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geboren am 13. Oktober 1974 in Náchod, Tschechische Republik
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Abstract

A measurement of the inclusive cross section for the deep inelastic scattering of positrons on
protons is presented in the transition region from the non-perturbative to the deep inelastic
domain at low four momentum transfer squared Q2. The analysis is based on data collected by
the H1 experiment during special runs in the years 1999 and 2000. Thus this thesis presents
the first accurate HERA data at low x for Q2 ∼ 1 GeV2 accessed with new instrumentation and
novel analysis methods to extract the proton structure functions. The longitudinal structure
function FL is extracted for the first time at low values of Q2, x.

A completely new approach to study low x proton structure is proposed, by looking at fractal
patterns in the parton densities. The proton is seen as a multi-fractal and the corresponding
fractal dimensions are determined by constructing a phenomenological model which is fitted to
the H1 data on the F2 proton structure function. This approach is found to describe the data
excellently, from the non-perturbative to the perturbative region, and can be used to obtain
deeper and complementary understanding of the proton substructure.

Zusammenfassung

Diese Arbeit praesentiert die Messung des inklusiven, tiefinelastischen Streuquerschnitts von
Positronen and Protonen, in der Uebergangsregion vom nichtperturbativen zum tiefinelastis-
chen Verhalten, bei kleinen Impulsuebertraegen Q2. Die Analyse beruht auf Daten, die vom
H1 Experiment in speziellen Datennahmeperioden in den Jahren 1999 und 2000 aufgezeichnet
wurden. Die Doktorarbeit enthaelt daher die ersten genauen Messdaten, bei kleinen x fuer
Q2 ∼ 1 GeV2, die mit neuer Messtechnik und Analysemethoden zugaenglich gemacht wurden,
um die Protonstrukturfunktionen zu messen. Zum ersten Mal werden dabei auch Daten fuer die
longitudinale Strukturfunktion FL bei kleinen Werten Q2, x erhalten.

Ein ganz neuer Zugang zur Untersuchung der Protonstruktur bei kleinen x wird vorgestellt,
der auf den fraktalen Strukturen der Partondichten beruht. Das Proton wird als ein Multi-
fraktal angesehen und die entsprechenden fraktalen Dimensionen werden bestimmt, indem ein
phaenomenologischer Ansatz entwickelt wird, der an die H1-Daten der F2 Strukturfunktion
angepasst wurde. Es zeigt sich, dass dieses Modell die Daten exzellent beschreibt, vom nicht-
perturbativen zum stoerungstheoretisch behandelten Bereich, und also verfuegbar ist, um ein
tieferes, komplementaeres Verstaendnis der Protonsubstruktur zu ermoeglichen.
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Introduction

The beginning of attempts to understand the origin and structure of the matter dates back
to the times of ancient Greek and Indian philosophers. The matter was seen to be composed
of a number of elements, as e.g. four (Empedocle) or twenty-four1 (Bhagavad Gita). Later a
concept of indivisible atoms was introduced by Leucippe and Democrite and approximately at
the same epoch a similar philosophy was taught by the Indian philosophy system Vaiseshika.
Although there were no experimental opportunities to proof or disproof those theories, they
formed a ground for theories developed many centuries later. Important concepts introduced at
that times are: symmetry, a concept of elementary particles and a concept of classification.

The interest in matter has developed via alchemy
of middle ages, philosophy in the 17th and 18th
century and due to developments in experimen-
tal techniques to the birth of the modern sci-
ence epoch in the 19th century. It has started
with the construction of a periodic table of el-
ements by the Russian chemist Mendeleev and
with the discovery of the electron by Thompson,
who also proposed a naive ‘pudding’ model of
an atom. Thomspon’s disciple and Nobel price
winner for chemistry, Rutherford, performed the
first scattering experiments in order to under-
stand the inner structure of atoms. In his ex-
periment, together with Geiger and Marsden, he
observed that a measurable fraction of alpha par-
ticles scattered off a thin golden foil scatters through large angles. According to Rutherford:
“It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came
back and hit you.” As a consequence of this experiment the pudding model of Thompson was
disproved and evidence raised for a very small positively charged nuclei within the atom. Fur-
ther experiments of this kind observed effects which were not explainable by the conventional
electromagnetic theory and gave birth to the theory of the strong interactions.

Until the sixties it was widely believed that there are only three elementary massive particles:
electron, proton and neutron. Although experiments performed on particle accelerators detected
a large number of unstable particles, these were treated to be composed of elementary ones. In
1964, Gell-Mann and Zweig independently proposed a progressive model in which the elementary
particles are so called quarks out of which protons and neutrons are composed. In the late
sixties, high energy electron-proton scattering at the Stanford Linear Accelerator Centre (SLAC)
provided the first evidence for substructure within the proton [1].

1Note that in the standard model there are indeed 24 elementary fermions, including anti-particles.
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Particle physics nowadays is concerned with studying the matter constituents and the way they
interact with each other. The Standard Model [2] of high energy physics describes the elementary
matter constituents as quarks and leptons, which interact with each other through the exchange
of gauge bosons. The electro-weak interaction of quarks and leptons, mediated by photons and
W±, Z0 bosons, is precisely described. Thus these particles can be employed to probe the
structure of composed particles such as protons.

The research topic of this thesis is to investigate in detail the proton structure at low four mo-
mentum transfer squared Q2, in the transition region from the non-perturbative to the deep
inelastic domain. This region remains poorly understood, although it is essential for a complete
understanding of Quantum Chromodynamics (QCD) and the mechanism of quark confinement.
In QCD, the mechanism of quark confinement is a long-distance phenomenon. While quarks in
the proton behave as almost free particles when probed at small distances, at large distances
the strong interaction keeps them confined together. Hence, a promising approach to under-
stand confinement is to study the transition from the small-distance deep inelastic domain of
ep scattering at large values of Q2 to the low Q2 region, where the infrared behavior of QCD
sets in. Furthermore, the region of low Q2 is very valuable in the search for novel and exotic
QCD effects, such as saturation. This effect has not yet been conclusively observed. Its likely
existence is motivated by the strong rise of the proton structure function F2 towards low Bjorken
x, the fraction of the proton momentum carried by the struck quark. The rise is generated by
the gluonic content of the proton and at the lowest values of x reached at HERA, it approaches
the unitarity limit where the interaction probability becomes unity. Hence, the rise is expected
to slow down or ‘saturate’, for example due to gluon recombination effects.

The underlying mechanisms of strong interactions and of confinement can be studied in an alter-
native way, by looking at the fractal patterns in the parton densities. This approach was found to
describe excellently experimental data [3] and can be used to obtain deeper and complementary
understanding of low x, Q2 physics.

This thesis presents new data which were taken in special runs by the H1 collaboration to access
the region of low Q2 and also a wide region of inelasticity y. The accurate measurement of the
deep inelastic scattering cross section allows the proton structure function F2 to be determined
at low Q2 and Bjorken x. At high y > 0.5 the cross section rise towards low x is weakened which
is attributable to the second, the longitudinal structure function FL. Access to the extreme
regions of y is possible by using the new Backward Silicon Tracker which at high y suppresses
neutral particle background and which at low y, where the hadronic final state escapes detection
in proton beam direction, restores efficiently the vertex reconstruction efficiency. Based on the
cross section data novel methods are introduced here to extract FL, measure the rise of F2 to
low x and for the first time to access the region of large x at low Q2 by using QED radiative
events in a new way.

This thesis is organized as follows

• The theoretical background to the deep inelastic scattering is presented in the first chap-
ter. It is followed by an introduction to the Quark Parton Model (QPM) and Quantum
Chromodynamics (QCD) and to the evolution of the the proton structure functions. The
rise of the F2 proton structure function and in this context the dipole saturation model
are also discussed.

• In the second chapter a novel approach to the proton structure description via the fractal
geometry concept is introduced. The chapter starts with an introduction to the fractal



3

geometry. An overview of mostly theoretical work on this subject in the context of quantum
mechanics is given in order to summarize motivations to study fractal properties of the
proton structure. The fractal model construction and a fit of the resulting structure
function parametrization to the experimental data is presented. Finally the chapter is
enclosed by a discussion of the photoproduction limit, the rise of F2 and also of the pion
structure function in the fractal model framework.

• The experimental part of this thesis is opened in the third chapter by an overview of the
H1 detector at HERA and its relevant components. Special focus is paid on the backward
silicon tracker (BST) and the backward spaghetti calorimeter (SpaCal), which are the
main sub-detectors used in the presented low Q2 analysis.

• The fourth chapter presents the double differential deep inelastic scattering cross section
measurement at values of low four momentum transfer squared Q2. The chapter incor-
porates all necessary analysis steps, including alignment and calibration of sub-detectors,
efficiency studies and Monte Carlo simulation treatment. The chapter concludes with the
results for the DIS cross section, a study of the rise of F2 at low Q2 and with an extraction
of the longitudinal structure function FL.

• Finally, in the last chapter all results of this thesis are summarized.

The thesis has three appendixes devoted to the introduction of structure functions, the evaluation
of fractal path dimension via path integrals and to the tables of the experimental results.
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Chapter 1

Deep inelastic scattering

The deep inelastic scattering (DIS) process at HERA is characterized by the exchange of space-
like virtual gauge boson between the interacting lepton and proton. According to the type of
exchanged boson the DIS processes can be classified into two groups:

• neutral current processes (NC DIS) ep → eX are mediated by the exchange of neutral
gauge bosons, photon and Z0 boson. At virtuality Q2 � M2

Z , where MZ is the mass of
the Z0 boson, the Born cross section is dominated by single-photon exchange since the
weak interaction is suppressed by a factor of M2

Z in the Z0 boson propagator.

• charged current processes (CC DIS) ep→ νeX are mediated by the exchange of charged
gauge bosons W±. Again, this weak interaction is suppressed by a factor of W boson mass
squared M2

W entering the gauge boson propagator.

The kinematic region studied in this thesis corresponds to four-momentum transfers squared
0.35 ≤ Q2 ≤ 12 GeV2. The masses of Z0 and W± bosons are about 90.2 GeV and 80.4 GeV,
respectively, and thus in the considered Q2 region the influence of the weak interactions is
negligible.

In this Chapter, the kinematics and the cross section of DIS events are introduced in Sections
1.1 and 1.2, respectively. More details on the introduction of proton structure functions can
be found in Appendix A. The Quark Parton Model is introduced in Section 1.3 and Quantum
Chromodynamics in Section 1.4. Various models of the proton structure evolution are briefly
discussed in Section 1.5. A phenomenological study of the rise of the proton structure function F2

is presented in Section 1.7. Finally, Section 1.8 contains an introduction to the GBW saturation
model.

1.1 Kinematics of DIS events

The kinematics of the process is described by two independent Lorentz invariant quantities. The
four momentum transfer squared Q2 is given as

Q2 = −q2 = −(k − k′)2, (1.1)

5



6 Chapter 1. Deep inelastic scattering

where k (k′) is the four-momentum of the incoming (outgoing) positron (see Figure 1.1). Another
Lorentz invariant quantity is the inelasticity y

y =
p(k − k′)

pk
, (1.2)

where p is the momentum of incoming proton. The

�P(p)

e(k)

xp

γ∗(q)

e′(k′)

X

Figure 1.1: Schematic picture of the deep
inelastic scattering process.

inelasticity y is dimensionless and corresponds to the
fraction of momentum lost by the electron in the pro-
ton rest frame. Thus it is bounded to the range 〈0, 1〉.
A further frequently used variable, called Bjorken x,
is defined as the ratio of the four-momentum trans-
fer squared and the energy transfer in the proton rest
frame,

x =
Q2

2p(k − k′)
. (1.3)

As in the case of the inelasticity y, the Bjorken x vari-
able is dimensionless and limited to the range 〈0, 1〉.
In the naive QPM it corresponds to the fraction of the
nucleon momentum carried by the struck quark.

Two of the three mentioned Lorentz invariant variables are independent since the following
approximate relation holds

Q2 = xys, (1.4)

where s is the square of the center of mass energy defined as s = (k+p)2. Neglecting the masses
of the interacting particles, the center of mass energy can be evaluated as s = 4EeEp, where Ee

and Ep is the energy of the electron and the proton beam, respectively.

In addition, it is convenient to define the following Lorentz invariant variable

W 2 = (q + p)2, (1.5)

which is the total mass squared of the hadronic final state (or invariant mass of the virtual
boson-proton system) squared and the following relation holds

W 2 =
1 − x

x
Q2 +M2

p . (1.6)

1.2 DIS cross section

The inclusive NC DIS cross section, for ep→ eX, can be calculated from the tensor product

σ ∼ LμνW
μν , (1.7)
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where Lμν is the leptonic tensor which is known from QED. Due to the finite structure of the
proton the hadronic tensor Wμν is not completely known and can be expressed in terms of
proton structure functions F2(x,Q2) and FL(x,Q2) (for more details see Appendix A). The
double differential NC DIS cross section then reads

d2σ

dxdQ2
=

2πα2

Q4x
Y+

[
F2(x,Q2) − y2

Y+
FL(x,Q2)

]
, Y+ = 1 + (1 − y)2. (1.8)

The longitudinal structure function FL(x,Q2) is proportional to the absorption cross section of
longitudinally polarized virtual photons while the structure function F2(x,Q2) contains contri-
butions both from longitudinally and transversally polarized photons:

F2(x,Q2) =
Q2

4π2α
(σT (x,Q2) + σL(x,Q2)) (1.9)

FL(x,Q2) =
Q2

4π2α
σL(x,Q2). (1.10)

A quantity representing the ratio of the longitudinal and the transverse cross sections is

R(x,Q2) =
σL(x,Q2)
σT (x,Q2)

=
FL(x,Q2)

F2(x,Q2) − FL(x,Q2)
. (1.11)

As can be seen from equations (1.9) and (1.10), the condition that longitudinal and transversal
cross sections must be positive constrains the structure functions as

0 ≤ FL(x,Q2) ≤ F2(x,Q2). (1.12)

By convention, the term in brackets in eq. (1.8) is denoted as the reduced cross section

σr = F2(x,Q2) − y2

Y+
FL(x,Q2). (1.13)

In most of the kinematic region accessible by HERA it is proportional to F2(x,Q2) . The
contribution of the longitudinal structure function FL(x,Q2) is sizeable only at very high values
of inelasticity y, due to the kinematic term y2/Y+.

1.3 Quark parton model

In 1968, Feynman proposed a model of the proton in which the inelastic lepton-nucleon scattering
is represented as quasi-free scattering from point-like constituents, called partons, within the
proton, viewed from a frame in which the proton has infinite momentum. In such a frame the
transverse momenta of partons can be neglected with respect to the longitudinal ones. The
momentum of a parton is given as p′ = ηp. Neglecting particle masses the scaling variable η
coincides with Bjorken x as introduced in the previous section. In deep inelastic scattering these
transverse components can be also safely neglected in the calculation of the cross section, which
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can be then written as the incoherent sum of cross sections from scattering off individual charged
partons.

Considering the deep inelastic scattering at large four momentum transfer squared Q2 � M2
p

and neglecting the FL contribution, the double differential cross section can be written as

d2σ

dxdQ2
=

4πα2

Q4

F2(x,Q2)
x

, (1.14)

to be compared with elastic scattering on a point-like target with electric charge ep

d2σ

dxdQ2
=

4πα2

Q4
e2p. (1.15)

Feynman wrote down F2(x,Q2)/x in terms of parton densities di(x) describing the probability
distribution to find within the proton a parton specie i with momentum fraction x of the proton
momentum and with electric charge ei

F2(x)
x

=
∑

i

e2i di(x) ⇒ F2(x) =
∑

i

e2ixdi(x) (1.16)

Denoting qi(x) as parton densities for quarks and q̄i(x) for corresponding anti-quarks, the basic
formula, expressing F2 in terms of quark densities, is written as

F2(x) =
∑

i

e2ix[qi(x) + q̄i(x)]. (1.17)

In the QPM the proton structure function is independent of the scale Q2 and determined as the
sum of quark densities within the proton weighted by their momentum fraction and square of
the corresponding electric charge.

Due to helicity and momentum conservation, and neglecting the intrinsic transverse momentum
of partons, longitudinally polarized photons can not be absorbed by spin 1/2 partons. Thus
FL(x,Q2) is predicted to be zero in the QPM framework.

The model also predicts that the integral over all momenta, carried by charged partons within
the proton, is equal to one

∑
i

∫ 1

0
x(qi(x) + q̄i(x)) = 1, (1.18)

where the summation is over all quark species in the proton. It was shown about 30 years ago by
experiment that quarks carry only about 50% of the proton momenta and thus another parton
specie, electrically neutral, must exist within the proton, subsequently identified with gluons.
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1.4 Quantum chromodynamics and DIS

In deep inelastic scattering experiments expectations of the naive quark parton model, namely
the prediction of a vanishing longitudinal structure function FL, the independence of the struc-
ture function F2 of Q2 and the momentum sum rule (1.18), were found to be violated. Instead, it
was observed that F2 has a weak logarithmic dependence on Q2 and FL is non-zero. Furthermore
the sum over the quark momenta was measured to be only about 1/2. Hence, a more evolved
theory was required to describe experimental facts and the naive QPM was successfully modified
within the framework of Quantum Chromodynamics (QCD) while maintaining the meaning of
its basic concepts.

Quantum Chromodynamics is a gauge field theory describing strong interactions of quarks via
intermediate massless vector bosons called gluons. Due to the non-Abelian1 nature of the theory
the strong force involves a new quantum number, color charge. Quarks carry color, convention-
ally denoted as r (red), g (green) and b (blue) while anti-quarks carry corresponding anti-color.
In this picture, gluons carry combinations of colors, for instance gb̄. Unlike in QED, where pho-
tons are electrically neutral, the color charge of gluons enables gluons to couple to themselves,
which is a result of the non-Abelian character of QCD. This fundamental difference, compared
to QED, has large consequences.

In the Quark Parton Model, the lepton-nucleon inter-

�

�
Figure 1.2: Subset of loop diagrams in-
volved in the evaluation of the β function,
see text below.

action at short distances is represented as the scatter-
ing from quasi-free partons within the proton. This
implies that the coupling strength of the interaction is
weak in the short-distance, high momentum transfer
regime. On the other hand, no free quarks have been
observed, implying the coupling strength must be large
in the long distance, low momentum transfer regime,
leading to the confinement of quarks in hadrons. Thus
in the theory, accounting for this effect, the coupling
strength is varying with the momentum transfer. Con-
ventionally this behaviour of the coupling strength is
referred to as running coupling constant.

In quantum field theory the scale dependence of the coupling constant is due to the fact that
infinities arise, for example due to loop diagrams in boson propagators, where the momen-
tum is not fixed by energy conservation (see Figure 1.2). These infinities are called ultraviolet
divergencies and can be removed from the theory by a renormalization procedure, where a renor-
malization scale μ2

r is introduced at which ultraviolet divergencies are subtracted off. Thus the
strong coupling constant depends on the renormalization scale μ2

r .

However, the physical observables should not depend on the renormalization scale μ2
r when

calculated to all orders of perturbation theory. Thus every explicit dependence of an observableR
on μ2

r must be cancelled by the dependence of αs on μ2
r . This requirement can be mathematically

expressed as

μ2
r

dR

dμ2
r

= μ2
r

∂R

∂μ2
r

+ μ2
r

∂αs

∂μ2
r

∂R

∂αs
= 0. (1.19)

This equation is called the renormalization group equation. In perturbative QCD, the physical
quantities are computed to a given order. Due to missing higher order diagrams the observables

1Non-Abelian means that the elements of the corresponding algebra do not commute with each other.
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Figure 1.3: Beta function as defined in eq. (1.20) for different orders in αs (left) and numerical solution
for αs(μ2) at fixed αs(M2

Z) (right). Full lines correspond to the β function evaluated to order α3
s (NNLO),

dashed lines to order α2
s (NLO) and the dotted lines to the first order in αs (LO).

contain residual dependence on the renormalization scale, which should be accounted for when
theoretical errors are estimated in QCD analyzes.

The renormalization scale dependence of the strong coupling constants αs is determined in QCD.
The logarithmic derivation ∂αs/∂ lnμ2 from the second term in eq. (1.19) can be expressed as a
power series in αs and corresponding coefficients, so called β functions, which can be calculated
in QCD:

∂αs

∂ lnμ2
= αsβ(αs) = −β0

4π
α2

s −
β1

8π2
α3

s −
β2

128π3
α4

s − ... (1.20)

β0 = 11 − 2
3
nf

β1 = 51 − 19
3
nf

β2 = 2857 − 5033
9

nf +
325
27

n2
f

where the first two coefficients β0 and β1 are independent of the choice of the renormalization
scale while the coefficients of terms proportional to αn

s for n > 3 depend on the choice of the
renormalization scale.

In the leading one-loop approximation, i.e. considering only the β0 term in eq. (1.20), the
solution of the renormalization group equation can be written in the following analytic form

αs(μ2
r) =

αs(μ2
0)

1 + b · αs(μ2
0) ln(μ2

r/μ
2
0)
, (1.21)

where b = β0/4π and μ2
0 is a reference scale. Referring to eq. (1.20), one can notice that β0

consists of two terms with opposite sign, one of them depending on the number of quark flavors
nf . The first term (+11) is due to the gluon self-coupling (see Figure 1.2 top). It gives rise to
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anti-screening effects and hence to the rise of the strong coupling constant towards low μ2
r . Such

a term is absent in QED. The second term, involving −2
3nf , is an analogy to screening effects in

QED and its origin is due to quark loops (see Figure 1.2 bottom). It would eventually give rise
to αs with μ2

r . However, since the number of quark flavors is six, the strong coupling constant
has a decreasing behaviour with increasing μ2

r .

At next-to-leading order (NLO), i.e. including the contribution of β1 in eq. (1.20), an analytic
solution exists as well. A comparison with the leading order solution and with NNLO (involving
the term with β2) is shown in Figure 1.3. One observes a relatively large correction of the NLO
solution compared to the leading order solution, while adding one more order (full line) has a
much smaller effect.

The NLO analytic solution of the renormalization group equation is often approximated by the
log-log solution in the following form

αs(μ2
r) =

1
b · ln(μ2

r/Λ2
QCD)

[
1 − b

b′
ln ln(μ2

r/Λ
2
QCD)

ln(μ2
r/Λ2

QCD)

]
, (1.22)

where b′ = β1/4πβ0 and ΛQCD is a fundamental constant of QCD, ranging from 100− 300 MeV
and depending on the number of active quark flavors considered. This approximation is enough
precise for μ2

r > m2
c , where m2

c is the mass of the c-quark.

1.5 QCD evolution

In Figure 1.5 the proton structure function F2(x,Q2) is shown as a function of Q2 for various
values of fixed x. It is seen that the scaling behaviour, expected in the naive QPM, is observed
only for values of Bjorken x about 0.13. In all other x-regions F2 depends about logarithmically
on Q2. Furthermore, there is a strong dependence of F2 on Bjorken x itself which is changing
with Q2, as it can be seen in Figure 1.4.
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 F
2(

x,
Q

2 )

   Q2 = 5 GeV2

   Q2 = 20 GeV2

   Q2 = 200 GeV2

Figure 1.4: The proton structure function
F2(x,Q2) as a function of Bjorken x.

The physical picture of the scaling violation seen in
Figure 1.5 is that the higher the virtuality of the
exchanged photon is, the smaller structures in the
proton can be probed. If the proton would consist
only of valence quarks, no further structure would
be revealed when smaller distances would be probed.
In QCD, the proton is modelled as an object with
large internal activity, where quark-antiquark pairs
are created and annihilated in the sea of gluons.
Hence, the proton reveals a rich structure when it is
probed at smaller distances, corresponding to larger
Q2 scales.

Although the scaling violation of the structure func-
tions is expected in QCD, due to the overly difficult
calculation of an exact result it must be evaluated
approximately. Two models of evolution of the par-
ton densities inside the proton are established and
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Figure 1.5: Measurement of the proton structure function F2(x,Q2) as a function of Q2 in bins of x by
various fixed target and collider experiments. Lines correspond to NLO QCD fits by the ZEUS (black)
and the H1 (red) experiment.
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Figure 1.6: Schematic phase space diagram for deep inelastic scattering. Directions of DGLAP and
BFKL evolutions are marked by arrows. In the non-perturbative region Q2 < Λ2

QCD (blue rectangle)
the coupling is large and not much is known here in terms of perturbative QCD. The saturation region
(yellow area) can be understood by means of perturbative methods at low x.

will be briefly discussed in this section, termed as DGLAP [4, 5] and BFKL [6], which model
the evolution of F2(x,Q2) with Q2 and x, respectively. An approximation lies in the fact that
the models use only appropriate leading terms of the full QCD expansion. Thus the models may
work only in a limited part of phase-space.

Another model, the CCFM approximation [7], attempts to combine features from both the
DGLAP and BFKL approximations and provides a satisfactory description of many aspects of
the data in a wide kinematic region.

The DGLAP, BFKL and CCFM evolutions describe the evolution of parton densities with Q2

and/or with x via quark and gluon splitting thus generating increasingly rising density at low x.
However, it is important to consider that at very high gluon densities, the gluons can recombine
via the recombination process gg → g and thus damp the rise of F2(x,Q2) towards low x. This
process is within the DLLA framework taken into account in the GLR approximation [8].

1.5.1 DGLAP evolution

In the DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) approximation [4, 5], only
powers of αs ln(Q2/Q2

0) from the perturbative QCD expansion are considered in the leading
logarithm approximation. Thus this approximation is valid only at large enough Q2 where αs is
small and ln(1/x) terms are not important.

The evolution of quark and gluon densities with Q2 is given by the following coupled equations
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dqi(x,Q2)
d lnQ2

=
αs

2π

∫ 1

x

dy

y

⎡
⎣∑

j

qj(y,Q2) Pqiqj

(
x

y

)
+ g(y,Q2) Pqig

(
x

y

)⎤⎦ , (1.23)

dg(x,Q2)
d lnQ2

=
αs

2π

∫ 1

x

dy

y

⎡
⎣∑

j

qj(y,Q2) Pgqj

(
x

y

)
+ g(y,Q2) Pgg

(
x

y

)⎤⎦ . (1.24)

The functions Pij(x/y) are the splitting functions (see Figure 1.7) describing, in their leading
order, the probability to find a parton of specie i with momentum fraction x within a parton
specie j with momentum y. For simplicity, qi denote quark densities as well as anti-quark
densities.

The functions Pij(x/y) are calculable in perturbative QCD as a power series of αs(Q2)

Pij

(
z, αs(Q2)

)
= P

(0)
ij (z) +

αs

2π
P

(1)
ij (z) + ... (1.25)

The functions P (n)
ij are presently known up to order n = 2, in the so called next-to-next-to-leading

order approximation (NNLO). Examples of NLO Feynman diagrams are shown in Figure 1.8.

The evolution equations (1.23) and (1.24) look particularly simple when written in terms of
moments. The nth-moment of a function f(x) is defined as

f(n) =
∫ 1

0
xnf(x)dx. (1.26)
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The re-written evolution equations describing the convolution of a density and a splitting func-
tion lead to a simple multiplication in momentum space:

dqi(n,Q2)
d lnQ2

=
αs

2π

⎛
⎝∑

j

Pqiqj (n)qi(n,Q2) + Pqig(n)g(n,Q2)

⎞
⎠ , (1.27)

dg(n,Q2)
d lnQ2

=
αs

2π

⎛
⎝∑

j

Pgqj (n)qi(n,Q2) + Pgg(n)g(n,Q2)

⎞
⎠ . (1.28)

Due to the probabilistic interpretation of the leading order splitting functions P (0)
ij these are

positive for x < 1 and satisfy the following sum rules

∫ 1

0
P (0)

qq (z)dz = 0, (1.29)

∫ 1

0
z[P (0)

qq (z) + P (0)
gq (z)]dz = 0, (1.30)

∫ 1

0
z[2nfP

(0)
qg (z) + P (0)

gq (z)]dz = 0, (1.31)

which correspond to quark number and momentum conservation.

An important feature of the DGLAP evolution is the strong ordering in momentum transfer
squared and weak ordering in longitudinal momenta

Q2 � k2
T,n � k2

T,n−1 � ...� Q2
0, (1.32)

x < xn < xn−1 < ... < x1, (1.33)

where Q2
0 is the starting scale, typically of order of few GeV2.

