Monte-Carlo-Untersuchungen
zur
Weitwinkelbremsstrahlung
im H1-Detektor

von

Patrick Kandel

Diplomarbeit in Physik

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinisch-Westfälischen Technischen Hochschule Aachen im April 1998

angefertigt am
1. Physikalischen Institut

1. Mai 1998
Das Schönste, was wir erfahren können, ist das Rätselhafte. Es ist die Quelle aller wahren Kunst und Wissenschaft. Wem die Emotion fremd ist, wer nicht mehr innehalten kann, um zu staunen und von Ehrfurcht erfüllt dazustehen, ist so gut wie tot; seine Augen sind verschlossen.

Albert Einstein
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Das Standardmodell .. 3
 1.2 Experimentelle Grundlagen 5
 1.2.1 HERA ... 5
 1.2.2 Der H1 Detektor ... 6
 1.3 Das Very Low Q^2 Spektrometer 9
 1.4 Simulationen .. 14
 1.5 Motivation der Untersuchungen 16

2 Die Weitwinkelbremsstrahlung 19
 2.1 Weitwinkelbremsstrahlung in der ep-Streuung 20
 2.2 Berechnung des differentiellen Wirkungsquerschnittes 23
 2.2.1 Direkte Berechnung .. 23
 2.2.2 Photon-Fluß-Ansatz .. 25
 2.2.3 Weizsäcker-Williams-Approximation 26

3 Die Generatoren .. 29
 3.1 Der Generator ’WabGen’ ... 29
 3.1.1 Zu Grunde liegender Prozeß 30
 3.1.2 Berechnung der verwendeten Kinematik 34
 3.1.3 Der Algorithmus ... 37
 3.1.4 Durchgeführte Überprüfungen 41
 3.2 Der Generator ’EPCOMPT V1.1’ 42
 3.2.1 Verwendeter Wirkungsquerschnitt 42
 3.2.2 Anmerkungen ... 44
 3.3 Der Generator ’COMPTON’ .. 45
 3.3.1 Der Wirkungsquerschnitt: 45
 3.3.2 Der Generator selbst ... 48
 3.4 Der Generator ’WabWWA’ .. 50
 3.4.1 Verwendeter Wirkungsquerschnitt 50
 3.4.2 Kinematik des Frontalzusammenstoßes 51
 3.4.3 Die Generation .. 54
 3.5 Probleme und Bugs der Generatoren 55
4 Die Ergebnisse der Untersuchungen
 4.1 Vergleich der Generatoren .. 62
 4.1.1 Der elastische Bereich .. 63
 4.1.2 Inelastischer Bereich ... 70
 4.2 Untersuchung des tief inelastischen Bereiches 70
 4.2.1 Vergleich inelastisch ... 82
 4.3 Anwendung auf das VLQ ... 84

5 Zusammenfassung .. 89

Anhang A ... 90

Anhang B ... 92

Abbildungsverzeichnis .. 99

Danksagung ... 101
Kapitel 1
Einleitung

Eines der erfolgreichsten Modelle, die der Mensch bisher geschaffen hat, ist das Standardmodell der Teilchenphysik. In ihm gelang es nicht nur, alle in der Natur beobachtbaren Phänomene auf das Wirken von vier elementaren Grundkräfte zu reduzieren, sondern auch drei dieser Kräfte in einem gemeinsamen Formalismus zu vereinigen. Selbst wenn sich die vierte Kraft, die Gravitation, heute noch einer weiteren Vereinigung entzieht, ist damit eine wichtiger Grundstein für das Verständnis des Aufbaus der Materie und der Welt um uns erreicht worden.

Diese Diplomarbeit hat das Ziel einen kleinen Bestandteil dieses Standardmodell, die Weitwinkelbremsstrahlung in der Elektron-Proton Streuung (e̅p-Streuung), mit der Hil-

Im ersten Kapitel dieser Arbeit wird eine kurze Einleitung gegeben, welche die Grundlagen des Standardmodell, das H1 Experiment, die Rolle von Computersimulationen in der Hochenergiephysik und die Motivation für die Untersuchung der Weitwinkelbremsstrahlung zusammenfaßt. Kapitel 2 wird sich dann mit der, dem Prozeß zu Grunde liegenden Theorie und den verschiedenen Ansätzen zur Berechnung des Differentiellen Wirkungsquerschnittes beschäftigen, während in Kapitel 3 eine ausführliche Beschreibung der untersuchten Generatoren erfolgt. Anschließend werden die Ergebnisse der Untersuchungen in Kapitel 4 vorgestellt und diskutiert.
1.1 Das Standardmodell

Leptonen

Leptonen erscheinen bei den heute in Beschleunigern verfügbaren Energien noch immer als strukturlose und fundamentale Teilchen. Es gibt insgesamt sechs verschiedene Leptonenarten, welche sich in drei Familien gruppieren lassen:

<table>
<thead>
<tr>
<th>Ladung/Generation</th>
<th>e</th>
<th>μ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q = 0</td>
<td>ν₁e</td>
<td>ν₂μ</td>
<td>ν₃τ</td>
</tr>
<tr>
<td>Q = 1</td>
<td>e⁻</td>
<td>μ⁻</td>
<td>τ⁻</td>
</tr>
</tbody>
</table>

Hadronen:

Hadronen sind im Gegensatz zu Leptonen nicht fundamental, sondern aus Quarks zusammengesetzt, wobei Baryonen jeweils aus drei Quarks, Mesonen aus einem Quark-Antiquark-Paar bestehen. Quarks existieren in sechs verschiedenen Arten, sogenannten Flavours (up, down, charm, strange, top, bottom). Die Vielfalt der Erscheinungen

1Für die Teilchenphysik spielt die Gravitation auf Grund ihrer geringen Stärke keine Rolle, und kann vernachlässigt werden.
2Die Gruppe der Hadronen wiederum setzt sich zusammen aus Baryonen (gr.: schwer) und Mesonen (gr.: mittel).
3Hinzukommen natürlich die 6 zugehörigen Antiteilchen, wobei das ντ, bisher nur indirekt beobachtet werden konnte.
KAPITEL 1. EINLEITUNG

der Teilchenphysik beruht zum einen darauf, daß Hadronen aus den unterschiedlichen Quarkflavours aufgebaut sind, zum anderen, daß analog zur Atomphysik auch resonante Zustände erzeugt werden können.
Quarks kommen nicht als freie Teilchen vor, sondern sind stets innerhalb von Hadronen bzw. Mesonen eingeschlossen (confinement), wenngleich sie sich aber in diesen quasi frei zu bewegen scheinen (asymptotische Freiheit).

Auch die Quarks lassen sich in drei Familien zu je zwei Mitgliedern anordnen:

<table>
<thead>
<tr>
<th>Ladung/Generation</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = \frac{2}{3}$</td>
<td>u</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>$Q = -\frac{1}{3}$</td>
<td>d</td>
<td>s</td>
<td>b</td>
</tr>
</tbody>
</table>

Eichbosonen

Die Wechselwirkungen der oben beschriebenen Konstituenten der Materie erfolgen über den Austausch von Feldquanten sogenannten Eichbosonen, wie sie die Quantenfeldtheorie beschreibt. Jede einzelne Kraft hat ihre eigenen Feldquanten:

<table>
<thead>
<tr>
<th>Wechselwirkung</th>
<th>zugehörige Eichbosonen</th>
<th>beschreibende Theorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>elektromagnetisch</td>
<td>Photonen</td>
<td>QED (Quantenelektrodynamik)</td>
</tr>
<tr>
<td>schwach</td>
<td>W^\pm, Z^0</td>
<td>Eichtheorie der schw. Wechselwirkung</td>
</tr>
<tr>
<td>stark</td>
<td>Gluonen</td>
<td>QCD (Quantenchromodynamik)</td>
</tr>
</tbody>
</table>

Dennoch deuten viele Indizien darauf hin, daß man den richtigen Weg zum anvisierten Ziel, zu einer allumfassende Beschreibung der Materie um uns und ihrer inneren Strukturen gefunden hat.
1.2 Experimentelle Grundlagen

Zur Überprüfung der erstellten theoretischen Modelle bedarf es auch in der Hochenergie-
physik des Experimentes. Um in die extrem kleinen Längenskalen der Elementarteilchen
vorzudringen, werden Teilchen unter hohen Energien zur Kollision gebracht. Die erreich-
bare Ortsauflösung Δx in solchen Experimenten wird direkt vom Quadrat des Viererim-
pulsübertrages Q^2 der Austauschteilchen gemäß

$$\Delta x = \frac{\hbar}{\sqrt{Q^2}}$$

und somit von der Höhe der Schwerpunktenergie s
über

$$s \sim Q^2_{\text{max}}$$

bestimmt. Eine möglichst hohe Schwerpunktenergie wird erreicht, indem die inertialen
Teilchen z.B. auf gegeneinläufigen Kreisbahnen sukzessive beschleunigt und erst nach Erre-
ichen der Maximalenergie zur Kollision gebracht werden. Bei dem dieser Arbeit zu Grunde
liegenden Experiment H1 handelt es um einen Teilchendetektor an einem solchen Ringbe-
schleuniger, genannt HERA.

1.2.1 HERA

Zur Untersuchung der Struktur und Wechselwirkung der Matrie auf der fundamental-
en Ebene wurde 1991 am Deutschen Elektronen Synchrotron (DESY) in Hamburg die
Hadron Elektron Ring Anlage HERA (siehe Abb.1.1) in Betrieb genommen. Es handelt
sich dabei um einen ep Beschleuniger mit vier Wechselwirkungszonen für den Experimen-
talbetrieb, von denen inzwischen drei mit den Experimenten H1, Zeus und Hermes besetzt
sind. Die letzte verbleibende Wechselwirkungszone wird ab 1999 durch das Experiment
Hera-B genutzt werden.

Die Detektoren H1 und Zeus sind jeweils als 4π Vielzweckdetektoren ausgelegt, deren Auf-
gabe die Untersuchung der Struktur des Protons ist. Das Experiment Hermes beschäftigt
sich mit der Streuung polarisierter Elektronen und Positronen an einem Gastarget. Sein
Ziel ist die Messung der Spinverteilung der Quarks von Proton oder Neutron [Her]. Hera-B
wird zur Erzeugung schwerer B-Mesonen als $B\bar{B}$-Fabrik zum Studium der CP-Verletzung
Verwendung finden[HeB].

Bei HERA werden Leptonen mit einem Impuls von 27.5 GeV mit 820 GeV Protonen zur
Kollision gebracht, so daß sich eine Schwerpunktenergie von ca. 300 GeV ergibt. Auf Grund
dieser hohen Schwerpunktenergie des ep Systems ist der Bereich der Teilchenphysik, wel-
cher bei HERA abgedeckt werden kann, bemerkenswert. Dieser reicht vom Test der Proton-
strukturfunktion bei sehr kleinen x in der tiefinelastischen Streuung über die Untersuchung
der Photonstruktur (Quark/Gluon Anteil des Photons) bis hin zur Produktion schwerer
Teilchen [H1Future]. Diese hohe Schwerpunktenergie verschafft HERA zudem ein großes
KAPITEL 1. EINLEITUNG

Abbildung 1.1: Schematische Darstellung der ep Beschleunigeranlage HERA

1.2.2 Der H1 Detektor

Da der H1 Detektor Ausgangspunkt der Überlegungen in dieser Arbeit ist, sollen hier seine zentralen Komponenten kurz erläutert werden.

Der H1 Detektor ist ein 4π Vierstrahl Detektor, dessen Komponenten in Abb. 1.2.2 dargestellt sind. Mit seiner Hilfe lassen sich sowohl die Spuren geladener Teilchen (Spurkammern), ihre Energien (Kalorimeter) als auch die Zeitpunkte der Ereignisse (Flugzeitsystem) registrieren. Da die Strahlenergie der Protonen wesentlich größer als die der Elektronen ist und somit das Schwerpunktsystem der Reaktion nicht dem Laborsystem entspricht, ist der Detektor asymmetrisch aufgebaut. In Vorwärtsrichtung, der Richtung des einlaufenden Protons, finden sich deutlich mehr Detektkomponenten, welche den hadronischen Endzustand der Prozesse detektieren sollen, als im Rückwärtsbereich. Das H1 Koordinatensystem ist so gewählt, daß die z-Achse in Richtung des einlaufenden Protons verläuft, während x zum Mittelpunkt des Ringes und die y-Achse somit nach oben zeigt. Der Koordinatenursprung entspricht dem nominalen Wechselwirkungspunkt.

Die Komponenten des Detektors sind im einzelnen (siehe Abb. 1.2):

Spurkammersystem Das Spurkammersystem unterteilt sich in die zentralen Spurkammern (2), die zylindrisch um den Wechselwirkungspunkt angeordnet sind sowie in die Vorwärts-spurkammern (3). Mit ihrer Hilfe lassen sich die Bahnen geladener Teilchen bestimmen. Ein durch eine supraleitende Spule (6) erzeugtes Magnetfeld gestattet...
Abbildung 1.2: Schematische Darstellung der Hauptkomponenten des H1 Detektors

1. Strahlrohr und Strahlmagnete
2. Zentrale Spurkammern
3. Vorwärts-Spurkammern und Übergangsstrahlungsmodul
4. Elektromagnetisches Kalorimeter (Blei)
5. Hadronisches Kalorimeter (Edelstahl)
6. Supraleitende Spule (1.2T)
7. Kompensationsmagnet
8. Helium-Kälteanlage
9. Myon-Kammern
10. Instrumentiertes Eisen (Streamer-Röhren)
11. Myon-Toroid-Magnet
12. warmes elektromagnetisches Kalorimeter
13. Vorwärts-Kalorimeter
14. Betonabschirmung
15. Flüssig-Argon-Kryostat
dabei Impulsmessungen aus der Bahnkrümmung und die Bestimmung der Teilchenladung.

LAr Das Flüssig-Argon Kalorimeter besteht aus einem inneren elektromagnetischen Kalorimeter (4) und einem äußeren hadronischen Kalorimeter (5) mit denen sich ortsaufgelöste Energiedepositionen messen lassen. Die feine Segmentierung von ungefähr 45000 Auslesezellen ermöglicht durch differenzierte Schauerprofile Unterscheidungen zwischen verschiedenen Teilchen. Das Kalorimeter deckt einen Winkelbereich von 4 Grad bis 153 Grad ab.

BEMC Das rückwärtige elektromagnetische Kalorimeter (12) ergänzte das Flüssig-Argon Kalorimeter für den Winkelbereich zwischen 151 Grad und 177 Grad. Es diente im wesentlichen der genauen Messung des gestreuten Elektrons bei kleinen Impulsübertragen und wurde zwischen den Runperioden 94/95 durch das SPACAL ersetzt.

SPACAL Bei dem im rückwärtigen Bereich montierten SPACAL handelt es sich um ein Spaghetti Kalorimeter aus Blei- und Szintillator-Strängen. Es besteht aus einem elektromagnetischen Teil mit 1192 Zellen und einem hadronischen Teil mit 136 Zellen.

PLUG Das PLUG-Kalorimeter (13) schließt die Lücke im extremen Vorwärtsbereich zwischen 0.6 Grad und 3 Grad zur Detektion des Protonrestes.

IRON Außerhalb der Spule befindet sich zur Rückführung des magnetischen Flusses das instrumentierte Eisenjoch (10). Zwischen einzelnen Eisenplatten wurden Streamerrohrkammern integriert, die eine Ortsbestimmung geladener Teilchen wie z. B. Myonen erlauben. Zusätzlich existieren Pads und Streifen, mit denen sich die Restenergie von Hadronen messen läßt, die nicht vollständig im Flüssig-Argon-Kalorimeter absorbiert werden.

Vorwärts-Myon-Spektrometer Diese Detektorkomponente (9,11) soll den Nachweis und der Impulsmessung von Myonen im Winkelbereich zwischen 3 Grad und 17 Grad dienen. Das zur Impulbsbestimmung erforderliche Magnetfeld erzeugt ein spezieller Toroidmagnet.

VLQ Das Very Low Q^2 Spektrometer ist eine neue Detektorkomponente, die erst in der Runpause 1997/98 eingebaut wurde. Da es für die weitere Arbeit eine zentrale Rolle einnimmt, wird im folgenden Kapitel ausführlich darauf eingegangen.

Bei den oben aufgeführten Komponenten des H1 Detektors handelt es sich um Bestandteile des sogenannten Hauptteiles des Detektors, welche nahe am Wechselwirkungspunkt montiert sind. Ergänzt werden diese Komponenten durch eine Reihe von zusätzlichen Detektoren, die im Abstand von einigen Metern bis hin zu fast 100 Metern nahe der Strahlöhre angebracht sind, wie z. B. das H1-Luminositätsystem. Eine detaillierte Beschreibung des gesamten Detektors findet sich in [H1Det].
1.3 Das Very Low Q^2 Spektrometer

Wie sich in den letzten Jahren gezeigt hat, ist die Untersuchung der Reaktion

$$e + p \rightarrow e + X$$

im Übergangsbereich der Photoproduktion zur tiefinelastischen Streuung bei kleinsten Impulsüberträgen Q^2 von erheblichem physikalischen Interesse. Mit ihrer Hilfe kann nicht nur die letzte Lücke in der Bestimmung der Protonstrukturfunktion bei kleinen Impulsüberträgen (siehe Abb. 1.3) geschlossen, sondern auch die Untersuchung der Vektormesonerzeugung im Übergangsbe- reich verschiedener Produktionsmechanismen untersucht werden.

