)

Cross sections in bins of the combined D∗+jet quantities Δφ(D∗, jet), m(D∗+jet) and
xγ(D∗+jet) are shown in figure 6.19.

The Δφ(D∗, jet) distribution rises towards its maximum close to 180◦, values below 80◦

hardly occur. Its rise is well described by CASCADE whereas PYTHIA overshoots the
data at large Δφ(D∗, jet). Without the resolved component PYTHIA cannot describe the
region Δφ(D∗, jet) < 140◦.

In the next-to-leading order calculations the negative contributions from interference
terms dominate the largest Δφ(D∗, jet) (cf. section 2.3). To achieve a cancellation with pos-
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Figure 6.18: D∗+jet cross sections in bins η(D∗) (a,b), η(jet) (c,d) and of the pseudorapid-
ity difference η(D∗) - η(jet) (e,f) compared with the predictions of PYTHIA and CASCADE
on the left and of next-to-leading order calculations on the right. FMNR is a massive and
ZMVFNS a massless calculation. For PYTHIA the direct processes (η(D∗) - η(jet)) or the
sum of resolved and excitation processes (η(D∗), η(jet)) are shown separately and labelled
as “dir.” and “res.”, respectively.
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Figure 6.19: D∗+jet cross sections in bins of the combined D∗+jet quantities Δφ(D∗, jet)
(a,b), m(D∗+jet) (c,d) and xγ(D∗+jet) (e,f) compared with the predictions of PYTHIA
and CASCADE on the left and of next-to-leading order calculations on the right. FMNR
is a massive and ZMVFNS a massless calculation. For PYTHIA the sum of resolved and
excitation processes is shown separately and labelled as “res.”.
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itive terms the last two bins are merged, there the data are well described. Both FMNR and
ZMVFNS show a large scale dependence at slightly lower values 138◦< Δφ(D∗, jet) < 154◦.
The lowest Δφ(D∗, jet) observed in the data, around 100◦, are predicted neither by FMNR
nor ZMVFNS. Since PYTHIA predicts a contribution in this region solely via resolved
processes, it is unlikely that the missing cross section prediction of the NLO calculations
in this region is caused by neglecting a transverse smearing in the D∗ fragmentation of
charm quark into the D∗ meson. However, further studies are needed to investigate this
hypothesis.

The cross section in the invariant mass m(D∗+jet) starts directly at its threshold
∼5.5 GeV (for the D∗ and the jet being back-to-back) defined by the minimal transverse
momenta of the D∗ and the jet and the D∗ mass. It falls rapidly for m(D∗+jet) above
∼ 12 GeV. The PYTHIA and CASCADE predictions differ at low m(D∗+jet), but the
data are just in between. At large m(D∗+jet) CASCADE tends to be too high. The
FMNR prediction reasonably describes the data, being somewhat below the data at low
m(D∗+jet) values. No ZMVFNS prediction is available for this quantity.

The cross section as a function of xγ(D∗+jet) has its maximum around 0.7 and not close
to one, even for the contribution of direct photoproduction. This is different from usual
definitions of xγ , based on two jets, since the D∗ carries only a fraction of the charm quark
momentum whereas the D∗-jet more closely approximates the quark quantities. Neverthe-
less, xγ(D∗+jet) can be used to separate direct or resolved processes in PYTHIA as can
be seen in figure 6.19e). The distribution does not fall steeply towards xγ(D∗+jet) = 0,
but the cross section in the lowest bin is still about 40% of the maximal value. Neither
PYTHIA nor CASCADE describe the shape of the distribution. They significantly over-
estimate the data at larger values xγ(D∗+jet) > 0.6. In addition CASCADE is clearly
below the data at low values. Also the NLO calculations tend to underestimate the lower
values, but especially FMNR has large uncertainties. The large hadronisation correction
brings the predictions closer to the data at the largest xγ(D∗+jet).

Summarising, none of the calculations can describe all features of the measured D∗+jet
cross sections. In the following summary these results will be discussed together with the
inclusive D∗ cross sections presented in section 5.7.