1.5.2 BFKL evolution

In the BFKL (Balitsky, Fadin, Kuraev, Lipatov) [6] approximation, only terms with powers
of αs ln(1/x) are considered while terms involving αs ln(Q2/Q2

0) are neglected in the leading
logarithm approximation. Thus BFKL is expected to be a good approximation in a different
region than DGLAP, namely at very low x but at Q2 large enough in order to work with
reasonably small values of αs(Q2).

Unlike in DGLAP, there is no strong ordering in Q2 while strong ordering in x, corresponding
to time-ordering in the proton rest frame, is required

x� xn � xn−1 � ...� x1. (1.34)

An unintegrated gluon distribution f(x, k2
T ) is for k2

T 
= 0 defined as
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a) b)

Figure 1.9: Feynman diagrams of the first order QED corrections to the lepton-quark scattering corre-
sponding to the initial (a) and final (b) state radiation of a photon from the interacting electron.

xg(x,Q2) =
∫ Q2

0

dk2
T

k2
T

f(x, k2
T ), (1.35)

for which the BFKL evolution equation reads

df(x, k2
T )

d ln(1/x)
=
∫
dk′2T KL(k2

T , k
′2
T )f(k2

T , k
′2
T ) = KL ⊗ f = λf, (1.36)

where ⊗ stands for convolution and KL is the Lipatov kernel representing the sum over powers
of αsln(1/x) terms. From the last equality in eq. (1.36) it is obvious that the function f follows
a power-law behaviour in the variable x. The resulting gluon distribution can be expressed as

xg(x,Q2) ∼ f(Q2)x−λ. (1.37)

Hence, the behaviour of the structure function is predicted to be proportional to x−λ (for a
dominant gluon contribution) although the constant λ is not well constrained. It’s value in the
next-to-leading logarithm approximation (NLLA) is λ ∼ 0.17 [9] while in the leading logarithm
approximation (LLA) it is λ = 12 ln 2

π αs ∼ 0.5 [6].

1.6 Radiative QED corrections

Radiative QED corrections to the deep inelastic scattering are due to the emission of real pho-
tons, virtual loops or due to the exchange of an additional virtual photon. They are strongly
suppressed by factors proportional to αQED = 1/137. However, in some regions of phase-space
within the detector acceptance these corrections become important or even dominant.

Three major sources can be distinguished in the leading logarithm approximation (LLA) of QED
radiative corrections. When the photon is emitted from the incoming electron almost collinearly,
see Figure 1.9 (a), the process is called initial state radiation (ISR). The final state radiation
(FSR), Figure 1.9 (b), is an analogy to ISR but the photon is emitted from the scattered electron.
A third process is called the QED Compton scattering where the photon is emitted from the
interacting electron, as in the case of ISR or FSR, but under large angles while the electron
undergoes only a small variation of the direction due to the exchange of the virtual photon in
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the interaction with the proton. These events have a clear signature since the outgoing electron
and the radiated photon occure back to back in the polar angle φ.

ISR events may be employed to measure the deep inelastic scattering at values of low Q2. They
are basically regular DIS events with the center of mass energy s decreased by the photon
radiation. Hence the kinematics of such events must be reconstructed with a method insensitive
to the incoming electron energy and with an account for a different center of mass energy s.
Such a method can be e.g. the so called sigma method which will be introduced in Section 4.1.

1.7 The rise of F2(x, Q2) at low x

Precision measurements of inclusive cross sections by H1 and ZEUS have revealed a striking
property of F2(x,Q2) , its rapid rise towards low x. The rate of the rise (∂F2/∂ lnx) is propor-
tional to F2 [10] at x < 0.01 thus suggesting a steep power law like rise as predicted by BFKL
evolution. Such a behaviour, along with the F2(x,Q2) increase with Q2 at fixed low x, is well
described by perturbative NLO QCD at Q2 ≥ 5 GeV2. The gluon and quark densities, however,
can not continue to rise indefinitely, such a behaviour would lead to violation of unitarity. Fur-
ther progress in QCD is required to understand the low x behaviour of densities qualitatively,
see for example [11].

The rise of F2(x,Q2) can be studied using the following structure function derivative

λ(x,Q2) = −
(
∂ lnF2(x,Q2)

∂ lnx

)
Q2

. (1.38)

The measurement of this quantity from the last H1 publication [10] is shown in Figure 1.10.
Within experimental errors, the structure function derivative λ(x,Q2) does not depend on x,
for x < 0.01. Thus the structure function F2(x,Q2) can be parameterized as F2 ∝ x−λ for
fixed Q2. The form is identical to the BFKL approximation as well as to Pomeron [13] based
parameterizations, though the λ increase with Q2 is not predicted. The function λ(Q2) is
determined from fits of the form F2(x,Q2) = c(Q2) · x−λ(Q2) to the H1 structure function data,
restricted to the region x < 0.01. Results are shown in Figure 1.11.

1.8 Saturation model

The saturation model of Golec-Biernat and Wüsthoff (GBW) [14, 15] is based on the color
dipole model approach. In this model, the photon interacting with the proton can be described
in the proton rest frame as a qq̄ pair interacting with the gluonic content of the proton. An
interesting feature of the model is that the cross section of the qq̄ dipole interaction with the
proton saturates at large separation distance of the quarks. This situation happens in two cases:

1. When Q2 → 0 the cross section of γ�p interaction must tend to a
constant and thus F2 → 0.
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Figure 1.10: Measurement of the structure function derivative λ(x,Q2) [10]. The solid lines represent
the NLO QCD fit to the H1 data [12] and the dotted lines represent the extrapolation of the QCD fit
below Q2 = 3.5 GeV2.
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Figure 1.11: Determination of the function λ(Q2) from fits of the form F2(x,Q2) = c(Q2) · x−λ(Q2) to
F2 structure function data. The straight line corresponds to a fit of the form a ln[Q2/Λ2] using H1 data
(blue points) for Q2 ≥ 3.5 GeV2, the dashed line to its extrapolation to lower values of Q2.
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Figure 1.12: Dipole picture of γ�p scattering (left) and dependence of the dipole cross section σdip on
the size of the dipole r (right).

2. When x → 0 partons within the proton are expected to saturate via
particle recombination.

The γ�p interaction cross section can be written as

σγ�p
T,L(x,Q2) =

∫
dz d2r |ΨT,L

γ (z, r)|2 σ̂(x, r), (1.39)

where r ∼ 1/Q2 is the transverse size of the dipole, z is the momentum fraction of the photon
carried by the quark (see Figure 1.12) and ΨT,L

γ is the photon wave function for transverse and
longitudinal polarization, respectively. In the GBW model the dipole cross section is expressed
as

σ̂(x, r) = σ0

[
1 − exp

(
− r2

R2
0(x)

)
,

]
(1.40)

where R2
0(x) is the x-dependent saturation radius,

R2
0(x) =

1
Q0

(
x

x0

)λ
2

, (1.41)

where Q2
0 is 1 GeV2. In order to reach the photoproduction limit, the Bjorken variable x was

modified to be

x =
Q2 + 4m2

q

W 2
, (1.42)

where mq is an effective quark mass and W denotes the γ∗p center-of-mass energy. Fixing mq

to 140 MeV, the model has three parameters to be determined from the fit to the data: σ0, λ
and x0. According to [14, 15], these three parameters were found to be
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σ0 = 23 mb, λ = 0.29, x0 = 3 × 10−4. (1.43)

A remarkable feature of the dipole model is its universality. If, for example, the model parameters
are determined from F2 data, because of the fixed structure of the wave functions, the model
predicts the longitudinal structure function without additional parameters.

DGLAP improved saturation model

Despite the remarkable success of the GBW saturation model in the description of various
soft processes including diffraction, it was revealed that the model has a problem to describe
the steep behaviour of F2 at larger Q2 � 20 GeV2. Hence, a modification of the model was
proposed [16], modifying the low r behaviour of σ̂(x, r) while preserving saturation at large r.
In this modification the effective dipole cross section reads as

σ̂(x, r) = σ0

[
1 − exp

(
−π

2 r2 αs(μ2) xg(x, μ2)
3σ0

)]
, (1.44)

where the scale μ2 is assumed to have the form μ2 = C/r2 + μ2
0 and xg(x, μ2) is the gluon

distribution parameterized at initial scale Q2
0 as

xg(x,Q2
0) = Ag x

−λg (1 − x)5.6. (1.45)

The exponent determining the large x behaviour was motivated by the MRST parametrisation
of xg [17]. The gluon distribution (1.45) is evolved in LO DGLAP manner, neglecting the quark
contributions. Thus the model has four more parameters to be determined from data: C, μ2

0,
Ag and λg. It was found [16] that the description of the recent F2(x,Q2) data by H1, ZEUS and
E665 experiments was significantly improved. While for the original version χ2/ndf ≈ 3, the
modified model yields χ2/ndf = 1.18 preserving the successful description of low Q2 data and
diffraction. A selection cut x < 0.01 was applied on F2(x,Q2) data in order to avoid valence
quark region at large x.

In physical terms the proposed formula (1.44) corresponds to the multiple scattering of the
parent dipole on a nucleon with the exchange of two interacting gluons [18].
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Fractal structure of the proton

Although fractals are known for about hundred years,

Figure 2.1: Mandelbrot set, constructed by
iterating z = z2 + c, where z ∈ C.

their intensive study started in the last third of
the 20th century, with the developments of pow-
erful computers. Benoit Mandelbrot, in his clas-
sical book [19], has initiated a wave of interest in
fractals, self-repeating objects, usually constructed
from simple equations yielding a peculiar richness in
shape and structure (see Figure 2.1). It was found
that many processes in nature have much in com-
mon with fractality and self-similarity, hence frac-
tals are not only mathematical objects that look
good and can be profitably used in computer graph-
ics, but there is a deeper connection with nature
itself.

In this Chapter, an introduction to fractal geom-
etry is given in Section 2.1. A brief overview of
connections to quantum mechanics is presented in
Section 2.2. Finally, Section 2.3 describes a novel
application to the proton structure functions which,
as will be seen, describe the observed x and Q2 behaviour over the complete Q2 range, from the
non-perturbative to the truly DIS region.

2.1 Introduction to fractal geometry

The formal definition of the term fractal was given by Benoit Mandelbrot [19]. It says that a
fractal is a set the Hausdorff dimension of which differs from the topological dimension. This
abstract definition can be understood more intuitively on an example of a fractal curve (see
Figure 2.2). Compared to a normal straight line, the fractal curve is erratic such that in some
sense it does not behave like a one-dimensional curve anymore. A characteristic property of
such a curve is its self-similarity, i.e. the curve can be divided in sub-sets which are identical
(at least statistically) to the original curve but are of different size.

Coming back to the Mandelbrot definition, an important quantity in describing fractals is their
Hausdorff (often called fractal) dimension. The original intention of Hausdorff was to define a

21
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Figure 2.2: Construction of the Koch curve: (a) corresponds to the first iteration, (b) and (c) to the
second and the fifth iteration, respectively.

measure being independent of the resolution or scale of a measurement, as well as independent
of the shape of the considered object. Since the definition of the Hausdorff dimension is rather
abstract, the concept of dimensions can be easier explained using an example of a more practical
definition. Consider a curve, which is constructed by iterating in the following way: having an
object (called generator) from Figure 2.2a), every line of the object is in a single step exchanged
by the object itself but with reduced size. Then the step is repeated with the new object ad
infinitum. The resulting curve is the so called Koch curve (see Figure 2.2 (c)). It is self-similar
by construction, i.e. every little piece is a small copy of the curve itself. There are four copies
of the whole curve each 3-times smaller than the curve itself. Alternatively, there are 16 copies
of the curve but with size reduced 9-times. The fractal dimension can here be introduced as

df =
log(number of self-similar objects)

log(magnification factor)
, (2.1)

where by magnification factor we mean how many times a small copy has to be enlarged to
reach the size of the whole curve1. According to this formula, the dimension of the Koch curve
is fractional

df =
log 4
log 3

=
log 16
log 9

= 1.26186 . . . (2.2)

Roughly speaking, the fractal dimension describes how complicated or how large a self-similar
object is.

There are further ways how to introduce fractal dimensions for various applications. A useful
tool for studies within the framework of quantum mechanics is the notion of fractal paths.

Fractal paths

Let us explain the notion of the fractal paths again on the example of the Koch curve. What is
the length of such a curve? There were 4 line segments in the first iteration, each of length a/3,
where a is the total width of the curve. In the second iteration there are 16 line segments but
with length a/9. In general, for the n-th iteration there are 4n line segments with length a/3n.
Thus the length of the curve is L = a(4/3)n. In the limit n → ∞, the length L diverges with
the number of iterations. This is an important observation, typical for fractal curves and paths.

1Equivalently, it is possible to use resolution instead of the magnification factor, then df = log N
log(1/ε)

, where N
is the number of self-similar objects resolved with resolution ε.
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Figure 2.3: Cantor set fractal in iterations number 1-7 (from top). In each iteration step the middle
segment is removed from every line.

The length Δl = a/3n represents the resolution under which the structure of the curve can be
probed since it corresponds to the length of a line segment in the n-th iteration. This means
that more deeper details of the curve are not distinguishable, and the length of the curve at this
particular resolution is L = 4nΔl. Expressing n in terms of Δl and a one obtains

L = 4nΔl = e
log 4
log 3

log a
Δl Δl = adf Δl1−df ∼ Δldt−df , (2.3)

where df = log 4/ log 3 ≈ 1.26 is the fractal dimension of the curve and dt = 1 is the topological
dimension of the generator (for line it is 1). This is another important observation, the measured
length of a fractal curve depends on the measurement resolution as a power law, characterized
by its exponent.

The fact that the fractal dimension df can be even smaller

Figure 2.4: Plane-filling Hilbert curve
in the sixth iteration.

than the topological dimension dt is demonstrated by the
so called Cantor set, see Figure 2.3. When the number of
iterations n→ ∞ a set of infinite number of unconnected
points is obtained and the total length of the curve L→ 0.
The fractal dimension of this set is df = log 2/ log 3 ≈ 0.63
and thus smaller than its topological dimension dt = 1.

An example of a fractal curve with dimension df = 2 is the
Hilbert curve. Its sixth iteration is depicted in Figure 2.4.
When iterated till infinity the curve eventually covers the
whole square as a rigid object, albeit created from a line.
This sort of fractal paths2 is in particular interesting be-
cause of its close connection to paths of quantum particles
as will be explained in the next section.

A popular and most often cited example of a measurement
of a fractal curve length is the measurement of the length
of a coastline [20, 19]. The measured length is intuitively expected to be different if the smallest
scale that one can resolve is 10 km or when it is 1 m such that more details can be included. From
the log-log plot of length versus resolution one can obtain the fractal dimension of a particular
coastline, which e.g. for the rugged coastline of Norway is df ≈ 1.5 while df is close to 1 for the
smooth coastline of South Africa.

It is important to note that fractals in nature (e.g. coastlines, trees etc.) have stochastic fractal
properties, i.e. their statistical characteristics are fractal-like although they are not constructed
as exact mathematical objects (as is e.g. the Koch curve).

2Another example is e.g. the Peanno curve or Brownian path.
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2.2 Quantum mechanics and fractals

Many objects and processes in nature exhibit self-similar properties. An obvious question is: is
there any indication that fractality appears in quantum mechanics? The answer is yes. Feyn-
man and Hibbs [21] have shown in 1965 that typical unmonitored quantum paths are non-
differentiable curves, stochastically self-similar. Their calculation demonstrates that the paths
have fractal dimension df = 2 in the presence of an arbitrary local potential. Furthermore, they
show a close relation to Heisenberg’s uncertainty principle and thus to quantum commutation
relations, the essence of quantum physics.

An intuitive heuristic argument [22] for a non-relativistic case is the following: according to
Heisenberg’s uncertainty relation

ΔxΔp ∼ �, (2.4)

where Δp can be expressed as Δp = m(Δx/Δt), after substitution one obtains:

(Δx)2 ∼ Δt. (2.5)

Assuming propagation according to such a quantum behavior between two points in spacetime,
where the time interval T is divided into N subintervals of length Δt, the following relation for
the length of the path holds:

L = NΔx =
T

Δt
Δx ∼ 1

Δx
, (2.6)

where the last step employs eq. (2.5). Since for fractal paths we have seen that L ∼ (Δx)1−df (see
eq. (2.3)), when Δt→ 0 a comparison with eq. (2.6) gives df = 2. Thus assuming Heisenberg’s
relation for massive quantum particles, the resulting quantum path is consistent with a fractal
path with fractal dimension df = 2. The argumentation can be done more rigorous and more
generally in the presence of a local potential3, see [21, 22] or Appendix B of this thesis.

2.2.1 Brownian motion and Schrödinger equation

The Brownian motion describes a motion of a molecule in a liquid of other molecules. Collisions
of molecules are changing their momenta which results into a typical pattern (see Figure 2.5) of
chaotic trails. The process is very well described assuming that the change of momentum of a
molecule depends only on the last collision (locality) and that the process is random (stochas-
ticity). Referring to [22, 23, 24] for details, it can be shown that such a process is stochastically
self-similar and that a molecule trail has the fractal dimension df = 2. An interesting result is
that the equality df = 2 holds independently of the number of space dimensions. The Brownian
motion is an example of a microscopic model which is lying beneath a statistically described
macroscopic process, called diffusion.

Diffusion is a process of everyday experience, for example spreading of chemical smells (e.g.
perfumes) in a room, melting of sugar in coffee etc. Statistically, diffusion is described by the
so called diffusion equation:

3For example, for the Compton potential or the harmonic oscillator df = 2 holds.



2.2. Quantum mechanics and fractals 25

(
∂

∂t
− dΔ

)
p(
x, t) = 0, (2.7)

where p(
x, t) is a probabilistic density (or concentration in chemistry applications) and d is the
diffusion coefficient describing the velocity of the process.

There is a close relation between diffusion (Brow-

Figure 2.5: A numerical simulation of
Brownian path trail in two space dimen-
sions.

nian motion) and quantum mechanics. As is well
known [24, 25], substituting imaginary time (t �→ it),
the Schrödinger equation for free massive particles
can be easily re-assembled when the diffusion coeffi-
cient d �→ �/2m

(
∂

∂t
− i�

2m
Δ
)
ψ(
x, t) = 0. (2.8)

According to this similarity between the two pro-
cesses, it is not surprising that quantum paths could
have similar properties as Brownian trails of molecules
in liquid, namely the fractal dimension df = 2. What
is a missing part in this picture is a microscopic model
of quantum physics, as is the Brownian motion for the
diffusion process.

2.2.2 Velocity dependent potentials

The previous discussion of quantum paths having fractal dimension df = 2 was made with two
assumptions: the particle is considered to be point-like4, following the non-relativistic quantum
mechanics equation of motion (Schrödinger equation) in a local potential field. Such a field can
be, for example, the Compton potential, the harmonic oscillator or free particle motion as well.
Note that local fields change dynamics of the particle motion, while the fractal dimension remains
constant. One may ask how the fractal dimension changes for the case of potentials which depend
on particle velocity or momenta. This happens for instance when a massive charged particle
interacts with the electro-magnetic field or in condensed matter and nuclear physics. In such
cases the Lagrangian contains a velocity dependent term, hence, the corresponding action also
contains a velocity dependent term.

In the following I shall focus on results. For more details concerning the evaluation of fractal
dimensions from action see [22] or Appendix B for the case of a local potential. Suppose that
the velocity dependent action reads as

S =
∫ (m

2
ẋ2 + V0|ẋ|α + U(x)

)
dt, (2.9)

4Equivalently this can be expressed as the requirement that the probed scales are much larger than the particle’s
wavelength.
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Figure 2.6: Critical exponent (identified with fractal dimension) versus potential parameter α corre-
sponding to velocity dependent action (2.9).

where the second term corresponds to the velocity dependent term in the Lagrangian5 and U(x)
is the local potential. It can be shown [22] that the fractal dimension corresponding to the
velocity dependent term is

df =
α

α− 1
. (2.10)

For α = 2 the fractal dimension calculated according to eq. (2.10) agrees with df = 2 as in the
case of pure local potential.

The overall behaviour of the quantum mechanical path dimension according to the action (2.9)
is driven by the ẋ term with larger exponent. The dependence of df on α is shown in Figure 2.6.
For α < 2 the kinematic term dominates while for α > 2 the velocity dependent term takes over.
The result is supported by numerical studies [26].

2.2.3 Relativistic quantum mechanics and QFT

Classic quantum mechanics, considered so far in this introduction, gives hints that a study
of fractal properties of quantum theories may be useful in deeper understanding the theories
themselves. However, in relativistic quantum mechanics and in particular in Quantum field
theories the situation is different in many aspects. An important difference is that time is treated
equally as a spatial coordinate. Hence, particles can propagate backward in time (antiparticles).
In field theories the total number of particles is not conserved and depends on the resolution
power of a probe. Furthermore, the position of a particle is not an observable as is the case in
classic quantum mechanics. This means the concept of particle paths is not adequate anymore
to evaluate fractal dimension of a particle propagation and other non-local measure must be
introduced. The situation becomes even more complicated in case of non-abelian field theories
as is Quantum Chromodynamics.

Let us briefly summarize attempts and results to evaluate fractal dimensions, i.e. the critical
behaviour of a system, in areas outlined above.

5However, a non-gaussian form of the velocity dependence in the Hamiltonian does not correspond to the
same form in the action due to the Legendre transformation between Hamiltonian and Lagrangian and expressing
momentum p by velocity q̇. For instance, a p4 form in the Hamiltonian yields q̇5/4 in the action.
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Dirac equation

The relativistic Dirac equation was introduced by Dirac to avoid difficulties of non-linear (in
space and time) derivatives in the Klein-Gordon equation. It was found to satisfy all require-
ments of special relativity and quantum mechanics and to describe real quantum systems. For
free spin-1

2 particle it is written as

(i∂/−m)ψ = 0, (2.11)

where ∂/ stands for γμ∂μ, m is the mass of the particle represented by Dirac bispinor ψ and
� = c = 1. The Dirac equation is linear in the derivatives.

Various models were proposed in order to understand this equation. Namely, the chessboard
model of Feynman [21, 27] or the relativistic random walk models by Kac [28] and Ord [29]. In
the latter model, called spiral model, one finds that if the random walks occur on a typical length
scale Δx which is much larger than the Compton wave length λ, i.e. Δx � λ, then df = 2 as
in the non-relativistic quantum mechanics. In the opposite case, when Δx � λ, df = 1 holds
and the trajectories are smooth curves.

Quantum Field Theories

As was already mentioned, in quantum field theories the number of particles is not conserved
and the position of a particle is not an observable. In order to overcome these difficulties two
possible ways were pursued

• The length of propagation can be studied using lattice simulation via the hopping parameter
expansion. The fractal dimension is estimated from the scaling behaviour of the system
when the spacing of the lattice a tends to zero, a→ 0.

• A dimensional observable can be introduced, having e.g. the volume as naive dimension.
Evaluating this observable in field theory may give a scaling dependence from which it
is possible to deduce the corresponding fractal dimension. This way has been applied in
quantum gravity.

The first way was employed to study the free Dirac-Wilson fermion propagator on the lattice [30].
The fractal dimension of the fermion propagator was found to depend on its component. For
the unitary component the equality df = 2 holds. Considering the γμ component gives df = 1,
i.e. smooth lines and no fractal behaviour. The result is supported by numerical simulations in
various numbers of space dimensions. In order to understand the result in the context of the non-
relativistic case, the γμ component is dominant in the relativistic domain while the unit-matrix
component is dominant in the non-relativistic domain. Hence, the low energy non-relativistic
approximation is consistent with the previous result, df = 2, of classic quantum mechanics.
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Quantum Chromodynamics

In the previous section, non-interacting fermions were considered. The question may be asked
what happens in case of non-abelian quantum field theory as Quantum Chromodynamics which
is describing the strong interactions of quarks and gluons. In principle it is possible to extend
the definitions of propagation length, used for free fermions, to the case of strongly interacting
quarks. However, there are computational difficulties when one tries to evaluate corresponding
fractal dimensions numerically.

In Quantum Chromodynamics, the mechanism of quark confinement is a long-distance phe-
nomenon. At small distances, corresponding to large scales μf (see QCD Section of this thesis),
quarks are almost free particles. On the other hand, at large distances (small scales) the strong
interaction sets in and keeps quarks together. Hence, in order to understand confinement the
infrared behavior of QCD should be studied. In terms of DIS kinematics it means low four-
momentum transfer squared Q2 ∼M2

p , where M2
p ≈ 1 GeV2 is the mass of the proton. In other

words, the resolution power of the photon probe is comparable to the Compton wave-length of
the proton.

To discriminate a confined phase from a non-confined

Figure 2.7: Fractal dimension df of the
monopole current density versus β for U(1)
group in 4D. The plot is taken from [31].

phase a non-local order parameter is used, called
Wilson loop6. The parameter measures the response
of the gauge fields to an external quark-like source
passing around its perimeter, along the loop. It was
realized that the geometry of the loop (perimeter,
area) plays a crucial role. Kröger [32] proposed
to use closed fractal paths with df = 2, similar to
Hilbert curve from Figure 2.4, for the geometry of
the loops.

The fractal geometry of the closed monopole cur-
rent loops was suggested to be measured by Polikar-
pov et al. [33, 31]. The fractal dimension was used
as an order parameter to distinguish confined and
non-confined phase. In general, results from lattice
simulations suggest that the fractal dimension of
monopole current loops df ≈ 1 in the non-confined
phase, while in the confined phase the monopole
current loops are fractal curves with non-trivial di-
mension df > 1, see Figure 2.7 for lattice simulation

in D = 4, group U(1). The non-confined phase corresponds to β > βc while the confined phase
corresponds to β < βc, where βc ≈ 1.

2.2.4 Measurements of fractal dimensions

As can be seen from the previous section, there are various suggestions that fractal geometry
may play a role in quantum field theories. However, the motivation is coming from theory and
lattice simulations rather than from experimental measurements. Before outlining feasible ways
to measure quantum systems geometry, let us ask the following apparent question:

Why is it interesting at all to measure fractal geometry and dimensions of quantum systems?

There is a couple of reasons at hand:
6Alternative loops are e.g. Polyakov loop and the ’t Hooft loop.
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• It was shown that fractal dimensions are related to the commutation relations, which can
not be measured directly.

• Fractal dimensions depend on the action, hence their evaluation could give additional
information on the content of the Lagrangian.

• There is a fundamental question about monitored and unmonitored quantum behaviour,
namely dimensions of quantum paths. In other words, what part of the observed result is
generated by the measurement itself and what would be the quantum system without the
measurement interaction.

• It was demonstrated that the fractal dimension could be used as an order parameter to
distinguish between the confined and non-confined phase.

• Phenomenological models based on fractal geometry can be constructed in order to describe
various phenomena of quantum physics.

• A most apparent reason is that the real quantum systems may not have much in common
with fractal geometry and thus an experimental measurement is essential to clarify this
question.

An experiment to measure the fractal dimension of a free particle was proposed by Abbot and
Wise [34]. The idea is that a path of an emitted electron is monitored using a source of light.
The emitted electron is passing a sequence of screens with several holes in each of them. A
photon from the light source between the screens eventually collides with the electron so that
by measuring the scattered photon one can deduce by which hole the electron has passed and
hence the topology of its trajectory. However, since the electron undergoes an interaction with
the photon, results from this experiment could be interpreted as the erratic fractal path of the
electron is created by monitoring of the electron rather than to be inherited property of an
electron path. An alternative experiment, which avoids the problem of monitored versus free
path geometry, was suggested by Kröger [35].

In the field of QCD, deep inelastic scattering is an apparent candidate for a fractal dimension
measurement of the strong interacting particles within the proton. In DIS experiments, the
exchanged photon with four-momentum transfer squared Q2 can resolve structures of spatial
size ∼ 1/Q. Thus by changing Q2 one can zoom into the structure of the proton. In a similar
way also the Bjorken x variable can be employed. Its interpretation as the momentum fraction
carried by a struck particle within the proton, consequently, allows to probe the structure of the
proton in momentum space.