Gerade dieser Bereich extrem kleiner Impulsüberträge bzw. großer Winkel im H1 System war bisher durch den H1 Detektor nicht gut zugänglich. Aus diesem Grund wurde zwischen den Runperioden 97/98 der H1-Detektor im rückwärtigen Bereich um eine weitere Komponente das Very Low Q^2 Spektrometer (VLQ) [VLQ96] ergänzt, welches den Bereich von 0.02 GeV$^2 < Q^2 < 1.5$ GeV2 abdecken soll. Das VLQ ist als Elektronenspektrometer konzipiert, welches den Akzepanzbereich des Hauptdetektors für Elektronen im Polarwinkelbereich von 177.3° bis 179.4° ergänzt. Hierbei kommt es bis zu einen Winkel von 178.7° zu einer Überdeckung mit einer anderen Detektorkomponente im rückwärtigen Bereich, dem SPACAL.

Das VLQ besteht aus insgesamt drei Komponenten, einem Energie Projektions Kalorimeter (EPC), einem Si4 Spurdetektor (Tracker) und einem Flugzeitsystem (Time of Flight System), welche in Abb. 1.4 dargestellt sind.

Spurdetektor

Bei dem Spurdetektor (Tracker) handelt es sich um einen Halbleitermikrostreifen- detektor mit insgesamt 1664 vertikalen und 2560 horizontalen Streifen in 2 xy-Doppellagen. Seine Aufgabe ist die Spurdetektion der einlaufenden Elektronen, welche schließ- lich im Kalorimeter gestoppt werden. Als Halbleitermaterial sollte, aus Gründen der Strahlungshärte, GaAs dienen, was sich aber, auf Grund von technischen Schwierigkeiten in der Fertigung der zu Grunde liegenden Wafer, nicht rechtzeitig realisieren lies. Aus diesem Grund wird das Instrument vorerst mit einem Tracker auf Siliziumbasis betrieben werden.

Energie Projektions Kalorimeter

Das EPC (siehe Abb. 1.5) wurde in Sandwich - Bauweise konzipiert, und besteht aus 2 gekreuzten Lagen von Szintillatorstäben mit dazwischenliegende Wolframstäben als Wellenlängenschieber. Seine Dicke entspricht 16.7 Strahlungslängen und die Auskopplung der deponierten Energie erfolgt mittels Wolfram-Wellenlängenschiebern und Photodioden.

4geplant war ursprünglich GaAs
Abbildung 1.3: Totaler Photoabsorptionsquerschnitt für die $\gamma^* p$-Streuung. Im Bereich $0.02 < Q^2 < 0.5 \text{ GeV}^2, W^2 > 200 \text{ GeV}^2$ sind keine Daten vorhanden, dieser Bereich soll vom VLQ überdeckt werden.
1.3. *DAS VERY LOW Q^2 SPEKTROMETER*

Abbildung 1.4: Schematische Darstellung der Komponenten des VLQ. Die Strahlhöhe wurde bei dieser Grafik weggelassen.

Abbildung 1.5: Darstellung der Bauweise des Kalorimeters.
KAPITEL 1. EINLEITUNG

Flugzeitsystem

Abbildung 1.6: Darstellung der Mechanik und der Einbauumgebung des VLQ
1.4 Simulationen

Beim Durchgang eines Teilchens durch eine Detektorkomponente verliert ein Teilchen Energie, welche z.B. in Form von erzeugten Ladungen oder Wärme gemessen werden kann. An Hand der registrierten Ladungs-, bzw. Energiemessungen lassen sich einen ganzen Reihe von Informationen über dieses Teilchen gewinnen, wie seine Ladung, seine Energie und eine grobe Aussage über die Teilchenart. Auf den ersten Blick scheint es somit möglich zu sein, direkt von den gemessenen Energien und Spuren auf die eigentlichen Reaktionen zurückzuschließen. Leider ist aber dieser Zusammenhang nicht einfach herzustellen, was vor allem an zwei Phänomenen liegt:

Die Simulation erfolgt bei H1 in mehreren Schritten (siehe Abb.1.7):

Im ersten Schritt erzeugt ein Generatorprogramm auf Grund einer theoretischen Beschreibung des Differentialwirkungsquerschnittes und der Kinematik des zu untersuchenden Prozesses die im harten Subprozeß gebildeten Teilchen. Anschließend werden mittels spezieller Fragmements- und Hadonisierungsrichtungen (Bsp. [Jetset]) die im Detektor registrierbaren stabilen Teilchen gewürfelt. Im nächsten Schritt lassen sich die von den einzelnen Teilchen im Detektor hinterlassenen Energiemessungen, also ihre Auswirkungen beim Durchqueren des Detektors erzeugen ([H1SIM]), bevor in einer weiteren Stufe aus diesen Informationen wieder Teilchen rekonstruiert ([H1REC]) werden. Da auch mit den realen Daten dieser letzte Schritt “die Rekonstruktion” durchgeführt wird sind jetzt die simulierten Daten mit den realen Daten vergleichbar.
Abbildung 1.7: Darstellung der verschiedenen Schritte der Simulation bis hin zum Vergleich mit Messwerten
1.5 Motivation der Untersuchungen

Luminositätsmessung

Zur Bestimmung der absoluten, integrierten Luminosität bei H1 bedarf es eines Prozesses, welcher sich exakt berechnen läßt, eine hohe Statistik aufweist und zudem leicht von etwagigen Untergrund zu trennen ist. Einen solchen Prozeß stellt die Bremsstrahlung dar. Die Bremsstrahlung

$$e + p \rightarrow e + \gamma + X$$

ist dominiert von sehr kleinen invarianten Massen des Elektron-Photon-Subsystems $\hat{s} = (e + \gamma)^2$ und sehr kleinen quadratischen Impulüberträgen $Q^2 \ll m_e^2$. In diesem Grenzfall, Bethe-Heitler-Prozeß genannt, geht die Struktur des Photons nicht in die Rechnungen ein, so daß sich die differentielle Wirkungsquerschnitt der Streuung exakt aus der QED berechnen läßt. Zudem zeichnet sich dieser Prozeß neben einer hohen Zählrate durch hohe sichtbare Energien der auslaufenden Teilchen aus, so daß sich diese leicht detektieren lassen.

Die Bremsstrahlungsreaktion wird in zweierlei Weisen zur Bestimmung der Luminosität eingesetzt. Zu einem mittels des H1-Luminositäts Systems [H1LUMI], welches aus einem Elektronentagger bei $z=34m$ und einem Photondetektor bei $z=-106m$ besteht, und die aus der Bethe-Heitler-Bremsstrahlung stammenden Elektronen und Photonen detektiert. Zum anderen in Form der QED-Compton Methode [And92][Fav96], welche die gestreuten Elektronen und abgestrahlten Photonen im H1-Hauptdetektor selbst mißt, und deren Berechnungen auf dem Prozeß der Weitwinkelbremsstrahlung beruhen. Der Begriff Weitwinkelbremsstrahlung bezeichnet dabei obigen Bremsstrahlungsprozeß, bei endlichen und somit großen invarianten Massen \hat{s}, und endlichen, weiten Winkeln der auslaufenden Elektronen und Photonen. Trotz der deutlich niedrigeren Statistik dieser zweiten Methode hat sie den Vorteil, einen nur geringen Hintergrund zu besitzen und keine Totzeitkorrekturen zu erfordern.

Angeregte Leptonen

Analog zum Aufbau der Hadronen aus elementaren Quarks, werden in Kompositmodellen auch für Leptonen neue Konstituenten postuliert. In diesem Fall sind auch neue schwere Leptonen, welche als Anregungen des Grundzustandes interpretierbar sind, zu erwarten. Deren direkte Beobachtung würde einen starken Hinweis auf eine weitere Substruktur der Materie liefern [H1Col96]. Gerade die ep-Wechselwirkung
bei hohen Energien bietet eine exzellente Umgebung für die Suche nach angeregten Leptonen, da etwa 50% des Wirkungsquerschnittes im elastischen Kanal

\[e + p \rightarrow e^+ + p \]

erwartet wird [Hag85]. 30% der angeregten Leptonen zerfallen wiederum in ein Lepton und ein Photon, mit einer Masse um 150 GeV. Dieser Kanal hat eine sehr klare Signatur, da nur das \(e\gamma \) Paar im ansonsten leeren Detektor sichtbar ist. Den wichtigsten Hintergrundprozeß für die Suchen nach angeregten Leptonen stellt somit die Weitwinkelbremstrahlung dar, bei der ebenfalls ein gestreutes Leptonen, sowie ein Photon im Detektor sichtbar sind. Die Analyse der inelastischen Prozesse:

\[e + p \rightarrow e^+ + X \quad \text{bzw.} \quad e^+ \rightarrow e + Jets \]

gestaltet sich zwar technisch komplizierter, hat aber ebenfalls die Weitwinkelbremstrahlung als grundlegenden Hintergrundprozeß. Somit ist hier eine möglichst exakte Simulation der Weitwinkelbremstrahlung, besonders aber des elastischen Anteils von erheblicher Bedeutung zur Abschätzung des Untergrundes [Koe95].

Bestimmung des Photoneninhaltes des Protons

Eine weitere Möglichkeit für die Anwendung der Weitwinkelbremstrahlung liegt in der Bestimmung des Photoneninhaltes des Protons, da ein Vergleich des elastischen Anteils des Prozesses mit einer auf dem Photonfluss des Protons basierenden Simulation (ggf. in einer Näherung) dessen Bestimmung erlaubt.

Kalibration und Ausrichtung des VLQ

Die zentrale Motivation für die Untersuchung der Weitwinkelbremstrahlung bei H1 in dieser Arbeit bestand in der Erstellung eines Monte Carlo Generators, welcher für die neue Detektorkomponente VLQ sinnvolle Ergebnisse liefert und auch bei kleinsten Impulsübertragen effizient und gut arbeitet. Wie noch gezeigt wird, konnte dieses Ziel mit dem Generator WabGen erreicht werden, so daß die nötige Software zur Überprüfung der Kalibration und Ausrichtung des VLQ (siehe [VLQ96] Kap.5) nun zur Verfügung steht.
Kapitel 2

Die Weitwinkelbremsstrahlung

Unter dem Begriff Bremsstrahlung versteht man die Abstrahlung eines reellen Photons durch ein beschleunigtes, geladenes Teilchen. Der Wirkungsquerschnitt der Bremsstrahlung ist proportional zu $\frac{1}{m^2}$, mit m als der Masse des abstrahlenden Teilchens, so daß in der $e\pi$-Streuung die Photonabstrahlung des Protons gegenüber der des Elektrons nur eine untergeordnete Rolle spielt. Zudem ist im elastischen Fall die Abstrahlung von Photonen mit hohem Transversalimpuls p_T durch das Proton auf Grund der Formfaktoren, welche sich proportional $\frac{1}{p_T}$ verhalten, stark unterdrückt. Aus diesem Grund wird in den weiteren Ausführungen, wenn von "der Bremsstrahlung" gesprochen wird, stets von der Abstrahlung eines Photons durch das einlaufende oder auslaufende Elektron die Rede sein.

In der physikalische Umgangssprache wird häufig zwischen der Weitwinkelbremsstrahlung, auch QED-Compton-Prozeß genannt, und der Bethe-Heitler-Bremsstrahlung unterschieden. Physikalisch gesehen ist diese Unterscheidung rein willkürlich, handelt es sich doch in beiden Fällen um ein und denselben Prozeß. Die Motivation dieser Bezeichnungsweise bestehen bei H1 in der Unterscheidung, ob das gestreute Elektron und das abgestrahlte Photon im Hauptdetektor detektiert werden können oder nicht. Im Fall der Weitwinkelbremsstrahlung sind das Elektron und das Photon im Hauptteil des Detektors sichtbar, während sie im Bethe-Heitler Fall diesen entlang der Strahlöhre verlassen und erst in einer weiter entfernten Komponente (beispielsweise dem Luminositätsystem) detektierbar sind. In den folgenden Untersuchungen wird ausschließlich die Weitwinkelbremsstrahlung untersucht.

Das der Berechnung der Bremsstrahlung zu Grund liegende Problem, die Ausstrahlung eines Photons durch ein sich schnell bewegendes Elektron im Feld eines (relativ zum Elektron gesehen) schweren geladenen Teilchens wurde bereits in den 30er Jahren durch Bethe und Heitler untersucht. Sie berechneten auf Grundlage der Dirac Gleichung die Ausstrahlung eines Photons durch schnelle Elektronen im Feld eines unendlich schweren Kerns der Ladung $Z \cdot e$. [Hei33] Es handelt sich also eigentlich um ein bereits seit langem 1, zumindest

1 Zu dieser Zeit war noch nicht einmal die Existenz des Positrons als Antiteilchen des Elektrons gesichert: "Dies zeigt, daß wir uns nicht mehr mit Sicherheit innerhalb des Gültigkeitsbereichs der Theorie befinden. (Wenn man nicht die Zustände negativer Energie mit den gerade bei den Stoßprozessen in der Höhenstrahlung auftretenden 'positive Elektronen' in Zusammenhang bringen will, was bei dem gegenwärtigen Stand
im elastischen Fall gelöstes Problem, welches lediglich einer Anwendung auf den Fall der ep-Streuung bedurfte. Dennoch hat sich gezeigt, daß eine genaue Untersuchung dieses Prozesses, auf Grund seiner Bedeutung für das H1 Experiment von Interesse ist, und auch zu neuen, teils überraschenden Ergebnissen geführt hat. Auch die Weizsäcker Williams Approximation, welche in dieser Arbeit noch ausführlich diskutiert wird, wurde bereits in diesen frühen Jahren der Elementarteilchenphysik schon auf dieses Problem angewandt. [Wei33]

2.1 Weitwinkelbremsstrahlung in der ep-Streuung

Ein Studium der Reaktion

\[e + p \rightarrow e + \gamma + p \quad \text{bzw.} \quad e + p \rightarrow e + \gamma + X \]

(wobei X den hadronischen Anteil des Reaktionsproduktes bezeichnet) auf der Basis der Feynmanregeln, bzw. der zugehörigen Diagramme für die Abstrahlung im Anfangs bzw. Endzustand

Abbildung 2.1: Feynmandiagramme des Grundprozesses der Weitwinkelbremsstrahlung

ergibt a priori:

\[d\sigma(q_1^2, q_2^2) \sim \frac{dq_1}{q_1^2 - m_e^2} \cdot \frac{dq_2}{q_2^2} \quad \text{bzw.} \quad d\sigma(q_1'^2, q_2'^2) \sim \frac{dq_1'}{q_1'^2 - m_e^2} \cdot \frac{dq_2'}{q_2'^2} \]

Der differentiellen Wirkungsquerschnitt wird für kleine Werte der Viererimpulsquadrate \(q_i^2 \) von zwei Polstellen dominiert. Bei näherer Betrachtung lassen sich drei Fälle unterscheiden:

unserer Kenntnisse noch in keiner Weise gerechtfertigt ist" [Hei33]}
2.1. WEITWINKELBREMSSTRAHLUNG IN DER EP-STREUUNG

Bremsstrahlung $q_1^2, (q_1'^2) \rightarrow 0, q_2^2 \rightarrow 0$

Für infinitesimale $q_1^2, (q_1'^2)$ und q_2^2 nahe Null verschwinden die transversalen Impulse der Reaktionsprodukte, so daß alle nach der Wechselwirkung vorhandenen Teilchen unter sehr kleinen Winkeln entlang der Strahlröhre auslaufen. Sie sind deshalb nicht im H1-Hauptdetektor detektierbar und somit ist dieser Fall hier nur von untergeordnetem Interesse. Da beide q_i Werte nahe an den jeweiligen Polstellen besitzen, ergeben sich für diesen Fall große Zählraten. Die Messung des auslaufenden Photons bei H1 gestaltet sich auf Grund der Krümmung der Strahlröhre als einfach, benötigt man hierzu doch lediglich einen Photonen-Detektor bei einem Winkel von 0° und in einigen Metern Abstand vom Wechselwirkungspunkt. Auch die gestreuten Elektronen lassen sich auf Grund ihrer niedrigeren Energie aus der Strahlröhre auskoppeln und detektieren. Die Ablenkmagneten des H1-Systems lassen sich dabei als eine Art Spektrometer einsetzen. (H1-Luminositätssystem [H1LUMIF]). Dieser Fall wird auch als Bethe-Heitler-Prozeß bezeichnet.