Chapter 7

Summary and Discussion of
D∗ and D∗+Jet Cross Sections

Photoproduction of charm at HERA has been studied in data recorded by the H1 exper-
iment in the years 1999 and 2000. The data correspond to an integrated luminosity of
51.1 pb−1. Photoproduction processes are selected by detecting the scattered electron at
small angles. This leads to a kinematical range of Q2 < 0.01 GeV2 and 0.29 < y < 0.65
where the latter corresponds to centre-of-mass energies of the photon-proton system of
171 < Wγp < 256 GeV.

Charm has been tagged by reconstruction of D∗ mesons in the decay channel D∗± →
D0π±

s → K∓π±π±
s . Particle identification using dE/dx slightly improves the signal-to-

background ratio. The number of D∗ mesons is determined by a fit to the distribution of
the invariant mass difference Δm = m(Kππs) − m(Kπ). In total 1154 ± 84 D∗ mesons
have been reconstructed in the range pt(D∗) > 2.0 GeV and |η(D∗)| < 1.5. The cross
section in the visible kinematic region is

σvis(ep → e′D∗X) = (6.20 ± 0.45 ± 0.90) nb. (7.1)

Differential and double differential cross sections dσ/dpt(D∗), dσ/dη(D∗), dσ/dWγp and
d2σ/dη(D∗)dpt(D∗) have been determined and compared with predictions of perturbative
QCD (section 5.7). The leading order calculations PYTHIA and CASCADE are supple-
mented with parton showers, the former applies collinear and the latter kt-factorisation,
respectively. The next-to-leading order (NLO) calculations all apply collinear factorisa-
tion. FMNR predictions are calculated in the massive scheme, ZMVFNS predictions in
the massless scheme and FONLL is a matched approach. Theoretical uncertainties arise
from higher order terms and are estimated by scale variations. They are particularly large
for the NLO calculations.

All calculations describe the measured shapes within the uncertainties. The pt(D∗)
spectrum of the CASCADE prediction is a too hard and for ZMVFNS only the lower edges
of the large uncertainties are close to the data. The η(D∗) distribution indicates that the
pure leading order photon-gluon-fusion (PGF) process in PYTHIA cannot describe the
data.

The calculations include radiative processes in addition to the leading order PGF,
leading to predictions closer to the observed shapes than without this radiation. PYTHIA
includes charm excitation processes whereas in CASCADE kt-unordered gluon radiation
in the parton evolution from the proton side is present. In the NLO calculations one
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additional radiation compared to the leading order PGF process is considered in the matrix
element.

Still the η(D∗) distribution cannot be perfectly described in shape by any calculation.
In particular the data at η(D∗) ≈ 0.5 tend to lie above the predictions. This irregularity
is not prominent in the analysed data, but has already been observed in previous analyses
on independent data sets from H1 [1] and ZEUS [7].

To investigate the charm production process in more detail, a jet not containing the
D∗ meson has been required in addition to the D∗. It has been shown that jets down to
pt(jet) > 3 GeV can be reliably measured in the central detector region. The transverse
energy distribution relative to the jet axis as a function of the azimuth φ has been studied
for different pt(jet) and η(jet). It is well described by PYTHIA and CASCADE apart
from pt(jet) > 8 GeV and η(jet) ≈ 0.5.

Requiring at least one jet with pt(jet) > 3 GeV and |η(jet)| < 1.5 results in a D∗+jet
cross section of

σvis(ep → e′D∗ jet X) = (2.96 ± 0.23 ± 0.43) nb. (7.2)

The ratio σ(D∗+jet)/σ(D∗) is described best by PYTHIA whereas it is overestimated by
CASCADE and underestimated by the NLO calculations.

Differential cross sections for variables characterising the D∗, the jet and the D∗+jet
system have been determined (section 6.8). The pseudorapidity distributions of the D∗

and the jet are clearly different and it can be concluded that the jet in the forward direction
is often caused by a gluon or a light quark, but not by a charm quark. This supports the
assumption of a radiative process in addition to leading order PGF.