2.3 Fractal model of the proton structure

The fractal structure within the proton may be investigated by constructing a naive model,
reflecting self-similarity, which can be fitted to the data [3, 36]. Before coming to that, it is
useful to define dimensions for densities and to introduce a framework in which the model is
built.
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2.3.1 Densities and fractal dimension

The definition of a dimension, given in eq. (2.1), may be generalised for the case of non-discrete
fractals. In this generalisation, the magnification factor is a real number z and the number
of self-similar objects is represented by a density function f(z). Taking into account that the
dimension may change with scaling, a local dimension is defined as

df (z) =
∂ log f(z)
∂ log z

. (2.12)

For ideal mathematical fractals, discussed in the previous section, df (z) is constant for the whole
fractal. Introducing a scale dependent dimension is natural because many fractals in nature (e.g.
plants or coastlines) are not mathematically ideal and usually have a fractal structure only within
a certain region of magnification. In such a region, the dimension is approximately constant,
df (z) = d, and, following eq. (2.12), the density function f(z) reads as

log f(z) = d · log z + d0, (2.13)

where d0 defines the normalisation. Hence, f(z) has a power law behaviour, f(z) ∝ zd.

More generally, fractals may have e.g. two independent magnification factors, z and y. In this
case the density f(z, y) is written in the following way

log f(z, y) = dzy · log z · log y + dz · log z + dy · log y + d0. (2.14)

Here the dimension dzy represents the dimensional correlation relating the z and y factors. The
function f(z, y) satisfies a power law behaviour in z for fixed y and in y for fixed z as well. The
correlation term is the only term that can be added without violating the power law scaling in
both z and y.

A feature, which deserves to be mentioned, is that there is a certain freedom in selecting mag-
nification factors without changing a shape of the function f(z, y). It is possible to use any
non-zero power of a factor multiplied by a constant: z → azλ . The only effect of such a change
is a redefinition of the dimensional parameters d{z,y,zy} and of the normalisation d0, respectively.

2.3.2 Model construction

In quantum chromodynamics the behaviour of the sea quark densities is driven by gluon emis-
sions and splittings. The deeper the proton structure is probed, the more gluon-gluon interac-
tions can be observed. These, in analogy to fractals, may follow self-similarity, i.e. a scaling
behaviour described by a power law. Indeed, there is a number of experimental hints for a self-
similar structure, apart from theoretical considerations. As an example, Figure 2.8 shows the
unintegrated u-quark density for fixed momentum transfer Q2 and fixed Bjorken x, respectively.
For x � 0.01 (below the valence quark region) the unintegrated density function in log-log scale
is linear. A linear behaviour is also exhibited by the unintegrated density as a function of Q2

for fixed x. Refering to eq. (2.13), this suggests that x and Q2 could be treated as appropriate
magnification (scaling) factors. This is supporting the idea that the proton structure exhibits
self-similar properties and may be described as a fractal object.
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Figure 2.8: Logarithm of the unintegrated u-quark density ∂u(x,Q2)/∂Q2 as a function of Bjorken x
(a) and Q2 (b). The full and dashed lines correspond to GRV parametrisations in LO and NLO [37],
respectively.

Magnification factors are supposed to fulfil some criteria. They should be positive, non-zero
and have no physical dimension. The two latter requirements concern the selection of Q2 as
a magnification factor. The physical dimensionality may be removed by dividing Q2 by a
constant Q2

0. For the case of Q2 = 0, the non-zero requirement is not fulfilled, however, the
access to this region is needed for integration of unintegrated densities. Thus instead of Q2 a
choice of 1 + Q2/Q2

0 as a magnification factor is appropriate. According to the freedom in the
magnification factor selection, mentioned above, other equivalent choices are also possible, e.g.
Q2

0/(Q
2
0 + Q2), (Q2

0 + Q2)/1GeV2 or similar combinations. It is also more appropriate to use
1/x as a magnification factor rather than x itself: when the structure is probed deeper, x goes
to zero while a magnification factor is expected to rise.

The concept of self-similarity, when applied to proton confinement structure, leads to a simple
parametrisation of quark densities within the proton in a straightforward way based on eq.
(2.14). Using magnification factors 1/x and 1 +Q2/Q2

0, an unintegrated quark density may be
written in the following general form

log fi(x,Q2) = d1 · log
1
x
· log(1 +

Q2

Q2
0

) + d2 · log
1
x

+d3 · log(1 +
Q2

Q2
0

) + di
0 (2.15)

where i denotes a quark flavour. Conventional, integrated quark densities qi(x,Q2) are defined
as a sum over all contributions with quark virtualities smaller than that of the photon probe,
Q2. Thus fi(x,Q2) has to be integrated over Q2,

qi(x,Q2) =
∫ Q2

0
fi(x, q2) dq2. (2.16)
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d0 d1 d2 d3 Q2
0[GeV2] χ2 χ2/ndf

all fit 0.339 0.073 1.013 -1.287 0.062 136.6 0.82
±0.145 ±0.001 ±0.01 ±0.01 ±0.01

d2 fixed 0.523 0.074 1 -1.282 0.051 138.4 0.82
±0.014 ±0.001 const. ±0.01 ±0.002

Table 2.1: Results of the fit. The first row corresponds to a fit to all parameters, in the second row
parameter d2 was fixed to 1. The number of F2 data points is 172, total errors were used for the χ2

calculation.

Solving eq. (2.16), the following analytical parametrisation of a quark density is obtained

qi(x,Q2) =
edi

0 Q2
0 x

−d2

1 + d3 − d1 log x

×
(
x
−d1 log(1+ Q2

Q2
0
)
(1 +

Q2

Q2
0

)d3+1 − 1

)
. (2.17)

Notice that in this parametrisation only the normalisation parameter di
0 depends on the quark

flavour while the other parameters are flavour independent. This assumption means that all
quarks exhibit a fractal structure, the dimensions di and the magnification factors are common
for all of them and they differ in normalisation only.

The proton structure function F2 is related directly to the quark densities F2 = x
∑

i e
2
i (qi + q̄i).

Thus the assumption about the flavour symmetry of eq. (2.17) allows to express F2 directly in
the form given on the r.h.s. of eq. (2.17) with x−d2 replaced by x−d2+1 and with a common
normalisation factor ed0 :

F2(x,Q2) =
ed0 Q2

0 x
−d2+1

1 + d3 − d1 log x

×
(
x
−d1 log(1+ Q2

Q2
0
)
(1 +

Q2

Q2
0

)d3+1 − 1

)
. (2.18)

Fit to the data

The five parameters di and Q2
0 are determined using recent data from the HERA experiments

H1 [12] and ZEUS [38] in the range 1.5 ≤ Q2 ≤ 120 GeV2 (H1) and 0.045 ≤ Q2 ≤ 0.65 GeV2

(ZEUS). Additionally a cut x < 0.01 is applied to exclude the valence quark region. The fit
parameters are given in Table 2.1 and the corresponding description of the F2(x,Q2) data is
shown in Figures 2.9 and 2.10. The χ2 was calculated with total errors, adding the statistical
and systematical errors in quadrature. When the relative normalisation of the H1 and ZEUS
data, which cover different Q2 regions, was fitted no change beyond 1% was imposed by the fits.
Thus the normalisations of the data sets were left untouched.
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Figure 2.9: Measurement of the structure function F2(x,Q2) as a function of x in bins of Q2 by the
H1 experiment [12]. The curve represents the fit to 4 parameters, which is indistinguishable from the 5
parameter fit in this kinematic region.
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Figure 2.10: Measurement of the structure function F2(x,Q2) as a function of x in bins of Q2 by
the ZEUS experiment [38]. The curve represents the same fit to 4 parameters as in Figure 2.9. It is
indistinguishable from the 5 parameter fit in this kinematic region too.
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line), the fit with the mass term included (dashed line) and with the ALLM97 parametrization (dotted
line). The fractal fit to all five parameters is indistinguishable from the four parameter fit in the region
of measured data.
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2.3.3 Extension to the photoproduction limit

The ratio F2(W 2, Q2)/Q2 is proportional to the virtual photon-proton cross-section σγ�p(W 2, Q2).
In the limit Q2 → 0 and fixed W 2 the parametrization (2.18) behaves like Q2 only for d2 = 1.
This may be easily shown when the unintegrated structure function f(x, q2) is introduced

F2(x,Q2) =
∫ Q2

0
f(x, q2) dq2 (2.19)

the parametrisation of which is identical to (2.15), with d2 replaced by d2 − 1 and di
0 replaced

by d0. If F2(x,Q2) behaves like Q2 for Q2 → 0 then f(x, q2) has to behave like a constant for
any x = Q2/(W 2 −M2

p ) → 0. That is possible only if the divergent term, involving d2, is zero,
i.e. for d2 = 1. In this case, since other logarithmic terms go to zero, the ratio F2(W 2, Q2)/Q2

for Q2 → 0 approaches the value ed0 .

Indeed, in the fit with d2 as a free parameter a value very close to 1 is obtained. Fixing d2 = 1
thus reduces the number of parameters to four and the corresponding fit gives a very similar
value of χ2/ndf .= 0.82 as the fit to all five parameters.

Another way how to reach the photoproduction limit is to introduce a mass term in the calcu-
lation of Bjorken x, which is usually neglected at high W 2:

x→ x+
m2

W 2
, (2.20)

where m is an effective mass of a proton constituent and it is fitted as another parameter in
the fit to the data. In such a case, the ratio F2(W 2, Q2)/Q2 always converges when Q2 → 0
and the photon-proton cross-section σγp has a power law behaviour of the form (W 2)d2−1. The
result of the fit with the mass term is shown in Figure 2.11 as a dashed line. The same data
as in the previous fit were used, complemented by photoproduction data to fix the fit in Q→ 0
limit. Hence, neither E665 nor preliminary H1 data, displayed in the Figure 2.11, were used.
The behaviour of the fit at low W 2 is similar to ALLM97 while at high W 2 it approaches the
fractal fit without the mass term.

Since this way of reaching the photoproduction limit yields a reasonable behaviour of the pho-
toproduction cross section and since masses of particles cannot be neglected in the very low x
region, hereafter the fit with the mass term is preferred.

2.3.4 Negativity of the d3 dimension

One of surprising facts in the fractal model fit to the data is a negativity of the dimension d3,
related to the scaling in the variable (1+Q2/Q2

0). This fact was merely mentioned in the original
paper [3] since it comes as a result of the fit. The situation gets more confusing if one takes
into account the dependence of the dimension on the variable x via the dimensional correlation
d1. At some value of rather low x the dimension is approaching zero and for even lower x it
becomes positive. Beyond a discussion whether negative dimensions are physical or not, the
author would like to mention that prior to a dimensional analysis it is necessary to specify
precisely what, how and in which kinematic range is measured. An example can be again the
Koch curve. Its fractal dimension can be calculated from counting the self-similar pieces as well
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as from measuring its length, see Section 2.1. In the latter case the length scales as a power law
but with the dimension related to the length resolution Δl being 1 − df , rather than df itself.
This is due to the dimensionality of the length measure and due to the inverse relation between
the resolution and the magnification factor. A similar situation would happen if the dimension
would be measured via e.g. measuring the area covered by the Koch curve. Here the exponent
of the length resolution Δl would be 2 − df .

In the fractal model an unintegrated density fi(x,Q2)
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Figure 2.12: Fractal dimension df corre-
sponding to dimension d3 and dimensional
correlation d1 as a function of x.

is parameterized. Its physical dimension is GeV−2

what after integration over Q2 gives the conven-
tional parton density with no physical dimension-
ality. This is an analogy to a measurement of the
fractal dimension by an area since GeV−1 is a length
measure. Refering to eq. (2.3) for dt = 2 corre-
sponding to an area measure, one thus obtains the
following relation interconnecting d3 to the fractal
dimension in length

2 − df = −2 d3, (2.21)

where the factor of −2 on r.h.s. comes from the in-
verse conversion of the magnification factor to the
resolution and due to scaling of (1 +Q2/Q2

0) as in-
verse length squared. The latter fact is slightly hid-
den in the removal of the physical dimensionality

by Q2
0, however, for the discussion on the negativity of the d3 dimension it is not even necessary.

Furthermore, as was already mentioned, the dimension related to (1 + Q2/Q2
0) is x-dependent

via the dimensional correlation d1. Hence, the fractal dimension corresponding to dimension d3

and correlation d1 can be expressed as

df = 2
(

1 + d3 + d1 · log
1
x

)
. (2.22)

It is visualized in Figure 2.12 as a function of x using parameters obtained from the fit to the
data. At approximately x = 0.01 and below the fractal dimension is positive as expected. On
the contrary, it becomes negative for x � 0.01. This high x region is out of applicability of
the fractal model in the presented form since there is a sizeable contribution of valence quarks.
These play the role of a seed for the low x structure, in the fractal picture. Hence extrapolating
the fractal dimension into that region is meaningless.

Intuitive explanation of the dimensional behaviour seen in Figure 2.12 is that the deeper is
the proton structure probed in terms of contributing momenta the more degrees of freedom
(dimensions) has its spacial evolution.
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Figure 2.13: Exponent λ(x,Q2), characterizing the speed of the rise of F2 towards low x, as a function
of x in bins of Q2. Fractal model with (dot-dashed line) and without (dashed line) mass term is compared
to the original (dotted line) and DGLAP improved (full line) version of the GBW saturation model. The
full line is rugged due to the evaluation of the model structure function F2(x,Q2) on a grid.

2.3.5 Saturation

Although there is no explicit saturation mechanism built in the naive fractal model, it is not
without interest to compare the low x behaviour of the model with that of models with satu-
ration built in. In this section, the GBW saturation model (see Section 1.8) is employed and a
comparison is done in terms of the structure function derivative

λ(x,Q2) = −
(
∂ lnF2(x,Q2)

∂ lnx

)
Q2

, (2.23)

which corresponds to the rate of the rise of F2 towards low x, as was discussed in Section 1.7.
Figure 2.13 displays the x-dependence of λ(x,Q2) in bins of Q2. The fractal model is represented
by dot-dashed lines (mass term included) and by dashed lines (without mass term). The dotted
and full lines correspond to the GBW saturation model in its original form and in the DGLAP
improved one, respectively. One can notice that the original saturation model draws the λ(x)
dependence down towards low x. This is due to the saturation effect which asymptotically slows
down the rise of F2 from the power-law behaviour to logarithmic one. On the other hand, the
DGLAP improved saturation model has a different behaviour. At larger x it is consistent with
the fractal model and slightly rising towards low x while at some point the rise is tamed and
eventually λ(x) decreases as in the case of the original saturation model.

Note that the DGLAP improved saturation model was originally aimed to improve the descrip-
tion of medium and large Q2 data while preserving success of the original version to describe
low Q2 data and diffraction.
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Formally, saturation effects in the fractal evolution can be added for example as follows

∂f(z)
∂ log(z)

= d f(z) − d1f(z) −Kf(z)2, (2.24)

where z is a magnification factor (eventually 1/z can be treated as a resolution). The first term
on the r.h.s. corresponds to a normal fractal evolution, hence d is the fractal dimension. The
second term slows down the evolution by a factor proportional to f(z). The effect of such a
term is only in a change of the original dimension d �→ d − d1. The last term on the r.h.s. of
eq. (2.24) is non-linear and it suppresses the evolution by a factor proportional to f(z)2. Hence,
absorbing the second term into the first one, for simplicity, a solution reads as

f(z) =
eCd d zd

1 + eCd K zd
, (2.25)

where C is an integration constant. From eq. (2.25) it is seen that as long as eCd K zd � 1,
the density f(z) evolves like a normal fractal density with dimension d. On the other hand, for
eCd K zd � 1, the density is constant, i.e. f(z) → d/K. The parameter K may be fitted to the
data. It is found to be negligible and consistent with zero.

2.3.6 Pion structure function

The previous sections were focused on the proton structure function F2(x,Q2) since there are the
most precise data on F2. Recently the ZEUS collaboration published [39] a new determination
of the pion structure function F π

2 (x,Q2), in the region of low Q2, low x. Although the data are
not as precise as are those of the proton, they are valuable for understanding the pion structure
in the low x region and for a comparison with the proton case.

Phenomenologically, there is no fundamental difference in the fractal picture between the proton
structure function F2 and the pion structure function F π

2 . Hence, the same parametrisation form
as in eq. (2.18) can be used to fit the pion data on F2. Unfortunately the number of low x points
(x � 0.01) which can be used for such a fit is too low, see Figure 2.14.

An interesting, albeit naive comparison with the proton structure function F2(x,Q2) in the
fractal picture can be done in the following way: assuming that fractal dimensions are universal
for both the proton and the pion as well as the scale Q2

0, the only difference comes from the
normalisation. A fractal structure develops from a seed, hence, it scales with the seed size. The
size of the seed can be proportional e.g. to the number of valence quark pairs, i.e. to the number
of confining flux tubes, or the number of valence quarks themselves. Although it is not clear how
the seed scales, neither the available data gives hint, for a demonstration the scaling according
to the number of confining flux tubes will be considered hereafter.

There are three combinations of valence quarks in the proton case and one in the pion case, thus
from seed scaling one would expect a relation of this sort

F π
2 (x,Q2) ≈ 1

3
F p

2 (x,Q2). (2.26)

This is indeed close to an observation of ZEUS in [39], see Figure 18, where instead of factor
1/3 the data suggest ≈ 0.361. Furthermore, one should have in mind that e.g. xp = 10−3 in the
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Figure 2.14: The pion structure function Fπ
2 (x,Q2) as determined by ZEUS [39] in the range of low x.

The fractal model naive prediction (full line) is compared to the same prediction without x-dependence
correction (dashed line). The prediction of the fractal model uses a fit to the proton structure function F2.

proton is not the same as xπ = 10−3 in the pion due to a different length of the fractal evolution,
starting from high-x, from the valence quark region. Due to the number of the valence quarks it
is intuitive to expect, in the QPM picture, that e.g. xp = 1/3 corresponds to xπ = 1/2, hence,
approximately xp = 2

3xπ. Absorbing this relation to eq. (2.26) the following naive expectation
based on the fractal picture is obtained

F π
2 (x,Q2) =

1
3
F p

2 (
2
3
x,Q2). (2.27)

Figure 2.14 shows the measured data in the low x region along with estimates based on eq. (2.26)
and eq. (2.27). Qualitatively, the fractal model prediction gives χ2/ndf = 0.81 on these data,
what is about the same value as for the case of the fractal fit to the proton structure function F p

2 .
Typical precision of the data is about 4-5 %, not including the normalisation uncertainty.

Although formula (2.27) seems to describe the data indeed very well7, it should be emphasized,
however, that ZEUS data on F π

2 have a large uncertainty on their normalisation due to the
model-dependence of the pion flux, see Section 10.3 in reference [39]. The above presented
measurement corresponds to a particular selection of the pion flux, obtained from the hadronic
reactions. Another possibility is to employ the additive quark model, which results into F π

2

approximately two times higher. The latter result is consistent with the assumption in the
fractal picture that the seed scaling is proportional to the number of quarks.

Although the existing data on F π
2 do not constrain the normalisation of the structure function

and hence scaling of the seed, they suggest a universality of fractal dimensions in the proton
and pion.

7Compared to the data description by various models presented in [39], Figure 18 and 19.
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A verification of the assumed universality of the fractal dimensions and of the seed scaling would
be possible by studying structure functions of another particle, with different numbers of valence
quarks than mesons and baryons. In the context of the recently opened topic of pentaquarks [40],
these are naturally a good candidate. Following the above naive mathematics with five valence
quarks instead of three, an expected structure function F �

2 (x,Q2) for a pentaquark at low x
would be

F �
2 (x,Q2) =

10
3
F p

2 (
5
3
x,Q2). (2.28)

Figure 2.15 shows F �
2 compared to F p

2 and F π
2 in a bin of Q2 = 5 GeV2. The speculative F �

2 is
significantly larger than the other structure functions, hence, one would expect that effects of
shadowing or saturation enter much sooner than in the case of the proton and pion structure
functions. On the contrary, if a different scaling scheme is chosen, e.g. proportional to the
number of the valence quarks (thin lines in Figure 2.15), the structure function for a pentaquark
may be much closer to that of the proton.
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The H1 detector at HERA

3.1 HERA accelerator

HERA (Hadron Electron Ring Accelerator) at the DESY laboratory in Hamburg is the first facil-
ity to provide colliding beams of electrons and protons. It is designed to accelerate 210 bunches
of electrons (or positrons) and 210 bunches of protons to energy of 27.55 GeV and 920 GeV, re-
spectively. Bunches separated by 96 ns are accelerated in two independent storage rings housed
in a tunnel of circumference 6.3 km. Not all of the bunches collide, some of them, called pilot
bunches, pass through the detectors without having collided, and they are used for background
and timing studies.

The center of mass energy at HERA is 314 GeV which is equivalent to a 50 TeV incident electron
beam on a fixed target. This provides an extension of two orders of magnitude in the accessible
kinematic range in x and Q2 compared to fixed target experiments. The electron and proton
bunches are arranged to intersect at two interaction points, around which the H1 (North Hall)

Figure 3.1: The HERA accelerator at DESY and injection system

41
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and ZEUS (South Hall) experiments are located. Furthermore there are two fixed target exper-
iments, HERMES (East Hall) and HERA-B (West Hall), where only one of the beams is used.
A schematic layout of the HERA facilities at DESY is shown in Figure 3.1.

The positrons from a 500 MeV linear accelerator are injected into a storage ring where they are
accumulated and then injected into the synchrotron DESY II which increases their energy up
to 7 GeV. In the next step they are transferred into the PETRA ring where the energy is raised
up to 14 GeV after accumulating up to 70 bunches. Bunches are then injected into HERA. This
is repeated until HERA is filled with up to 210 bunches of positrons.

A whole new chain of pre-accelerators was built in order to inject protons into HERA. A linear
accelerator delivers a 50 MeV negatively charged hydrogen ion beam which is stripped upon
entering into the DESY III synchrotron. Inside DESY III the protons are captured into 11 radio
frequency buckets with the final bunch spacing and the final total number of particles per
bunch, unless losses happen during transfers and ramping. The protons are then accelerated up
to 7.5 GeV and transferred to PETRA, which can accumulate up to 70 bunches and accelerate
them up to 40 GeV. Finally they are transferred into the HERA proton ring.

3.2 Detector overview

The H1 detector [41] is a multipurpose device designed to study various aspects of ep scattering.
In order to employ fully the physics potential of HERA, the detector has to perform a number
of vital tasks, which are:

• Electron detection: the reliable identification and energy measurement of scattered
electrons is crucial to study NC DIS events. A particular challenge is region of high
inelasticity y where the signal is contaminated by photoproduction background.

• Hadron detection: calorimetry with fine granularity and good resolution is needed in
order to measure the hadronic final state in various processes covering the full phase space.

• Charged particle tracking: charged particle momentum measurement and identifica-
tion are required for the investigation of many processes at HERA and for the background
suppression using tracking detectors covering almost the whole 4π solid angle. A mag-
netic field bends the tracks and allows the momentum to be determined, while energy loss
measurements enable particle identification in a restricted momentum range.

• Luminosity measurement: accurate determination of the luminosity delivered to the
experiment is vital for calculation of cross sections. At HERA the Bethe-Heitler reaction
ep→ epγ is measured which allows to monitor the luminosity at the percent level.

• Triggering and readout: the high bunch crossing rate at HERA and the very high
backgrounds from beam-gas and beam-wall interactions require that the detector must be
able to distinguish physics processes from the background, digitize and read out a large
number of detector channels (> 250000) while minimising dead time. A fast, pipelined,
multi-level trigger system, in combination with high-speed digitization and readout, is
therefore employed.

• Muon identification: heavy flavour, rare Standard Model and exotic physics processes
are possibly detected through the production of muons in the final state.
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The H1 detector is approximately cylindrically symmetric around the beam axis. The coordinate
system of H1 is right handed and defined with the z axis parallel to the proton direction, the
y axis vertical and the x axis perpendicular to the others, see Figure 3.2. The origin is defined
as the nominal interaction point. The side of the detector situated on the positive side of z axis
(relatively to the interaction region) is referred to as the “forward” part. The negative side,
corresponding to the outgoing electron direction, is referred to as the “backward” region. Apart
from the H1 coordinate system two more coordinate systems are introduced. In the vertex
coordinate system the origin of the H1 coordinate system is moved in the point where the beam
is crossing z = 0 plane. Furthermore, if the axes are ortonormally rotated in the way that the
z-axis is parallel to the beam, the system is called the beam coordinate system. Introducing
the latter system is important due to the fact that it is the natural coordinate system for the
beam interactions. Hence, in order to ensure e.g. the consistency of fiducial cuts in data and
simulations, these should be done in the beam coordinate system.

An isometric projection of the H1 detector is shown

Figure 3.2: A 3D illustration of the H1 co-
ordinate system.

in Figure 3.3. Starting the description from the inter-
action point, silicon trackers surround the beam pipe
1 in central and backward region (not shown). The
central 2 and forward 3 trackers enclose the sili-
con trackers and the beam pipe. The Liquid Argon
(LAr) electromagnetic 4 and hadronic 5 calorime-
ters mounted in the Liquid Argon cryostat, surround
the central trackers. The SpaCal electromagnetic
and hadronic calorimeters 12 are situated in the
backward region. The Backward Drift Chamber (BDC)
is mounted on the SpaCal calorimeter at the front
side. A superconducting coil 6 of radius 3 m is
placed outside the LAr calorimeter and provides uni-
form magnetic field of 1.2 T. This field is compen-
sated by another superconducting coil 7 in order
not to influence the HERA accelerator. The large
iron return yoke 10 returns the magnetic flux and
completes the magnetic circuit of the solenoid. It also serves as a tail catcher to detect hadronic
showers not contained by the LAr calorimeter. The muon chambers 9 are used for muon iden-
tification. The measurement of muon tracks in the forward region is provided by a toroid 11
equipped with drift chambers. The plug calorimeter 13 surrounds the beam pipe in the forward
region. The whole detector is covered by concrete shielding in order to prevent radiation in the
experimental hall. The electron tagger at position z = −33 m upstream the interaction point
(in HERA tunnel) detects electrons with a very small scattering angle. In conjunction with
the photon detector at z = −102.9 m it monitors the luminosity by the bremsstrahlung process
ep→ epγ. This reaction has a well known cross section.

The above components will be described in more detail in the following sections. A special focus
is paid in Section 3.3 and 3.4 to the SpaCal calorimeter and the BST silicon tracker, respectively,
because of their importance for the presented measurement.

3.2.1 Track detectors

The H1 tracking system is divided into two main components; the central tracker (CTD), cov-
ering the polar angle range 15◦ < θ < 165◦, and the forward tracker (FTD), covering the region
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Figure 3.3: Isometric view of the H1 detector at HERA, DESY Hamburg, status of 1992.
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Figure 3.4: Radial view of the central tracker (left) and isometric view of the central silicon tracker
CST (right).

7◦ < θ < 25◦. In addition, the backward region is covered by a backward drift chamber (BDC)
in front of the SpaCal calorimeter and covers the angular range 151◦ < θ < 177.5◦. The central
and backward silicon trackers (CST and BST) provide precision measurement of tracks close to
the interaction point.

Both the central and forward trackers consist of drift and multi-wire proportional chambers
(MWPC). The drift chambers are used for precise trajectory measurements of charged particles;
enabling a determination of the particle momentum. Hits can be located within ∼ 150μm in the
drift direction. The coordinate parallel to the wire can be determined by charge division of the
pulses recorded at each end of the wire, to a precision of ∼ 1% of the wire length (i.e. ∼ 2 cm in
the case of 2 m long CTD wire). The MWPCs have an intrinsic spatial resolution limited by the
wire spacing and is worse than that of the drift chambers. However, they have rapid response
time to passing of charged particles and therefore are useful for triggering purposes.

The Central Tracker

The central tracker consists of a number of interleaved drift chambers, MWPCs and silicon
trackers (see Figure 3.4). Reconstruction of trajectories in the central region is based mainly
on two concentric drift chambers, CJC1 and CJC2, while the z vertex position is mainly re-
constructed by CIZ and COZ chambers. The central track chambers are complemented by the
central silicon tracker CST and the backward silicon tracker BST which is described in detail in
Section 3.4 and will not be mentioned here.