Soll zumindest eine Komponente der auslaufenden Teilchen endliche Winkel besitzen, damit sie in den Hauptkomponenten der H1 Detektors detektierbar ist, so muß wenigstens eines der beiden q_i^2 endliche Werte annehmen:

Strahlungskorrekturen: $q_1^2, (q_1'^2) \rightarrow 0, q_2^2$ endlich

Geht $q_1^2, (q_1'^2)$ gegen Null während q_2^2 endlich bleibt, so läuft das erzeugte γ in Richtung des einlaufenden (Abstrahlung im Anfangszustand) bzw. auslaufenden Elektrons (Abstrahlung im Endzustand) aus, wobei das gestreute Elektron und der hadronische Rest im Detektor sichtbar sind. Ersterer Fall entspricht somit einer Streuung von Elektronen geringerer Energie als der einlaufenden am Proton, und somit dem Fall einfacher Strahlungskorrektur. Das Photon verläßt den Detektor und ist nur noch in einem engeren Winkelbereich detektierbar, was jedoch nur für die Weitwinkelbremsstrahlung von Interesse ist.

Weitwinkelbremsstrahlung: $q_1^2, (q_1'^2)$ endlich, $q_2^2 \rightarrow 0$

Für q_2^2 gegen Null und $q_1^2, (q_1'^2)$ endlich läuft das hadronische System entlang der Beampipe aus, während sowohl das gestreute Elektron, als auch das abgestrahlte Photon unter endlichen d.h. weiten Winkeln detektierbar sind. Dies wird deshalb als Weitwinkelbremsstrahlung bezeichnet. Der Prozeß läßt sich auch als Comptonstreueung eines vom Proton emittierten quasi-reellen Photons ($Q^2 \approx 0$) am einlaufenden Elektron interpretieren, weshalb auch die Bezeichnung quasi-reelle QED Comptonstreueung in der Literatur geläufig ist.
KAPITEL 2. DIE WEITWINKELBREMSSTRAHLUNG

Die Weitwinkelbremsstrahlung in der ep-Streuung entspricht also einem Bremsstrahlungsprozeß bei, dem sowohl das gestreute Elektron, als auch das Photon unter großen Winkeln im Detektor sichtbar sind.

Je nach der Größe des Impulsübertrages zwischen Elektron und Proton bei dieser Reaktion lassen sich drei verschiedene Bereiche unterscheiden:

I) Elastischer Fall

Ist der Impulsübertrag auf das Photon klein ($Q^2 \approx 0$), so kann das einlaufende Elektron nicht weit genug in das Proton eindringt, um seine innere Quarkstruktur zu sehen oder diese gar zu beeinflussen. Das Elektron wird dann elastisch am gesamten Proton gestreut, so daß eine Beschreibung des Protons mittels elektrischer und magnetischer Formfaktoren voll ausreicht und der Wirkungsquerschnitt auf der Grundlage der QED exakt berechenbar ist. Der kleine Impulsübertrag auf das Proton bewirkt zudem einen nur minimalen transversalen Impuls, so daß es den Detektor undetektierbar entlang der Strahlöhre wieder verläßt. Elastische Weitwinkelbremsstrahlungsereignisse zeichnen sich durch ein Elektron und ein Photon, back to back bei großen Winkeln im ansonsten leeren Detektor aus.

II) Inelastischer Fall

Für einen Impulsübertrag Q^2 größer als einige GeV erfolgt die Wechselwirkung nicht mehr zwischen Elektron und Proton selbst, sondern punktformig zwischen dem Elektron und einem der Quarks des Protons. Die Berechnung des Wirkungsquerschnittes basiert hier auf dem Quark-Parton-Modell der QCD, also der harten punktformigen Quark Elektron Reaktion, welche gemäß dem Faktorisierungstheorem der QCD, mit der Quarkdichteerteilung des Protons gefaltet wird.

III) Quasielastischer Fall

Im quasieLASTISCHEN Fall bleibt das Proton trotz des höheren Impulsübertrages ($0 < Q^2 < \text{einige GeV}$) noch immer intakt, erhält aber soviel Energie durch das ausgetauschte virtuelle Photon, daß es in einen angeregten Zustand übergeht. Dieser zerfällt nach kurzer Zeit in ein Proton und mindestens ein Pion. Auch hier basiert die Berechnung des Wirkungsquerschnittes auf der Faltung des harten Quark-ElektroN Querschnittes mit der Quarkdichteerteilung. Diese allerdings kann hier aus einer geschickten Parameterisierung der Protonstrukturfunktion F_{2p} für den Resonanzbereich gewonnen werden. Die invariante Masse des Elektron-Photon-Subsystem ist hierbei begrenzt: $m_{p}^{2} < \hat{s} < 1.8 \text{ GeV}^2$

\footnote{Es wird hier angenommen, daβ die Formfaktoren des Protons auf Grund empirischer Analysen hinreichend genau bekannt sind.}
2.2. BERECHNUNG DES DIFFERENTIELLEN WIRKUNGSQUERSCHNITTES

Die Untersuchung der Weitwinkelbremsstrahlung soll im folgenden für den elastischen und den inelastischen Fall getrennt durchgeführt werden, da sich die beiden Bereiche in ihre Behandlung und vor allem in ihrer theoretischen Beschreibung gravierend unterscheiden. Dennoch liegen auch den inelastischen Rechnungen die Ergebnisse des elastischen Anteils zu Grunde.

2.2 Berechnung des differentiellen Wirkungsquerschnittes

Der Wirkungsquerschnitt der elastischen Streuung eines Elektrons oder Positrons an einem Proton unter Ausstrahlung eines Photons läßt sich auf der Grundlage der Quantenelektrodynamik exakt berechnen. Dennoch stellen sich die dazu nötigen Berechnungen rasch als aufwendig und für eine analytische Lösung als nicht gut zugänglich heraus, so daß stets auf Näherungen oder geschickte Ansätze zurückgegriffen werden muß. In folgenden werden sowohl die Ergebnisse der direkten Berechnung des differentiellen Wirkungsquerschnittes auf der Grundlage der Feynmanregeln, als auch der Photon-Fluß-Ansatz als exakte Kalkulationen des Wirkungsquerschnittes vorgestellt. Zudem wird eine auf einer Weizsäcker-Williams-Näherung basierender Berechnung vorgeführt.

2.2.1 Direkte Berechnung

Die direkte Berechnung der Weitwinkelbremsstrahlung auf der Basis der Feynmanregeln wurde von Michael Spira [Spi97] durchgeführt. Für den differentiellen Wirkungsquerschnitt des elastischen Prozesses wurden folgende Diagramme erster Ordnung berücksichtigt:

Abbildung 2.2: Darstellung der bei der direkten Berechnung berücksichtigen Feynmandiagramme in der verwendeten Bezeichnung der Größen

Die Photonabstrahlung durch das Proton trägt nur wenig bei, und wird deshalb bei der weiteren Untersuchung vernachlässigt.

Die Berechnung des Wirkungsquerschnittes unter Vernachlässigung der Elektronenmasse im Schwerpunktsystem der einlaufenden Teilchen ergibt:
\[d\sigma = \frac{\alpha^3}{2\pi s} \cdot \frac{G_1 A + 2G_2 B}{Q^2 + 2q \cdot p_2} \cdot \frac{dQ^2}{Q^2} \cdot \frac{dM_{e\gamma}^2}{M_{e\gamma}^2(4EE'(3\beta'))} \cdot dx_2 d\theta d\chi \]

wobei A und B relativ einfache invariante sind, welche aus den Viererimpulsen der ein- und auslaufenden Teilchen zusammengesetzt sind. G1 und G2 sind aus Kombinationen der Formfaktoren aufgebaut:

\[
A = Q^2(Q^2 + 2M_{e\gamma}^2) + M_{e\gamma}^4 + 4(qp_2)^2 \\
B = B_0 - B_1 \\
B_0 = s(s - M_{e\gamma}^2 - Q^2) + 4(p_1 p_2)(q_1 p_2) \\
B_1 = \frac{m_p^2}{Q^2} [M_{e\gamma}^4 + 4(qp_2)^2] + m_p^2 [2s + M_{e\gamma}^2 - m_p^2]
\]

und

\[
G_1 = G_M^2(Q^2) \\
G_2 = \frac{G_E^2(Q^2) + \frac{Q^2}{4m_e^2} G_M^2(Q^2)}{1 + \frac{Q^2}{4m_e^2}}
\]

Hierbei repräsentieren \(G_M(Q^2)\) und \(G_E(Q^2)\) den magnetischen bzw. elektrischen Formfaktor des Protons. \(M_{e\gamma}\) entspricht der invarianten Masse im Elektron Photon Subsystem, \(m_p\) der Masse des Protons und \(s\) der Schwerpunktsenergie von einlaufendem Elektron und Proton. \(\chi\) bezeichnet den Schnitthinkel der beiden Ebenen, die durch die Richtungen der Dreierimpulse des einlaufenden Elektrons einerseits, sowie den Richtungen des auslaufenden Elektrons und Photons andererseits festgelegt werden, siehe 2.3. Der Winkel \(\chi\) ist dabei zwischen der Richtung des auslaufenden Elektrons und des einlaufende Protons gewählt.

Abbildung 2.3: Darstellung des Schnittwinkels \(\chi\) der beiden Ebenen
2.2. **BERECHNUNG DES DIFFERENTIELLEN WIRKUNGSQUERSCHNITTES**

Der Azimutalwinkel wurde mit \(\theta \) bezeichnet. Die Größe \(x_2 \) ist über die Energie des auslaufenden Elektrons: \(E'_e = x_2 \cdot \frac{\sqrt{s}}{2} \) definiert.
Zudem gilt für die folgenden Größen:

\[
E = \frac{s + m_p^2}{2\sqrt{s}} \quad E' = \frac{s + m_p^2 - M\gamma}{2\sqrt{s}} \\
\beta = \frac{s - m_p^2}{s + m_p^2} \\
\beta' = \sqrt{\frac{[s - (M\gamma + m_p)^2][s - (M\gamma - m_p)^2]}{s - M\gamma^2 + m_p^2}}
\]

statt des traditionellen Bremsstrahlungsphasenraumes \(d\Omega_e d\Omega_\gamma dE_\gamma \) wurde der Phasenraum analog zur Reaktion \(e^- + e^+ \rightarrow q + \bar{q} + q \) gewählt (\(dx_2 d\Phi d\chi \)).

2.2.2 Photon-Fluß-Ansatz

Eine weitere Möglichkeit den elastischen Wirkungsquerschnitt exakt zu berechnen, beruht auf der Methode des Photon-Fluß-Ansatzes. Hierbei wird das einlaufende Proton als ein Flusspektrum virtueller Photonen interpretiert, welches schließlich mit dem einlaufenden Elektron wechselwirkt. Die Berechnung des Wirkungsquerschnittes besteht also in der Faltung des transversalen Flusses der virtuellen Photonen mit den differentiellen Wirkungsquerschnitten der Elektron-Photon-Streuung, unter Beachtung aller möglichen Polarisationen des virtuellen Photons, sowie der Interferenzterme. Die einzelnen Faktoren werden dabei mittels des Polarisationsparameters \(\epsilon \) gewichtet, um den Unterschied zwischen longitudinalem und transversalem Photonenfluß zu berücksichtigen, wodurch sich ein Wirkungsquerschnitt der Form:

\[
\frac{d\sigma}{dk^2 dz dy d\phi} = \Gamma_t \left(\frac{d\sigma_t^C}{dy d\phi} + \epsilon \frac{d\sigma_t^C}{dy d\phi} + \epsilon \frac{d\sigma_p^C}{dy d\phi} + \sqrt{2\epsilon(\epsilon + 1)} \frac{d\sigma_i^C}{dy d\phi} \right)
\]

mit

\[
\epsilon = \frac{\Gamma_t}{\Gamma_t'}
\]

ergibt.
Hierbei beschreibt \(k^2 \) den Viererimpulsübertrag durch das virtuelle Photon, \(z \) den Energiebruchteil welchen das Photon relativ zur Energie des Protons trägt, \(y \) den Energiebruchteil des gestreuten Elektrons relativ zur Energie des virtuellen Photons und \(\phi \) den azimutalen.
KAPITEL 2. DIE WEITWINKELBREMSSTRAHLUNG

Streuwinkel des auslaufenden Elektrons im Schwerpunktsystem des virtuellen Photons und des Elektrons. Die differentiellen Wirkungsquerschnittsterme entsprechen den

\[\frac{d\sigma_t}{dy d\phi} : \text{transversalen} \]
\[\frac{d\sigma_i}{dy d\phi} : \text{longitudinalen} \]
\[\frac{d\sigma_t}{dy d\phi} \text{und} \frac{d\sigma_i}{dy d\phi} : \text{Interferenztermen} \]

für die Streuung eines virtuellen Photons am Elektron.

Sofern man einen bezüglich des \(e\gamma \)-Schwerpunktsystems \(\phi \)-symmetrischen Detektor zu Grunde legen kann, tragen \(\sigma_t \) und \(\sigma_i \) nicht zum totalen Wirkungsquerschnitt bei, da sich ihr Beitrag bei der Integration über den vollen Azimuthswinkel \(\phi \) zu 0 ergibt.

2.2.3 Weizsäcker-Williams-Approximation

Der differentielle Wirkungsquerschnitt der Weitwinkelbremssstrahlung wird von kleinen Impulsübergängen \(k^2 \) uns somit vom Austausch fast reeller Photonen dominiert. Es liegt deshalb nahe in der Berechnung des Wirkungsquerschnittes die Terme zu vernachlässigen, die ihre Motivation einzig aus der Virtualität des Photons erhalten.

Unter Vernachlässigung der longitudinalen Anteile sowie der Interferenztermef im Photon-Fluß-Ansatz ergibt sich für den differentiellen Wirkungsquerschnitt die Näherung:

\[\frac{d\sigma}{dk^2 dz dy d\phi} = \Gamma_t \left(\frac{d\sigma_t^C}{dy d\phi} \right) \]

welche als “equivalent photon approximation” bezeichnet wird. Der Wirkungsquerschnitt ist nun nicht mehr vom Azimuthswinkel \(\phi \) im Schwerpunktsystem des Prozesses abhängig, so daß über diesen integriert werden kann.

Wird zudem die \(k^2 \) Abhängigkeit des transversalen Photonstrahles außer Acht gelassen, so kann auch über den Viererimpulsübergang \(k^2 \) integriert werden. Der Gesamtprozeß läßt sich dann in die Ausstrahlung eines quasireellen \((k^2 \approx 0) \) und somit transversal polarisierten Photons durch das Proton, und seine Compton-Streuung am Elektron separieren. Diese Form der Näherung bezeichnet man als Weizsäcker-Williams-Approximation. Der differentielle Wirkungsquerschnitt, welcher nun nur noch von zwei Variablen (hier \(z \) und \(y \)) abhängt, ergibt sich dann aus der Faltung der equivalenten Anzahl Photonen im Proton mit dem Wirkungsquerschnitt der reellen Comptonstreuung.
Hierbei wird die Virtualität des ausgetauschten Photons vollständig vernachlässigt, so daß die Ausstrahlung des Photons als kollinear zur Bewegungsrichtung des Protons betrachtet werden kann. Dies vereinfacht die Berechnung der Kinematik erheblich, da nun

\[E_\gamma = z E_p \quad \text{und} \quad E'_p = (1 - z) E_p \]

und somit

\[k = z \cdot p \]

gesetzt werden kann. Hierbei ist zu beachten, daß diese Beziehung nur unter Vernachlässigung der Teilchenmassen in der Hochenergienäherung gelten kann. Als Konsequenz ergibt sich der folgende Zusammenhang für den relativen Energieverlust des Elektrons im Ruhe-

\[\gamma = \frac{e \cdot k}{e \cdot p} \approx \frac{z \cdot e \cdot p}{e \cdot p} = z \]

Dieser gerade beschriebene Vorgehensweise stimmt mit der von Weizsäcker und Williams bereits 1934 unabhängig voneinander entwickelte Technik überein, die auf eine Vereinfachung der Berechnung relativistischer Streuprozesse geladener Teilchen abzielt. Das elektromagnetische Feld einer sich schnell bewegenden Ladung in einem Raumpunkt besteht im wesentlichen aus den transversalen Feldkomponenten, und läßt sich näherungsweise als eine elektromagnetische Welle interpretieren. Somit kann ein sich schnell bewegendes, geladenes Teilchen durch einen Photonenstrahl approximiert werden, welcher dasselbe Energiespektrum wie das Feld des Teilchens besitzt.
KAPITEL 2. DIE WEITWINKELBREMSSTRAHLUNG
Kapitel 3

Die Generatoren

3.1 Der Generator ’WabGen’

Der Generator WabGen wurde im Rahmen dieser Diplomarbeit zur Untersuchung der Weitwinkelbremsstrahlung bei kleinsten invarianten Massen und großen Streuwinkeln der auslaufenden Leptonen sowie Photonen entwickelt. Dieser für das VLQ besonders wichtige Bereich stellt besondere Anforderungen an die Genauigkeit der physikalischen Berechnungen einerseits und der softwaretechnischen Realisation andererseits dar. Aus diesem Grund wurden bei der Berechnung der kinematischen Größen die Massen aller Teilchen exakt berücksichtigt. Alle für die physikalischen Berechnungen verwendeten Variablen innerhalb des Generators wurden in “DOUBLE PRECISION”, also doppelter Genauigkeit mit bis zu 16 relevanten Stellen verwendet. So konnte das Ziel, die Entwicklung eines Generators, welcher in diesem extremen Bereich kleiner Impulsüberträge und Massen effizient und physikalisch exakt arbeitet, erreicht werden.