The prominent asymmetry in the η(D∗) - η(jet) distribution is related to an asymme-
try in the cosine of the scattering angle θ∗ in the centre-of-mass system as explained in
section 1.6.2. The cos θ∗ distribution has been investigated by ZEUS in dijet events with
charm [8]. There it is concluded that a gluon propagator (cf. figure 1.4c)) is important in
charm photoproduction. The present analysis supports this conclusion at lower transverse
momenta compared to the ZEUS analysis.

The pt(D∗+jet) and Δφ(D∗, jet) distributions can shed light on the mechanism produc-
ing the additional radiation. They are sensitive to transverse momentum kt of the partons
before the hard interaction. In CASCADE this transverse momentum results from the
parton evolution in kt-factorisation. Indeed only CASCADE describes both distributions
quite well. On the other hand the CASCADE transverse momentum spectra are too hard
both for the D∗ and the jet.

The quantity xγ(D∗+jet) is influenced by the amount of energy not contained in
the D∗+jet system which may be lost in radiative processes. This distribution is not
well reproduced by any of the calculations, CASCADE e. g. overestimates large values
xγ(D∗+jet) ≈ 0.7. PYTHIA is too high in the same xγ(D∗+jet) region, but in contrast
to other calculations PYTHIA predicts a reasonably large contribution at low xγ(D∗+jet)
values.

Summarising it can be concluded that charm photoproduction at HERA is in general
reasonably understood: In addition to the leading order PGF, radiative processes are found
to be relevant. The exact mechanism of the radiation and its quantitative importance are
difficult to prove since on the one hand none of the calculations describes all observed
features in the data and on the other hand the uncertainties of the data and of the
calculations are both large.



Chapter 8

Outlook

A deeper understanding of QCD radiation is important to get more insight in the strong
interaction and to be able to predict precisely hard processes involving hadrons. Par-
ticularly in view of the Large-Hadron-Collider (LHC) which is currently being built at
CERN near Geneva, a proper understanding of the parton evolution and an accurate
determination of the parton densities is required.

To achieve a deeper insight into the radiative QCD processes apparent in charm
photoproduction, the uncertainties of the calculations which indicate the importance of
higher order terms, have to be reduced. A first step would be a unified and consistent
way to define these uncertainties. For the quantities that are not “infrared safe”, e. g.
Δφ(D∗, jet), a resummation of higher order terms is needed. Another promising concept
is the MC@NLO approach where parton showers are matched to NLO matrix elements.
At present MC@NLO calculations are not yet available for HERA.

The statistical uncertainties of the data are still quite large, particularly for D∗ mesons
in the forward direction or for small xγ(D∗+jet). The data recorded by H1 in 1999 and
2000 contain about 700 D∗ mesons in photoproduction tagged by a second electron tagger
at z = −43.2 m. The signal-to-background ratio is better than for the analysed data of
the tagger ET33. On the other hand the acceptance of the second tagger lies in the region
of inelasticities y ≈ 0.1, i. e. Wγp ≈ 100 GeV. The lower photon-proton centre-of-mass
energy results in a lower rate of jets in addition to the D∗ which can be observed in the
central detector region. Therefore the statistics of D∗+jet events is only about 150 events.

More statistics can be expected from the HERA II data, where a significantly larger
integrated luminosity is envisaged. The challenge is to trigger charm photoproduction
events, requiring improved trigger facilities. For this task the H1 experiment developed
the Fast Track Trigger (FTT) on the trigger levels L1, L2 and L3 [84]. Already at the
second level L2 track parameters in three dimensions are provided by the FTT. At the
third level L3 the invariant masses of particle resonances, e. g. the mass difference Δm,
can be calculated combining tracks.

A new electron tagger at z = −5.4 m is installed, replacing the ET33. It tags pho-
toproduction events around y ≈ 0.75 (Wγp ≈ 275 GeV). Due to the higher y smaller x
can be reached, a kinematical region where kt-effects are expected to increase. Of course
it is desirable to develop a trigger for charm photoproduction that does not require the
detection of the scattered electron. Such an untagged charm trigger is aimed for in the
final commissioning of the FTT when the exact trigger thresholds and invariant mass
algorithms will be defined.
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[59] I. Abt, et al. (H1), Nucl. Instrum. Meth., A386, (1997) 310.