The CJCs have drift cells defined by 2200 mm long wires strung parallel to the beam axis
and inclined by about 30◦ with respect to the radial direction, so that the drift direction is
approximately perpendicular to high momentum tracks. The chamber has an inner radius of
200 mm, an outer radius of 795 mm and a length of 2640 mm . The inner chamber, CJC1, has
30 cells with 24 wires each, and the outer chamber, CJC2, has 60 cells with 32 wires each. A
spatial resolution of 170μm in the r-φ plane and 2.2 cm in z was measured which compares well
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with the design goals. The particle momentum is reconstructed from the curvature of the track
caused by the magnetic field. The CJC allows the measurement of the particle momentum with
a precision σp/p

2 < 0.01 GeV−1. Particle identification is assisted by measurement of the specific
energy loss, dE/dx, along the track, with a typical resolution of 10%. The event interaction
vertex determination relies essentially on CJC reconstructed tracks.

Two thin drift chambers with wires perpendicular to the beam axis enable a better measurement
of the track position in the z-coordinate than is possible from charge division of the CJC signals.
The inner z-chamber (CIZ) is located inside CJC1, and the outer chamber (COZ) lies between
CJC1 and CJC2. They provide track elements with typically 200μm resolution in z and about
2% in φ.

Linking these track elements to those obtained from the jet chambers gives the design reso-
lution for the momentum of charged tracks σp/p

2 ≈ 3 × 10−3 GeV−1 and for the polar angle
σ(θ) ≈ 1 mrad.

Two cylindrical MWPC chambers are also part of the central tracker. The inner multiwire
proportional chamber (CIP) is closest to the interaction region and is composed of 60 sectors in
z-direction and 8 sectors in φ. The outer multiwire proportional chamber (COP) lies between
COZ and CJC2. It is composed of 18 sectors in the z-direction and 16 sectors in φ. The CIP
and COP both consist of double cell layer, with wires parallel to the z-axis. The fast timing
signals, with a time resolution better than the separation between two successive HERA bunch
crossings (75 ns for CIP and 60 ns for COP), are used to define vertex-pointing tracks for the
purpose of triggering.

The Forward Tracker

The Forward Tracking Detector (FTD) consists of three identical modules, known as supermod-
ules, which contain planar drift chambers, MWPCs and a layer of transition radiator material
and radial drift chambers.

Each planar module contains three planar wire drift chambers, rotated by 60◦ to each other in
azimuth. These chambers consist of four wire planes in the z direction with 32 wires per plane
each. This design enables to provide a space point reconstruction in the x − y plane with a
spatial resolution of σxy � 160μm.

The radial drift chambers consist of planes of sense wires strung out from the beam pipe, such
that the maximum drift length for each wire increases with distance from the beam-axis. The
radial chambers thus provide an accurate measurement of the azimuthal angle, together with a
moderate measurement of the radial coordinate using charge division. Each radial chamber has
48 cells in φ with 12 sense wires in z-direction.

One forward MWPC is are located in each supermodule, consisting of a double layer of wires
strung along the vertical axis (i.e. the y-axis). The MWPCs in the first submodule are used in
conjunction with the CIP and COP to provide a trigger on tracks originating from the vertex.
All three submodules are used to produce a trigger on tracks in the forward region.
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The Backward Drift Chamber

The Backward Drift Chamber (BDC) is mounted on the front surface of the SpaCal calorimeter.
It is designed to provide a better measurement of the scattered electron angle than the SpaCal
calorimeter.

The BDC consists of four double layers of drift chamber planes in eight octants with sense wires
strung in the radial direction. Each double layer is staggered in order to resolve the ambiguity
of the track position in the drift coordinate. The layers are rotated by 11.5◦ with respect to
one another in φ to enable construction of track segments from the intersection of hits in the
layers. The BDC is designed to provide a space point resolution in the radial coordinate of
σ(r) = 0.4mm and in the φ coordinate of σ(rφ) = 0.8 mm.

3.2.2 Calorimetry in the H1 detector

The H1 tracking system is complemented by the H1 calorimeter system in order to measure the
total energy of both charged and neutral particles produced in the interaction. There are four
detectors which provide energy measurements: the Liquid Argon, SpaCal, tail catcher and plug
calorimeters. The SpaCal calorimeter is described in more detail in Section 3.3 and will not be
mentioned here.

The Liquid Argon Calorimeter

The Liquid Argon (LAr) Calorimeter provides the basic measurement of hadronic energy. Above
Q2 � 100GeV2 the scattered electron in DIS is also detected in this calorimeter.

The LAr calorimeter covers the angular range of 4◦ < θ < 154◦ and is mounted in a large
argon cryostat. The calorimeter consists of an electromagnetic section with lead absorbers,
corresponding to a depth of between 20 and 30 radiation lengths, and a hadronic section with
steel absorbers. The total length of the LAr calorimeter is between 4.5 and 8 hadronic interaction
lengths. The calorimeter is highly segmented in both sections, with a total of around 45000 cells.
The orientation of the absorber plates is such that the angle of incidence of particles is always
greater than 45◦.

Test beam studies of LAr calorimeter modules have demonstrated energy resolutions of σ(E)/E �
0.12/

√
E⊕0.01 with E in GeV for electrons and σ(E)/E � 0.5/

√
E⊕0.02 for charged particles.

The very fine granularity of the LAr allows the longitudinal shower development to be used for
efficient e/π separation. The overall electromagnetic energy scale is presently known to 1-3%,
and the absolute scale of the hadronic energy measurement is known to 2-4%.

The Tail Catcher

The tail catcher (TC) provides a coarse measurement of the energy of hadronic showers leak-
ing out of the LAr detector. The TC is divided into the central barrel and the forward
and backward end-caps. The energy resolution of the TC detector has been measured to be
σ(E)/E � 100%/

√
E. The overall energy scale is known to 35%.
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beam gas interactions 50 kHz
cosmic μ in barrel 700 Hz
tagged γp 25 Hz
eē total 15 Hz
DIS low Q2 2.2 Hz
DIS high Q2 (e in LAr) 1.4 min−1

Charged current DIS pT > 25 GeV 30 h−1

W production 0.5 d−1

Table 3.1: The event rates at HERA 1 design luminosity L = 1.5 × 1031cm2s−1 [41].

The Plug Calorimeter

The plug calorimeter (PLUG) covers the extreme forward direction 0.6◦ < θ < 3◦. Its primary
task is to minimize the loss of transverse momentum due to hadrons emitted close to the beam
pipe. The design value of the energy resolution of PLUG is 150%/

√
E.

3.2.3 The H1 trigger

Interactions at the H1 detector are dominated by background events rather than physics events.
In order to select interesting physics processes, the H1 detector is equipped with a trigger system.
The philosophy of the trigger is to minimize the dead-time of the experiment, which is the time
following a trigger in which the signals from the subsystems are being read and therefore the
subsystems are insensitive to new events. For the background rate of 10 kHz, the H1 trigger
is designed and able to reduce the event rate to ≈ 50 Hz with a dead time of about 10%. For
detailed information of events rates see Table 3.1. Background events that have to be considered
include

• interactions between beam electrons or protons with the residual gas in the beampipe;

• interactions between off momentum beam particles and the walls of the vacuum chamber;

• synchrotron radiation;

• cosmic rays.

The HERA bunch crossing interval of 96ns is short when compared with the response times
of many subdetectors. For example in the drift chambers the maximum drift time is of the
order of 1μs (for detailed information see Table 3.2). Consequently the readout is pipelined in
synchronisation with the HERA clock (HCKL). For at least 24 bunch crossings the information
is being stored whilst an initial trigger decision (L1) is determined. The L1 trigger thus turns
out to be deadtime free.

The H1 trigger is of a multilevel design. Each successive level processes more precise data and
takes longer time to make a better trigger decision of keeping events. The trigger information
is centrally controlled by the Central Trigger Logic (CTL) which makes a global decision based
on combination of all subsystem trigger information.
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width of proton bunch 1.4 ns
distance to next satellite bunch 5 ns
flight time to backward ToF 6 ns
flight time to barrel muon system 20 ns
bunch crossing interval 96 ns
longest drift time in CJC 1 μs
integration time of LAr preamplifier 1.5 μs
delay of first level trigger 2.5 μs
front end readout time ∼ 1 μs

Table 3.2: Time scales at HERA and H1 [41].

Level 1 The level 1 trigger consists of nine different trigger systems, each based on the informa-
tion given by a subdetector. The outputs of these systems are called trigger elements, i.e.
{yes/no} decisions encoded in bits. The types of information from which trigger elements
are created include:

• Calorimeter energy: signals in LAr and Spacal are summed in towers and com-
pared to thresholds in order to find jet and electron candidates.

• Z-vertex: information from central tracker MWPCs is used to determine the position
of the interaction vertex.

• Time-of-flight: the ToF systems described in Section 3.2.5 are used to generate
triggers for in-time events or veto for background events.

• Muon tracks: the central muons system generates triggers for muons in iron return
yoke. The forward muon system information is processed by a sophisticated trigger
system which extracts a t0 and pointing track candidates from the drift chamber
signals.

Trigger elements are then combined into so called subtriggers. Up to 128 subtriggers can be
defined in order to select interesting physics events (physics triggers), to monitor detection
efficiency (monitor triggers) or to select cosmic ray events for calibration purposes (cosmic
triggers). The rate of each subtrigger is computed separately and can be prescaled if
needed. The final level decision of L1 is given by the logical OR of all subtriggers and is
distributed to the front end electronics of all subsystems to stop the pipeline.

Level 2 The L2 trigger provides a complex decision based on more detailed information. The
systems are based on topological array [42] and more sophisticated neural technology [43],
both of which are suited to make decisions based on correlations in multi-dimensional
space. The decision of the level 2 trigger, which is ready after a period of typically 20μs,
defines whether a fast rejection will be applied or whether the event is to be treated further.

Level 3 This level was proposed as further intermediate trigger step to suppress event rate but
has not been put into operation in the first phase of HERA.

Level 4 The level 4, which is integrated in the central data acquisition system, is based on a farm
of approximately 30 fast RISC processor boards. Each processor reconstructs a complete
event to which it applies a series of selection criteria depending on those subtriggers that
triggered the event. For example, one of the most important rejection algorithms relies
on the event (x, y, z) vertex constraint. Events which pass the L4 are written to tape at
a typical rate of 10 Hz. The average size of one event is 130 kB. L4 also creates separate



50 Chapter 3. The H1 detector at HERA

Electron Tagger �ET�

EET � ���� GeV

Photon Detector �PD�

EPD � ���� GeV

H� Luminosity System

IP

Figure 3.5: Schematic view of the H1 luminosity system.
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Figure 3.6: Bethe-Heitler process (
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l′) in ep scattering.

streams of events for the purposes of monitoring and calibration of some subdetectors.
A small fraction of events rejected by L4 are brought off and written to tape to enable
monitoring of the effects of the L4 decisions.

The full event reconstruction is processed by dedicated workstations within typically a day of
data taking. The events are also classified into different physics classes dependent on physics
area of interest. This can be considered as the fifth level (L5) of the H1 trigger system. The full
events are written to Production Output Tapes (POT) and stored.

3.2.4 The H1 luminosity system

A fast luminosity measurement is provided at the H1 detector by small angle electron and photon
detectors in the electron direction, which are installed in the accelerator tunnel (see Figure 3.5).
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Furthermore, this system allows for detection and triggering on scattered electrons at very low
Q2 � 10−2 GeV2.

The luminosity measurement is enabled by the Bethe-Heitler radiative process ep→ eγp (see
Figure 3.6). This process has a large, well known and exactly calculable cross-section [44], which
allows to use this reaction to accurately measure the luminosity. The sum of outgoing e and γ
energies is constrained, in the limit Q2 → 0, to the electron beam energy, i.e. Ee = Ee′ + Eγ .
The thresholds are applied at 5 GeV to both energies to remove noise and trigger threshold
effects.

The electron and photon detectors are TIC1/TIBr crystal calorimeters, with a resolution of
σ(E)/E � 10%/

√
E. The electron tagger (ET) is located at position z = −33 m and the photon

detector (PD) at z = −103.1m. The electron detector detects electrons with an energy fraction
between 0.2 and 0.8 with respect to the beam energy and angles (180◦ − θ) ≤ 5mrad and is
also used as a trigger for photoproduction interactions, in which case it is combined with a veto
against there being a photon in the small angle photon detector. The ET consists of 49 crystal
calorimeters read out by photomultipliers. The PD consists of 25 crystals of the same design as
the ET. A lead filter (F), which protects the photon detector proper from the high synchrotron
radiation flux, is mounted before the ET together with Cerenkov Veto Counter (VC) which
rejects events with photons originating from interactions in the filter.

3.2.5 The Time-of-Flight Detectors

Fast scintillation detectors at H1 are needed in order to distinguish real ep interactions from
proton induced background appearing upstream the detector. The particles produced from ep
interaction will arrive at a different time than particles produced from the background interac-
tions relative to the nominal time of the bunch crossing. This is caused by different path lengths
and different times of interactions. Background events produced near the nominal vertex cannot
be distinguished from genuine ep interaction in this way, the scintillation counters, however, give
a significant reduction of the background.

The Time-of-Flight (ToF) system consists of a number of components. Scintillators are mounted
between the backward end-cap of the return yoke and the beam pipe (BToF), within the unused
gaps of the PLUG absorber (PToF) and around the beam pipe in the region of the FMD
(FToF). In addition, the inner and outer veto walls are situated backward of the return yoke at
z = −6.5 m and z = −8.1 m respectively. These are known as the Veto Wall and detect particles
(mostly muons) from the proton beam halo.

The SpaCal calorimeter, which is close to the beampipe in the direction of the incoming protons,
is also used for ToF purposes.

3.2.6 Muon Detection

Detection of muons is provided at H1 by two systems. The Central Muon System (CMD) consists
of streamer tube chambers inside the instrumented iron return yoke. The Forward Muon System
(FMD) consists of four sets of drift chambers designed to measure the polar angle θ, and two
sets of drift chambers designed to measure the azimuthal angle φ.
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Figure 3.7: The position of the SpaCal calorimeter in the backward part of the H1 detector.

3.3 The SpaCal calorimeter

This section briefly describes the SpaCal calorimeter design and parameters; for a detailed
description of SpaCal see [45, 46]. The name of the calorimeter is an abbreviation for Spaghetti
Calorimeter and refers to the calorimeter design.

Figure 3.7 shows the position of the SpaCal in the backward region of the H1 detector. The
front face z-position is -150 cm in the H1 coordinate system. The SpaCal has a diameter of
160 cm (see Figure 3.8) and consists of electromagnetic (EM) and hadronic (HAD) sections with
an active depth of 25 cm each.

The SpaCal is built in the H1 detector as a replacement of a lead-scintillator calorimeter
(BEMC). Thus its technical parameters are determined by the arrangement of other H1 sub-
detectors. The depth is limited by the distance between the end of the central tracker and the
return yoke. The maximum weight of SpaCal depends on the inner rails of the cryostat which
can support 8 tons in the backward region [46]. Technical parameters of the EM and HAD
sections are summarized in Table 3.3. The acceptance of the HAD section is increased to 178.7◦

by a backward plug section (BPLUG) which is mounted on the return yoke.

The electromagnetic section of SpaCal consists of 1192 cells with an active volume 40.5× 40.5×
250 mm3 each. A front view of the SpaCal electromagnetic section is shown in Figure 3.8. The
cells consist of lead sheets with grooves into which scintillating fibers are laid. Incident particles
shower in the lead and cause the fibers to scintillate. The light is then collected at one end of
the fibers and measured by a photomultiplier (PMT). The profile of a lead sheet is shown in
Figure 3.9. The lead/fiber ratio is 2.27:1. A 2-cell-unit, see Figure 3.10, consists of 52 stacked
lead plates with 4680 fibers each. Eight of these pairs are held together to form a supermodule.

The HAD section consists of 136 cells of 120 × 120 × 250 mm3 providing an equivalent of one
nuclear interaction length. The fibers are of the same type as in the EM section but have a
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Figure 3.8: The XY cross section view of the electromagnetic SpaCal calorimeter.

Electromagnetic Hadronic
Fiber Diameter 0.5 mm 1.0 mm
Fiber Type Bicron BCF-12 Bicron BCF-12
Pb/Fiber Ratio 2.3:1 3.4:1
Pb-Fiber Density 7.3 g/cm3 7.7 g/cm3

PMT Type Hamamatsu R5505 R2490-06
Cell Size 40.5 × 40.5 mm2 120 × 120 mm2

Number of Cells 1192 136
Angular Coverage ≤ 177.5◦ ≤ 178◦

Active Length 25 cm 20 cm
Radiation Length 0.91 cm 0.85 cm
Interaction Length 25 cm 20 cm
Molière Radius 2.55 cm 2.45 cm

Table 3.3: Technical parameters of the SpaCal Calorimeter.

larger diameter of 1.0mm. The construction of the HAD section is similar but the cells are
assembled individually.

The BPLUG consists of 12 cells of trapezoidal cross-section which are arranged in a ring sur-
rounding the beam pipe and four veto layers of 8 mm width. At the inner radius of 5.7 cm a
tantalum frame shields against synchrotron radiation from the beam. The veto layers are used
to measure potential energy leakage into the beam pipe.

The PMTs have to operate in the 1.2 T magnetic fields. The chosen PMTs (Hamamatsu mesh-
dynode type) provide a typical gain of 104, a factor of 100 smaller than in case of no field [47].
Each supermodule is furnished with a high-voltage (HV) distribution module which provides
a high-voltage for PMTs. A calibration module (CAM) is attached to the rear of each super-
module. A CAM contains control electronics and two pulsed LEDs which feed light through
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Figure 3.9: The profile of lead sheets (Electromagnetic SpaCal).

Figure 3.10: The module of Electromagnetic Spacal calorimeter.

fibers into light mixers and PMTs. Potential instabilities of the light output of each LED are
monitored by photodiodes. The LEDs are typically pulsed at a rate of 1 Hz, synchronised to
empty HERA bunches. LED pulses are used to monitor the stability of the photomultiplier
gains and therefore important for the calibration of the calorimeter [48].

3.4 The Backward Silicon Tracker

The Backward Silicon Tracker (BST) serves for the precise measurement and identification of the
scattered electron in the backward region, corresponding to four momentum transfers squared
Q2 between approximately 0.3 GeV2 (for the shifted vertex position) and 20 GeV2 (for the
nominal vertex position). Inclusive ep DIS measurements can benefit from the BST in two ways

• At high y, where the BST due to its low sensitivity to neutral particles is able to suppress
their contribution to electron signals in SpaCal.

• At low y, where the hadronic final state is going forward, hence, the vertex reconstruction
efficiency is too low in the standard track detector due to missing acceptance. In this case
the vertex can be reconstructed from the electron side, using BST.

Moreover, the polar angle is measured independently of the central tracker vertex with an
accuracy of about 0.2 mrad.
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Figure 3.11: Isometric view of the Backward Silicon Tracker. The part marked by label 1 corresponds
to BST as it was used during 1997 HERA running. The park marked by label 2 was added to improve
the BST acceptance at larger values of Q2.

Figure 3.12: The Backward Silicon Tracker wafer.

The detector itself (see Figure 3.11) is composed of two symmetric half shells, enclosed by inner
and outer shield made from G10 foil carrying a double sided 35 μm Cu layer. Each half shell
contains 8 planes of active sensors, called wafers, aligned symmetrically around the detector
z-axis. There are 16 sensors on each plane.
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Wafers

The active sensors (see Figure 3.12) are made from 250 μm thick n-type silicon. A single
minimum ionizing particle creates about 22000 electron-hole pairs, which is sufficient to produce
a clear signal. Applying a depletion voltage between p-side and n-side of the silicon sensors
creates a reverse biased p-n-junction.

The contribution of the wafers to the dead material in front of SpaCal is less than 3% of X0.
However, due to electronics, mechanics and cabling, the BST contributes to the dead material
by a significantly larger factor of 10-30% of X0, depending on the angular range.

Each sensor has 1280 concentric AC coupled p+ strips with a pitch of 48 μm, every second of
them is being read out. Hence there are 640 readout channels per sensor. The wafer has a double
metal layout which allows to route the signals from all p-strips to the outer radius where the
possible radiation damage is lower than inside. The disadvantage of this arrangement consists
in a lowered S/N ratio of ≈ 15 as compared to ≈ 30 for single metal BST wafers later installed.

Data Acquisition

The large number of readout channels requires a highly integrated front-end system. Further-
more, due to the high bunch repetition rate of 10.4 MHz the system is equipped with multi-event
pipeline buffers in order to separate the processing stage and the online hit finding procedure
from the front end data.

The BST data processing chain consists of a number of steps

1. Front end readout - signals from strips are driven via bonded wires directly to the
front end electronics, which is placed on boards glued to wafers, so called hybrid boards.
The main components of these boards are five Analog Pipeline Chips (APC), which were
developed especially for H1, five digital decoder chips and one analog cable driver. The
decoder chips generate steering signals for the APC chips from only four signal lines per
wafer.

Each APC chip handles the sampling of 128 parallel channels. It consists of low power,
low noise charge sensitive preamplifiers followed by a storage array of pipeline capacitors.
The depth of the pipeline is 32 bunch crossings in order to keep information about BST
till the first level trigger decision is taken within about 2.5 μs. When the trigger stops the
sampling, the pipeline can be re-read by the input preamplifier and the charge is stored
on a latch capacitor of each channel. The process of sampling and reading is controlled by
a special sequencer code running on the OnSiRoC module (see below).

2. Repeater Boards - voltage supply, signal transmission and APC steering is realized via
repeater boards mounted behind the active BST area and connected to hybrids by strip
lines. The boards consist of eight multi-layer printed circuit boards placed concentrically
around the beam pipe. The sixteen detectors of two sectors each are connected to one
repeater board. An output amplifier is used to transmit the signal via about 30 m long
coaxial cables to the electronic trailer next to the H1 detector.
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3. OnSiRoC - The Online Silicon Readout Controller VME module was developed in order
to control sampling and readout of APC chips on the hybrid board. It contains a single
channel sequencer, a programmable unit, power supply system, pedestal memory, buffer
and channel counters, channel sampling ADC and raw data memory. The complete analog
readout and digitization needed is about 1 ms, hence, no additional dead time is introduced
by the system.

For the BST, the OnSiRoC is used mainly for the sequencer code running whilst the
other functions are distributed to further VME modules1. The hybrid electronics and bias
voltages are supplied by converter cards while the analog to digital signal conversion and
hit recognition is done on commercial Power PC boards equipped with 10 MHz FADC.

4. PowerPC and online data processing - Signals from wafers are digitized by 12-bit
ADCs, which are via PCI interface connected to Power-PC-based VME modules. Here
the signal is online processed by a hit finding algorithm. Since the BST delivers a data
flow of about 40000 digital signals per event, the data size has to be reduced by orders of
magnitude within short time of about 10 ms, to fit to the 4 kbyte storage space for the
BST readout branch.

5. Hit reconstruction - The hit reconstruction procedure is initialized by using n = 64
events in order to estimate values of pedestal and noise per each channel. These are
derived from common mode2 corrected amplitudes Ai, pedestals Pi and noise squared Ni

applying weight w = 1/n and using the following iteration formula

P ′
i = (1 − w)Pi +Ai,

N ′
i = (1 − w)Ni + w(Ai − Pi)2. (3.1)

The hit finding procedure determines common mode and common slope for each APC chip
by a straight line fit to amplitudes with pedestals subtracted versus channel number. In
this procedure the noisy strips, outliers and signals are masked out in order not to bias
the common mode estimate. The correct amplitude is then calculated according to

Ai = A0
i − Pi − (Ck + Sk · i), (3.2)

where A0
i is the raw amplitude of the strip i with the pedestal Pi of the APC k with the

common mode Ck and the common mode slope Sk. A sliding window is used to search for
hit clusters. Since the particles pass through the BST almost perpendicularly a window
width of three channels is sufficient. The cluster is treated as a signal if the sum of the
amplitudes squared in the window exceeds a certain threshold which actually depends on
the noise.

6. Offline data processing - The offline BST reconstruction code (BSTREC) is searching
for tracks in the BST by means of calculating triplet sagitta s = (r1 + r3)/2 − r2 between
the hit coordinates ri measured in three successive planes i. This quantity exhibits a clear
signal from tracks at top of a low combinatorial background, hence, it can be used for
track searches. However, the detector must be well aligned prior to this procedure.

1The CST operation uses the OnSiRoC module also as a low voltage power supply.
2Hereafter by common mode is meant a collective modulation of the strip amplitudes, which must be subtracted

in order to reconstruct hits correctly.
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For the physics analysis a special track founding algorithm was developed [49], hereafter
called BST electron finder. This algorithm performs track reconstruction in the BST using
additional information from SpaCal in order to recognize electrons and to extend the BST
acceptance.

Apart from the steps described above, a precision analysis based on the BST requires a careful
treatment of detector efficiency, noise and various effects which can enter both data as well
as Monte Carlo simulations. These are in more detail described in analysis Section 4.4. The
alignment procedure is introduced in Section 4.3.
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Data analysis

The data samples, analyzed in this thesis, were taken in 1999/2000 during two special minimum
bias running periods. The notion ‘minimum bias’ refers to the fact that the trigger setup was
simplified in order to achieve high trigger efficiency and low prescales, hence, to minimize the
errors of the measured cross section. Both data samples were taken with proton beam energy
of 920 GeV and electron beam energy of 27.55 GeV.

Minimum bias

The sample was taken at HERA during the November/December 1999 running period
with a total luminosity of about 2700 nb−1 and the interaction vertex at the nominal
position. Hereafter the sample is denoted as mb99.

Shifted vertex

The sample was taken at HERA in the summer 2000. In a dedicated HERA run
the interaction vertex was shifted by +70 cm thereby accessing a region of lower Q2

than at nominal vertex position. The total luminosity collected was about 607 nb−1.
Compared to a similar run taken in 1995 [50] the statistics is about four times larger
and the BST is newly installed. Hereafter the sample is for clarity denoted as svtx00.

This chapter continues with the description of the kinematics reconstruction, in Section 4.1.
Section 4.2 contains information about triggers used in the analysis. Detector alignment and
calibration are described in Section 4.3 and 4.5, respectively. Section 4.4 is devoted to the
treatment of the backward silicon tracker BST. Run and event selections are introduced in
Section 4.6 and 4.7 respectively. Adjustments of the Monte Carlo simulations are explained
in Section 4.8 and 4.9. Finally, a measurement of the inclusive scattering cross section and
an analysis of the F2 rise are presented in Section 4.10 and 4.11. The chapter is closed by a
determination of FL in Section 4.12.

4.1 Kinematics reconstruction

The kinematics of DIS events was introduced in Section 1.1. It is described by the four momen-
tum transfer Q2, the Bjorken variable x and/or the inelasticity y. These variables are bound

59
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together by the approximate relation Q2 = xys, where s is the square of the center of mass
energy and can be evaluated as s = 4EeEp since the masses of particles are negligible.

The precise reconstruction of the kinematics is essential for DIS cross section measurements.
There are various methods existing, involving a measurement of the scattered electron as well
as of the hadronic finale state.

In terms of the scattered electron energy E′
e and the polar scattering angle θe the kinematic

variables are evaluated according to the following relations

ye = 1 − E′
e

Ee
sin2 θe

2
Q2

e = 4E′
eEe cos2

θe

2
=
E

′2
e sin2 θe

1 − ye
. (4.1)

The variable x is calculated as xe = Q2
e/s ye.
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Figure 4.1: Kinematic plane in the region of low
Q2 and x. Dashed and dotted lines correspond to
constant inelasticity y and scattered electron energy
E′

e, respectively. Dot-dashed lines correspond to
constant electron scattering angle θe.

Equations (4.1) define the so called electron
method, which is not dependent on the recon-
struction of the hadronic final state. The prefix
e is used to denote this method.

Analyzing the above formula for large scat-
tering angles θe > 150◦, where the scattered
electron is detected in SpaCal, the inelasticity
variable y depends predominantly on the scat-
tered electron energy. Hence, the large y do-
main corresponds to low energies E′

e. On the
other hand, at low y, where E′

e ∼ Ee, the de-
termination of Q2 is almost entirely defined by
the scattered electron angle (see Figure 4.1).

Relations for measurement errors are obtained
from eq. (4.1) in a straightforward way:

δQ2

Q2
=

δE

E
⊕ tan
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2
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δx
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δE
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⊕ tan
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2
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Ep

Ee
− 1
)
δθ,

δy

y
=

1 − y

y

δE

E
⊕ 1 − y

y
cot

θe

2
δθe.

Based on these equations the following conclusions can be drawn for the kinematics reconstruc-
tion

• Due to the factor 1/y the resolutions of x and y deteriorate at low y.