Im Verlauf der Untersuchungen zeigte sich zudem, daß sowohl EPCOMPT V1.0 als auch COM200 teils physikalische teils programmtechnische Probleme aufwiesen, die leider nicht vollständig behebbar waren. Aus diesem Grund scheint zum jetzigen Zeitpunkt alleine WabGen als Monte Carlo Generator für die Weitwinkelbremsstrahlung uneingeschränkt einsetzbar.

werden. Eine ausführliche Beschreibung des Algorithmus von Bases/Spring findet sich in Anhang B.

Im folgenden soll neben der Berechnung des differentiellen Wirkungsquerschnittes und der verwendeten Kinematik auch eine kurze Erklärung der Ablaufes der interessanten physikalischen Routinen des Generators gegeben werden:

3.1.1 Zu Grunde liegender Prozeß

Wie bereits im Kapitel 2 erläutert, lassen sich bei der Weitwinkelbremstrahlung drei Fälle unterscheiden, die physikalisch unterschiedlich beschrieben werden müssen: den elastischen, den inelastischen und den tiefinelastischen Fall. Für alle drei Prozesse bildet die Berechnung des elastischen Anteils des totalen Wirkungsquerschnittes die Grundlage, so daß ihr besondere Bedeutung zukommt. Zudem ist der elastische Wirkungsquerschnitt auf der Grundlage der QED prinzipiell exakt bestimbar und modellunabhängig, so daß er eine optimale Basis zum Vergleich der verschiedenen Generatoren darstellt.

Elastischer Prozeß: $e + p \rightarrow e + \gamma + p$

Der zu Grunde liegende Prozeß ist in Abb. 3.1 dargestellt, wobei der Viererimpulsübertrag durch das virtuelle Photon hier mit $[k^2]$ statt mit Q^2 bezeichnet wurde. Für die elastischen Streuung von Elektron und Proton unter Emission eines Photons unter weiten Winkeln ergibt sich:

\[
\frac{d\sigma}{dk^2 dy dz d\phi} = \frac{d\sigma^M}{dk^2 dy dz d\phi} + \frac{d\sigma^E}{dk^2 dy dz d\phi}
\]

mit

\[
\frac{d\sigma^M}{dk^2 dy dz d\phi} = \Gamma_M \cdot \left(\frac{d\sigma_e}{dy d\phi} + \epsilon \frac{d\sigma_l}{dy d\phi} + \epsilon \frac{d\sigma_p}{dy d\phi} + \sqrt{2\epsilon(\epsilon + 1)} \frac{d\sigma_i}{dy d\phi} \right)
\]

und
Abbildung 3.1: Gemischte Darstellung aus dem berücksichtigten Feynmandiagramm und der wahren Kinematik (\(e p\) Frontalkollision) im elastischen Fall. Die Bezeichnungen der Vierervektoren entsprechen ihrer Verwendung in den Berechnungen zu WabGen.

\[
\frac{d\sigma^E}{dk^2 dy dz d\phi} = \Gamma_E \cdot \left(\frac{d\sigma_l}{dy d\phi} + \frac{1 + \epsilon}{2\epsilon} \frac{d\sigma_I}{dy d\phi} + \frac{d\sigma_p}{dy d\phi} + \sqrt{\frac{2(\epsilon + 1)}{\epsilon}} \frac{d\sigma_i}{dy d\phi} \right)
\]

Hierbei beschreiben \(\Gamma_E\) und \(\Gamma_M\) den transversalen Fluß virtueller Photonen aus dem Proton \(^1\):

\[
\Gamma_M = \frac{\alpha G_M^2}{|k^2| \pi z} g_T, \quad \Gamma_E = \frac{\alpha G_E^2 4m_p^2}{|k^2| 2 \pi z} g_L
\]

mit

\[
g_L = \frac{1 - z |k^2| - z^2 m_p^2}{|k^2| + 4m_p^2}
\]
\[
g_T = \frac{1 - z |k^2| - z^2 m_p^2}{|k^2| + 4m_p^2} + \frac{z^2}{2}
\]

Die Größe \(y\) bezeichnet den relativen Energieanteil des gestreuten Elektrons am virtuellen Photon und hängt über

\[
y = \frac{e \cdot e'}{e \cdot k} = \frac{1}{2} (1 - \cos \theta_{cm,s})
\]

mit dem Streuwinkel \(\theta_{cm,s}\) des auslaufenden Elektrons im Elektron-Photon-Schwerpunktsystem zusammen.

\(^1\)\(G_M\) und \(G_E\) bezeichnen hier den magnetischen, bzw. elektrischen Formfaktor des Protons
Unter Berücksichtigung der Virtualität des Photons müssen neben dem transversalen differenziellen Wirkungsquerschnitt $\frac{d\sigma_t}{dyd\phi}$, auch dessen longitudinale Komponente $\frac{d\sigma_l}{dyd\phi}$ und die Interferenzterme $\frac{d\sigma_i}{dyd\phi}$ berücksichtigt werden:

$$
\frac{d\sigma_t}{dyd\phi} = \frac{\alpha^2}{zS} \left((1 - y)(1 - x_p) + \frac{1 + x_p^2 y^2}{(1 - x_p)(1 - y)}\right)
$$

$$
\frac{d\sigma_l}{dyd\phi} = \frac{\alpha^2}{zS} 4x_p y
$$

$$
\frac{d\sigma_p}{dyd\phi} = \frac{\alpha^2}{zS} \cdot 2 \cdot x_p y \cos(2\phi)
$$

$$
\frac{d\sigma_i}{dyd\phi} = -\frac{\alpha^2}{zS} \cdot 2 \cdot \sqrt{\frac{x_p y}{(1 - x_p)(1 - y)}} \left(x_p y + (1 - x_p)(1 - y)\right) \cos(\phi)
$$

z bezeichnet hierbei den relativen Energieverlust des Protons im Ruhekoordinatensystem des einlaufenden Elektrons, S das Quadrat der Schwerpunktenergie der einlaufenden Teilchen.

$$
z = \frac{e \cdot k}{e \cdot p} = \frac{\hat{s} + |k^2|}{S - m_p^2}
$$

Der Polarisationsparameter ϵ beschreibt die Abweichungen des longitudinalen Photonflusses von der transversalen Komponente und berechnet sich somit zu

$$
\epsilon = \frac{\Gamma_l}{\Gamma_t} = \frac{g_T}{g_R}
$$

Die Größe x_p ist gegeben durch

$$
x_p = \frac{|k^2|}{zS}
$$

Inelastischer Prozess $\epsilon + p \rightarrow \epsilon + \gamma + X$

Der inelastische Anteil des Wirkungsquerschnittes läßt sich direkt aus dem Quark Parton Modell berechnen. Aus obigem Ansatz für den differenziellen Wirkungsquerschnitt im elastischen Fall, ergibt sich durch Einsetzen der punktartigen Kopplung der Quarks automatisch der differenzielle Wirkungsquerschnitt für den inelastischen Fall.

$$
\epsilon + q \rightarrow \epsilon + \gamma + q
$$

Dies entspricht der Ersetzung des einlaufenden Protons durch ein einlaufendes Quark mit den Energienanteil $E_q = x \cdot E_p$ und dessen punktförmiger ($G_M = G_E = 1$)
Abbildung 3.2: Gemischte Darstellung aus dem berücksichtigten Feynmandiagramm und der wahren Kinematik (ep Frontalkollision) im inelastischen Fall. Die Bezeichnungen der Vierervektoren entsprechen ihrer Verwendung in den Berechnungen zu WabGen.

Kopplung an das virtuelle Photon. Die Quarkmasse m_q wurde hier unabhängig vom "getroffenen" Flavour auf 0.3 GeV festgesetzt. Der so gewonnene differentielle Wirkungsquerschnitt auf Partonlevel wird schließlich mit den Partondichtefunktionen, respektive einer Parameteriesierung der Strukturfunktion F_2^p des Protons gefaltet. Dabei sind, wie bereits im Kapitel 2 erläutert, abhängig vom übertragenen Viererimpuls $|k^2|$ zwei Szenarien zu unterscheiden.

Tiefinelastischer Fall

Für $|k^2|$ von einigen GeV ist das Quark Parton Modell vollständig gültig, so daß der Wirkungsquerschnitt lediglich mit $\sum_n Q_n^2 \cdot q_n(x, |k^2|)$, der Summe über die Quarkdichteverteilung in den Variablen x und $|k^2|$ gefaltet werden muß. Diese Summe n läuft dabei sowohl über alle Valenz- als auch Seequarks innerhalb des Protons. Im Generator WabGen ist eine Grenze von $|k^2| \geq 5 GeV^2$ realisiert worden. Die anschließende Fragmentation der Partonen und hadronischen Zustände erfolgt mittels der Routinen von JETSET7.4 [Jetset74]

Quasielastischer Fall

Im Bereich $|k^2| < 5 GeV^2$ und für kleine invariante Massen \sqrt{s} versagt das Quark Parton Modell prinzipiell. Aus den Ergebnissen der Photo- und Elektroproduktion ergibt sich jedoch, daß der Wirkungsquerschnitt in diesem Gebiet von einigen, wenigen Resonanzen dominiert wird. Zudem lassen sich hier die Strukturfunktionen F_1 und F_2 durch glatte Funktionen, welche das Verhalten in der Resonanzregion im Mittel richtig beschreiben, parametrisieren. Somit genügt hier die Faltung des elastischen Wirkungsquerschnittes mit eben diesen glatten Funktionen zur Ermittlung des quasielastischen differentiellen Wirkungsquerschnittes. Der hadronischen Endzustand wird unter der Annahme eines Vielteilchenphasenraumzerfalls in ein Proton und ein oder mehrere Pionen erzeugt.
3.1.2 Berechnung der verwendeten Kinematik

Der Generator WabGen berücksichtigt die Kinematik der Prozesse vollständig. Auf die Annahme eines Frontalzusammenstoßes (head on collision) zwischen virtuellem Photon und Elektron wurde verzichtet, so daß bereits das virtuelle Photon eine transversale Impulskomponente besitzt, welche durch Angabe eines Polar- sowie Azimuthalwinkels berücksichtigt wird. Der betriebene Aufwand führt zu einer kleinen, aber bemerkbaren Korrektur des totalen Wirkungsquerschnittes, die je nach der Größe von \hat{s} bis zu ca. 1 % führen kann. Gemäß Zeichnung 3.1 ergeben sich die die Vierervektoren der einlaufenden Teilchen im Laborsystem, zu

$$e = \begin{pmatrix} E_e \\ 0 \\ 0 \\ -|p_e| \end{pmatrix}, \quad p = \begin{pmatrix} E_p \\ 0 \\ 0 \\ |p_p| \end{pmatrix}$$

wobei die Impulsbeträge $|p_i|$ unter Berücksichtigung der Teilchenmassen, über die Relation

$$|p_i|^2 = E_i^2 - m_i^2$$

gegeben ist. Die Kinematik läßt sich durch Angabe von

- $\hat{s} = (e + k)^2$ der invarianten Masse im Elektron Photon Subsystem
- $|k^2| = -k^2$ dem Betrag des quadrierten Viererimpulsübertrags des virtuellen Photons
- $\theta_{cm_s} = \angle(\vec{\gamma'}, \vec{e})$ dem Streuwinkel des gestreuten Leptons im $e\gamma$-Schwerpunktsystem
- φ_{cm_s} dem Azimuthalwinkel des gestreuten Leptons im $e\gamma$-Schwerpunktsystem
- φ_p dem Azimuthalwinkel des gestreuten Protons im Laborsystem

vollständig berechnen.

Setzt man für den Vierervektor des auslaufenden Protons im Laborsystem

$$p' = \begin{pmatrix} E'_p \\ |p'_p| \sin(\theta_p) \sin(\varphi_p) \\ |p'_p| \sin(\theta_p) \cos(\varphi_p) \\ |p'_p| \cos(\theta_p) \end{pmatrix}$$

mit

$$|p'_p| = \sqrt{E'^2_p - m_p^2}$$

so erhält man mit

$$\hat{s} = (e + k)^2$$
3.1. DER GENERATOR ’WABGEN’

die Gleichung

\[E_e E'_p + |p_e|(p'_p)_z = - \left(\frac{\hat{s} - S + |k^2| + m^2_p}{2} \right) \]

Aus

\[k^2 = (p - p')^2 \]

ergibt sich

\[(p'_p)_z = \frac{1}{|p_p|} \left(E_p E'_p - \frac{|k^2|}{2} - m^2_p \right) \]

so daß sich durch Ineinandereinsetzen für \(p' \) die Beziehungen

\[E'_p = \frac{|p_e||k^2| + 2m^2_p}{2(|p_p|E_p + |p_e|E'_p)} \quad (3.1) \]

\[(p'_p)_z = \frac{1}{|p_p|} \left(E_p E'_p - \frac{|k^2|}{2} - m^2_p \right) \quad (3.2) \]

\[\cos \theta_p = \frac{(p'_p)_z}{|p'_p|} \quad (3.3) \]

finden. Im inelastischen Fall läßt sich durch Ersetzen von \(E_p \) durch \(E_q = x \cdot E_p \) und \(m_p \)
durch \(m_q \) analog der Viererimpulsvektor des gestreuten Quarks ermitteln. Ein ähnlicher Ansatz für den Viererimpulsvektor des virtuellen Photons

\[k = \left(\begin{array}{c} E'_k \\ |p'_k| \cdot \sin \theta_p \sin (\pi + \varphi_p) \\ |p'_k| \cdot \sin \theta_p \cos (\pi + \varphi_p) \\ |p'_k| \cdot \cos \theta_p \end{array} \right) \]

ergibt analog aus

\[\hat{s} = (e + k)^2 \]

die Beziehung

\[E_e E_k + |p_e|(p_k)_z = \left(\frac{\hat{s} + |k^2| - m^2_k}{2} \right) \]

Aus

\[p'^2 = m^2_p = (p - k)^2 \]
läßt sich

\[(p_k)_z = \frac{1}{|p_p|} \left(E_p E_k - \frac{[k^2]}{2} \right) \]

gewinnen, so daß für die Größen des virtuellen Photons

\[
E_k = \frac{|p_p| (\delta + |k^2| - m_e^2) - [p_e][k^2]}{2(|p_p| E_e + |p_e| E_p)} \quad (3.4)
\]

\[
(p_k)_z = \frac{1}{|p_p|} \left(E_p E_k - \frac{[k^2]}{2} \right) \quad (3.5)
\]

\[
p_k = \sqrt{E_k^2 + [k^2]} \quad (3.6)
\]

\[
\cos \theta_p = \frac{(p_k)_z}{p_k} \quad (3.7)
\]

folgt. Auch hier erhält man mit obigen Ersetzungen leicht die Formel für den inelastischen Fall.

Die Streuung von Elektron und virtuellem Photon selbst wird am zweckmäßigsten in deren Schwerpunktsystem beschrieben. Durch Angaben des gewürfelten Streuwinkels \(\theta_{cm.s} \) und des ebenfalls per Zufall bestimmten Azimuthawinkels \(\varphi_{cm.s} \) sind auch hier die Viererimpulsvektoren der gestreuten Teilchen \(\hat{e}' \), \(\hat{k}' \) festgelegt. Die zugehörigen Viererimpulse im Laborsystem lassen sich dann per Lorentzboost mit dem Viererboostvektor \(b_{boost} = e + k \) leicht gewinnen. Für den Vierervektor des auslaufenden Elektrons im Schwerpunktssystem ergibt sich:

\[
\hat{e}' = \left(\begin{array}{c}
\hat{E}_e' \\
p_{p_e}' \cdot \sin \theta_{cm.s} \sin \varphi_{cm.s} \\
p_{p_e}' \cdot \sin \theta_{cm.s} \cos \varphi_{cm.s} \\
p_{p_e}' \cdot \cos \theta_{cm.s}
\end{array} \right)
\]

mit

\[
\hat{E}_e' = \frac{S - m_e^2}{2\sqrt{S}} \quad (3.8)
\]

\[
|\hat{p}_e'| = \sqrt{\hat{E}_e'^2 - m_e^2} \quad (3.9)
\]

Für das auslaufende reelle Photon folgt analog:

\[
\hat{k}' = \left(\begin{array}{c}
\hat{E}_k' \\
p_{p_k}' \cdot \sin \theta_{cm.s} \sin(\pi + \varphi_{cm.s}) \\
p_{p_k}' \cdot \sin \theta_{cm.s} \cos(\pi + \varphi_{cm.s}) \\
p_{p_k}' \cdot \cos \theta_{cm.s}
\end{array} \right)
\]
3.1. DER GENERATOR ’WABGEN’

mit

\[
\hat{E}_k = \frac{\sqrt{S}}{2}, \quad (3.10)
\]
\[
\hat{p}_k = \sqrt{\hat{E}_k^2 + |k^2|}, \quad (3.11)
\]

Der Vierervektor \(h \) des gesamten auslaufenden hadronischen Systems (also Proton im elastischen Fall, gestreutes Quark und Protonrest im inelastischen) läßt sich nun mittels Viererimpulserhaltung aus

\[h = p - q + q' \]

bestimmen, wobei im inelastischen Fall \(q \) dem Vierervektor des einlaufenden Quarks, \(q' \) dem Vierervektor des auslaufenden Quarks entspricht. Im elastischen Fall werden \(q = p \) und \(q' = p' \) gesetzt.