[60] I. Abt, et al. (H1), Nucl. Instrum. Meth., A386, (1997) 348.

[61] D. Dünkelmann, Wirkungsquerschnitte für Photoproduktion von D∗-Mesonen in
ep-Wechselwirkungen am H1-Experiment bei HERA, Diploma thesis, Universität
Hamburg (2001).

[62] D. Pitzl, et al., Nucl. Instrum. Meth., A454, (2000) 334. hep-ex/0002044.

[63] A. Aktas, et al. (H1), Eur. Phys. J., C38, (2005) 447. hep-ex/0408149.

[64] B. Andrieu, et al. (H1 Calorimeter Group), Nucl. Instrum. Meth., A336, (1993) 460.

[65] R. D. Appuhn, et al. (H1 SPACAL Group), Nucl. Instrum. Meth., A386, (1997) 397.

[66] R. D. Appuhn, et al. (H1 SPACAL Group), Nucl. Instrum. Meth., A374, (1996) 149.

[67] H1-Collaboraion, Luminosity Measurement in the H1 Experiment at HERA, 28th In-
ternational Conference on High Energy Physics, ICHEP ’96, Warsaw (1996). Abstract
pa17-026, URL http://documents.cern.ch/ichep96/talk/669.html.

[68] S. Aid, et al. (H1), Z. Phys., C69, (1995) 27. hep-ex/9509001.



BIBLIOGRAPHY 105

[69] J. Steinhart, Die Messung des totalen cc̄-Photoproduktions-Wirkungsquerschnittes
von Λc-Baryonen unter Verwendung der verbesserten dE/dx-Teilchenidentifikation am
H1-Experiment bei HERA, Ph.D. thesis, Universität Hamburg (1999).

[70] R. Brun, et al., GEANT 3 User’s Guide (1987). CERN-DD/EE/84-1.

[71] M. Peez, B. Portheault, E. Sauvan, An Energy Flow Algorithm for Hadronic Recon-
struction in OO: Hadroo2 , H1 internal note (2005). H1-01/05-616.

[72] L. West, How to Use the Heavy Flavour Working Group Track, Muon and Electron
Selection Code, H1 internal software manual (2000).

[73] B. Weßling, Measurement of the Beauty Cross Section using the Semileptonic Decay
into Electrons at HERA, Ph.D. thesis, Universität Hamburg (2004).

[74] U. Kathage, Photoproduktion von D∗±-Mesonen bei HERA, Ph.D. thesis, Universität
Kiel (1997).

[75] G. Feldman, et al., Phys. Rev. Lett., 38, (1977) 1313.

[76] F. Sefkow, et al., IEEE Trans. Nucl. Sci., 42, (1995) 900.

[77] H. Beck, Principles and Operation of the z-Vertex Trigger , H1 internal note (1996).
H1-05/96-479.

[78] T. Wolff, et al., A Driftchamber Track Finder for the First Level Trigger of H1 , H1
internal note (1992). H1-02/92-213.

[79] J. Reidberger, The H1 Trigger with Emphasis on Tracking Triggers, H1 internal note
(1995). H1-01/95-419.

[80] Heavy Flavour Group (H1), HQSEL45 (1999).
URL https://www-h1.desy.de/h1/iww/iwork/ihq/sw-doc/hqsel99.html.

[81] S. Schmidt, Messung charminduzierter Zweijetereignisse in tief inelastischer ep-
Streuung mit dem H1-Detektor , Ph.D. thesis, Technische Universität München (2004).

[82] G. Flucke, in XI International Workshop on Deep Inelastic Scattering (DIS 2003)
(eds. V. T. Kim, L. N. Lipatov), 711–714 (PNPI, 2003).

[83] T. Affolder, et al. (CDF), Phys. Rev., D65, (2002) 092002.

[84] A. Baird, et al., IEEE Trans. Nucl. Sci., 48, (2001) 1276. hep-ex/0104010.



Danksagung

Mein Dank geht an alle, die diese Arbeit ermöglicht und begleitet haben.
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