• The resolution of Q2 is good for most of the HERA kinematic range, except at high θe due
to the factor tan θe/2.

• The effective incoming electron energy is often reduced by the emission of a real photon.
This effect is not taken into account in the former equations, leading to a biased event
kinematics for this type of events.
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Apart from the electron side, the kinematics can be reconstructed from the hadronic final state
measurement. However, since the apparatus is not perfectly hermetic and does not cover the
full 4π angle, leakage of particles must be treated carefully. In the H1 detector, due to the large
difference in beam energies, effects of particle leakage are most pronounced along the outgoing
proton beam. Hence, a method to reconstruct kinematics from hadronic variables should use
variables which are most insensitive to these losses.

A method to determine x and Q2, proposed by A. Blondel and P. Jacquet [51], does not re-
quire any jet identification algorithm or proton structure hypothesis. Replacing the momentum
transfer q = k−k′ in eq. (1.2) by (ph−p), where ph is the four-momentum of the total outgoing
hadronic final state, gives

y =
p · (ph − p)

p · k ph =
∑

h

(Eh, pxh, pyh, pzh). (4.2)

In a similar manner, the transverse electron momentum E
′
e sin θe in eq. (4.1), due to momentum

conservation, may be replaced by the total transverse momentum pt of the hadronic finale state.
Furthermore, it is useful to introduce a new variable, corresponding to the total E − pz of the
whole hadronic final state

Σ =
∑

h

Eh(1 − cos θh). (4.3)

After straightforward mathematics and neglecting the particle masses one finally obtains the
following relations

yh =
Σ

2Ee
Q2

h =
p2

t

1 − yh
, (4.4)

where pt is the total transverse momentum of the hadronic flow. In analogy with the electron
method, the variable x is calculated as xh = Q2

h/s yh. The index h was used as an abbreviation
for ‘hadron’ to denote this method. A combination of Q2

e and yh leads to the mixed method [52]
which uses the best measurement of Q2 and avoids the 1/y divergency of the electron method.

As in the case of the electron method, due to the presence of the electron beam energy Ee in
eq. (4.4) both the hadron and the mixed methods are sensitive to collinear real photon emission
from the incoming electron. This sensitivity can be significantly reduced by replacing factor 2Ee

by the total E − pz of all particles, i.e. Σ +E′
e(1 − cos θe). The corresponding method is called

sigma method and combines the measurement of both electron and hadronic final state. The
kinematics is reconstructed as follows

yΣ =
Σ

Σ + E′
e(1 − cos θe)

Q2
Σ =

E′2
e sin2 θe

1 − yΣ
. (4.5)

The resolution of the yΣ variable is similar to that of the yh variable while it is more robust
against photon radiation1 from the initial electron and hereafter will be preferred. A resolution
study of kinematics reconstruction methods described above can be found in [53].
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L1 subtrigger Definition L2 condition L4 finder
s0 IET> 1 ‖ CIET> 2 v:3, f:1 R> 10 cm -
s3 IET> 2 ‖ CIET> 3 v:3, f:1 - -
s9 IET> 0 v:3, f:1, t:3, z:0 - high y finder

Table 4.1: Subtriggers, used in this analysis, are based on the backward calorimeter SpaCal. Subtrigger
s9 is complemented by vertex and track requirement (see text) and subtrigger s0 by a SpaCal radius cut
at the trigger level L2. The high y finder at trigger level L4 is based on subtrigger s9.

4.2 Trigger

A brief description of the H1 trigger system was presented in Section 3.2.3. For both data
samples, i.e. mb99 and svtx00, the setup of the relevant triggers was identical. Subtriggers,
used in this analysis, are listed in Table 4.1. Each subtrigger requires a minimum energy deposit
in the SpaCal calorimeter, corresponding to a certain IET/CIET threshold. CIET refers to
the central region of the SpaCal calorimeter while IET to the bulk part. Apart from SpaCal
energy deposits a combination of additional trigger elements is required. The elements of type
‘v’ are related to the requirement on absence of VETO, BToF, VLQ and Spacal ToF background
signals. The element f:1 demands a check of FToF and PLUG veto signals. More important
is the element z:0 of the L1 vertex trigger [54], which is based on the fast histogramming of
hits in z-chambers CIP and COP (Section 3.2.1) and to the search for the histogram maximum.
Finally, t:3 refers to the track requirement in the central or forward tracker.

L2 conditions are complementary to L1 subtriggers. In both data samples, analyzed in this
thesis, only subtrigger s0 contains an L2 condition: the requirement that the energy deposit in
the SpaCal plane satisfies max(|xSp|, |ySp|) > 8 cm, where xSp and ySp are coordinates of the
energy deposit.

At L4 trigger level a special finder to search for high y events is defined, based on subtrigger s9.
The following requirements must be met in order to flag an event as the high y candidate:

• Rmax > 15 cm - at least one cluster is required to have the radius in the SpaCal plane
larger than 15 cm.

• Emax > 2 GeV - at least one cluster has energy exceeding 2 GeV.

• Rcl
min < 5 cm - at least one cluster has a transverse size smaller than 5 cm.

The above conditions are, however, implemented in the analysis code2, and the L4 finder is not
used explicitly. Such a procedure is safe due to the special L4 setup in mb99 and svtx00 running
periods, when events were neither rejected nor prescaled by the L4 farm. Hence, due to the fact
that all events are present on data tapes and in order to minimize errors coming from high y
finder inefficiencies, the L4 finder is not further considered in this analysis.

Subtrigger selection

There are three particular analyzes performed on the two data sets mb99 and svtx00 in this
thesis. The analyzes of the bulk regions are based on subtriggers s0 and s3. In the case of

1However, radiative effects are much reduced by analysis cut on total E − pz, which will be introduced in
Section 4.7.

2With an exception of the radius cut, where a lower value of 12 cm is used for the event selection.
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a)

Data sample Subtriggers Comment
mb99 s0 s3 bulk region
mb99 s9 high y analysis
svtx00 s0 s3 bulk region

b)

Subtriggers mb99 svtx00
s0 1.21 1.15
s3 1.46 1.44
s9 1.10 1.00

Table 4.2: Subtrigger selection for analyzed data samples (a) and average prescales of relevant subtrig-
gers (b).

the mb99 data, a special analysis of the very high y region was done based on subtrigger s9
alone. A similar analysis on svtx00 data could not be performed due to the low efficiency of
trigger elements based on tracks and vertex reconstruction. This effect was caused by shifting
the vertex out of nominal region of track trigger elements during these runs, from the middle
part of the central tracker towards its +z edge. The selection of subtriggers is summarized in
Table 4.2.

Event weighting

Due to the high rate of DIS interactions (especially at low Q2) and due to the high rate of
background events (at high y), some subtriggers exhibit high rates. The detector readout speed
is limited by hardware abilities, therefore such subtriggers are prescaled. Although a subtrigger
gives a trigger signal for particular events, not all of them are recorded onto tape. The fraction
of events recorded depends on the so called prescale factor. For example, if the factor is four,
every fourth event (statistically) triggered by the subtrigger is read out and recorded. A signal
from a subtrigger generates a raw trigger bit. If the prescale condition is passed an actual trigger
bit is set. Prescales are run-dependent and calculated according to actual conditions by a so
called AutoPresale algorithm.

The above described prescale procedure implies that recorded events must have assigned a
weight, depending on prescales and subtriggers active in an event. The purpose of the weighting
algorithm, used in this analysis, is to divide the total phase space of measured DIS interactions
into non-overlapping regions with only one subtrigger assigned to each of them. Subtriggers
with smaller prescale are given priority in case more than one trigger condition was satisfied.
In a weighting process only the corresponding subtrigger for each region is taken into account,
other subtriggers are ignored. The weight of the event is equal to the subtrigger prescale factor.

The algorithm is graphically sketched in Figure 4.2. A set of subtriggers (a) divides the overall
phase space into a number of regions, which are covered by one, two or three subtriggers. Assume
that the prescale factors P () are ordered as follows: P (T1) > P (T3) > P (T2). The application
of the described selection algorithm implies a division of phase space into three regions, see
Figure 4.2 (b), each covered exclusively by one subtrigger. The event weight is equal to the
prescale factor of the subtrigger which covers the corresponding region and actually triggered
this event. Therefore no statistical weight calculation is needed. An advantage of this algorithm
is that it allows to use average trigger prescales instead of run-dependent prescales3 in order
to minimize effects of large trigger weights. Average prescales for considered subtriggers are
listed in Table 4.2 (b). Subtrigger s9 has the lowest prescale and in the svtx00 data set it was
essentially unprescaled. However, as already mentioned, this is due to the low efficiency of this
subtrigger in the svtx00 data.

3As long as the prescale hierarchy is conserved for all analyzed runs. This requirement is equivalent to the
demand that the division of phase-space, see Figure 4.2 (b), is identical for all runs.
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T1
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a)

T1

T2T3
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Figure 4.2: An illustration of the event weighting algorithm based on subtrigger prescales. In figure
(b), for example, the prescale factors P () are ordered as follows: P (T1) > P (T3) > P (T2).
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Figure 4.3: The efficiencies of subtriggers s0 (closed points), s3 (opened points) and of the IET0 trigger
element as a function of electron energy Ee for mb99 (a). The arrow corresponds to the energy cut
E > 6.9GeV used in the analysis based on s0 and s3 subtriggers.

Trigger performance

The knowledge of subtrigger efficiencies is essential for precision cross section measurements due
to their direct influence on the measurement results. The efficiency of a subtrigger is calculated
as a fraction of events with the raw bit set on in a sample of events triggered by an independent
set of subtriggers or a more general subtrigger.

Subtrigger s0 deserves a special attention due to the fact that it covers a major part of phase-
space of the subtrigger s3 and hence it works as a back-up subtrigger compensating s3 inefficien-
cies. The s0 subtrigger is highly efficient in the whole phase-space considered. The efficiency
of subtrigger s0 is in the mb99 data set is determined from the data using a sample of events
triggered independently of the SpaCal triggers. In the svtx00 data the H1 trigger system was
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Figure 4.4: The efficiency of the t:3 trigger element of subtrigger s9 as a function of the SpaCal
cluster energy (a). The efficiency of the L2 trigger level condition of subtrigger s0 as a function of
Rbox = max(|xSp|, |ySp|) in the SpaCal plane (b).

essentially based on the SpaCal triggers only. Thus the s0 efficiency was determined using events
triggered by the s0 trigger element CIET with another cluster in the IET trigger element accep-
tance, and vice versa. Figure 4.3 shows the trigger efficiency for the s0 subtrigger as a function
of cluster deposit energy for the mb99 data set. The efficiency of subtrigger s0 is practically
identical to that of the IET>1 ‖ CIET>2 subtrigger condition. The trigger threshold was set
to approximately 6 GeV, where the efficiency is seen to steeply rise towards higher energies and
it reaches a plateau of about 100% efficiency at ≈ 7 GeV.

In the same manner the efficiency of the s3 subtrigger is evaluated, see Figure 4.3 (open points).
Since the trigger threshold was set higher than that of the s0 subtrigger, namely to approximately
12 GeV, the subtrigger efficiency saturates at about 100% at higher energies.

The efficiency of subtrigger s9 is composed of the efficiency of the IET>0 trigger element and
of the trigger element t:3 related to tracks in the tracker. As in the case of subtrigger s0, the
efficiency of IET>0 trigger element was evaluated on a sample of events triggered by non-SpaCal
triggers. Figure 4.3 (a) shows the efficiency (open squares) as a function of cluster deposit energy.
In the region of the high y analysis based on the s9 subtrigger it is seen to be 100% efficient
(above 3 GeV).

The efficiency of the trigger element t:3 was determined from a sample of events triggered
independently on the tracking trigger elements. A raw trigger bit of monitor subtrigger s10
was required. This subtrigger serves for monitoring purposes of the t:3 trigger element. It is
identical to the s9 subtrigger except of omitting the t:3 element. The result of the efficiency
study is presented in Figure 4.4 (a) as a function of the cluster deposit energy. The trigger
element t:3 is seen to be about 95% efficient.

Finally, the efficiency of the L2 trigger level condition (see Table 4.1) of the subtrigger s0 was
investigated on a sample of events, triggered by s3 and s9 subtriggers. This condition requires
the energy deposit in the SpaCal plane satisfies Rbox = max(|xSp|, |ySp|) > 8 cm, where xSp and
ySp are coordinates of the energy deposit. The efficiency is plotted as a function of Rbox in the
SpaCal plane in Figure 4.4 (b) for the mb99 data set. For both data samples the behaviour of
the efficiency is as expected. Due to the coarse segmentation on the trigger level L2 the efficiency
reaches a plateau of almost 100 % efficiency at about 8.5 cm, while below it falls steeply down.
Hence a cut oRbox > 8.5 cm is performed in the analysis for events triggered exclusively by s0.



66 Chapter 4. Data analysis

a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x /cm

y 
/c

m

b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x /cm

y 
/c

m

Figure 4.5: A density contour plot of lines connecting electron and photon clusters in QED Compton
events set (a) and an acoplanarity minimization contour plot of the functional from eq. (4.7) (b). The
full (“bulk”) data sample taken in 2000 was used to complement the svtx00 sample by larger statistics.

4.3 Alignment

Precision measurements of the deep inelastic cross section require the kinematics to be recon-
structed accurately including the control of the measured phase-space. For both of these tasks
the determination of the detector positions is essential. In the presented analysis the detector
alignment can be done using ep data and it is performed before any further steps are taken.

In this section the alignment of the backward calorimeter SpaCal and of the backward drift
chamber BDC is described in Section 4.3.1. The alignment of the backward silicon tracker BST
involves a special procedure and it is described separately in Section 4.3.2.

4.3.1 SpaCal and BDC

The H1 detector coordinate system is defined by the central drift chambers in the central tracker,
which was introduced in Section 3.2.1. The central jet chambers CJC1 and CJC2 are used for
the transverse, r − φ, coordinate measurement, while the z chambers CIZ and COZ determine
the z coordinates.

The alignment of the backward calorimeter SpaCal is in the first step performed using QED
Compton events. In these events the outgoing electron, which is almost parallel to the beam due
to the very low Q2, radiates a real photon. Thus both particles can be detected under large polar
angles. They enter the SpaCal almost back-to-back in azimuth so that their total transverse
momentum is close to zero. The alignment is based on an algorithm [53] which is connecting
both electron and photon SpaCal clusters in a sample of QED Compton events. The density of
these connections is largest at the (x,y) position where the beam is crossing the SpaCal plane.
Use of Compton events requires large statistics, hence, the analyzed mb99 and svtx00 data sets
were complemented by the bulk data taken in 1999 and 2000, respectively. As an example, in
Figure 4.5 (a) the resulting contour plot in the central part of SpaCal is shown for the svtx00
data. The run-dependent beam position in the SpaCal x-y plane was subtracted off and thus the
highest density is expected to be in the middle of the plot, at (0,0) coordinates. The fact that
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the density peak is shifted implies a SpaCal misalignment. The SpaCal alignment constants can
be obtained directly from the contour plot, from the position of density maximum. They are
listed, along with alignment constants for the BDC, in Table 4.3 below. In a similar manner the
mb99 data are analyzed complemented by the 1999 bulk data. It can be seen that the whole
apparatus was at a constant position, apart from a small effect on δx for SpaCal, over the years
1999 and 2000.

Alternatively to this procedure one can minimize the acoplanarity in order to determine align-
ment constants [55]. The acoplanarity is defined as

A = φ1 − φ2, (4.6)

where φ1 and φ2 are the azimuthal angles of the outgoing electron and photon. In the ideal case
the acoplanarity is expected to be close to π. There are various ways how to obtain alignment
constants from the acoplanarity, e.g. by minimizing a functional of the form

fA =
∑
ev.

(π −A)2

σ2
, (4.7)

where the summation extends over all events in the QED Compton sample and the acoplanarity
measurement error squared, σ2, for a given event is defined as

σ2 =
σ2

x x
2
1 + σ2

y y
2
1

(x2
1 + y2

1)2
+
σ2

x x
2
2 + σ2

y y
2
2

(x2
2 + y2

2)2
. (4.8)

In this equation (x1, y1) and (x2, y2) are positions of the electron and photon clusters in the
SpaCal x-y plane for a particular event. The position measurement errors σx and σy are in
the case of SpaCal about 0.3 cm. A contour plot obtained from minimising the functional fA,
eq. (4.7), is shown in Figure 4.5 (b) as a function of x and y. The coordinates corresponding to
the minimal value of the functional are the alignment constants. The results of both methods
are in very good agreement and are used further in this analysis to align the SpaCal calorimeter
in x and y.

The z-position of SpaCal was determined using a comparison of the polar angle measurement
of the scattered electron by the central tracker (θCT ) and by the SpaCal (θSp). A correction of
the z position follows from the distribution of the quantity

ΔzSp = zcl

(
1 − tan θSp

tan θCT

)
, (4.9)

where zcl is the position of a particular SpaCal cluster corresponding to the θSp measurement.
The distribution of Δz is shown in Figure 4.6 (a). The peak position of the distribution cor-
responds to the z-shift of the SpaCal with respect to the assumed position, represented by zcl
position of a SpaCal cluster.

The backward drift chamber BDC was aligned to the SpaCal by a further polar angle measure-
ment comparison. Figure 4.7 shows the difference of polar angle measurements before (a) and
after alignment (b) of the BDC chamber. In analogy to the case of the SpaCal alignment in
z-coordinate, the following quantity was employed
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Figure 4.6: SpaCal (a) and BDC (b) shifts in the z-coordinate, as defined in eq. (4.9) and eq. (4.10),
respectively. Both BDC and SpaCal were aligned in the x-y plane.

mb99 svtx00
SpaCal BDC SpaCal BDC

Δx 0.095 0.03 0.145 0.03
Δy 0.42 0.20 0.42 0.20
Δz -0.70 -0.80 -0.70 -0.70

Table 4.3: Alignment constants for correction of SpaCal and BDC positions in mb99 and svtx00 data.
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Figure 4.7: Difference in the polar angle measurements θBDC − θSp of BDC and SpaCal as a function
of the azimuthal angle φ before (a) and after (b) BDC alignment.
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Figure 4.8: Difference in the polar angle measurements θBDC − θCT of BDC and CT as a function of
the azimuthal angle φ after the BDC alignment (a). BDC alignment as cross checked with the central
tracker polar angle measurement.

ΔzBDC = zBDC

(
1 − tan θBDC

tan θSp

)
, (4.10)

where zBDC is the z-position of the track segment in the BDC corresponding to the measurement
of θBDC . As in the case of SpaCal, the peak position of the zBDC distribution, see Figure 4.6 (b),
corresponds to a z-shift of the BDC w.r.t. to the originally assumed z-position of the chamber.
The alignment constants for both SpaCal and BDC are summarized in Table 4.3.

The polar angle measurement of the aligned BDC position was compared to that of the central
tracker, in order to cross-check the alignment of the BDC. Figure 4.8 shows the difference in
polar angle measurement by the BDC and by the central tracker (a) and a distribution of a
quantity similar to that from eq. (4.10) but with the SpaCal polar angle θSp exchanged to the
central tracker θCT measurement (b). It can be seen that the alignment of the BDC, as obtained
by aligning the BDC to SpaCal, is consistent with the central tracker position and approximately
1 mm correction is suggested and implemented in the final BDC alignment.

4.3.2 BST alignment

In order to benefit from the high spatial resolution of the backward silicon tracker BST an
accurate internal and external alignment of the detector planes is essential. The minimization
program Millepede [56] was applied in order to obtain a high quality alignment without biases.
Millepede is a special package for least squares fits with a very large number of parameters. It
takes advantage of the subdivision of parameters into two classes, global and local parameters.
Global are those parameters common to the whole analysis while local parameters are present
only in subsets of the data. For example, in an alignment application the detector alignment
constants are the global parameters while parameters corresponding to tracks in each particular
event are the local ones. The interest is only in optimal values of the global parameters. A
practical limit for the number of global parameters in Millepede is between one thousand and
ten thousand.

In the BST alignment 128 global parameters were used, corresponding to the radial positions of
128 detector wafers. A clear sample of BST high energy tracks was selected, using electrons in
SpaCal with E > 20 GeV which originate from a well measured central vertex and each track
was within Millepede fitted by a straight line. Hence, for each event 128 global plus 2 local
parameters were fitted in the χ2 minimization procedure. The global parameters, due to the
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Figure 4.9: Difference θBST − θBDC in the polar angle measurements of BST and BDC as a function
of the azimuthal angle φ before (a) and after (b) the BST alignment (mb99 data).
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Figure 4.10: Difference zBST − zCT in the interaction vertex z-coordinate measurement of BST and
central tracker as a function of the azimuthal angle φ before (a) and after (b) the BST alignment (mb99
data).

special structure of the minimization matrix, were separated from the local ones. In order to
correctly match the BST position into the H1 coordinate system, the positions of the CT vertex
and of the BDC track segment were added to the fitted BST hits.

Figure 4.9 shows a comparison of the polar angle measurement by the BST and the BDC as
a function of φ before (a) and after (b) application of the BST alignment. The comparison of
the measurement of the interaction vertex z-position by the central tracker and by the BST
is displayed in Figure 4.10 as a function of φ before (a) and after (b) the BST alignment.
Finally, Figure 4.11 shows the effect of the BST alignment on the difference of the polar angle
measurement by the BST and the BDC (a) and of the z-coordinate measurement by the BST
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Figure 4.11: Difference θBST − θBDC in the polar angle measurements (a) and difference zBST − zCT

in the interaction vertex z-coordinate measurement (b) both before (dashed line) and after (full line)
application of the BST alignment (mb99 data).
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Figure 4.12: Distribution of hit rate as a function of strip number for two examples of BST wafers (mb99
data).

and the central tracker (b).

4.4 BST efficiencies

The measurement of the deep inelastic cross sections requires an accurate knowledge of the
detector response which has to be implemented into the Monte Carlo simulation. In the presented
analyzes the backward silicon tracker BST is the main detector component to measure the
scattered electron polar angle as well as the interaction vertex position. Thus prior to physics
analysis the BST response and efficiencies was studied in detail.

4.4.1 Noise treatment

The first step in order to understand the BST response has to deal with its noise. In general,
there are two kinds of noise observed in the data

• Noisy strips - irregularities in the Si crystal structure cause a few strips to have a very
high hit rate.

• White noise - thermal or electronic effects cause random noise hits, not correlated to real
particles.

Examples of wafers with noisy strips are shown in Figure 4.12 which displays the distribution of
hits on a wafer as a function of the strip number. Large peaks correspond to noisy strips while
the rate of most of the strips is much lower.

The noisy strips for the whole BST are identified and enlisted in a table. For both mb99 and
svtx00 data the number of noisy strips is about 1700 to be compared with the total number of
8× 16× 128× 5 = 81920 BST channels, i.e. 2% of the strips are noisy. During the analysis any
hits corresponding to those noisy strips are removed from the data. The Monte Carlo simulation
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Figure 4.13: Probability pBST to receive a random hit per wafer per event as a function of wafer number
before (full line) and after (dashed line) correction of the noise contribution to Monte Carlo compared to
the data noise level (filled histogram). Data from the mb99 data set were used.

is treated in exactly the same manner in order to ensure identical BST analysis procedure for
both data and simulations.

After removal of the noisy strips the remaining random noise is estimated from BST φ-sectors
without an electron signal. A sample of events is used with precisely one high energy elec-
tron candidate reconstructed in BST and SpaCal. The corresponding BST sector with the
reconstructed track was removed from the BST and the remaining sectors were checked for the
presence of hits. Since there should be no hits in these sector, if a hit was present it was treated
as a white noise hit. It was found that the white noise in the real data is typically about 3
times smaller than that in the Monte Carlo simulation, see Figure 4.13 (a), where it is added
to the reconstructed BST signal by hand. Due to a clear signature of random noise hits in
the simulations, namely its signal to noise ratio is set to zero, majority of these noise hits was
removed in the analysis code in order to reach the noise level of data. Figure 4.13 (b) shows
the number of random hits per wafer per event, pBST , as a function of the wafer number before
and after correction of the noise contribution to Monte Carlo compared to the data noise level.
On average the probability to receive a random hit on a wafer in one event is 〈pBST 〉 ≈ 0.2.
It should be mentioned that the noise estimate is closely connected to BST wafer efficiencies,
described in the next Sections 4.4.3 and 4.4.4. A couple of iterations of efficiency and noise
estimates is necessary to reliably separate the influences of noise and efficiencies.

4.4.2 Hit treatment

The BST data acquisition and hit reconstruction was described in Section 3.4. In Monte Carlo
simulations the BST is treated such that no detailed simulation of the BST electronics is done
and hits are directly ‘created’ in the digitization of the particle’s passage through the wafers of
the BST detector. Random noise hits, as described in the previous section, are added on top of
the signal hits. This is a different situation as compared to the data, where a sliding window of
3-strip width is used to scan through the digitized amplitudes of the strips of a wafer in order to
find a signal. For example, there can be two or more hits on one strip or neighbouring strips in
the Monte Carlo simulations while only one hit is technically allowed in the data. Thus in both
data and simulations the hits were checked for occurrence of hits on the same strips and also for
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Figure 4.14: Distribution of the radial distance of the inner (a) and outer (b) BST wafer strips to the
beam. Data from mb99 set (filled histogram) are compared to the Monte Carlo simulations (full line).
Units on y-axis are arbitrary.

hits correlated with hits on neighbouring strips. Hits closer to each other than four strips were
partially removed such that only one of them remained.

A further issue requiring particular care is the acceptance of the BST planes. Due to a difference
in the beam positions in data and Monte Carlo a significant effect is coming from a different BST
position in the beam coordinate system rather than from the alignment. Figure 4.14 depicts the
radial distance from the beam of the inner, closest and the outer, furthest strips on BST wafers
in the mb99 data set after alignment is performed. In order to minimize the edge effects the
hits on edges of the BST wafers are removed if their radial distance to the beam Rhit is smaller
than 6.5 cm or larger than 11.5 cm. In the svtx00 data set, in order to fully employ the BST
acceptance at lowest values of Q2, the radial acceptance of wafers was treated wafer-wise.

4.4.3 Internal efficiencies

A sample of events with a track in the BST acceptance linked to a SpaCal cluster with energy
above 20 GeV is used to determine the internal efficiencies. This requirement corresponds to a
clear electron signature. In order to suppress QED Compton events a good vertex reconstructed
with the central tracker was required. The azimuthal angle φSp, as measured by SpaCal, was
used to externally determine which BST sector contains the track. In order to minimize effects
of a wrongly assigned sector a strict cut on φSp was done around the φ center of a given BST
sector.

A single hit efficiency was defined with the requirement that a hit in the studied wafer has to be
assigned to a track found in the BST. Due to the structure of the BST wafers, see Section 3.4,
the internal efficiencies were studied for every single APC chip on a given wafer rather than
for the wafer as a whole. This way particular inefficiencies related to damaged APC chips were
identified and were not spoiling efficiencies of other APC chips of the wafer. Due to the treatment
of noisy hits the efficiencies of BST wafers in Monte Carlo are not expected to be 100%. Hence,
the same procedure was done for both data and Monte Carlo and the difference was used to
correct efficiencies in simulations to the data level. The result is presented in Figure 4.15 which
shows the internal efficiencies for a few wafers in the mb99 data.
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Figure 4.15: Internal efficiencies as a function of APC chip number on few example BST wafers. The
number of the wafer is at the right-bottom corner of each plot. Data (closed points) and simulations
(open points) are compared and their ratio (numbers) is used to downgrade the efficiencies of wafers in
the Monte Carlo simulations.

4.4.4 Coherent losses

The external efficiency has possibly a component due to coherent losses. These may be due
to readout failures affecting ‘coherently’ the whole detector or larger parts of it. Due to the
high efficiency of the wafers, when a track is passing through 4 planes in BST the probability
εtr to reconstruct such a track with at least two hits is almost 100% according to the binomial
expression

εtr = ε4 + 4 ε2(1 − ε) + 6 ε2(1 − ε)2 ≈ 100 %, (4.11)

where ε is a single plane efficiency of a wafer and it is approximately 92% with large fluctuations
on both sides. In order to check coherent losses in the readout chain, which lead to a loss of hits
in the whole sector, events with an electron track passing through the first or second half of BST
planes were selected. The splitting of the BST into two halves, each of four planes, is suggested
by the BST construction. Events are selected based on a high energy SpaCal cluster and a very
good central vertex. Furthermore, a track in the BDC chamber was required in combination
with the vertex to determine accurately a track position in the BST.