3.1.3 Der Algorithmus

In diesem Abschnitt soll kurz auf die Struktur der Funktion “f.f” welche alle physikalisch interessanten Berechnungen in WabGen enthält, sowie die Erzeugung der Teilchen im Endzustand eingegangen werden. Dies sind die beiden vom physikalischen Standpunkt gesehen wesentlichen Bestandteile des Generators. Für eine ausführliche technische Beschreibung der entwickelten Fortranroutinen, sowie des Programmablaufes im Ganzen sei auf das Manual zu WabGen [WabGen] verwiesen. In der folgenden Beschreibung, wird mehrfach der Begriff Ereignis verwendet. Ein Ereignis ist dabei einen Satz von gewürfelten Werten der Variablen \((\hat{s}, |k^2|, \theta_{cm}, \varphi_{cm}, \varphi_p) \), welcher für einen konkreten Fall einen Phasenraumpunkt und somit alle kinematischen Größen eines generierten Monte Carlo Ereignisses bestimmen. Hierbei wird nicht unterschieden, ob sich aus diesem Satz von Zufallsvariablen ein physikalisch sinnvolles Ereignis ergibt, oder nicht.

Generation der Zufallsvariablen in physikalisch sinnvollen Bereichen:

| würfe \(\hat{s} \), \(|k^2| \), \(\theta_{cm} \), \(x \) |

Zu Beginn von f.f werden alle den Prozeß bestimmenden Größen aus den an f.f übergebenen Zufallsgrößen \(X(1) \ldots X(N) \) berechnet. Es handelt sich dabei um die Schwerpunktenegie des Elektron-Photon-Subsystems \(\hat{s} = (e + k)^2 \), das Betragsquadrat der invarianten Masse des übertragenen virtuellen Photons, bzw. den Betrag des Impulsübertrages \(|k^2| \), und den polaren Streuwinkel \(\theta_{cm} \) des Elektrons im Schwerpunktsystem von Elektron und Photon. Im inelastischen Fall wird zudem noch die Skalenvariable \(x \) als der Energieanteil des am Subprozeß
beteiligten Quarks an der Energie des einlaufenden Protons im “infinit momentum frame”² des Protons, welches hier näherungsweise angenommen werden soll, gewürfelt. Diese Größen liegen dann innerhalb der Grenzen $0 \leq \theta_{\text{cms}} \leq \pi$ und $0 \leq x \leq 1$. Für den elastischen Fall werden die Grenzen für den Impulsübertrag zu $0 \leq |k^2| \leq S - m_p^2$ gewählt (siehe Anhang B), im quasielastischen $0 \leq |k^2| \leq 5 \text{ GeV}^2$ und im tiefinelastischen $5 \text{ GeV}^2 \leq |k^2| \leq S - m_p^2$. Die Grenzen von \hat{s} werden direkt gemäß den vom Benutzer vorgegebenen Werten gesetzt.

würfe $\varphi_{\text{cms}}, \varphi_k$

Zudem werden die Azimutalwinkel des gestreuten Elektrons im Elektron Photonen-Schwerpunktsystem φ_{cms} einerseits sowie des virtuellen Photons im Labor-System φ_k andererseits frei in den Grenzen 0 bis 2π gewürfelt.

\[\leftrightarrow S = m_e^2 + m_p^2 + 2 \cdot (E_e E_p + |p_e||p_p|) \]

Berechne die Schwerpunktsenergie des Elektron Proton Systems

\[\leftrightarrow z = \frac{E_k}{E_p} \]

Berechne den relativen Energieverlust z des einlaufenden Protons im Ruhesystem des einlaufenden Elektrons: $z = \frac{E_k}{E_p} = \frac{\hat{s} + |k^2|}{\hat{s} - m_p^2}$. Falls $z > 1$ oder $z < -1$ verwerfe das Ereignis

\[\leftrightarrow y = \frac{1}{2}(1 - \cos \theta_{\text{cms}}) \]

Berechne den relativen Energieverlust des Elektrons im Ruhesystem des Protons aus dem Streuwinkel im Schwerpunktsystem von e und k. Falls $y > 1$ oder $y < -1$ verwerfe das Ereignis.

cut $|k^2|_{\text{min}} \leq |k^2| \leq |k^2|_{\text{max}}$

Falls $|k^2|$ außerhalb der theoretischen Grenzen liegt verwerfe das Ereignis. Hierbei ist $|k^2|_{\text{max}} = \hat{s} - m_e^2$ und $|k^2|_{\text{min}} = \frac{m_e^2 + \frac{1}{\cos^2 \theta_{\text{cms}}}}{1 - \cos^2 \theta_{\text{cms}}}$. Die Berechnung dieser Grenzen ist in Anhang B dargestellt.

Bestimmung der Vierervektoren der auslaufenden Teilchen

²Der “infinit momentum frame” ist dabei das System, in dem der Impuls des Teilchen so groß ist, daß seine Masse vernachlässigt werden kann. Dieser Fall entspricht somit dem Hochenergiefines
Aus den gewürfelten Größen \hat{s} und $|k|^2$ werden nun die Vierervektoren für das virtuelle Photon k und das auslaufende Proton p' im Laborsystem berechnet. Hierbei ist zu beachten, daß die sich ergebenden Energien der Teilchen größer Null sein müssen und zudem die Energie des auslaufenden Protons die des einlaufenden nicht übersteigen darf $E'^p < E_p$. Treten diese Fälle dennoch auf, so werden die zugehörigen Ereignisse verworfen.

Berechne den Viererbosstevktor für die Lorentztransformation in das Schwerpunktssystem von Elektron und virtuellem Photon. Der Boostv ektor b entspricht dabei dem Vektor, dessen 3er Impulskomponenten im geboosten System gerade dem Nullvektor entspricht, und dessen Massenquadrat mit der Schwerpunktenergie des Systems $\sqrt{\hat{s}}$ übereinstimmt.

$$m_b^2 = b^2 = \hat{s}$$

Die Vierervektoren des einlaufenden Elektrons und virtuellen Photons werden nun in ihr gemeinsames Schwerpunktssystem geboosten, und anschließend alle Ereignisse verworfen, bei denen sich negative Energien für die geboosten Tei-

Der Boostvektor b entspricht dabei dem Vektor, dessen 3er Impulskomponenten im geboosten System gerade dem Nullvektor entspricht, und dessen Massenquadrat mit der Schwerpunktenergie des Systems $\sqrt{\hat{s}}$ übereinstimmt.

$$m_b^2 = b^2 = \hat{s}$$

Die eben berechneten Vierervektoren werden nun per Lorentztransformation in das Laborsystem zurückgeboostet.

Berechne den Vierervektor h des auslaufenden hadronischen Systems. Im elastischen Fall entspricht dies dem der Vektor des auslaufenden gestreuten Protons. Im quasielastischen Fall entspricht der hadronische Endzustand dem Proton- rest, welcher nicht am harten Subprozeß teilnimmt, also Proton ohne streuendes Parton und dem gestreuten Parton.
Durchführung der benutzerdefinierten Schnitte

\[e' \leftrightarrow (E'_{e}, \theta'_{e}, \varphi'_{e}) \]
\[k' \leftrightarrow (E'_{k}, \theta'_{k}, \varphi'_{k}) \]
\[p' \leftrightarrow (E'_{p}, \theta'_{p}, \varphi'_{p}) \]

Zerlege die Vierervektoren der auslaufenden Teilchen wieder in ihre Energien \(E_{i} \), Polarwinkel \(\theta_{i} \) und Azimuthalwinkel \(\varphi_{i} \).

\textbf{cut auf \(E_{vis}, \theta_{vis}, \theta_{vis} \)}

Führe die benutzerdefinierten Schnitte auf die Teilchenenergien \(E_{i} \), Polarwinkel \(\theta_{i} \) und die sogenannte sichtbare Energie, der Summe aus den Energien des gestreuten Elektrons und des auslaufenden Photons, \(E_{vis} = E'_{e} + E'_{k} \) durch.

\[\leftarrow m_{had} > (m_{p} + m_{\pi}) \]

Berechne im quasielastischen Fall die invariante Masse des hadronischen Endzustandes, und verwende alle Ereignisse, bei denen diese Masse kleiner als die Masse des Protons plus die Masse eines Pions ist, damit der angeregte Zustand in eben diese Teilchen zerfallen kann.

\textbf{Teste Viererimpulserhaltung}

Teste ob die Viererimpulssumme der auslaufenden Teilchen in jeder Komponente besser als eine Grenze \(1 \cdot 10^{-4} \) erhalten ist. Ist dies nicht der Fall, gebe eine Warnung aus.

\textbf{Berechnung des Wirkungsquerschnittes}

Nun erst wird der Wirkungsquerschnitt, wie oben beschrieben berechnet. Im tiefinelastischen und quasielastischen Fall erfolgt dann die Faltung des differentiellen elastischen Wirkungsquerschnittes mit der Summe der Quarkdichteverteilungen, bzw. der Parametrisierung der Protonstrukturfunktion \(F_{2}^{p}(x, |k^{2}|) \).

\textbf{Auslaufende Teilchen}

Für den elastischen Fall sind nun bereits die Vierervektoren aller auslaufenden Teilchen bekannt, so daß diese nur noch ausgegeben werden müssen. Im quasielastischen Fall wird ein Multiphasenraumzerfall des hadronischen Endzustandes in geladene Pionen gemäß \([\text{BaPh}]\) simuliert. Dabei ergibt sich die Anzahl der erzeugten Pionen an Hand einer Poissonverteilung welche gemäß der Routine POIDEV ([NumRec] S.284).

3.1.4 Durchgeführte Überprüfungen

Zur Sicherstellung, daß die Generation von Teilchen und die berechnete Kinematik korrekt implementiert wurden, dienten folgende Überprüfungen:

1. Die Viererimpulssumme der ein- und auslaufenden Teilchen stimmt in jeder Komponente besser als 10^{-4} mit 0 überein.

2. Die invarianten Massen der Teilchen sind an jeder Stelle des Programms und in jedem beliebigen System korrekt.

3.2 Der Generator 'EPCOMPT V1.1'

Der Generator EPCOMPT V1.0 wurde von F. Raupach und T. Köhler zur Simulation der Weitwinkelbremsstrahlung im Prozeß

\[e + p \rightarrow e + \gamma + X \]

entwickelt [Rau91]. Der Generator basiert auf der direkten Berechnung des differentiellen Wirkungsquerschnittes von M. Spira [Spi95]. Er erlaubt die separate Berechnung des totalen Wirkungsquerschnittes in den Bereichen elastisch, quasielastisch und tiefinelastisch (DIS). Das Programm enthält zudem eine vollständige Behandlung der auslaufenden Zustände, sowie deren Fragmentierung. Im Verlauf dieser Arbeit hat sich gezeigt, daß die Vernachlässigung von Termen der Ordnung \(m_p^2 \) in der Berechnung des Wirkungsquerschnitts nicht, wie anfangs angenommen, zulässig ist und zu falschen Ergebnissen führt. Aus diesem Grund wurde die Formel des differentiellen Wirkungsquerschnittes in der Version EPCOMPT V1.1 um die fehlenden Beiträge ergänzt [Spi97].

3.2.1 Verwendeter Wirkungsquerschnitt

Für den elastischen Anteil des Prozesses wurden folgende Diagramme erster Ordnung berücksichtigt:

![Diagramm der elastischen Anteile des Prozesses](image-url)
Die Berechnung des Wirkungsquerschnittes unter Vernachlässigung der Elektronenmasse im Schwerpunktssystem der einlaufenden Teilchen ergibt:

\[
d\sigma = \frac{\alpha^3}{2\pi s} \frac{G_1 A + 2 G_2 B}{Q^2 + 2q \cdot p_2} \cdot \frac{dQ^2}{Q^2} \cdot \frac{dM^2_{\text{c}}}{M^2_{\text{c}}(4EE'\beta\beta')} \cdot dx_2 d\Phi d\chi
\]

mit

\[
A = Q^2(Q^2 + 2M_{\text{c}}^2) + M_{\text{c}}^4 + 4(q \cdot p_2)^2
\]

\[
B = B_0 - B_1
\]

\[
B_0 = s(s - M_{\text{c}}^2 - Q^2) + 4(p_1 \cdot p_2)(q_1 \cdot p_2)
\]

\[
B_1^3 = \frac{m_p^2}{Q^2} \left[M_{\text{c}}^4 + 4(q \cdot p_2)^2 \right] + m_p^2 \left[2s + M_{\text{c}}^2 - m_p^2 \right]
\]

\[
G_1 = G_{M}(Q^2)
\]

\[
G_2 = \frac{G_{E}(Q^2) + \frac{Q^2}{4m_p^2} G_{M}(Q^2)}{1 + \frac{Q^2}{4m_p^2}}
\]

Hierbei repräsentieren \(G_{M}(Q^2) \) und \(G_{E}(Q^2) \) den magnetischen bzw. elektrischen Formfaktor des Protons und \(\alpha \) die elektromagnetische Kopplungskonstante. Die Variable \(\chi \) bezeichnet den Schnittwinkel der beiden Ebenen, welche durch die Richtung des Impulses des einlaufenden Elektrons einerseits, sowie den Richtungen des auslaufenden Elektrons und Photons andererseits festgelegt werden. Der Winkel \(\chi \) ist dabei zwischen der Richtung des auslaufenden Elektrons und des einlaufenden Protons gewählt.

Der Azimutalwinkel wurde mit \(\theta \) bezeichnet, die Größe \(x_2 \) ist über die Energie des auslaufenden Elektrons: \(E_x' = x_2 \cdot \frac{\sqrt{s}}{2} \) definiert.

Zudem wurden folgenden Größen

\[
E = \frac{s + m_p^2}{2\sqrt{s}}
\]

\[
E' = \frac{s + m_p^2 - M_{\text{c}}^2}{2\sqrt{s}}
\]

\[
\beta = \frac{s - m_p^2}{s + m_p^2}
\]

\[
\beta' = \frac{\sqrt{s - (M_{\text{c}} + m_p)^2} \left[s - (M_{\text{c}} - m_p)^2 \right]}{s - M_{\text{c}}^2 + m_p^2}
\]

berechnet.

Der Wirkungsquerschnitt im inelastischen und quasielastischen Fall, wird analog zu der Vorgehensweise im Generator WabGen bestimmt, und soll hier nicht nocheinmal erläutert werden.
3.2.2 Anmerkungen

Grenzen

Die Integrationsvariablen werden in den Grenzen

\[
0 \leq M_{\text{c}1}^2 \leq s(1 - \frac{m_p}{\sqrt{s}})^2 \\
2EE'(1 - \beta\beta') - m_p^2 \leq Q^2 \leq 2EE'(1 - \beta\beta') - m_p^2 \\
0 \leq \chi \leq 2\pi \\
0 \leq x \leq 1
\]

gewürfelt:

Strahlungskorrekturen

3.3 Der Generator 'COMPTON'

3.3.1 Der Wirkungsquerschnitt:

Der Wirkungsquerschnitt des zugrundeliegenden Prozesses läßt sich unter Berücksichtigung der Helizität des ausgetauschten virtuellen Photons exakt berechnen [Cou92]:

$$
\frac{d^4 \sigma_{\gamma^* e \rightarrow e \gamma}}{dxdx' dQ^2 d\Omega^*} = f_{\gamma^* e}(x, x', Q^2) \left[\frac{d\sigma}{d\Omega^*} \right]^T + f_{\gamma^* e}(x, x', Q^2) \left[\frac{d\sigma}{d\Omega^*} \right]^L
$$

mit

$$
\left[\frac{d\sigma}{d\Omega^*} \right]^T = \frac{d\sigma_T}{d\Omega^*} + \frac{d\sigma_L}{d\Omega^*} + \sqrt{2(1 + \epsilon)} \frac{d\sigma_{TL}}{d\Omega^*} \cos \varphi^* - \epsilon \frac{d\sigma_{TT}}{d\Omega^*} \cos 2\varphi^*
$$

$$
\left[\frac{d\sigma}{d\Omega^*} \right]^L = \frac{d\sigma_T}{d\Omega^*} + \frac{d\sigma_L}{d\Omega^*} + \frac{1 + \epsilon}{2} \frac{d\sigma_{TL}}{d\Omega^*} \cos \varphi^* + \epsilon \frac{d\sigma_{TT}}{d\Omega^*} \cos 2\varphi^*
$$

Die hochgestellten Indizes bezeichnen hier die Polarisierung des virtuellen Photons, während die tiefgestellten Indizes sich auf die Polarisierung am Leptonvertex beziehen und somit den longitudinalen bzw. transversalen Interferenztermen (TT, TL) der "virtuellen" Compton Streuung

$$\gamma^* + e \rightarrow \gamma + e$$

bezeichnen.

Für die virtuellen Photonenspektren ergibt sich:

$$f_{\gamma^* e}^T(x, x', Q^2) = \frac{1 - x}{4\pi^3 x x'} g^T(x, x', Q^2) \sigma_{\gamma^* e}^T$$

$$f_{\gamma^* e}^L(x, x', Q^2) = \frac{1 - x}{4\pi^3 x x'} g^L(x, x', Q^2) \sigma_{\gamma^* e}^L$$

mit

$$g^L(x, x', Q^2) = g^T(x, x', Q^2) - \frac{x^2}{2x'^2}$$

4 Quasireelle QED Compton Ereignisse sind analog zu Weitwinkelbrenstrahlungereignissen durch ein auslaufendes Elektron und ein Photon fast koplanar bei endlichen Winkeln im Detektor gekennzeichnet.
Die Variablen Q^2, x, x_γ sind definiert durch:

$$
Q^2 = -q_2^2 \\
x = \frac{-q_2^2}{2p_q q_2} = \frac{Q^2}{m_X^2 - m_p^2 + Q^2} \\
x_\gamma = \frac{q_2 p_e}{p_q p_e} = \frac{W^2 + Q^2 - m_e^2}{s - m_p^2 - m_e^2} \approx \frac{W^2 + Q^2}{s}
$$

Der Parameter ϵ ist definiert durch

$$
\epsilon = \frac{g_L}{g_T}
$$

Die differentiellen Wirkungsquerschnitte am Leptonvertex ergeben sich zu 5:

$$
\begin{aligned}
d\sigma_T &= \frac{\alpha^2}{W^2 + Q^2} \left[\frac{W^2}{(W^2 + Q^2)(1 + \cos \theta^* + \eta)} + \frac{(W^2 + Q^2)(1 + \cos \theta^*)}{4W^2} \\
&+ \frac{Q^2}{W^2 W^2 (1 + \cos \theta^* + \eta)} + \frac{Q^2(1 - \cos \theta^*)}{2(W^2 + Q^2)} \right] d\Omega^* \\
d\sigma_L &= \frac{\alpha^2}{W^2 + Q^2} \left[\frac{Q^2 (1 - \cos \theta^*)}{W^2 + Q^2} \right] d\Omega^* \\
d\sigma_{TL} &= \frac{\alpha^2}{W^2 + Q^2} \left[\frac{Q W}{2(W^2 + Q^2)} \sqrt{1 - \cos^2 \theta^*} \left[1 + \frac{Q^2}{W^2} \frac{1 - \cos \theta^*}{1 + \cos \theta^* + \eta} \right] \right] d\Omega^* \\
d\sigma_{TT} &= \frac{\alpha^2}{W^2 + Q^2} \left[\frac{Q^2}{2(W^2 + Q^2)(1 - \cos \theta^*)} \right] d\Omega^*
\end{aligned}
$$

mit

$$
\eta = \frac{2m_e^2 W^2}{(W^2 + Q^2)^2}
$$

Somit sind alle Größen mit Ausnahme von $\sigma_{T\gamma^* p}^T$ und $\sigma_{T\gamma^* p}^L$ bestimmt. Im folgenden werden wieder die drei bereits bekannten Szenarien unterschieden:

Elastischer Fall

Im elastischen Fall erhält man mit $m_X = m_p$:

$$
\begin{aligned}
\sigma_{T\gamma^* p}^T &= \frac{4\pi^2 \alpha}{Q^2} G_M(Q^2) \frac{\delta(1 - x)}{1 - x} \\
\sigma_{T\gamma^* p}^{T*} &= \frac{16\pi^2 \alpha m_p^2}{Q^4} G_E(Q^2) \frac{\delta(1 - x)}{1 - x}
\end{aligned}
$$

$^5_ {d\Omega^* = d\cos \theta^* d\varphi^*}$ wobei θ^*, φ^* den polaren und azimuthalen Streuwinkel im Schwerpunktsystem des virtuellen Comptonprozesses darstellen.
mit

\[f_{\gamma^* p} = \frac{a}{\pi y} \left[(1 - y) \frac{Q^2 - Q_{\text{min}}^2}{Q^4} G_E^2 + \tau G_M^2 + \frac{y^2}{2Q^2 G_M^2} \right] \]

Hierbei sind \(G_E = \frac{G_M}{2m_p} \) die üblichen Formfaktoren des Protons.

Inelastischer Beitrag: \(e + p \rightarrow (H) + e + \gamma \)

Nimmt man für große \(Q^2 \) an, dass \(\sigma_L = \frac{G^2}{m^2} \cdot \sigma_T \) ist, mit \(\nu = \frac{Q^2}{2m_p x} \), so ergeben sich die Wirkungsquerschnitte zu:

\[\sigma_T = \frac{4\pi^2 \alpha}{(1-x)Q^2} F(x, Q^2) \]
\[\sigma_L = \frac{4\pi^2 \alpha}{(1-x)Q^2} \frac{4x^2 m_p^2}{Q^2} F(x, Q^2) \]

Auf der Basis des Quark-Parton-Modells, läßt sich nun direkt der inelastische Beitrag angeben, indem \(F(x, Q^2) = F_{p/2}^p(x, Q^2) \), der klassischen \(F_{p/2}^p \) Strukturfunktion des Protons gesetzt wird.

Quasielastischer Bereich

Der differentielle Wirkungsquerschnitt für kleine invariante Massen \(M_{\text{had}} \) des auslaufenden hadronen Systems und kleine Impulsüberträge \(Q^2 \) läßt sich aus der Kenntnis der Wirkungsquerschnitte für reelle Photoproduktion und Elektroproduktion der ersten drei Resonanzen ermitteln.

Im Bereich \((m_p + m_\gamma) \leq M_{\text{had}} \leq 1.8 GeV \) herrschen Photoproduktion und Elektroproduktion der drei Resonanzen \(\Delta(1236), N^*(1520), N^*(1688) \) vor, so daß gilt:

\[\sigma_T = \sum_R \sigma_R \frac{M_R^2 \Gamma_R^2}{(m_X^2 - M_R^2)^2 + M_R^2 \Gamma_R^2} \left[1 + \frac{Q^2}{Q^2_R} \right]^{-2} \]
\[\sigma_L = 0 \]

wobei die mit \(R \) indizierten Werte jeweils in Abhängigkeit von der betrachteten spezifischen Resonanz gewählt werden.

Für \(M_{\text{had}} > 1.8 GeV \) und große \(Q^2 \) wieder das Quark Parton Modell als gültig angenommen, so daß hier \(F(x) = F_{p/2}^p(x) \) gesetzt werden kann. Für kleine \(Q^2 \approx 0 \) ergibt sich \(F(x) \) aus dem totalen Wirkungsquerschnitt der Photoproduktion, welcher in diesem Bereich als annähernd konstant angenommen werden kann.
\[F(x) = \frac{Q^2}{4\pi^2\alpha}\sigma_{\gamma p} \]

so daß sich

\[\sigma_T \approx 100\mu b \]
\[\sigma_L = 0 \]

ergeben.

Da zu erwarten ist, daß der Wirkungsquerschnitt im gesamten Gebiet kontinuierlich verläuft, werden über dem gesamten \(Q^2 \) Bereich

\[
\sigma_T = \frac{4\pi^2\alpha}{(1 - x)Q^2} F^p_1(x, Q^2) \phi(x, Q^2)
\]
\[
\sigma_T = \frac{4\pi^2\alpha}{(1 - x)Q^2} \frac{4x^2m^2}{Q^2} F^p_1(x, Q^2) \phi(x, Q^2)
\]

gesetzt, wobei die interpolierte Funktion \(\phi(x, Q^2) \) definiert ist durch

\[
\phi(x, Q^2) = \frac{Q^4[GeV^2]}{Q^2[GeV^2] + F^p_1(x, Q^2)}
\]

Man beachte hierbei daß \(x \) für \(Q^2 \to 0 \) gegen 0 geht und \(\frac{4\pi^2\alpha}{1[GeV^2]} \approx 100\mu b \) ist.

3.3.2 Der Generator selbst

Um ein Monte-Carlo-Programm zu erhalten, welches in allen Phasenraumbereichen mit hinreichender Genauigkeit und Effizienz arbeiten kann, werden im Generator COM200 nur solche "spezifischen" Compton Ereignisse generiert, in denen Elektron und Photon praktisch koplanar und unter endlichen Winkeln im Detektor zu sehen sind. Eine Beschränkung der Akoplanarität \(\psi_{ac} \) sowie der polaren Akzeptanz \(p_t \) bewirken daß \(Q^2 < W^2 \) und \(\eta \ll 1 + cos(\theta^*) \) sind, mit \(\theta^* \) gleich dem polaren Streuwinkel des Elektrons im Schwupunkt system des virtuellen Comptonprozesses.

Aus diesem Grund werden in COM200 Ereignisse in zwei Schritten simuliert: In einem ersten Schritt werden Ereignisse gemäß einer "equivalent-photon-approximation", bei der Terme der Ordnung \(\frac{Q^2}{W^2} \) sowie \(\eta \) vernachlässigt werden, über dem gesamten gewählten Phasenraum generiert. Für den Fall koplanarer \(e\gamma \) Ereignisse ist diese rein dynamische Näherung gut erfüllt. Rein dynamisch bedeutet hier, daß alle physikalischen Größen über den gesamten gewählten Phasenraum generiert und die Kinematik exakt behandelt werden. Der Vorteil einer solchen Näherung liegt Faktorierbarkeit in der Wirkungsquerschnitte.
In einem zweiten Schritt werden die erzeugten Ereignisse durch Vergleich mit dem exakten Wirkungsquerschnitt gewichtet. Somit ist eine exakte Monte Carlo Simulation über dem gesamten Phasenraum möglich. Dennoch ergeben sich dabei Probleme. Mit zunehmenden Q^2 werden die Gewichte der Ereignisse immer größer, was damit zusammenhängt, daß man praktisch vom Bereich des QED Compton - Prozesses zum Bereich der Strahlungskorrekturen übergeht. Ereignisse mit großen Gewichten sollten aus zwei Gründen verworfen werden:

1. Die statistische Bedeutung solcher Ereignisse ist klein

2. Beschränkt man die Größe der Gewichtsfaktoren auf Zahlen kleiner als eins, so lassen sich einzelne (ungewichtete) Ereignisse erzeugen.

Da Q^2 direkt mit p_T^2 zusammenhängt, bedeutet ein großer Q^2 Wert auch direkt einen großen Akoplanaritätswinkel zwischen Elektron und Photon. Somit bewirkt ein Schnitt auf den Akoplanaritätswinkel kleiner 45° und zudem ein Cut in $p_T < 20\text{GeV}$ die gewünschte Einschränkung auf kleine Gewichte bzw. kleine Q^2. Die Beschränkung auf kleine Q^2 hat zudem den Vorteil, daß keine Beiträge zum Wirkungsquerschnitt durch etwaige Ereignisse der schwache Wechselwirkung berücksichtigt werden müssen.

Anmerkungen

- Das Programm berechnet zwar die vollständige invariante Masse der auslaufenden hadronischen Komponente, generiert aber keines der auslaufenden hadronischen Teilchen.
- Mit dem Generator ist es möglich Strahlungskorrekturen durch eine Photonabsstrahlung des einlaufenden Elektrons zu berücksichtigen.
3.4 Der Generator 'WabWQA'

Der Generator WabWQA ist ein ungewichteter Monte Carlo Generator, welcher elastische Weitwinkelbremssstrahlungereignisse auf der Basis einer Weizsäcker-Williams-Näherung und unter der Annahme eines Frontalzusammenstoßes (head-on-collision) zwischen Elektron und virtuellem Photon simuliert.

Der Generator WabWQA wurde auf der Grundlage einer modifizierten Weizsäcker-Williams Approximation zur Simulation des elastischen Prozesses

\[e + p \rightarrow e + p + \gamma \]

3.4.1 Verwendeter Wirkungsquerschnitt

Für den differentiellen Wirkungsquerschnitt des reellen Compton Prozesses ergibt sich gemäß [Ber92]

\[
\frac{d\sigma}{dtdz} = \frac{2\pi\alpha^2}{\hat{s}} \cdot \left(-\frac{\hat{u}}{\hat{s}} - \frac{\hat{s}}{\hat{u}} \right) \cdot \Gamma_\gamma(z)
\]

Hierbei bezeichnet \(z \) den relativen Energienanteil des Photons an der Energie des einlaufenden Protons (siehe Kapitel 2.2.3).

Mit dem relativen Energieverlust des Elektrons im Ruhe-System des Protons \(\gamma \)

\[
y = \frac{-\hat{t}}{\hat{s}} \rightarrow d\hat{t} = \hat{s}dy
\]

Aus \(\hat{s} + \hat{u} + \hat{t} = \sum_i m_i^2 \approx 0 \) folgt

\[
-\frac{\hat{u}}{\hat{s}} = 1 - y
\]

und somit

\[
\frac{d\sigma}{dvdz} = \frac{2\pi\alpha^2}{zS} \left(1 - y + \frac{1}{(1 - y)} \right) \cdot \Gamma_\gamma(z)
\]

Hierbei ist \(S \) das Quadrat der Schwerpunkttenergie der einlaufenden Elektronen und Protonen.

Der equivalenten Photonenfluß \(f_{\gamma/p}(z) \) des Protons wurde gemäß B.A. Kniehl [Kni91] in folgender Parametrisierung verwendet:
3.4. DER GENERATOR 'WABWWA'

\[f_{\gamma/p}(z) = \frac{\alpha}{2\pi} \left[c_1 u \ln(1 + \frac{c_3}{v}) - (u + c_3) \ln(1 - \frac{1}{v}) + \frac{c_4}{v - 1} + \frac{c_5 u + c_6}{v^2} + \frac{c_7 u + c_8}{v^3} + \frac{c_9 u + c_{10}}{v^4} \right] \]

mit

\[u = \frac{1}{2} - \frac{2}{z} + \frac{2}{z^2} \quad \text{und} \quad v = 1 + \frac{\alpha}{4} \frac{x^2}{1 - x} \]

Hierbei sind die Konstanten

\begin{align*}
 c_1 &= -2.76 \cdot 10^{-2} \\
 c_2 &= 3.96 \\
 c_3 &= 13.8 \\
 c_4 &= -2.48 \\
 c_5 &= -0.891 \\
 c_6 &= -11.3 \\
 c_7 &= -0.716 \\
 c_8 &= -4.43 \\
 c_9 &= 0.238 \\
 c_{10} &= -2.12
\end{align*}

3.4.2 Kinematik des Frontalzusammenstoßes

Die dem Generator WabWWA zu Grunde liegende Kinematik basiert auf der Annahme eines Frontalzusammenstoßes (head-on-collision) zwischen Elektron und Photon, sowie der Vernachlässigung der Massen der einlaufenden Teilchen im Hochenergielimes. Der Vorteil dieser Vorgehensweise liegt in der einfachen Berechenbarkeit der Vierervektoren im Laborsystem aus lorentzinvarianten Größen, so daß auf einen aufwendigen Boost und die damit verbundene möglichen Fehlerquellen verzichtet werden kann. Für die Vierervektoren der Teilchen im Laborsystem ergibt sich unter Berücksichtigung der Abbildung 3.3:

\[l = \begin{pmatrix} E_e \\ 0 \\ 0 \\ -E_e \end{pmatrix}, \quad k = \begin{pmatrix} E_\gamma \\ 0 \\ 0 \\ E_\gamma \end{pmatrix} \]

\[\not{p} = E'_e \cdot \begin{pmatrix} 1 \\ \sin \theta_e \cos \phi_e \\ \sin \theta_e \sin \phi_e \\ \cos \theta_e \end{pmatrix}, \quad \not{k}' = E'_\gamma \cdot \begin{pmatrix} 1 \\ \sin \theta'_\gamma \cos \phi'_\gamma \\ \sin \theta'_\gamma \sin \phi'_\gamma \\ \cos \theta'_\gamma \end{pmatrix} \]

Unter Berücksichtigung der Annahme, daß das auslaufende Proton sich weiter entlang der \(z\)-Achse bewegt, welches auf Grund der verwendeten Näherung, d.h. der kollinearen Ausstrahlung des ausgetauschten Photons sinnvoll ist, ergeben sich folgende Ergebnisse:

\underline{Energie des auslaufenden Elektrons} \(E'_e \)
Abbildung 3.3: Die Darstellung entspricht dabei einer Mischung aus geometrischen Größen und einem Feynmandiagramm. Gestrichelte Linien dienen lediglich zur Veranschaulichung der Geometrie. Der Übersichtlichkeit halber wurde p' von der Strahlachse weglauend gezeichnet, was jedoch nicht der Berechnung entspricht, in der das auslaufende Proton weiterhin in z-Richtung ausläuft.