Events were checked for the number of hits in the sector corresponding to the SpaCal cluster
position. According to eq. (4.11) the expected external inefficiency in the case of no coherent
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Figure 4.16: Coherent loss probability as a function of BST sector number for planes 0-3 (a) and 4-7 (b).
Data (closed points) are compared to Monte Carlo simulations (open points), downgraded according to
the internal efficiencies.

loss is almost zero. In the case that no hits were found the events were attributed to a coherent
loss in the readout chain.

Figure 4.16 shows the result of the coherent loss analysis. The probability to have a coherent
loss is plotted versus sector number for both halves of the BST separately. The Monte Carlo
simulation (open points) demonstrates the validity of eq. (4.11) since simulations give an almost
negligible effect of coherent losses except in sectors with lower wafer efficiencies. However, the
effect of low efficient wafers does not exceed 0.5% and is taken into account by subtracting
fake coherent losses in the simulations from the data estimates. In the presented analysis the
simulated BST was sector-wise downgraded in order to reach the level of the coherent losses in
the data. Overall, the coherent loss was reduced to 2-3% as compared to about 7% in the 1997
BST [49] due to improvements in the readout electronics and data acquisition.

4.5 Calibration

The reconstruction of the event kinematics is affected by the calibration accuracy of the energy
of both the outgoing electron/positron and of the hadronic final state. As it can be seen from
eq. (4.1) and eq. (4.5) the calibration enters directly the evaluation of kinematic variables via the
E′

e and Σ quantities. Furthermore, the calibration affects the measurement indirectly due to the
E−pz and Pt analysis cuts, see Section 4.7. Thus an accurate calibration of the electromagnetic
as well as the hadronic energy measurement is vital for a precision cross section measurement.
In this section, the calibration of the backward calorimeter SpaCal (Section 4.5.1) and of the
Liquid Argon calorimeter (Section 4.5.2) is presented.

4.5.1 SpaCal energy calibration

The initial calibration of the SpaCal energy response is performed by employing a special
LED system, which feeds light through fibers into light mixers and PMTs. Potential time-
dependent instabilities of light output of each LED are monitored by photodiodes. Furthermore
the calorimeter was re-calibrated using the so called kinematic peak [57] calibration method.
For each cell a calibration constant is found in a number of iterations in order to separate the
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calibration effects arising from sharing a SpaCal cluster over few cells. This method is based
on tuning the kinematic peak position in the way that it matches the position estimated from
the Monte Carlo simulations. Since rather large statistics is needed in this method, it is usable
mainly in the inner part of SpaCal, approximately for RSp � 50cm. The outer part is calibrated
with cosmic muons.

In this analysis the calibration was re-done with the double angle method [58] which makes
use of the fact that the event kinematics is overconstrained, see Section 4.1. This leads to
the possibility to determine the scattered electron energy E′

e via the measurement of its polar
angle θe and of the hadronic final state polar angle θh

E′
e =

Ee(1 − yDA)
sin2(θe/2)

, (4.12)

where the inelasticity yDA in the double angle method is expressed as

yDA =
tan(θh/2)

tan(θh/2) + tan(θe/2)
. (4.13)

As can be seen from these relations, the double angle method does not depend directly on the
SpaCal and LAr calibrations.

For the double angle calibration events with a high
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Figure 4.17: Relative reconstruction accu-
racy of the scattered electron energy as mea-
sured in SpaCal (filled area) and as obtained
by the double angle method (full line) with
respect to the energy on the generator level.

energy electron in the SpaCal and a well recon-
structed central tracker vertex were selected. Fur-
thermore a validation of the electron by the BST
and the BDC was required. In order to select low y
events a cut on θh < 80◦ was applied, corresponding
to approximately y < 0.15. A possible influence of
events at very low y, where the hadronic final state
partially escapes detection in forward direction, was
suppressed by a cut θh > 15◦. Events with wrongly
reconstructed kinematics were removed by requiring
|yh − yDA|/(yh + yDA) < 0.2.

Figure 4.17 shows a simulation of the scattered elec-
tron energy Erec reconstructed with the double an-
gle method and with the SpaCal calorimeter com-
pared to the energy on the generator level Egen. A
bias on the level of 1% is observed in the case of
the SpaCal reconstruction which is due to energy
losses in the material on front of SpaCal. A visible
tail towards higher values of the plotted ratio is due
to showering [59] and the final state radiation. In

these events a photon was radiated from the outgoing electron under a small angle, hence, both
particles enter one cluster in the SpaCal while on the generator level the electron energy Egen

is calculated after the photon radiation.

The resolution of the double angle reconstruction method is about three times better than that of
the SpaCal, and it thus was used to define the reference energy scale for the SpaCal calibration.
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Figure 4.18: a) An example of the energy calibration pull δ distribution for a SpaCal cell. b) Distribution
of the mean energy pull 〈δ〉 as a function of the radius in the SpaCal plane RSp. Data from the svtx00 data
set before (open points) and after (closed points) cell-by-cell calibration are compared to the cell-by-cell
calibrated Monte Carlo simulations (open squares).

This was done by means of comparing the energy reconstructed in SpaCal, ESp, with that
reconstructed by the double angle method EDA. The energy calibration pull δ = EDA/ESp is
plotted as a function of various quantities in SpaCal, which are later used for correction of the
cluster energy. In the following, the steps performed in this analysis are introduced and in more
detail described.

Cell-by-cell correction

For each cell belonging to a particular cluster the pull δ of the whole cluster is plotted in a
histogram, weighted by the energy fraction contribution of the cell to the cluster. An example
distribution is shown in Figure 4.18 (a) for cell number 82. According to such distributions, for
each cell i a mean pull δi is found by a robust mean estimator [60] and applied to reconstruct
the re-calibrated cluster energy

ESp =
∑

i

Ei . δ
i, (4.14)

where Ei is the energy of a cluster cell. In order to separate the influence of single cells in a
cluster a number of iterations is needed. In every iteration step the result from the previous
iteration is used and a further correction to cell energies is calculated. About five iterations are
sufficient to obtain a stable result.

The result of this calibration step is shown in Figure 4.18 (b). The data before (open points) and
after (closed points) cell-by-cell calibration are plotted as the pull δ dependence on the radius
in the SpaCal plane RSp and compared to the result of the double angle calibration applied to
the simulated events (open squares).
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Figure 4.19: Distribution of the mean energy pull 〈δ〉 as a function of the impact point position within
the hottest cell in the cluster.

Inbox correction

Due to the SpaCal calorimeter construction there are small effects on the reconstructed energy
expected from the position of the particle impact point within the calorimeter cells. If a particle
hits a calorimeter cell in the middle, the energy is better contained than in the case of a hit
in a cell corner, when part of the energy is lost in the dead material and not detected. In
order to correct for this effect, the energy pull δ after cell-by-cell calibration is investigated as a
function of the impact point position within the hottest cell in the cluster. Figure 4.19 shows a
distribution of the mean pull δ as a function of the x and y coordinates in the hottest cell. In
the middle of the cell the energy correction is small while in the case of a particle hitting the
corner of the cell the energy correction can reach about 1%. The reconstructed cluster energy
is corrected for this effect.

Crack correction

Except the dead material between single cells, the SpaCal is constructed from larger blocks of
16 cells, so called supermodules, see Section 3.3. Hence, there are further energy losses due to
cracks between supermodules. These were corrected for as a function of Rbox = max(|xSp|, |ySp|),
where the coordinates correspond to the impact point position. Figure 4.20 (a) shows the mean
energy pull δ as a function of Rbox. Corrections are observed to reach level of 2% and are
not fully described by Monte Carlo simulations. The crack corrections are used to correct the
reconstructed cluster energy.

Radial correction

The radial correction is the last correction introduced in this analysis. It is motivated by
the observed fluctuations of the energy pull δ as a function of the radius in the SpaCal plane
RSp =

√
x2

Sp + y2
Sp, see Figure 4.20 (b) open points. Hereafter the radial corrections are used

to correct the reconstructed cluster energy.
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Figure 4.20: Distribution of the mean energy pull 〈δ〉 as a function of Rbox = max(|xSp|, |ySp|) (a)
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Figure 4.21: A comparison of cluster energy distributions before (a) and after (b) SpaCal calibration.
In both cases data (closed points) are compared to Monte Carlo simulations (histogram), normalized by
the histogram area.

Monte Carlo simulations were processed in the same way as the data. Energy spectra of data
and simulations are compared before and after calibration in Figure 4.21. Variations of the
energy scale do not exceed 0.3 %, this range is marked in Figure 4.20 by gray bands. Note that
this high accuracy regards the relative scale difference between data and simulation which is
the relevant quantity in this analysis. According to a study performed in [61], the error of the
SpaCal energy measurement is larger at lower energies and reaches 2% at about E = 7 GeV as
is estimated from the energy-momentum comparison of SpaCal and BST, respectively. Hence,
in the presented analysis the error value of 0.3% is used for the electron energy measurement
error at 27 GeV and it is linearly extrapolated to 2% at 7 GeV.
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4.5.2 Liquid Argon energy calibration

The kinematics reconstruction at large y, low x, is based on the hadronic final state measurement,
as introduced in Section 4.1. The quantities of interest are

Σ =
∑

h

Eh(1 − cos θh), P had
t =

∑
h

Eh sin θh, (4.15)

where the summation is performed over all particles in the hadronic final state. In fact, both
quantities Σ and P had

t are simple energy sums weighted by a function of the corresponding polar
angle.

The resolution of the LAr calorimeter is worse at low deposited energy, where fluctuations
are increasing like ∼ 50%/

√
E with decreasing energy. The central tracker system, on the

contrary, has better energy resolution at low energies, due to a factor ∼ E. Thus the kinematic
reconstruction of the LAr may be improved by complementing the LAr hadronic final state
measurement by the tracker response [52]. A special procedure (FSCOMB) was developed in
order to separate the contributions to eq. (4.15) between the LAr calorimeter and the central
tracking detectors. Reconstructed tracks with momenta < 2 GeV are selected and extrapolated
to LAr where they are linked to clusters. A track is used also in the case that its extrapolation
does not reach LAr. Those calorimeter cells which were linked to tracks are masked in the
evaluation of Σ and P had

t , in order to avoid double-counting. As a result the hadronic energy
scale is determined more accurately than in the case of the calorimetric measurement only,
because of a special treatment of low momentum charged particles.

The LAr calorimeter has a certain level of noise, which must be subtracted in order not to bias
the reconstruction. Finally the contribution to Σ and P had

t of the SpaCal calorimeter is added
to the LAr and central tracker contributions. Hence, Σ and P had

t are factorized as follows

Σ = ΣLAr + ΣTr + ΣSp − Σnoise, (4.16)
P had

t = PLAr
t + P Tr

t + PSp
t − Pnoise

t . (4.17)

The final calibration was performed with both data and simulations using the so called La-
grangian method [49, 62]. Unlike in the case of SpaCal, the hadronic energy flow in LAr is
collimated into jets and it is difficult to select single hadrons. Thus the calibration of LAr is
done using global quantities, actually the transverse momenta P had

t and P e
t of the hadronic

final state and electron, respectively, which in neutral current interactions are balanced. The
calibration is based on the transverse momentum conservation assumption

P had
t + P e

t =
∑

h

Eh sin θh + Ee sin θe = 0. (4.18)

Due to the sin θ suppression, the Pt balance method is rather insensitive to particle losses in the
extreme forward and backward directions which are connected with the proton remnant jet and
photon radiation.

The electron energy, entering the calibration, is supposed to be well calibrated and the electron
polar angle is measured well in the backward trackers BST and BDC. Using the least square
method, the following functional is subject to a minimization procedure



4.5. Calibration 81

L =
N∑

i=1

1
σ2

i

⎛
⎝P e

t − (P Tr
t + PSp

t − Pnoise
t ) −

M∑
j=1

αj E
i
j sin θi

j

⎞
⎠

2

(4.19)

and the calibration constants αj are determined. In eq. (4.19) the first summation is over all
events in the sample while the second one is performed over all contributing LAr cells. In this
analysis the LAr was divided in eight wheels and each of them into eight octants as suggested
by the calorimeter structure. Since the LAr has electromagnetic and hadronic part, the total
number of calibrated cells was 128.

The noise term Pnoise
t in eq. (4.19) is suppressed due to the fact that it is distributed isotropically

over the azimuthal angle. The resolutions σi were for simplicity set constant.

The minimization requirement

∂L
∂αj

= 0 (4.20)

defines a system of k = 1..M linear equations

N∑
i=1

P i k
t,h

⎛
⎝P i

t,e − αk

M∑
j=1

P i j
t,h

⎞
⎠ = 0, (4.21)

where P i
t,e = P e

t − (P Tr
t +PSp

t −Pnoise
t ) and P j

t,h = Ej sin θj of event i. The system of equations
can be solved and the calibration constants αk obtained using matrix techniques.

The Pt balance dependence on the transverse momenta measured from the electron side (P e
t ) for

the data and Monte Carlo is presented in Figure 4.22. The same quantities but versus hadronic
angle γh are shown in Figure 4.23. The data and simulations are found to be in agreement
within 2% of accuracy. This value is used to determine systematic errors due to the hadronic
scale uncertainty.

The decomposition of the yh measurement by different detectors is shown in Figure 4.24. The
data and simulations are found to be in a good agreement. Apart from the hadronic energy
scale a large influence on yh reconstruction is due to the LAr calorimeter noise. It is of a crucial
importance for measurements at low values of yh � 0.05. The fraction of noise contributing to
yh is depicted in Figure 4.24 (a,b) by open triangles. At values of y ≈ 0.003 it contributes by
about 50% while at high y the contribution is small. In this analysis the noise contribution is
subtracted and the corresponding systematic error is determined via a comparison of the noise
contribution in the data and simulations. This is shown in Figure 4.24 (c,d) where the ratio of
the noise contribution in the data and simulations is plotted. Simulations are found to describe
the noise level in the data to a precision better than 10%. This value is used to determine
systematic errors of the cross section measurement due to the LAr noise contribution.
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Figure 4.22: (a) Mean values of the Pt balance as a function of P e
t for data (closed points) and Monte

Carlo (open squares). (b) The corresponding ratio of the mean values between data and Monte Carlo.
Dashed lines represent the systematical uncertainty of 2% for the LAr calorimeter calibration. The mb99
data are shown.
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Figure 4.23: (a) Mean values of the Pt balance as a function of γh for data (closed points) and Monte
Carlo (open squares). (b) The corresponding ratio of the mean values between data and Monte Carlo.
Dashed lines represent the systematical uncertainty of 2% for the LAr calorimeter calibration. The mb99
data are shown.

4.6 Run selection

During data taking, the stream of events is split into so called luminosity runs. A run is a set
of events collected by the experiment under similar conditions. The run size can vary and is
not fixed. Each run has an integrated luminosity value. In general, various important database
information is treated as being run dependent and it is stored separately for different runs.

The first step in the analysis is a preselection of the data sample on a run by run basis. This
step ensures that the detector was in a stable condition and periods with hardware problems
are not downgrading the quality of the measurement. The following criteria were applied:

• Hardware status - All relevant readout branches must be included in the detector readout
and corresponding detector components must be operational. A run is rejected if at least
one HV alarm bit is on for more than 20 % of the integrated luminosity recorded in this
run. The luminosity is corrected accordingly. The following subdetectors were required
to have nominal HV status: SpaCal, BST, LAr, BDC, central trackers and the luminosity
system.
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Figure 4.24: Experimental distributions of the fraction of yh contributed by tracks (open circles), LAr
calorimeter (closed circles) and SpaCal (open boxes) for the mb99 (a) and svtx00 (b) data sets. The
histograms correspond to the Monte Carlo simulations. The fraction of subtracted noise is displayed by
open triangles and corresponding ratio between data and Monte Carlo is shown for the mb99 (c) and
svtx00 (d) data sets. Grey bands mark the systematical uncertainty of 10% for the noise description.

• Large prescales of triggers - In order to avoid runs with large trigger prescales, the
prescale factors were limited to 8 for all subtriggers used. In fact, almost all runs fulfil this
criterium.

• BST performance - Runs with downgraded performance of BST were removed from the
sample and only runs with stable and understood response were considered. More details
on the BST treatment were presented in Section 4.4.

• Run quality - Each run is classified according to the operation status of the main detector
components as good, medium and poor. In runs with run quality poor an obvious hardware
or software problem was found and, consequently, these are rejected from the analysis
sample.

4.7 Event selection

In the presented analyzes the event selection is based mainly on the SpaCal calorimeter and the
BST tracker. The number of selection cuts is kept as low as possible in order to keep low bias
of data. Signal selection and background rejection of the imposed cuts is studied and aimed to
act in the same manner on both data and simulations.

The focus on the electron reconstruction with BST makes the analysis truly inclusive since it
does not rely on the hadronic final state properties. Events are detected and reconstructed even
if the vertex is not found by the central tracker e.g. in some diffractive DIS processes.
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Main selection cuts
Cut mb99 svtx00 mb99, high y

e energy cut 6.9 < Ee < 32 GeV 4 < Ee < 15 GeV
BST vertex |zv − 5| < 30 cm |zv − 70| < 30 cm |zv − 5| < 30 cm

Cluster radius < 4 cm
E − pz cut > 35 GeV > 40 GeV
Pt balance > 0.3 for Ee > 20 GeV -

Complementary cuts
Fiducial cut ineff. areas cut ∧ RSp > 10 cm ∧ RSp > 12 cm

central tracker - ∃ vertex ∧ Ntracks > 0
Hadronic fraction < 15 %

Veto energy < 1 GeV

Table 4.4: Summary of the DIS selection cuts used in presented analyzes.

The prime task of the event selection is to identify the scattered electron. In the main part
of the analysis, namely for inelasticity y < 0.5, the electron energy is higher than that of the
hadronic jet. Thus a SpaCal cluster with maximum deposited energy, so called leading cluster, is
considered to be the electron candidate. Also for higher inelasticity values the leading cluster still
remains a reliable candidate. However, for largest values of inelasticity y in mb99 analysis based
on the subtrigger s9 except the leading cluster as well the other SpaCal clusters were considered
in the case that the leading one have not passed the electron selection criteria. This treatment of
electron candidates is referred to as energy ordering. Another possibility is Pt ordering where the
candidates are ordered according to their Pt whilst the candidate with largest Pt is considered
to be the scattered electron. This ordering is consistent with energy ordering within 1% of the
measured cross section [49].

At high cluster energies4 the signal in SpaCal is almost background free and the event selection
is focused on the kinematics reconstruction rather than on the background suppression. At low
energies, corresponding to high y, the photoproduction contributes to the signal background.
Hence, the background suppression and the electron identification are tasks of great importance.

For both data samples the event selection cuts are almost identical, see Table 4.4. A SpaCal
electron candidate cluster is the basis of the event selection. For the bulk analysis, based on
subtriggers s0 and s3, the electron candidate energy is required to be in the region where s0
has almost 100 % efficiency, i.e. above approximately 6.9 GeV. For the high y analysis, based
on the subtrigger s9, this cut is lowered to 4 GeV and s9 inefficiency is corrected accordingly.
In the next step, a track in BST corresponding to that cluster is required. This requirement
significantly suppresses the photoproduction background, which is mostly due to photons from π
decays misidentified as scattered electrons in SpaCal. Furthermore, the BST vertex is required
to be reconstructed within a certain region around the mean vertex position. This requirement
removes the contribution of the proton beam satellite bunches at larger values of zv, which is
not simulated in Monte Carlo simulations. The mean shift of the forward (backward) satellite
bunch is roughly 70 cm (-70 cm) compared to the main bunch. Hence, a cut tolerance of ±30 cm
w.r.t. the mean position is chosen which is safe for satellite bunch rejection and corresponds to
roughly 3σ of DIS signal events.

4At energies above approximately 15 GeV corresponding to y ≈ 0.5 at low Q2.
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The photoproduction background is further suppressed by the cut on the SpaCal cluster radius
and on total E − pz. The latter cut is essentially requirement that all of kinematically relevant
outgoing particles are detected in the H1 detector. Hence, when an electron in the photoproduc-
tion events escapes detection, the value of E−pz of such an event is significantly lower than the
expected value 2 × Ebeam

e . In the svtx00 data analysis this cut is relaxed if the sigma method
is used in the event kinematics reconstruction. This is done to increase statistics of ISR events
dominating at Q2 < 1 GeV2 and low y.

At values of very low y, high x, the hadronic final state particles can partially be scattered below
the forward modules of the LAr calorimeter and escape detection. In the low Q2 kinematic region
of the presented analysis the losses are especially pronounced at low photon-proton system mass
squared W 2 = Q2 x/(1 − x) + M2

p , where the resonance region is accessed. This contribution
is missing in the DJANGO simulations, where events of W < 5 GeV are not generated. Whilst
it is possible to add HERWIG simulations to DJANGO in order to describe the region of low
W 2, in this analysis it is preferred to control the hadronic final state and its losses via a cut
on the balance of transverse momenta of the hadronic final state and the scattered electron,
δbal = P had

t /P el
t . It was shown in [49] that cut on δbal > 0.3 for electron candidates with

E′
e > 20 GeV removes more than 99% of mentioned low W events.

An electron candidate track in the BST is extrapolated to the SpaCal. Fiducial cuts are applied
for events with electron candidate clusters in SpaCal cells with low efficiency, bad response and
also at the edge of acceptance. In both data and simulations the fiducial cuts are performed in
the beam coordinate system in order to ensure identical kinematic phase-space coverage.

The list of cuts is enclosed by the cut on the hadronic fraction of the electron candidate energy,
to suppress contributions of hadrons misidentified as electrons, and by the cut on energy in the
veto layer of SpaCal. The latter cut is used to suppress losses of energy deposits at very high
polar angles, close to the edge of SpaCal acceptance at low radii.

4.8 PHOJET normalisation

A large background contribution at highest values of inelasticity y, low scattered electron ener-
gies, is due to the photoproduction processes where a quasi-real photon is exchanged between
the electron and the proton. Its four momentum transfer squared Q2 is extremely low, hence,
the scattered electron polar angle is close to the incident one and the electron is usually lost in
the beam pipe. However, particles of the hadronic final state can be detected in SpaCal and may
fake a low energetic electron signal due to the very high rate of those events. A major part of this
background are photons from π0 decays which can be well suppressed by a track requirement in
BST, as it was mentioned in the event selection section. The remaining photoproduction back-
ground consists of converted photons which give a signal in BST and of charged hadrons. In this
analysis this background is estimated using PHOJET simulations and statistically subtracted
from the data. Thus an understanding of the photoproduction background and of the PHOJET
luminosity is an important task for the high y analysis.

The scattered electron from a photoproduction event can be eventually detected in the electron
tagger (ET) calorimeter, see Section 3.2. ET acceptance, however, is limited and only a small
fraction of events with certain kinematics can be detected. The electron tagger acceptance as
a function of the inelasticity y is depicted in Figure 4.25 (a) and it is calculated on a run-
dependent basis. In the H1SIM simulation code the electron tagger is not included. Hence, the



86 Chapter 4. Data analysis

a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
y

E
T

 a
cc

.

b)

0

100

200

300

400

500

600

700

0 10 20 30
EET /GeV

ev
en

ts

Figure 4.25: Electron tagger acceptance as a function of inelasticity y (a) and a distribution of the
scattered electron energy as measured by the electron tagger (b) for the mb99 data set (closed points)
and PHOJET simulation (full line).
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Figure 4.26: A distribution of the polar angle measurement (a) and SpaCal energy deposit (b) of
misidentified electron candidate in the tagged events sample (mb99 data set).

acceptance function is used instead to re-weight PHOJET events according to the inelasticity on
the generator level. The run-dependence is simulated by splitting the whole PHOJET sample
into sets corresponding to single runs in the data, as defined by their luminosity.

A sample of so called tagged events was used to cross-check the PHOJET simulations. The
event selection is identical to that of DIS high-y analysis, except the E−pz cut which is relaxed.
This strategy is used in order to keep the photoproduction analysis close to the DIS analysis.
The energy in the electron tagger is required to be greater than 7 GeV, in the region of good
electromagnetic shower containment. The energy deposit in the photon tagger (PT) is required
not to exceed 2 GeV.

Figure 4.25 (b) shows a comparison of the scattered electron energy measured in the electron
tagger for data and PHOJET simulations. Figure 4.26 compares distributions of the misidentified
electron candidate in SpaCal, i.e. of the background to DIS measurement. The distributions
are in good agreement.

The PHOJET luminosity is normalized onto the data via integrals IData and IPHOJET over the
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Figure 4.27: Re-weighting functions of interaction vertex z-position for DJANGO simulations of
mb99 (a) and svtx00 (b) data sets.

tagger energy EET distributions of data and simulations, respectively. It is expressed as

LPHOJET =
IPHOJET

IData
· LData, (4.22)

where LData is the luminosity of the data.

4.9 DJANGO-final adjustments

The DJANGO simulations were performed with given structure functions which do not neces-
sarily describe the data. Namely for the mb99 and svtx00 samples proton structure functions F2

from GRV and MRST leading order fits5 were used, respectively. In both cases the longitudinal
structure function was set to zero during the event generation. These functions were selected
due to their reasonable behaviour over the whole phase-space of the measured kinematic range.
In the analysis code events were re-weighted according to the preferred structure functions by a
weight

wσr =
σan

r (Q2, x)
σgen

r (Q2, x)
, (4.23)

where Q2 and x are values used on the generator level and calculated at the hadronic vertex.
Here σgen

r and σan
r are reduced cross sections for the structure function sets on the generator

level and in the analysis, respectively.

Besides the cross section re-weighting the events were re-weighted according to their interaction
z-vertex position. The zv distribution in the Monte Carlo simulations is a gaussian distribution
with certain mean position and width. Since in the data the vertex distribution slightly differs
from simulations a procedure, called vertex re-weighting, is introduced in order to re-weight
simulated events according to their vertex position and thus match the vertex distribution in

5The corresponding PDFLIB set numbers are 5004 and 3075.
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Q2 [GeV2] = 0.3162, 0.4217, 0.5623, 0.7499, 1.00, 1.334, 1.778
2.371, 3.162, 4.217, 5.623, 7.499, 10.00, 13.34

ymb99 = .0010, 0.0024, 0.0061, 0.015, 0.028, 0.050, 0.090
0.16, 0.29, 0.53, 0.67, 0.79, 0.89

ysvtx00 = 0.00078, 0.0061, 0.015, 0.038, 0.090
0.16, 0.29, 0.53, 0.67, 0.79, 0.89

yISR
svtx00 = 0.00078, 0.0061 0.038, 0.16, 0.53, 0.67, 0.79, 0.89

Table 4.5: Values of bin boundaries in presented analysis.

the data. Knowledge of the beam parameters is essential because it directly enters the polar
angle measurement and thus the acceptance of the detector. Although the beam parameters
vary for each luminosity fill of HERA, since both data sets were taken in short time periods
with smooth running, the correction is applied for all runs of a particular data set in the same
manner.

The event selection for the vertex position analysis is based on SpaCal inclusive triggers s0
and s3. Clusters are pre-selected with energies E′

e > 15 GeV, corresponding to low y. At least
one track and a reconstructed vertex are required in the central tracker in a polar angle region
160◦ < θe < 175.6◦ for the mb99 sample and 165◦ < θe < 177◦ for svtx00. This requirement
is due to minimization of SpaCal acceptance effects on the vertex distribution measurement.
A Gaussian fit is performed to the vertex distribution for both data and simulations and a
re-weighting function for simulated events is calculated according to

wz =
G(zdata

v , σdata
z )

G(zMC
v , σMC

z )
, (4.24)

where G stands for the normalized Gaussian distribution, zv and σz are parameters from the fit
to the data and simulations. Figure 4.27 shows the re-weighting function for the mb99 (a) and
svtx00 (b) data samples.

4.10 Cross section measurement

The cross section determination in the presented analysis was performed in bins of Q2 and
y. The reason for selecting the inelasticity y instead of Bjorken x variable is that it is more
appropriate for the high y region. Furthermore, many detector effects are y related, for example
the vertex reconstruction efficiency, resolution etc.

Bin boundaries are enlisted in Table 4.5 and corresponding central values in Table 4.6. For
svtx00 data set the y bins are wider than those of the mb99 data. This is due to the worsened
hadronic reconstruction in the former data set and due to smaller statistics of the whole sample.
Furthermore, bins at medium y and Q2 < 1 GeV2, which are dominated by initial state radiation
(ISR) events, were enlarged due to a lower reconstruction resolution of these events and in order
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Q2 [GeV2] = 0.35, 0.5, 0.65, 0.85, 1.5, 2.0, 2.5
3.5, 5.0, 6.5, 8.5, 12.0

ymb99 = 0.0017, 0.0043, 0.011, 0.022, 0.039, 0.070
0.13, 0.23, 0.41, 0.60, 0.73, 0.84

ysvtx00 = 0.002, 0.01, 0.024, 0.060
0.13, 0.23, 0.41, 0.60, 0.73, 0.84

yISR
svtx00 = 0.002 0.015, 0.09, 0.29, 0.60, 0.73, 0.84

Table 4.6: Values of bin centers in presented analysis.

to increase the statistics per y interval. Hereafter the bins corresponding to ISR bin boundaries
are referred to as ISR bins.

The double differential reduced cross section in a particular bin is calculated as follows

d2σr

dx dQ2
=
Ndata −Nγp

Ldata

1
A

1
1 + δ

βBC , (4.25)

where Ndata and Nγp is the number of measured and background events, respectively, which
passed the DIS selection criteria. Luminosity of the data corrected for the satellite bunch
contribution is denoted as Ldata. The acceptance A is defined as A = N rec/Ngen, i.e. as a
ratio of the number of reconstructed and generated events in the bin. Radiative corrections are
represented by the quantity δ = σrad/σBorn − 1, where σrad and σBorn stands for bin integrated
full and Born cross section, respectively. Bin center corrections are accounted for by a factor
βBC , which is defined as

βBC =
d2σMC

r

dx dQ2

1
σBorn

. (4.26)

Quantities A, δ and βBC are calculated using Monte Carlo simulations. The above formula (4.25)
becomes more simple in the case that radiative corrections are already included in the simula-
tions, then Ngen = σrad LMC and denoting NMC = N rec, for clarity, one obtains

1
A

1
1 + δ

βBC =
σrad LMC

NMC

σBorn

σrad

d2σMC
r

dx dQ2

1
σBorn

=
LMC

NMC

d2σMC
r

dx dQ2
. (4.27)

Hence, eq. (4.25) can be re-written into the so called Monte Carlo method form

d2σr

dx dQ2
=
Ndata −Nγp

NMC

LMC

Ldata

d2σMC
r

dx dQ2
, (4.28)

which significantly simplifies the cross section calculation. In fact, the measured cross section
is proportional to the one used in Monte Carlo simulations and re-weighted by the luminosity
normalized ratio of the number of DIS events in a particular bin in data and simulations.
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Figure 4.28: Purities (upper right corner) and stabilities (lower left corner) and in bins of Q2 and y
for kinematics reconstruction with electron (a) and sigma (b) method. Analysis of the mb99 data set.
Values are in percent.

4.10.1 Bin selection

The cross section measurement is performed in intervals ofQ2 and y as introduced in the previous
section. For each of these bins purity and stability quantities are defined as

purity =
N rec.&gen.

N rec.
stability =

N rec.&gen.

Ngen.
, (4.29)

where N rec. and Ngen. are numbers of events reconstructed and generated, respectively, in a
particular bin. The number of events which at the same time are reconstructed and generated is
denoted as N rec.&gen.. The purity controls the contamination of migrating events from adjacent
bins into a particular measurement bin. The stability corresponds to event migration out of
bins where they actually belong to. The values of both quantities are by definition bounded to
interval 〈0, 1〉.
The purities and stabilities for the electron method used in the event reconstruction are given
in Figure 4.28 (a) and 4.29 (a) for mb99 and svtx00, respectively. The values of both quantities
are high, about 60-70%, in the high y region. Due to the 1/y factor in the electron method the
resolution of ye rapidly degrades what causes a decrease of purities and stabilities at low y.

The sigma method has at high y worse resolution than the electron method. Hence purities and
stabilities are worse (see Figure 4.28 (a) and 4.29 (b)). However, it covers the whole phase-space
with approximately comparable values of purities and stabilities of about 30-50%. Thus this
method is preferred at low y but as well it may be used at higher values of y. Only bins with
purity exceeding 30% are considered further in this analysis.

In the ISR bins, which differ from the nominal bins shown in Figures 4.28 and 4.29, the purities
are on the level of about 40% for all bins considered. These are bins at Q2 < 1 GeV2 and at
8.10−4 < y < 0.16.

The following bin selection strategy was used in order to exploit fully the available data potential:
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Figure 4.29: Purities (upper right corner) and stabilities (lower left corner) in bins of Q2 and y for
kinematics reconstruction with electron (a) and sigma (b) method. Analysis of the svtx00 data set.
Values are in percent.

• In both mb99 and svtx00 data sets the main part of this analysis is based on s0 and s3
subtriggers and is limited to the range of safe BST and SpaCal acceptance. At high y
events are preferably reconstructed with the electron method and at low y with the sigma
method.

• The analysis based on the s9 trigger in the mb99 data set is used to measure only in the
highest y bin. Lower y bins are better covered by s0 and s3 subtriggers. Only the electron
method is employed in this case.

• In the svtx00 data set the bins on the edge of BST and SpaCal acceptance are measured
with the sigma method if purities and stabilities of these bins are acceptable. The sigma
method is preferred rather than the electron method to minimize edge effects and to avoid
acceptance cuts in these bins.

• A low Q2 (< 1 GeV2) medium and low y is measured with the sigma method by making
use of the ISR events.

The latter part of the analysis employs ISR events in a novel way. Usually radiative events are
efficiently removed by the E − pz cut. Here, however, they are retained and thus an unexplored
region of phase space becomes accessible. The analysis is technically identical to the non-
radiative measurement and the same analysis code is used. The difference is in the evaluation
of the Bjorken x from Q2

Σ and yΣ via a different center of mass energy s due to the photon
emission. The mean incoming electron energy is obtained bin-wise as the arithmetical mean of

Ee =
Σ + E′

e(1 − cos θe)
2

. (4.30)

This formula is valid for both non-radiative and ISR events with a collinear photon emission. An
example of Ee distribution in two measurement bins is shown in Figure 4.30. In the example bin,
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Figure 4.30: Distributions of the incoming electron energy Ee as defined in eq. (4.30) for a bin dominated
by ISR (a) and a bin with little ISR contribution (b). Data are represented by closed points while the
histograms correspond to the Monte Carlo simulation.
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Figure 4.31: Kinematic plane coverage and bin selection of the mb99 (a) and svtx00 (b) data sets
in Q2-x kinematical plane. The electron reconstruction method is used in open boxes while the sigma
method is used in shaded and hatched boxes. The hatched boxes correspond to bins measured with ISR
events. The bins centers are marked by crosses. The dashed lines correspond to a limit of safe BST
and SpaCal acceptance. It is evaluated as a constant polar angle θe corresponding to the nominal vertex
position plus 1σ of its distribution and radius R = 10 cm in the SpaCal plane.

where ISR is dominating, the incoming electron energy is much lower than the beam energy,
approximately two times on average. In measurement bins where ISR contributes little the
HERA electron beam energy is obtained.

The final selection of bins and event kinematics reconstruction methods is shown in Figure 4.31.
Bins where the kinematics is reconstructed with the electron method and sigma method are
marked by open and filled boxes, respectively. Hatched boxes correspond to bins measured with
ISR events, their x-position is corrected for the mean incoming electron energy as calculated
according to eq (4.30).



4.10. Cross section measurement 93

4.10.2 Measurement uncertainties

The uncertainties of the cross section measurement are divided into four different types

• Luminosity measurement - The data have a normalisation uncertainty of 1.3% (mb99
data) and of 1.8% (svtx00 data). This uncertainty is not included in any error bar subse-
quently shown.

• Statistics - The statistical uncertainty of the data is typically 1-2% for the mb99 data set
and 1-5% for the svtx00 data set, depending on the kinematic region.

• Uncorrelated systematics - An about 2% uncorrelated cross section uncertainty is due
to the simulated event statistics. The imperfect description of the BST track reconstruction
efficiency contributes by 1% for the mb99 data set and 2% for the svtx00 data set. Further
contributions are due to the uncertainty of the radiative corrections (1%) and from the
determination of the SpaCal trigger efficiency (0.5%).

• Correlated systematics - There are five individual sources contributing to the correlated
cross section uncertainties:

1. Uncertainties of 0.3% at Ee = 27 GeV and 2% at 7 GeV [61] were assigned to the
electron energy scale for the SpaCal calorimeter. The uncertainty was treated as a
linear function of Ee interpolating between the results at 27 GeV and 7 GeV.

2. The uncertainty on the scattered electron polar angle measurement is 0.2 mrad. The
corresponding error on the cross section measurement is typically well below 1% but
larger at lowest values of Q2.

3. The uncertainty on the hadronic energy scale comprises a number of systematic error
sources corresponding to the yh decomposition: an uncertainty of the LAr hadronic
energy scale calibration of 2%, an uncertainty of 3% for the yh fraction carried by
tracks and a 5% uncertainty of the SpaCal hadronic energy scale.

4. The uncertainty on the hadronic energy scale is further affected by the subtracted
noise in the LAr calorimeter. The noise is described to the level of 10% and the cor-
responding error is propagated to the cross section uncertainty. The largest influence
is in the low y region, which is measured with the sigma method.

5. The uncertainty due to the photoproduction background at large y is estimated from
the normalisation error of the PHOJET simulations to about 20%. At low and
medium values of y � 0.5 it is negligible.

The total systematic error is calculated from the quadratic summation over all sources of the
uncorrelated and correlated systematic uncertainties. The total error of the DIS cross section
measurement is obtained from the statistical and systematical errors added in quadrature. In
the main region of the analyzed data sets it is about 2-3% for the mb99 data set and 3-4% for the
svtx00 data set. At the acceptance edges the errors increase. At highest y bins of the mb99 data
set, measured with the s9 subtrigger, the dominant error contribution is due to the PHOJET
normalisation. Bins measured with ISR events are affected by limited statistics, the total error
fluctuates around 10%. For full error tables of the presented measurement see Appendix C.
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4.10.3 Results

The analysis procedure, as described in this thesis, was implemented in the analysis code. To
cross check whether the detector response is correctly described in the Monte Carlo simulations
it is useful to compare distributions of the main kinematic and technical variables of the analysis.
Such a comparison is shown in Figure 4.32 for the case of the mb99 data set. The distributions of
the scattered electron energy and polar angle (upper row) in the data are compared to the Monte
Carlo simulations. A very good agreement is found demonstrating a well understood response of
the sub-detectors involved and the reliable reconstruction of kinematics from the electron side.
The fact that also the hadronic side is well understood is demonstrated in the lower row plots of
Figure 4.32, where the total E − pz and the balance of transverse momenta P h

t /P
e
t are shown.

Again, good agreement is found between the data and the simulation. Reconstruction of the
kinematic variables is presented in Figure 4.33 of the four momentum transfer squared Q2 and
Bjorken x reconstructed from the electron side and of the inelasticity y reconstructed with the
sigma method.

Distributions of the main variables are shown in Figure 4.34 for the analysis at highest y with
the s9 subtrigger. The data and simulations are found to be in good agreement. At lowest
scattered electron energies, below 5 GeV, the data have a tendency to overshoot the simulations.
This effect is not attributed to the normalisation of the PHOJET simulations and may hint to
a slightly different behaviour of FL than assumed in the simulation.

Event control distributions for the svtx00 data set are shown in Figure 4.35. The distribution of
the scattered electron energy and polar angle (upper row) in the data are compared to the Monte
Carlo simulations. Kinematic variables Q2 and y as reconstructed with the electron method are
shown in the second row. The corresponding quantities reconstructed with the sigma method
are presented in Figure 4.36, complemented by the vertex position distribution. Overall, the
control distributions show good agreement between the data and the Monte Carlo simulations.
A discrepancy between data and Monte Carlo simulation for the polar angle θe measurement
when reaching 3.1 rad is related to edge effects of BST and SpaCal acceptance.

The cross section determination has been performed using the two different reconstruction meth-
ods, the electron and the Σ method. This allows to cross check the central values of the cross
section and also to estimate part of the systematic errors. In Figures 4.37 and 4.38 the com-
parison of the DIS cross sections determined by the electron and Σ methods are presented for
both analyzed data samples, mb99 and svtx00. Results are found to be in good agreement. The
fact that both cross sections agree so well despite degrading resolutions of the electron method
reconstruction towards values of low y confirms the correct calibrations of the energy scales.

The comparison of the DIS cross section with and without the E − pz cut for svtx00 data is
shown in Figure 4.39. It is seen that results are consistent, however, for low values of Q2 only
the relaxation of the E − pz cut leads to reliable results at large x.

The results on the cross section measurement presented in this thesis are summarized in Fig-
ure 4.40 and compared with the cross sections measured by ZEUS [38] and NMC [66] collabo-
rations in the Q2 acceptance region of the present analysis. The inner error bars represent the
statistical errors. The full errors include the statistical and systematic errors added in quadra-
ture. In the regions of overlaps in x the data presented here confirm the former measurements
within the uncertainties quoted.
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Figure 4.32: Event control distributions for the mb99 data set: energy of the scattered electron and its
polar angle, E−pz and balance of the transverse momenta Ph

t /P
e
t . Data are represented by closed points

while the histograms correspond to the Monte Carlo simulation of DIS and the small photoproduction
background (shaded).
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Figure 4.33: Event kinematics distributions for the mb99 data set: four momentum transfer squared
Q2

e, Bjorken xe and inelasticity yΣ. Data are represented by closed points while the histograms correspond
to the Monte Carlo simulation of DIS and the photoproduction background (shaded).
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Figure 4.34: Event control distributions for the high y analysis of the mb99 data set: energy of the
scattered electron and its polar angle and electron method reconstruction of Q2. Data are represented
by closed points while the histograms correspond to the Monte Carlo simulation of DIS and the photo-
production background (shaded).

4.11 Rise of F2(x, Q2) at low Q2

The cross section measurement, presented in the previous section, is used for the phenomeno-
logical analysis of the F2 rise, as explained in in Section 1.7. Data are selected in the y < 0.35
range to suppress the contribution of the structure function FL at high y. To further improve the
precision of the measured cross section even and odd adjacent Q2 bins are combined into one Q2

bin, starting from Q2 = 0.65 GeV2. The cross section after re-binning is shown in Figure 4.41.
The total errors of the mb99 and svtx00 data sets in the main kinematic region reach level of
1.5-2% and 2-3%, respectively.

The x dependence of F2 at low x is consistent with a power law:

F2(x,Q2) = c(Q2) · x−λ(Q2). (4.31)

The functions λ(Q2) and c(Q2) are determined from fits of the form (4.31) to the F2 structure
function data. The fits are restricted to the region x < 0.01. Uncorrelated and statistical
uncertainties of the λ(Q2) and c(Q2) determination include errors of the fit to the F2 points
with their statistical and uncorrelated systematic errors. The correlated systematic uncertainties
are treated separately and added in quadrature to the total error. In this treatment the F2

points with statistical and uncorrelated systematic errors are shifted according to the correlated
systematic errors and re-fitted. The corresponding systematic uncertainty is the difference of
parameters λ and c as compared to the central fit parameters. The total correlated systematic
uncertainty consists of uncertainties from five correlated error sources added in quadrature.

The results are presented in Figure 4.42 and in Table C.3. At Q2 > 2 GeV2 the extracted
function λ(Q2) is consistent with the extrapolation of the linear fit to larger Q2 data by the H1
collaboration [10]. At low Q2 < 2 GeV2 the extracted points are found to be above the linear fit
extrapolation.

4.12 FL(x, Q2) determination

The new low Q2 data are used to determine the FL structure function for the first time in the
transition region, for Q2 < 1 GeV2. Previously, the FL data were obtained with the so called
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Figure 4.35: Event control distributions for the svtx00 data set: energy of the scattered electron and its
polar angle, E−pz and balance of the transverse momenta Ph
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t . Data are represented by closed points

while the histograms correspond to the Monte Carlo simulation of DIS and the small photoproduction
background (shaded).

0

2000

4000

6000

8000

10000

12000

50 75 100

zv /cm

ev
en

ts

0

1000

2000

3000

4000

5000

0 2.5 5
Q2Σ

ev
en

ts

0
500

1000
1500
2000
2500
3000
3500
4000
4500

-3 -2 -1 0
log(yΣ)

ev
en

ts

Figure 4.36: Event kinematics distributions for the svtx00 data set: four momentum transfer squared
Q2

e, Bjorken xe and inelasticity yΣ. Data are represented by closed points while the histograms correspond
to the Monte Carlo simulation of DIS and the photoproduction background (shaded).



98 Chapter 4. Data analysis

0

0.5

1

1.5
σ r=

F
2-

y2 F
L
/Y

+
Q2 = 3.5 GeV2 Q2 = 5 GeV2

10
-5

10
-3

x

Q2 = 6.5 GeV2

0

0.5

1

1.5

10
-5

10
-3

x

Q2 = 8.5 GeV2

10
-5

10
-3

x

Q2 = 12 GeV2

0

0.5

1

1.5
σ r=

F
2-

y2 F
L
/Y

+

10
-5

10
-3

x

0

0.5

1

1.5

10
-5

10
-3

x
10

-5
10

-3

x

Figure 4.37: Reduced DIS cross section measurement based on the mb99 data with the electron (closed
points) and sigma (open points) methods. The error bars correspond to the statistical uncertainty only.
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Figure 4.38: Reduced DIS cross section measurement based on the svtx00 data with the electron (closed
points) and sigma (open points) methods. The error bars correspond to the statistical uncertainty only.
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Figure 4.39: Reduced DIS cross section measurement based on the svtx00 data reconstructed with the
sigma method with (open points) and without (closed points) E − pz cut. For even lower Q2 only the
relaxation of the E − pz cut leads to reliable results at large x.

derivative method [12, 61]. Here a new method, the so called shape method, see also [63, 64], is
used to obtain the FL data with a better precision. The method is motivated by the following
observations

1. The shape of the cross section bending at y � 0.5, see Figure 4.41, is driven by
the steep kinematic factor y2/Y+ rather than by the x dependence of FL.

2. The result on FL from the derivative method consists in a few points close in y
with sizeable errors. The precision of the measurement does not allow to resolve
the x dependence of FL(x,Q2) on this basis.

It follows from the second point that a single, more precise FL point per Q2 bin is desirable
rather than a number of less precise points in an anyhow very narrow range of x corresponding
to the highest y region. The data do not constrain the x dependence of FL. Consequently,
the FL structure function is considered to be constant (FL = FL(Q2)), for each Q2 bin in the
narrow x range, high y range of sensitivity to FL governed by the y2/Y+ term. The effect of a
non-constant FL is added to the measurement error.

In agreement with the results presented in the previous section, the method assumes that the
structure function F2(x,Q2) behaves like c · x−λ at fixed Q2. On this basis the reduced cross
section distribution in each Q2 bin can be parameterized and fitted as:

σFIT = c · x−λ − y2

1 + (1 − y)2
FL. (4.32)
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Figure 4.40: Measurement of the inclusive DIS cross section with the svtx00 and mb99 data sets. This
analysis (circles) is compared to data from ZEUS (BPT97, triangles) [38] and from NMC (stars) [66]. The
curves are from a phenomenological parametrisation of the cross section calculating F2 within the fractal
proton structure model and using a GBW dipole model prediction for FL (solid) and phenomenological
F2 parametrisation ALLM97 (dashed) [67].
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Figure 4.41: The reduced cross section as a function of x in bins of Q2 as determined in this thesis.
The inner error bars represent the statistical errors. The full errors include the statistical and systematic
errors added in quadrature. The dashed lines show a function of the form c · x−λ representing the F2

contribution to the fitted cross section. The solid lines show fits of the form σr = c · x−λ − y2/Y+ FL ,
from which FL is extracted in the shape method, see text.
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to F2 structure function data presented in this thesis. The straight line corresponds to a fit of the
form a ln[Q2/Λ2] using published H1 data (blue points [10]) for Q2 ≥ 3.5 GeV2, the dashed line to its
extrapolation to lower values of Q2. The dotted line is an interpolation between the λ behaviour at large
Q2, as given by the fit, and in the photoproduction limit Q2 → 0 where λ ≈ 0.08.
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Figure 4.43: Determinations of the function λ(Q2) from fits of the form F2(x,Q2) = c(Q2) · x−λ(Q2)

to F2 structure function data presented in this thesis. These are compared to the FL fit result which
includes all data and FL according to eq. (4.32) while the standard λ determination excludes the FL

affected region demanding y < 0.35. The straight line corresponds to a fit of the form a ln[Q2/Λ2] using
published H1 data [10]) for Q2 ≥ 3.5 GeV2, the dashed line to its extrapolation to lower values of Q2.
The dotted line is an interpolation between the λ behaviour at large Q2, as given by the fit, and in the
photoproduction limit Q2 → 0 where λ ≈ 0.08.
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Figure 4.44: Determination of FL(x,Q2) (closed squares and circles) from low Q2 cross section measure-
ments. The inner error bars correspond to the statistical errors. The full errors include the statistical,
uncorrelated and correlated systematic errors added in quadrature. The result is compared to various
NLO and NNLO QCD fits and to the previous H1 determination [12] (triangles).

The method is technically identical to the extraction of c and λ in the previous section with
one more parameter added. Furthermore, the full kinematic range of the cross section measured
is used, i.e. without the y < 0.3 cut. The fit parametrisation (4.32) provides an excellent
description of the reduced cross section, see Figure 4.41. The c and λ values extracted from
this fit turn out to be in a good agreement with those obtained in the previous section. See
Figure 4.43 for the comparison of lambda.

The correlated, uncorrelated and statistical errors are treated in the same manner as in the case
of the c and λ determination. Additionally, the error due to a non-constant FL is estimated
comparing the fit results using the constant FL approximation with those using the steepest
theoretical estimate (H1 QCD fit [12]).

The results are presented in Figure 4.44 together with predictions of various higher order QCD
fits, partially extrapolated below their minimum Q2 of applicability. The values of FL(x,Q2) are
consistent with the previous determination by the H1 Collaboration (closed triangles), but are
more precise and extend the kinematical region, in which FL(x,Q2) is determined, to lower Q2.
As can be seen from the different curves there is a significant uncertainty for the FL prediction
in the NLO QCD fits. This reflects the uncertainty of the initial gluon distribution. The H1
data clearly favor a positive, not small FL at low Q2 and small x, as is preferred by the H1 and
Alekhin’s fits while the MRST and ZEUS predictions are low. A negative FL value at small x is
experimentally ruled out by the measured turn-over of the reduced cross section, see Figure 4.41,
which leads to FL > 0. It becomes evident from Figure 4.44 that the x dependence of FL needs
to be measured which requires to operate HERA at reduced proton beam energy.

An overview of all current H1 data on FL(x,Q2), from Q2 = 0.75 GeV2 to 700 GeV2 and for fixed
W = 276 GeV, is given in Figure 4.45. It comprises the results of this analysis, the results based
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Figure 4.45: Q2 dependence of FL(x,Q2) (at fixed W = 276GeV), summarizing the data from the H1
experiment. The inner error bars represent the statistical errors. The full errors include the statistical,
uncorrelated and correlated systematic errors added in quadrature. The result is compared to various
NLO and NNLO QCD fits.

on data collected in 96/97 [12] and also the recently published high Q2 results from e+p and
e−p data [65]. All QCD fits describe the data at larger Q2 while at lower Q2 similar conclusions
can be drawn as for the x dependence discussed above.



Summary

This thesis presents a new cross section measurement in the kinematic domain 0.35 ≤ Q2 ≤ 12 GeV2

using new data taken in special runs by the H1 collaboration. This measurement provides the
first precise low x data on the inclusive DIS cross-section in the transition region from the non-
perturbative to the deep-inelastic domain in a wide range of inelasticity y. Access to the extreme
regions of y is possible by using the Backward Silicon Tracker which at high y suppresses neu-
tral particle background and which at low y, where the hadronic final state escapes detection in
proton beam direction, restores efficiently the vertex reconstruction efficiency.

The region of large x at low Q2, below 1 GeV2, is accessed by using QED radiative events in
a new way, without an explicit detection of the radiated photon. The obtained cross section is
found to have a typical error on the level of 10% and is consistent with predictions based on
phenomenological parametrisations.

Based on the cross section data a novel method is introduced here to extract FL for the first
time at low Q2. The strong y dependence observed for the cross section at high y leads to
positive results of the longitudinal structure function down to lowest Q2. Indeed, the extracted
FL is found to be non-zero and positive for all values of Q2 where it is determined. Collecting
all H1 results, FL(x,Q2) data are presented in a wide Q2 range, from 0.75 to 700 GeV2. A
measurement of the x dependence of FL(x,Q2), independent of assumptions on F2(x,Q2) and
more accurately, can only be performed at HERA with a variation of the proton beam energy.

A completely new approach to study the proton structure at low x is introduced, by looking
at fractal patterns in the parton densities. The proton is seen as a multi-fractal and the cor-
responding fractal dimensions are determined by constructing a phenomenological model which
is fitted to the H1 data. This approach is found to describe the data excellently and can be
used to obtain deeper and complementary understanding of low x, Q2 physics. In this thesis a
prediction of the pion structure function F π

2 is discussed which is found to be consistent with
recent F π

2 data. Also a discussion on the ‘negativity’ of one of the determined dimensions is
presented. The low x behaviour of this model is compared to the GBW saturation model and
found to be consistent with the last version of the GBW model in the region of existing data
at low Q2. However, at even lower values of x the models have different behaviour due to the
saturation effect explicitly built in the GBW model.

To conclude, this thesis presents the first accurate HERA data on the inclusive ep scattering
cross section at low x for Q2 ∼ 1 GeV2 accessed with new instrumentation and novel analysis
methods to extract F2 and FL besides a new view on low x proton structure based on fractal
patters.
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Appendix A

Structure functions

The NC DIS cross section in the one-photon exchange approximation can be calculated from

σ ∼ LμνW
μν , (A.1)

where Lμν is the leptonic tensor known from QED. The hadronic tensor Wμν is not completely
known and can be expressed using P and q, the four-momenta of the interacting proton and the
virtual photon, respectively, combined with basic tensors of rank two1 in order to form a general
Lorentz tensor:

Wμν(P, q) = −W1gμν+W2
PμPν

M2
p

+iW3εμναβPαPβ+W4qμqν+W5(Pμqν+Pνqμ)+iW6(Pμqν−Pνqμ).

(A.2)

The Wi(P, q) functions are real functions of P and q, which depend on the internal structure of
the proton. Parity conservation leads to W3 = 0 and a gauge invariance requirement expressed
as qμWμν = 0 yields W6 = 0 and the following relations

W5(P, q) = −W2(P, q)
Pq

q2M2
p

W4(P, q) = W1(P, q)
1
q2

+W2(P, q)
(Pq)2

q4M2
p

. (A.3)

Thus out of originally six functions only two are independent. The terms proportional to qμ and
qν can be dropped since they would vanish anyway after contraction with the leptonic tensor
Lμν . Finally, the hadronic tensor can be written as

Wμν(P, q) = −W1(P, q)gμν +W2(P, q)
PμPν

M2
p

. (A.4)

1The basic tensors of rank two are the symmetric metric tensor gμν and the totally antisymmetric Levi-Civita
pseudotensor εμναβ .
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After contraction with the leptonic tensor Lμν one has

LμνWμν =
4(kP )
y

[
ν

Mp
W2

(
1 − y − M2

px
2y2

Q2

)
+ 2xW1

y2

2

]
. (A.5)

It is common to introduce new functions instead of W1 and W2

F1 ≡W1 F2 ≡ ν

Mp
W2 (A.6)

in terms of which the equation (A.5) reads

LμνWμν =
4(kP )
y

[
F2(x,Q2)

(
1 − y − M2

px
2y2

Q2

)
+ 2xF1(x,Q2)

y2

2

]
. (A.7)

Furthermore, it is useful to introduce the longitudinal structure function FL

FL(x,Q2) ≡ F2(x,Q2)

(
1 +

4M2
px

2

Q2

)
− 2xF1(x,Q2), (A.8)

which corresponds to the cross section of longitudinally polarized photons while F1 corresponds
to transversally polarized photons and F2 has contributions from both polarizations.