Viererimpulserhaltung:

\[k + l = k' + l' \quad \Rightarrow \quad l' = l + (k - k') \]

\[\Rightarrow \ (l')^2 = 2l \cdot (k - k') - 2k \cdot k' \approx 0 \]

Einsetzen der Darstellung der 4er-Vektoren im Laborsystem ergibt

\[E'_\gamma = \frac{1}{2} \left(\frac{M^2_{ee}}{E_e (1 + \cos \theta_e)} + \frac{M^2_{\gamma e}}{4E_e (1 - \cos \theta_e)} \right) \]

\[\Rightarrow E'_\gamma = E_e (1 - y) + \frac{S_z}{4E_e} \cdot y \]

Energie des auslaufenden Photons \(E'_\gamma \)

Viererimpulserhaltung:

\[k + l = k' + l' \quad \Rightarrow \quad k' = k + (l - l') \]

\[\Rightarrow \ (k')^2 = 2k(l - l') - 2l \cdot l' \approx 0 \]
Einsetzen der Darstellung der 4er-Vektoren im Laborsystem ergibt

\[
E'_\gamma = \frac{1}{2} \cdot \left(\frac{M^2_{\gamma}}{M^2_{\gamma} + \frac{1}{4E^2_e} \left(1 - \cos \theta'_e \right) + E_e \left(1 + \cos \theta'_e \right)} \right)
\]

\[\Rightarrow E'_\gamma = yE_e + \frac{M^2_{\gamma}}{4E_e} (1 - y)\]

\textbf{y-Bjorken des Prozesses}

\[
y = \frac{pq}{pk} = \frac{l \cdot q}{l \cdot k} = 1 - \frac{l \cdot k'}{l \cdot k} = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta'_e)
\]

und analog

\[
y = \frac{E'_e (1 - \cos \theta'_e)}{2E_e}
\]

\textbf{Polarwinkel der auslaufenden Teilchen}

Durch Umstellen und Einführen der vorgenannten Gleichungen erhält man für den Polarwinkel des gestreuten Elektrons:

\[
\cos \theta'_e = 1 + \left(y - 1 \right) \cdot \frac{2E_e}{E'_e}
\]

Analog läßt sich auch der Polarwinkel des Photons berechnen:

\[
\cos \theta'_\gamma = 1 - \frac{2yE_e}{E'_e}
\]

Eine andere Möglichkeit stellt hier die Ausnutzung der Viererimpulserhaltung in der \(z\) Komponente dar, mit der sich

\[
k_z + l_z = k'_z + l'_z
\]

und daraus

\[
\cos \theta'_\gamma = \frac{z \cdot E_y - E_e - E'_e \cdot \cos \theta'_e}{E'_e}
\]

ergibt.
Unter der Annahme eines Frontalzusammenstoßes zwischen Elektron und virtuellem Photon, also für den Fall quasireeller Photonen ergibt sich zudem bei Vernachlässigung der Teilchenmassen (Hochenergienäherung)

\[M_{\gamma}^2 = (e + \gamma)^2 = (e + z \cdot p)^2 \approx z S \]

3.4.3 Die Generation

Die Ereignisgeneration und Integration in WabWWA erfolgt mittels des Programmes BASES/SPRING welches hier in der Version 1.1 verwendet wurde. Als Variablen wurden die beiden SkalenvARIABLEN \(z \) und \(y \) in den Grenzen \(0 \leq z, y \leq 1 \) gewählt. Zudem wird der Azimutalwinkel \(\varphi \) der auslaufenden Teilchen gleichverteilt zwischen 0 und \(2\pi \) gewürfelt. Die Größen \(x, y, \varphi \) legen die Kinematik des Prozesses unter der Annahme daß Elektron und Photon stets genau “back to back” auslaufen, vollständig fest. Es werden die Vierervektoren aller Teilchen im Laborsystem berechnet und über H1-Bänke zur Verfügung gestellt.
3.5 Probleme und Bugs der Generatoren

<table>
<thead>
<tr>
<th>Generatoren</th>
<th>E'_e</th>
<th>E'_γ</th>
<th>θ'_e</th>
<th>θ'_γ</th>
<th>φ'_e</th>
<th>φ'_γ</th>
<th>p_t</th>
<th>E_{vis}</th>
<th>ψ_{acc}</th>
<th>E'_e</th>
<th>E'_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCOMPT</td>
<td>✓</td>
</tr>
<tr>
<td>COM200</td>
<td>✓</td>
</tr>
<tr>
<td>WabGen</td>
<td>✓</td>
</tr>
<tr>
<td>WabWWA</td>
<td>✓</td>
</tr>
</tbody>
</table>

Hierbei bezeichnen: E'_e die Energien, θ'_e die Polarwinkel und φ'_e die Azimuthalwinkel der auslaufenden Teilchen. $E_{\text{vis}} = E'_e + E'_\gamma$ repräsentiert die im Detektor sichtbare Energie, p_t den Transversalimpuls des Elektron-Photon-Subsystems und ψ_{acc} den Akoplanaritätswinkel. E'_e gibt Schnitte auf die transversale Energie der einzelnen Teilchen an, wie sie z.B. für die Kalibrierung des LAr-Kalorimeters von Bedeutung sind.

Es ist dabei anzumerken, daß auf Grund der in Kapitel 4 noch zu zeigenden Ergebnisse, der Schnitt in der Größe p_t, des Transversalimpulses des $e\gamma$ Subsystems, eigentlich keinen besonderen physikalischen Sinn ergibt, sieht man einmal von seiner Notwendigkeit für das technische Konzept von COM200 ab. Aus diesem Grund wurde dieser Schnitt weder in EPCOMPT noch in WabGen implementiert.

Weitere Probleme von COM200 stellten sich bei der Generation von Ereignissen zur weiteren Analyse mit PHAN heraus:

1. Es ist nicht möglich, Elektronen statt Positronen mit COM200 zu erzeugen, da das Programm dann einen illegalen Speicherzugriff durchführt und abstürzt.

2. Die in dem Steuerfile angegeben zu generierende Ereigniszahlen stimmen nicht immer mit den wirklich erzeugten überein. Bei der Simulation des VLQ wurde z.B. bei 50000 zu generierenden Teilchen nur 41136 elastische, 690 quasielastisch und 1707 tiefinelastische, also insgesamt 43533 Ereignisse erzeugt (dieser Effekt ist reproduzierbar). In anderen Bereichen hingegen funktioniert die Ereignisgeneration korrekt.

\[\text{Obwohl diese Schnitte bei den folgenden Untersuchungen nicht verwendet werden, seien sie hier dennoch der Vollständigkeit halber erwähnt.}\]
3. Die gestreuten Elektronen und Photonen werden so in die H1 Bänke eingetragen, als ob sie vom einlaufenden Proton statt dem einlaufenden Elektron als Mutterteilchen stammen würden. Dies macht ein wenig Probleme bei der Analyse der Ereignisse mit PHAN.

Aus den gerade geschilderten Gründen, ist bei der Benutzung des Generators COM200 Vorsicht geboten.
Kapitel 4

Die Ergebnisse der Untersuchungen

Um ein besseres Verständnis für die kinematischen Größen der Weitwinkelbremsstrahlung zu vermitteln, werden zu Beginn dieses Kapitels deren Verteilungen an Hand eines Beispiels erläutert. Als Beispiel dient ein Sample aus 50000 Ereignissen, welches mittels des Generators WabGen erzeugte wurden. Die verwendeten Schnitte sind dabei so gewählt, wie sie auch für die Suche nach angeregten Leptonen verwendet werden. Betrachtet werden hier allerdings nur Ereignisse, welche dem elastischen Prozeß der Weitwinkelbremsstrahlung entstammen.

Für die Grenzen bzw. Schnitte wurden folgende Werte gewählt:

<table>
<thead>
<tr>
<th>Impulse der einlaufenden Teilchen</th>
<th>$p_{t_{\text{in}}} = -27.5 \text{ GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\text{in}} = 820 \text{ GeV}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schnitte auf auslaufende Teilchen</th>
<th>$E_{\text{e}}' > 2 \text{ GeV}$</th>
<th>$2^\circ < \theta_{\text{e}}' < 178^\circ$</th>
<th>$0^\circ < \varphi_{\text{e}}' < 360^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\gamma}' > 2 \text{ GeV}$</td>
<td>$2^\circ < \theta_{\gamma}' < 178^\circ$</td>
<td>$0^\circ < \varphi_{\gamma}' < 360^\circ$</td>
<td></td>
</tr>
</tbody>
</table>

| weitere Schnitte | $E_{\text{vis}} > 2 \text{ GeV}$ | $(8 \text{ GeV})^2 < \delta < S - m_p^2$ |

Die Größen θ_i' stehen jeweils für die Polarwinkel, (φ_i' für den Azimuthalwinkel) der auslaufenden Teilchen, mit $i = e$ für das Elektron, $i = \gamma$ für das Photon und $i = p$ für das Proton. Es ist zu beachten, daß alle Winkel, gemäß der Konvention bei H1, relativ zur Richtung des einlaufenden Protons definiert sind. Ein Winkel $\theta_{\text{e}}' = 180^\circ$ entspricht somit einem auslaufenden Elektron entlang der $-z$-Achse, also einem ungestreuten Elektron. Die Größen E_i' repräsentieren die jeweiligen Energien der auslaufenden Teilchen. E_{vis}, bezeichnet die im Detektor sichtbare Energie, also die Summe aus E_{e}' und E_{γ}'.

Da der Generator COM200 aus technischen Gründen (siehe Kapitel 3.3) feste Schnitte für den maximalen transversalen Impuls p_t des auslaufenden Elektrons und Photons mit $p_{\text{tmax}} < 20 \text{ GeV}$ und den Akoplanaritätswinkel ψ_{aks} mit $\psi_{\text{aks}} < 45^\circ$ (in Grad) fordert, wurden diese jeweils auf die maximal möglichen Werte gesetzt, um ihre Wirkung klein zu halten. Wie sich bei den folgenden Untersuchungen zeigen wird, sind diese Schnitte im...
KAPITEL 4. DIE ERGEBNISSE DER UNTERSUCHUNGEN

elastischen Bereich ohne Einfluß auf den Wert des integrierten Wirkungsquerschnitt. Die Größen \(p_{\text{in}}^2 \) bezeichnen die Impulsbeträge der einlaufenden Teilchen.

Wie schon in Kapitel 2.1 dargestellt, besitzt der differentielle Wirkungsquerschnitt der Weitwinkelbremssstrahlung zwei Polstellen und zwar bei \(q_1^2 \equiv \hat{s} = m_1^2 \) und \(q_2^2 \equiv |k^2| = 0 \text{ GeV}^2 \). Dies hat zur Folge, daß bei der Integration des totalen Wirkungsquerschnittes vor allem Ereignisse mit kleinen Impulsübertrag \(|k^2| \approx 0 \text{ GeV}^2 \), sowie mit kleinen invarianten Massen \(\hat{s} \) im \(e\gamma \)-Subsystem dominieren. Somit ist ein starkes Auftreten von generierten Ereignissen bei kleinen Werten von \(|k^2| \) zu erwarten, was sich in den zugehörigen Histogrammen

und in logarithmischer Darstellung

auch deutlich zeigt. Analog erwartet man eine Anhäufung von Ereignissen bei kleinen Werten von \(\hat{s} \), bis hin zur gegebenen Untergrenze, welche hier zu \(\sqrt{\hat{s}_{\text{min}}} = 8 \text{ GeV} \) gesetzt wurde.
Die Dominanz kleiner invarianter Massen \hat{s} zeigt sich auch deutlich bei der Integration des differentiellen Wirkungsquerschnittes über schmale Bereiche in \hat{s}.

Hier wurden die Werte des totalen Wirkungsquerschnittes in einzelnen Bereichen von \hat{s} normiert auf die Intervalbreite gegen den Mittelpunkt des gewählten Bereiches aufgetragen. Das kleine Diagramm stellt dabei einen Ausschnitt in halblogarithmischer Darstellung für kleine invariante Massen dar. Es wird deutlich, daß der totale, integrierte Wirkungsquerschnitt der elastischen Weitwinkelbremsstrahlung vor allem von Ereignissen solcher kleiner invarianter Massen bestimmt wird. Kleine Impulsüberträge $|k^2|$ auf das einlaufende Elektron bedeuten eine nur geringe Änderung seines Impulses und somit seiner Bewegungsrichtung. Aus diesem Grund ist eine
Häufung des Elektronstreuwinkels und damit gekoppelt auch des Photonstreuwinkels bei großen Polarwinkeln zu erwarten,

Für die Energien der auslaufenden Teilchen ergibt sich:

Da bei der Integration des Wirkungsquerschnittes über den vollen Bereich des Azimutalwinkels des gestreuten Elektrons (0° bis 360°) integriert wurde, so daß die beiden Interferenzterme des Photon-Fluß-Ansatzes keinen Einfluß haben, erwarten wir eine Gleichverteilung der Azimutalwinkel der auslaufenden Teilchen:

Wie bereits erläutert, erhält das auslaufende Proton im elastischen Fall auf Grund der Dominanz kleiner Werte von \(|\vec{k}|^2\) nur einen geringen Transversalimpuls und läuft praktisch entlang der Beampipe aus. Aus diesem Grund sollte auch das Elektron Photon System nur einen geringen Transversalimpuls \(p_t\) aufweisen:
Dies wiederum hat zur Folge, daß die Impulskomponenten der Elektronen und Photonen in einer zum Strahl senkrechten Ebene antiparallel liegen. Man sagt, die Teilchen laufen 'back to back', also Rücken an Rücken aus. Zur Beschreibung dieses Verhaltens eignet sich vor allem eine Größe, die Akoplanarität, bzw. der Akoplanaritätswinkel:

$$
\Psi_{\text{ako}} := |\varphi'_{\text{e}} - \varphi'_{\gamma} - \pi|
$$

Im Fall der elastischen Weitwinkelbremssstrahlung ist zu erwarten, daß der Akoplanaritätswinkel stets klein ist.

An den zuletzt gezeigten Verteilungen kann man gut erkennen, daß sowohl der Akoplanaritätswinkel als auch die Transversalimpulse im elastischen Fall stets kleiner sind als die in COM200 als feste Minimalzüge implementierten Grenzen $$\Psi_{\text{ako}}^{\text{max}} < 45^\circ$$ und $$p_{\text{t}}^{\text{max}} < 20 \text{ GeV}.$$
4.1 Vergleich der Generatoren

Ziel dieser Arbeit war die Erstellung eines neuen, technisch verbesserten Monte Carlo Generators für die Simulation der Weitwinkelbremsstrahlung. Wie bereits in Kapitel 3.1 erläutert stellt vor allem die Nähe zu den Polstellen in \hat{s} und $|k^2|$, wie sie zur Untersuchung des Bereiches des VLQ's benötigt wird, eine besondere Herausforderung an die programmtechnische Qualität der Generatoren dar. Es war zu erwarten, daß alle Generatoren in Bereichen großer \hat{s} problemlos funktionieren würden, und sich erst beim Übergang zu immer kleineren Werten der invarianten Masse Schwierigkeiten einstellten würden. Aus diesem Grund wird zum Vergleich der Ergebnisse der einzelnen Generatoren der totale Wirkungsquerschnitt in schmalen Bereichen von \hat{s} aufgegriffen. Als kleinstes \hat{s} wird 1 GeV < $\sqrt{\hat{s}}$ < 2 GeV gewählt, da $\sqrt{\hat{s}}$ = 1 GeV die untere Grenze ist, bei der der Generator EPCOMPT noch benutzt werden kann. Als Obergrenze wurde \hat{s} = 200 GeV gesetzt, da hier die Wirkungsquerschnitte bereits so klein sind, daß sie für die verschiedenen Anwendungsmöglichkeiten der Weitwinkelbremsstrahlung kaum noch von Bedeutung sind. Das Interval wurde zu kleinen Werten von \hat{s} hin feiner gewählt, um etwaige Effizienzprobleme der Integration zu vermeiden.

Die weiteren Schritte und Parameter sind so gewählt, daß sie den Grenzen des HI-Detektors entsprechen. Dieser überdeckt etwa einen Polarwinkelbereich von 2° bis 178° und benötigt zur Teilchendetektion eine minimale Energie des einzelnen Teilchens von 2 GeV.