Thus evaluating the double differential cross section with the new set of structure functions the
following relation is obtained

dσ2

dxdQ2
=

2πα2

Q4x
Y+

[
F2(x,Q2) − y2

Y+
FL(x,Q2)

]
, Y+ = 1 + (1 − y)2, (A.9)

neglecting M2
px

2y2/Q2 in eq. A.7 as is possible in the HERA kinematic region. By convention,
the term in brackets is denoted as the reduced cross section

σr = F2(x,Q2) − y2

Y+
FL(x,Q2). (A.10)



Appendix B

Quantum path dimension in the
presence of a local potential

Feynman and Hibbs’ [21] consider the following Hamiltonian

H = − �
2

2m
Δ + V (x), (B.1)

where V (x) is an arbitrary local potential. The transition element from an initial state |xin, t = 0〉
to a final state |xfi, t = T 〉 is written as

〈xfi, t = T |xin, t = 0〉 =
〈
xfi

∣∣∣exp[− i

�
HT ]

∣∣∣xin

〉
=
∫

[dx(t)]exp
[ i
�
S[x(t)]

]
, (B.2)

where the integration is done over all paths starting in xin and ending at xfi, weighted by a
phase factor exp[ i

�
S[x(t)]]. The S[x(t)] is the classical action corresponding to the Hamiltonian

(B.1) for a particular path,

S =

T∫
0

dt
m

2
ẋ2 − V (x(t)). (B.3)

In analogy, the transition element for an operator F [x̂] is given as

〈F [x̂]〉 = 〈xin, t = T |F [x̂]|xfi, t = 0〉 =
∫

[dx(t)]F [x̂]exp
[ i
�
S[x(t)]

]
. (B.4)

Assume that time is divided into little slices δ (later the limit δ → 0 will be considered), then
the action can be expressed as

S =
i=1∑
N−1

δ
[m

2

(xi+1 − xi

δ

)2 − V (xi)
]
. (B.5)
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According to Feynman and Hibbs the following general relation holds

〈 ∂F
∂xk

〉
= − iδ

�

〈
F
∂S

∂xk

〉
. (B.6)

For the special case of F = xk a combination of equations (B.5) and (B.6) gives

〈1〉 =
i

�

〈
mxk

(xk+1 − xk

δ
− xk − xk−1

δ

)
+ δxkV

′(xk)
〉
. (B.7)

The potential term δxkV
′(xk) becomes negligible in the limit δ → 0 leading to usual commutation

relations of particle momentum and position operators

〈
m
xk+1 − xk

δ
xk

〉
−
〈
xkm

xk − xk−1

δ

〉
=

�

i
〈1〉. (B.8)

The second term on the l.h.s. can be advanced in time by one time slice δ

〈
xkm

xk − xk−1

δ

〉
=
〈
xk+1m

xk+1 − xk

δ

〉
+O(δ). (B.9)

Substituting (B.9) into (B.8) and considering the limit δ = Δt→ 0 one obtains

〈(xk+1 − xk)2〉 = − �δ

im
〈1〉,

〈(Δx)2〉 ∝ �

m
Δt. (B.10)

Furthermore, it is possible to prove the relation

〈(Δx)2〉 =
2
π
〈|Δx|〉2 (B.11)

and thus finally substituting (B.11) into (B.10) the following relation between the time and
space increments is obtained

〈|Δx|〉2 ∝ Δt. (B.12)

This relation is identical with relation (2.5) from Section 2.2 and implies df = 2 for the fractal
dimension of typical unmonitored quantum paths in the case of classical quantum mechanics.



Appendix C

Tables of the experimental results

This Appendix contains tables of the experimental results presented in this analysis. The DIS
cross section measurement and determination of the structure function F2 is presented in Ta-
bles C.1 and C.2 for mb99 and svtx00 data sets, respectively. Values in columns correspond to
(from left)

• the kinematic variables Q2, x and y of the bin centers. The value of Bjorken x variable is
calculated from the inelasticity y via eq. (1.4) where the center of mass energy s is evaluated
with the electron and proton beam energies of 27.55 GeV and 920 GeV, respectively.

• the result of the measurement of the reduced DIS cross section σr and of the structure
function F2.

• the total error of the measurement δtot, in percent, and its components, i.e. statistical
error δsta, uncorrelated systematical error δunc and correlated systematical error δcorr. All
errors are presented in percent.

• the last five columns represent the contributions to the correlated systematical error from
the scattered electron energy and polar angle measurements (δEe , δθe), from the uncer-
tainty of the hadronic scale and noise in the LAr calorimeter (δEhad

, δnoise) and from the
photoproduction background (δγp).

The data on λ(Q2) and c(Q2) from fits to the F2 structure function at y < 0.35 are presented
in Table C.3. The statistical and systematic errors are on the absolute scale.

The data on the longitudinal structure function FL are presented in Table C.4. The values
in first three columns corresponds to the kinematic variables Q2, x, y where FL (column 4) is
determined. The statistical and systematic errors, enlisted in the last two columns, are on the
absolute scale.
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112 Appendix C. Tables of the experimental results

Q2

/GeV2 x y σr F2 δtot δsta δunc δcorr δEe δθe δEhad
δnoise δγp

1.50 0.0000247 0.600 0.723 0.780 4.97 2.22 2.44 3.72 -3.20 1.40 0.70 -0.10 1.06
1.50 0.0000361 0.410 0.756 0.776 8.64 4.64 4.28 5.91 -2.00 5.50 0.60 -0.50 0.21
2.00 0.0000235 0.840 0.870 1.018 7.55 1.98 2.50 6.84 -1.50 -0.30 4.00 -0.50 5.31
2.00 0.0000270 0.730 0.886 0.988 3.93 1.72 2.03 2.89 -1.30 -0.20 1.00 -0.20 2.37
2.00 0.0000329 0.600 0.845 0.905 3.09 1.40 1.75 2.13 -1.80 0.30 0.60 -0.20 0.90
2.50 0.0000294 0.840 0.902 1.056 7.84 2.10 2.65 7.07 -0.20 -0.30 3.70 -0.40 6.00
2.50 0.0000338 0.730 0.903 1.010 3.92 1.73 1.88 2.97 -1.50 -0.40 0.80 -0.10 2.40
2.50 0.0000411 0.600 0.898 0.961 2.64 1.23 1.56 1.74 -1.30 -0.30 0.60 -0.10 0.94
2.50 0.0000601 0.410 0.886 0.908 2.18 0.98 1.46 1.28 -1.10 0.60 0.20 -0.10 0.16
2.50 0.0001072 0.230 0.793 0.798 3.37 1.81 1.81 2.20 -0.90 2.00 0.00 -0.10 0.02
3.50 0.0000411 0.840 0.994 1.161 8.21 2.25 2.59 7.46 0.30 -0.40 3.80 -0.50 6.38
3.50 0.0000473 0.730 0.987 1.103 4.35 1.87 1.90 3.44 -2.10 -0.30 0.90 -0.10 2.55
3.50 0.0000575 0.600 0.977 1.045 2.49 1.25 1.54 1.50 -0.90 -0.40 0.60 -0.10 0.96
3.50 0.0000842 0.410 0.975 0.999 1.86 0.79 1.40 0.94 -0.90 -0.20 0.10 -0.10 0.13
3.50 0.0001501 0.230 0.860 0.866 2.02 1.02 1.45 0.95 -0.90 0.30 0.00 -0.10 0.02
3.50 0.0002656 0.130 0.775 0.776 3.00 1.32 1.56 2.20 -2.00 0.90 0.00 -0.20 0.00
3.50 0.0004932 0.070 0.714 0.715 3.67 1.33 1.57 3.04 -1.90 0.80 -2.20 0.40 0.01
3.50 0.0008852 0.039 0.625 0.625 3.68 1.60 1.69 2.85 -2.30 0.90 -1.30 0.60 0.00
3.50 0.0015692 0.022 0.561 0.561 3.55 1.74 1.75 2.56 -2.20 1.10 -0.70 -0.10 0.00
3.50 0.0031384 0.011 0.485 0.485 3.19 1.61 1.68 2.18 -1.50 1.10 -0.80 -0.80 0.00
3.50 0.0080284 0.004 0.405 0.405 4.09 1.98 1.82 3.08 -2.40 1.30 -1.10 0.90 0.00
3.50 0.0203072 0.002 0.344 0.344 9.96 3.11 2.34 9.17 -2.10 1.10 -2.80 8.40 0.00
5.00 0.0000587 0.840 1.034 1.216 8.70 2.42 2.93 7.83 -0.80 -0.10 3.80 -0.60 6.77
5.00 0.0000676 0.730 1.030 1.156 4.55 2.18 2.00 3.46 -2.10 -0.30 1.00 -0.10 2.54
5.00 0.0000822 0.600 1.084 1.158 2.88 1.35 1.55 2.02 -1.60 -0.50 0.50 -0.20 0.99
5.00 0.0001203 0.410 1.077 1.104 2.09 0.76 1.38 1.37 -1.30 -0.40 0.10 -0.10 0.10
5.00 0.0002144 0.230 0.972 0.978 1.92 0.84 1.40 1.01 -1.00 -0.10 0.00 -0.10 0.01
5.00 0.0003794 0.130 0.860 0.862 2.49 0.95 1.43 1.81 -1.80 0.10 0.00 -0.10 0.00
5.00 0.0007045 0.070 0.755 0.755 2.08 1.01 1.45 1.10 -0.20 0.00 -0.90 -0.60 0.00
5.00 0.0012646 0.039 0.678 0.678 2.11 1.10 1.49 1.01 -0.70 0.20 -0.70 0.00 0.00
5.00 0.0022417 0.022 0.587 0.587 2.18 1.15 1.50 1.09 -0.70 0.20 -0.70 -0.40 0.00
5.00 0.0044834 0.011 0.541 0.541 2.37 1.03 1.47 1.55 -1.00 0.30 -0.70 -0.90 0.00
5.00 0.0114692 0.004 0.437 0.437 2.59 1.24 1.53 1.68 -0.70 0.40 -1.30 0.70 0.00
5.00 0.0290103 0.002 0.369 0.369 10.17 2.06 1.84 9.79 -0.60 0.00 -2.30 9.50 0.00
6.50 0.0000763 0.840 1.125 1.319 9.33 2.66 3.35 8.29 -1.10 -0.10 3.30 -0.50 7.51
6.50 0.0000878 0.730 1.081 1.215 4.66 2.49 2.09 3.33 -1.40 -0.50 1.00 -0.10 2.81
6.50 0.0001069 0.600 1.198 1.277 2.91 1.52 1.61 1.89 -1.60 -0.40 0.40 -0.20 0.82
6.50 0.0001564 0.410 1.118 1.146 1.90 0.83 1.39 1.00 -0.90 -0.40 0.10 -0.10 0.09
6.50 0.0002788 0.230 1.014 1.021 2.03 0.84 1.39 1.21 -1.10 -0.50 0.00 -0.10 0.01
6.50 0.0004932 0.130 0.926 0.928 2.16 0.90 1.42 1.36 -1.30 -0.40 0.00 -0.10 0.01
6.50 0.0009159 0.070 0.793 0.793 1.98 0.95 1.43 0.99 0.20 -0.30 -0.60 -0.70 0.00
6.50 0.0016439 0.039 0.674 0.674 2.11 1.04 1.45 1.12 0.30 -0.40 -0.10 -1.00 0.00
6.50 0.0029142 0.022 0.603 0.603 2.03 1.05 1.46 0.94 -0.10 -0.40 -0.60 -0.60 0.00
6.50 0.0058284 0.011 0.548 0.548 2.42 0.93 1.44 1.71 0.40 -0.40 -0.60 -1.50 0.00
6.50 0.0149099 0.004 0.435 0.435 3.02 1.15 1.49 2.35 0.50 -0.30 -1.40 1.80 0.00
6.50 0.0377133 0.002 0.381 0.381 12.01 1.99 1.80 11.71 1.40 -0.20 -3.10 11.20 0.00
8.50 0.0000998 0.840 1.269 1.474 9.77 3.18 3.59 8.52 0.00 -0.60 4.70 -0.40 7.07
8.50 0.0001148 0.730 1.093 1.235 5.06 2.78 2.43 3.46 -0.60 -0.20 0.70 -0.10 3.33
8.50 0.0001397 0.600 1.174 1.257 2.99 1.81 1.68 1.69 -1.20 -0.30 0.50 -0.20 1.02
8.50 0.0002045 0.410 1.186 1.216 1.89 0.95 1.41 0.82 -0.70 -0.40 0.10 -0.10 0.08
8.50 0.0003645 0.230 1.064 1.071 2.02 0.91 1.41 1.12 -1.00 -0.50 0.00 -0.10 0.00
8.50 0.0006449 0.130 0.964 0.966 2.39 0.95 1.43 1.66 -1.60 -0.40 0.00 -0.20 0.01
8.50 0.0011977 0.070 0.821 0.821 2.36 1.01 1.45 1.57 0.80 -0.60 -0.10 -1.20 0.00
8.50 0.0021497 0.039 0.697 0.697 2.10 1.07 1.46 1.07 0.80 -0.40 -0.30 -0.50 0.00
8.50 0.0038109 0.022 0.635 0.635 2.20 1.07 1.47 1.23 0.60 -0.50 -0.30 -0.90 0.00
8.50 0.0076218 0.011 0.550 0.550 2.37 0.97 1.44 1.60 0.30 -0.40 -0.60 -1.40 0.00
8.50 0.0194976 0.004 0.433 0.433 3.27 1.24 1.52 2.62 0.40 -0.40 -1.60 2.00 0.00
8.50 0.0493174 0.002 0.368 0.368 14.74 2.31 1.93 14.43 0.70 -0.50 -3.40 14.00 0.00
12.00 0.0001621 0.730 1.254 1.403 5.19 3.23 2.36 3.31 -0.80 -0.30 0.80 -0.20 3.09
12.00 0.0001973 0.600 1.212 1.300 3.22 2.10 1.77 1.69 -1.10 -0.30 0.40 -0.20 1.16
12.00 0.0002887 0.410 1.280 1.312 2.14 1.09 1.46 1.13 -1.00 -0.50 0.10 -0.10 0.09
12.00 0.0005146 0.230 1.131 1.138 1.97 1.06 1.45 0.81 -0.70 -0.40 0.00 -0.10 0.01
12.00 0.0009105 0.130 1.014 1.016 2.48 1.09 1.47 1.68 -1.60 -0.50 0.00 -0.10 0.00
12.00 0.0016909 0.070 0.821 0.821 2.52 1.19 1.50 1.64 1.20 -0.50 0.00 -1.00 0.00
12.00 0.0030349 0.039 0.689 0.689 2.36 1.25 1.52 1.30 0.90 -0.60 -0.20 -0.70 0.00
12.00 0.0053801 0.022 0.643 0.643 2.45 1.24 1.53 1.46 0.80 -0.50 -0.20 -1.10 0.00
12.00 0.0107602 0.011 0.547 0.547 2.84 1.13 1.49 2.13 1.20 -0.60 -0.70 -1.50 0.00
12.00 0.0275260 0.004 0.435 0.435 4.56 1.46 1.60 4.02 1.00 -0.80 -1.90 3.30 0.00
12.00 0.0696246 0.002 0.383 0.383 16.09 2.86 2.23 15.67 1.10 -0.60 -3.60 15.20 0.00

Table C.1: Table of the H1 results of the DIS cross section measurement and determination of the
structure function F2 based on the mb99 data set.
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Q2

/GeV2 x y σr F2 δtot δsta δunc δcorr δEe δθe δEhad δnoise δγp

0.35 0.0000047 0.730 0.356 0.384 27.06 14.59 16.17 0.00 0.30 0.30 1.30 -4.20 2.16
0.35 0.0000999 0.090 0.313 0.314 14.17 6.64 6.25 10.85 -6.30 0.80 -8.60 -0.10 1.85
0.35 0.0006474 0.015 0.198 0.198 11.63 7.69 6.26 6.07 0.50 1.40 -5.30 2.40 0.87
0.35 0.0047626 0.002 0.250 0.250 12.32 8.54 8.46 2.67 -1.80 1.70 -0.80 -0.40 0.42
0.50 0.0000068 0.730 0.403 0.443 9.63 5.53 6.19 4.88 -3.80 2.00 0.00 0.00 2.31
0.50 0.0000082 0.600 0.440 0.464 15.73 4.76 5.81 13.82 -4.40 0.00 0.20 1.60 3.92
0.50 0.0001256 0.090 0.323 0.323 13.10 6.02 5.65 10.18 -4.40 1.50 -8.30 1.40 3.33
0.50 0.0008023 0.015 0.255 0.255 9.55 6.38 5.65 4.31 -3.10 0.10 2.00 -2.20 0.33
0.50 0.0058910 0.002 0.257 0.257 12.23 8.54 8.07 3.39 -0.70 -1.20 -0.70 -3.00 0.22
0.65 0.0000088 0.730 0.474 0.523 6.35 3.58 4.50 2.68 -1.20 0.10 0.00 0.00 2.39
0.65 0.0000107 0.600 0.519 0.549 9.38 3.15 4.26 7.74 -3.10 0.40 -6.60 0.50 2.51
0.65 0.0001401 0.090 0.438 0.438 14.13 5.11 5.28 12.07 -6.40 1.50 -9.90 1.70 1.28
0.65 0.0008860 0.015 0.261 0.261 8.60 6.05 5.34 2.98 -1.30 0.20 -2.10 -1.60 0.41
0.65 0.0065784 0.002 0.274 0.274 10.56 7.50 7.02 2.46 0.20 1.40 -1.30 -1.50 0.37
0.85 0.0000115 0.730 0.587 0.647 5.97 2.86 3.94 3.46 -2.50 -0.30 0.00 0.00 2.37
0.85 0.0000140 0.600 0.600 0.637 4.71 2.42 3.67 1.70 -1.40 -0.60 0.00 0.00 0.75
0.85 0.0000204 0.410 0.590 0.604 10.11 2.17 3.54 9.22 -4.60 0.30 -7.80 1.00 1.37
0.85 0.0001402 0.090 0.427 0.427 10.65 4.08 4.48 8.76 -4.30 0.40 -7.50 1.00 0.95
0.85 0.0009677 0.015 0.298 0.298 9.76 5.05 4.84 6.80 -4.50 1.40 -4.50 1.90 0.44
0.85 0.0075003 0.002 0.290 0.290 9.60 6.82 6.32 2.38 0.70 -0.90 -2.00 0.60 0.00
1.20 0.0000162 0.730 0.658 0.733 5.14 3.00 3.35 2.49 -0.40 -0.60 0.00 0.00 2.38
1.20 0.0000197 0.600 0.677 0.723 4.28 2.04 2.78 2.54 -2.40 0.00 0.00 0.00 0.84
1.20 0.0000289 0.410 0.645 0.662 3.48 1.68 2.57 1.63 -1.60 -0.10 0.00 0.00 0.27
1.20 0.0000515 0.230 0.626 0.631 4.94 2.67 3.28 2.56 -2.20 1.30 0.00 -0.10 0.07
1.20 0.0001050 0.130 0.546 0.546 7.77 2.90 3.33 6.39 -4.60 1.90 -3.90 0.90 0.24
1.20 0.0002330 0.060 0.497 0.497 7.57 3.19 3.57 5.85 -4.00 1.30 -3.60 1.90 0.12
1.20 0.0006028 0.024 0.459 0.459 6.35 4.01 4.39 2.25 -1.70 0.70 -1.20 0.50 0.00
1.20 0.0014707 0.010 0.374 0.374 8.26 4.62 4.75 4.93 -3.30 1.80 -1.10 -3.00 0.00
1.20 0.0072481 0.002 0.265 0.265 8.47 4.88 4.78 5.00 -3.70 0.20 -1.50 3.00 0.00
1.50 0.0000203 0.730 0.706 0.791 5.56 3.41 3.47 2.67 -1.00 -0.50 0.00 0.00 2.43
1.50 0.0000247 0.600 0.726 0.778 3.94 2.09 2.70 1.96 -1.50 -0.90 0.00 0.00 0.89
1.50 0.0000361 0.410 0.743 0.763 3.02 1.28 2.38 1.35 -1.30 -0.30 0.00 0.00 0.20
1.50 0.0000643 0.230 0.684 0.688 3.19 1.67 2.57 0.91 -0.90 0.10 0.00 0.00 0.02
1.50 0.0001234 0.130 0.594 0.595 4.33 1.90 2.66 2.83 -2.00 0.10 -2.00 0.00 0.05
1.50 0.0002625 0.060 0.489 0.489 4.28 1.88 2.62 2.82 -1.90 0.50 -2.00 -0.30 0.01
1.50 0.0006530 0.024 0.433 0.433 4.20 2.21 2.80 2.22 -1.60 1.00 -1.10 -0.40 0.03
1.50 0.0015566 0.010 0.358 0.358 4.92 2.47 2.93 3.08 -2.40 1.00 -0.70 -1.50 0.00
1.50 0.0077752 0.002 0.291 0.291 4.94 2.28 2.84 3.34 -1.80 1.50 -1.30 2.00 0.00
2.00 0.0000270 0.730 0.805 0.904 7.00 4.47 4.05 3.55 -1.50 -2.00 0.00 0.00 2.52
2.00 0.0000329 0.600 0.798 0.857 4.05 2.35 2.76 1.80 -1.30 -0.70 0.00 0.00 1.03
2.00 0.0000481 0.410 0.812 0.834 2.89 1.23 2.33 1.18 -1.00 -0.60 0.00 0.00 0.18
2.00 0.0000858 0.230 0.754 0.760 2.82 1.31 2.36 0.81 -0.80 -0.10 0.00 -0.10 0.02
2.00 0.0001601 0.130 0.666 0.667 3.21 1.51 2.44 1.45 0.00 -0.10 -1.20 -0.80 0.03
2.00 0.0003423 0.060 0.584 0.585 3.15 1.39 2.39 1.51 -0.40 -0.40 -1.40 0.00 0.00
2.00 0.0008460 0.024 0.503 0.503 3.16 1.53 2.46 1.27 -0.60 -0.10 -0.50 -1.00 0.00
2.00 0.0020228 0.010 0.437 0.437 3.85 1.66 2.51 2.39 -0.80 -0.40 -0.30 -2.20 0.00
2.00 0.0100639 0.002 0.321 0.321 4.77 1.66 2.49 3.72 -0.60 -0.60 -1.70 3.20 0.00
2.50 0.0000338 0.730 0.776 0.884 12.19 8.84 6.80 4.93 -3.60 -2.50 0.00 0.00 2.26
2.50 0.0000411 0.600 0.871 0.937 4.80 3.04 3.12 2.02 -0.80 -1.60 0.00 0.00 0.94
2.50 0.0000601 0.410 0.863 0.888 3.10 1.34 2.36 1.50 -1.40 -0.50 0.00 0.00 0.16
2.50 0.0001072 0.230 0.781 0.787 2.94 1.32 2.36 1.17 -1.00 -0.60 0.00 0.00 0.03
2.50 0.0001977 0.130 0.698 0.700 3.36 1.46 2.41 1.83 0.30 -0.60 0.00 -1.70 0.01
2.50 0.0004224 0.060 0.581 0.581 2.89 1.29 2.34 1.10 0.40 -0.40 -0.50 -0.80 0.01
2.50 0.0010458 0.024 0.516 0.516 2.99 1.33 2.36 1.26 -0.20 -0.10 -0.30 -1.20 0.00
2.50 0.0024980 0.010 0.456 0.456 3.54 1.40 2.39 2.20 -0.40 0.00 -0.50 -2.10 0.00
2.50 0.0124678 0.002 0.333 0.333 4.97 1.44 2.39 4.12 0.10 -0.60 -1.70 3.70 0.00
3.50 0.0000575 0.600 0.914 0.988 7.86 5.55 4.62 3.11 -1.80 -2.40 0.00 0.00 0.81
3.50 0.0000842 0.410 0.935 0.963 3.26 1.64 2.46 1.37 -0.40 -1.30 0.00 0.00 0.14
3.50 0.0001501 0.230 0.899 0.905 3.29 1.44 2.42 1.71 -1.60 -0.60 0.00 0.00 0.02
3.50 0.0002656 0.130 0.800 0.802 3.41 1.59 2.47 1.72 1.20 -0.70 -0.20 -1.00 0.00
3.50 0.0005754 0.060 0.691 0.691 3.11 1.34 2.37 1.50 0.80 -0.60 -0.20 -1.10 0.00
3.50 0.0014384 0.024 0.601 0.601 3.62 1.35 2.38 2.36 0.60 -1.10 -0.10 -2.00 0.00
3.50 0.0034522 0.010 0.521 0.521 3.76 1.40 2.40 2.52 0.60 -0.90 -0.60 -2.20 0.00
3.50 0.0172611 0.002 0.353 0.353 5.73 1.53 2.42 4.96 0.70 -0.80 -1.80 4.50 0.00

Table C.2: Table of the H1 results of the DIS cross section measurement and determination of the
structure function F2 based on the svtx00 data set.

Q2/GeV2 λ δsta δsys c δsta δsys

0.750 0.126 0.018 0.025 0.130 0.017 0.024
1.350 0.172 0.005 0.008 0.118 0.004 0.008
2.250 0.175 0.004 0.008 0.148 0.005 0.009
2.250 0.189 0.020 0.030 0.137 0.028 0.040
4.250 0.195 0.002 0.004 0.173 0.003 0.005
7.500 0.224 0.003 0.004 0.172 0.003 0.006

Table C.3: Table of the measurement of λ(Q2) and c(Q2) from fits of the form σr = c · x−λ to the
presented low Q2 data on F2.
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Q2/GeV2 x FL δsta δsys

0.750 0.0000098 0.165 0.036 0.138
1.350 0.0000204 0.161 0.028 0.052
2.250 0.0000392 0.172 0.041 0.074
2.250 0.0000329 0.188 0.063 0.090
4.250 0.0000683 0.285 0.025 0.064
7.500 0.0001278 0.418 0.033 0.080

Table C.4: Table of the H1 results of the longitudinal proton structure function FL(x,Q2) determination
at low Q2.
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[36] T. Laštovička, in “DIS 2002 - 10th Int. Workshop on Deep Inelastic Scattering”,
Acta Phys. Polon. B 33, (2002) 2867-2871.

[37] PDFLIB: The Parton Density Functions Library, Version 8.04, GRV sets 4 and 14(98),
CERN.

[38] ZEUS: J. Breitweg et al., Phys. Lett. B 487, (2000) 53.

[39] ZEUS: S. Chekanov et al., Nucl. Phys. B 637, (2002) 3.



BIBLIOGRAPHY 117

[40] Nakano et al., Phys. Rev. Lett. 91, (2003) 012002.

[41] H1: I. Abt et al., Nucl. Instr. and Meth. A 386, (1997) 310 and 348.

[42] H1: L. Goerlich, et al., Strategy Studies for the H1 Topological L2 Trigger, H1 Internal Note
H1-09/97-508.

[43] H1: A. Grueber, et al., A Neural Network Architecture for the Second Level Trigger in H1
Experiment at HERA, Proceedings of the IEEE Conference TAI94, New Orleans, 1994.

[44] H. Bethe, W. Heitler, Proc. Roy. Soc. A 146, (1934) 83.

[45] H1: Technical Proposal to upgrade the Backward Scattering Region of the H1 Detector,
DESY PRC 93/02.

[46] R. Appuhn et al., Nucl. Instr. and Meth. A 386, (1996) 397.

[47] H1: Series of Tests of Fine Mesh Photomultiplier Tubes in Magnetic Fields of up to
1.2Tesla, DESY-97-070 (1997).

[48] H1: The LED based Calibration System of the H1 Lead/Scintillating-Fiber Calorimeter,
Nucl. Instr. Meth.

[49] V.V. Arkadov, PhD Thesis, Berlin, Humboldt-University, 2000, DESY-Thesis-2000-046.

[50] H1: C. Adloff et al., Nucl. Phys. B 497, (1997) 3.

[51] Ed. U. Amaldi, Proc. of the study of an ep facility for Europe, DESY 79/48, (1979) 391-394.

[52] U. Bassler, Habilitation thesis, Université Pierre et Marie Curie, Paris, 2003.
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