<table>
<thead>
<tr>
<th>Impulse der einlaufenden Teilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{in}^e = 26.7 GeV</td>
</tr>
<tr>
<td>p_{in}^p = 820 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schnitte auf auslaufende Teilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{out}^e > 2 GeV</td>
</tr>
<tr>
<td>θ_{out}^e < 178$^\circ$</td>
</tr>
<tr>
<td>φ_{out}^e < 360$^\circ$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weitere Schnitte</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{out}^e > 2 GeV</td>
</tr>
</tbody>
</table>

Die Untersuchung des totalen Wirkungsquerschnittes in der obigen Form wurde in den schon mehrfach erwähnten Bereichen elastisch, tiefinelastisch und quasielastisch getrennt durchgeführt. Der Grund hierfür liegt vor allem in der theoretischen Unsicherheit der verwendeten Modelle für den inelastischen Bereich. Während der elastische Fall der Weitwinkelbremsstrahlung exakt durch die Quantenelektrodynamik beschrieben wird, so daß sich hier kein modellabhängiger Spierraum ergibt, ist die Beschreibung des inelastischen Bereichs nicht streng vorgegeben. So ist nicht nur die Wahl der Grenze zwischen quasielastischem Bereich und tiefinelastischem in gewissen Grenzen als willkürlich anzusehen, sondern auch die Parametrisierung der F_{p} Strukturfunktion im quasielastischen Fall läßt einige Wahlmöglichkeiten offen. Aus diesem Grund kommt dem Vergleich der Ergebnisse der Integration der elastischen differentiellen Wirkungsquerschnitte der einzelnen Generatoren besondere Bedeutung zu.
4.1. VERGLEICH DER GENERATOREN

<table>
<thead>
<tr>
<th>Bereiche</th>
<th>(1.2\text{GeV})</th>
<th>(2.4\text{GeV})</th>
<th>(4.6\text{GeV})</th>
<th>(6.8\text{GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCOMPT V1.0</td>
<td>3790 ± 38</td>
<td>2354 ± 24</td>
<td>4747 ± 4.7</td>
<td>1538 ± 1.6</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
<td>3582 ± 36</td>
<td>2203 ± 22</td>
<td>4427 ± 4.4</td>
<td>1454 ± 1.5</td>
</tr>
<tr>
<td>WabWWA</td>
<td>3530 ± 35</td>
<td>2221 ± 22</td>
<td>4454 ± 4.5</td>
<td>1463 ± 1.5</td>
</tr>
<tr>
<td>WabGen</td>
<td>3579 ± 36</td>
<td>2226 ± 22</td>
<td>4441 ± 4.4</td>
<td>1470 ± 1.5</td>
</tr>
<tr>
<td>COM200 ((\text{gew}))</td>
<td>3447 ± 34</td>
<td>2168 ± 22</td>
<td>4377 ± 4.3</td>
<td>1441 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>(8.10\text{GeV})</td>
<td>(10.20\text{GeV})</td>
<td>(20.30\text{GeV})</td>
<td>(30.40\text{GeV})</td>
</tr>
<tr>
<td>EPCOMPT V1.0</td>
<td>72.34 ± 0.72</td>
<td>117.0 ± 1.2</td>
<td>24.57 ± 0.25</td>
<td>7.853 ± 0.079</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
<td>66.10 ± 0.66</td>
<td>106.3 ± 1.1</td>
<td>21.61 ± 0.22</td>
<td>6.804 ± 0.068</td>
</tr>
<tr>
<td>WabWWA</td>
<td>66.40 ± 0.66</td>
<td>105.8 ± 1.1</td>
<td>21.61 ± 0.22</td>
<td>6.689 ± 0.067</td>
</tr>
<tr>
<td>WabGen</td>
<td>66.84 ± 0.66</td>
<td>105.9 ± 1.1</td>
<td>21.54 ± 0.22</td>
<td>6.640 ± 0.066</td>
</tr>
<tr>
<td>COM200 ((\text{gew}))</td>
<td>65.46 ± 0.65</td>
<td>105.4 ± 1.1</td>
<td>21.82 ± 0.22</td>
<td>6.662 ± 0.066</td>
</tr>
<tr>
<td></td>
<td>(40.50\text{GeV})</td>
<td>(50.60\text{GeV})</td>
<td>(60.70\text{GeV})</td>
<td>(70.80\text{GeV})</td>
</tr>
<tr>
<td>EPCOMPT V1.0</td>
<td>3.246 ± 0.032</td>
<td>1.549 ± 0.015</td>
<td>0.778 ± 0.008</td>
<td>0.419 ± 0.004</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
<td>2.692 ± 0.027</td>
<td>1.253 ± 0.013</td>
<td>0.610 ± 0.006</td>
<td>0.318 ± 0.003</td>
</tr>
<tr>
<td>WabWWA</td>
<td>2.711 ± 0.027</td>
<td>1.259 ± 0.013</td>
<td>0.610 ± 0.006</td>
<td>0.316 ± 0.003</td>
</tr>
<tr>
<td>WabGen</td>
<td>2.713 ± 0.027</td>
<td>1.263 ± 0.013</td>
<td>0.610 ± 0.006</td>
<td>0.318 ± 0.003</td>
</tr>
<tr>
<td>COM200 ((\text{gew}))</td>
<td>2.740 ± 0.027</td>
<td>1.260 ± 0.013</td>
<td>0.610 ± 0.006</td>
<td>0.319 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>(80.90\text{GeV})</td>
<td>(90.100\text{GeV})</td>
<td>(100.120\text{GeV})</td>
<td>(120.140\text{GeV})</td>
</tr>
<tr>
<td>EPCOMPT V1.0</td>
<td>0.237 ± 0.002</td>
<td>0.140 ± 0.001</td>
<td>0.140 ± 0.001</td>
<td>0.0570 ± 0.0006</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
<td>0.177 ± 0.002</td>
<td>0.101 ± 0.001</td>
<td>0.0954 ± 0.001</td>
<td>0.0364 ± 0.0004</td>
</tr>
<tr>
<td>WabWWA</td>
<td>0.174 ± 0.002</td>
<td>0.100 ± 0.001</td>
<td>0.0954 ± 0.001</td>
<td>0.0364 ± 0.0004</td>
</tr>
<tr>
<td>WabGen</td>
<td>0.175 ± 0.002</td>
<td>0.100 ± 0.001</td>
<td>0.0954 ± 0.001</td>
<td>0.0364 ± 0.0004</td>
</tr>
<tr>
<td>COM200 ((\text{gew}))</td>
<td>0.168 ± 0.002</td>
<td>0.0953 ± 0.0010</td>
<td>0.0887 ± 0.0009</td>
<td>0.03106 ± 0.0003</td>
</tr>
<tr>
<td></td>
<td>(140.160\text{GeV})</td>
<td>(160.180\text{GeV})</td>
<td>(180.200\text{GeV})</td>
<td></td>
</tr>
<tr>
<td>EPCOMPT V1.0</td>
<td>0.0240 ± 0.0002</td>
<td>0.00973 ± 0.0001</td>
<td>0.00361 ± 0.00004</td>
<td></td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
<td>0.0147 ± 0.0002</td>
<td>0.00600 ± 0.00006</td>
<td>0.00232 ± 0.00002</td>
<td></td>
</tr>
<tr>
<td>WabWWA</td>
<td>0.0147 ± 0.0002</td>
<td>0.00600 ± 0.00006</td>
<td>0.00232 ± 0.00002</td>
<td></td>
</tr>
<tr>
<td>WabGen</td>
<td>0.0147 ± 0.0002</td>
<td>0.00508 ± 0.00006</td>
<td>0.00228 ± 0.00002</td>
<td></td>
</tr>
<tr>
<td>COM200 ((\text{gew}))</td>
<td>0.01034 ± 0.0002</td>
<td>0.00329 ± 0.00003</td>
<td>0.00095 ± 0.00001</td>
<td></td>
</tr>
</tbody>
</table>

4.1.1 Der elastische Bereich

Die den Generatoren EPCOMPT V1.1, COM200 und WabGen zu Grunde liegenden Berechnungen des differenziellen Wirkungsquerschnittes sind jeweils in exakter Art und Weise, auf den gut verstandenen Grundlagen der QED basierend, durchgeführt worden. Somit ist zu erwarten, dass alle Generatoren nicht nur in den integrierten totalen Wirkungsquerschnitten im Rahmen des stochastischen Fehlers der numerischen Integration übereinstimmen, sondern auch die Verteilungen der kinematischen Größen große Ähnlichkeiten aufweisen sollten. Wie bereits gezeigt peakt die Verteilung der \(|k^2|\) stark an der Stelle \(|k^2| \approx 0 \text{ GeV}\), so dass auf Grund des starken \(k^2\) Abfalls der Formfaktoren auch die Weizsäcker-Williams-Approximation gut mit den Ergebnissen der exakten numerischen Integration übereinstimmt sollte. Die Annahme einer Frontalkollision zwischen Elektron und virtuellem Photon zur Vereinfachung der Kinematik erscheint unter diesem Aspekt auch gerechtfertigt.

Mit oben erläuterten Schnitten ergaben sich die Werte in Tabelle 4.1.1.

Alle Wirkungsquerschnitte wurden mit einer vorgegeben Genauigkeit von ±1% integriert, so daß sich beim Vergleich zweier Generatoren ein Fehlerband von ±1.4% ergibt. Betrachtet man aber die durch den Generator COM200 gelieferten Werte ¹:

¹Das Fehlerband wurde in dieser Darstellung zu Gunsten der Übersichtlichkeit geopfert. Zudem ist klar erkennlich, daß die Werte deutlich außerhalb der Fehlergrenzen liegen.
so stellt man sowohl für kleine, als auch große invariante Massen eine deutliche Abweichung von der Weizsäcker-Williams-Approximation fest. Das Verhalten des Generators bei großer invariante Massen ist vollkommen unverstanden und bedarf weiterer Studien. Da sich im Bereich des VLQ, bei noch kleineren invarianten Massen aber anderen Winkelschnitten als den hier untersuchten, wieder eine gute Übereinstimmung mit den anderen Generatoren ergibt (siehe Kap. 4.3), scheint obiger Abfall bei kleinen invariante Massen nicht unbedingt auf ein Problem der, dem Generator zu Grunde liegenden physikalischen Beschreibung hinzudeuten. Vielmehr stellte sich auch bei der Entwicklung des Generators WabGen zwischenzeitlich ein ähnlicher Effekt ein, welcher sich als mangelnde Effizienz bei der Integration erwies und behoben werden konnte. Auch bei COM200 könnte es sich hier um einen ähnlichen Effekt handeln.

Für den Vergleich der Verteilungen der wichtigen kinematischen Größen der vier Generatoren, wurde jeweils ein Sample von 50000 Monte Carlo Ereignissen mit den obigen Parametern im Bereich $8 \text{ GeV}^2 < s < S - m_p^2$ generiert.

jedoch stets kleine als 2%.

Für die Energieverteilung der auslaufenden Teilchen findet man

Auch die Verteilungen der Polarwinkel der Teilchen stimmen gut überein.
4.1. VERGLEICH DER GENERATOREN

Die Histogramme der Azimutalwinkel zeigen die erwartete Gleichverteilung, so daß die Übereinstimmung hier keine Überraschung darstellt.

Auch die Verteilung der Transversalimpulse,
KAPITEL 4. DIE ERGEBNISSE DER UNTERSUCHUNGEN

der Viererimpulsüberträge,

sowie der invarianten Massen
Anmerkung

Bei der Vernachlässigung vom Termen der Ordnung \(\frac{m^2}{p^2} \) in der direkten Berechnung des Wirkungsquerschnittes, wie dies in der Version 1.0 des Generators EPCOMPT geschehen ist, ergibt sich folgendes Bild:

Die Abweichung vom erwarteten Verlauf des Wirkungsquerschnittes ist deutlich zu erkennen. Dieses Ergebnis hat dazu geführt, daß in der Version 1.1 solche Terme in der Berechnung des Querschnittes mitberücksichtigt wurden und in Gleichung 3.3.2 der Term \(B_0 \) durch \(B_0 - B_1 \) ersetzt wurde. Mit dieser Ersetzung ergibt sich dann die gute Übereinstimmung zwischen den Generatoren, wie oben gezeigt.
4.1.2 Inelastischer Bereich

Wie gerade gezeigt, stimmen die Ergebnisse der drei Generatoren für den elastischen Fall der Weitwinkelbremsstrahlung sehr gut überein. Da die Behandlung der inelastischen Prozesse in den einzelnen Generatoren auf der verwendeten Beschreibung der Kinematik und des differentiellen Wirkungsquerschnittes des elastischen Prozesses aufbaut, würde man a priori auch für die quasielastische und tiefinelastische Weitwinkelbremsstrahlung eine ähnlich gute Übereinstimmung erwarten. Allerdings ist die Behandlung der inelastischen Prozesse nicht streng festgelegt, wie im elastischen Fall, sondern erlaubt Variationen. Bereits die Wahl der Grenze zwischen quasielastischem und tiefinelastischem Bereich ist in gewissen Grenzen willkürlich. So verwendete EP- COMPT eine Grenze von $|k^2| > 5 \text{ GeV}^2$ während COM200 diese bei $M_{\text{had}} > 1.8 \text{ GeV}^2$ zieht.

Um dennoch einen Vergleich mit beiden Generatoren zu ermöglichen wurden testweise beide Grenzen im Generator WabGen implementiert. (5 GeV2 für den Vergleich mit EP- COMPT V1.1, 1.8 GeV2 für den Vergleich mit COM200). Dabei ist aber im tiefinelastischen Fall Vorsicht geboten, da die Quarkdichteverteilungen gemäß PDF-lib in ihrem $|k^2|$ Bereich beschränkt sind. So ist per Default eingestellte Verteilung 1003036 also "MRS-(H)D" nur für $|k^2| > 5 \text{ GeV}^2$ geeignet. Aus diesem Grund wurde für die Untersuchungen die CTEQ 4LQ Variante (1004041) verwendet.

Auch die Parametrisierung der $F_T^R(x, |k^2|)$ Strukturfunktion für den quasielastischen Fall ist in den beiden Generatoren EP- COMPT (analoga in WabGen) und COM200 verschieden. Eine weitere Problematik stellt der von COM200 stets durchgeführte Akoplanaritätschnitt bei $\psi_{\text{ako}} < 45^\circ$ dar. Wie noch gezeigt wird, ist dieser Schnitt im tiefinelastischen Fall nicht mehr unwirksam, so daß er beim Vergleich der Generatoren berücksichtigt werden muß.

Da sich mit COM200 Monte Carlo-Ereignisse in den Bereichen elastisch, tiefinelastisch und quasielastisch nur gemeinsam erzeugen lassen und die inelastischen Ereignisse auf Grund der Dominanz des elastischen Wirkungsquerschnittes stark unterdrückt sind, ist ein Vergleich der kinematischen Größen von COM200 mit denen der anderen Generatoren für den inelastischen Fall nicht möglich.

4.2 Untersuchung des tiefinelastischen Bereichs

Bei der Integration der differentiellen Wirkungsquerschnitte in einzelnen Bins der invarianten Masse, analog zur Untersuchung im elastischen Fall, ergibt sich:
Da die Beschreibung des inelastischen Anteils der Generatoren EPCOMPT V1.1 und WabGen auf demselben physicalischen Modell basieren und beiden eine Grenze von 5 GeV in als Untergrenze des Viererimpulsübertrages implementiert haben, ist a priori eine Übereinstimmung der Wirkungsquerschnitte in allen Bereichen der invarianten Masse zu erwarten.

Die graphische Darstellung der integrierten Wirkungsquerschnitte von WabGen normiert auf EPCOMPT V1.1 zeigt aber einen deutlichen Abfall des Wirkungsquerschnittes von WabGen für den Fall kleiner invarianter Massen s:

Die Annahme, dieses Verhalten sei ausschließlich durch die verschiedenen Ansätze in der Berechnung des differentiellen Wirkungsquerschnittes und Näherungen in der Kinematik
Ein Blick auf die Verteilung der generierten Viererimpulsüberträge

zeigt, daß in WabGen nur Ereignisse sehr kleiner \(|k^2|\) generiert wurden. Dieses Verhalten legt nahe, daß in WabGen verglichen mit EPCOMPT die Obergrenze für \(|k^2|\) deutlich kleiner gesetzt wurde, und dies zumindest eine der Ursachen für den „zu kleinen“ Wirkungsquerschnitt sein könnte. Setzt man die Obergrenze für \(|k^2|\) im WabGen künstlich auf

\[k_{\text{max}}^2 = S - \hat{s} - m_e^2, \]

so erhält man folgende Werte:
KAPITEL 4. DIE ERGEBNISSE DER UNTERSUCHUNGEN

<table>
<thead>
<tr>
<th>Bereiche</th>
<th>1.2 GeV</th>
<th>2.4 GeV</th>
<th>4.6 GeV</th>
<th>6.8 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCompt V1.1</td>
<td>-</td>
<td>1655. ± 11</td>
<td>328.1 ± 1.3</td>
<td>140.3 ± 1.4</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td>412.3 ± 4.1</td>
<td>341.3 ± 3.4</td>
<td>144.6 ± 1.4</td>
<td>78.75 ± 0.79</td>
</tr>
<tr>
<td>EPCompt V1.1</td>
<td>8.10 GeV</td>
<td>10.20 GeV</td>
<td>20.30 GeV</td>
<td>30.40 GeV</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td>71.72 ± 0.72</td>
<td>107.9 ± 1.1</td>
<td>20.83 ± 0.20</td>
<td>6.447 ± 0.065</td>
</tr>
<tr>
<td>EPCompt V1.1</td>
<td>40.50 GeV</td>
<td>50.60 GeV</td>
<td>60.70 GeV</td>
<td>70.80 GeV</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td>2.656 ± 0.027</td>
<td>1.238 ± 0.012</td>
<td>0.651 ± 0.007</td>
<td>0.354 ± 0.004</td>
</tr>
<tr>
<td>EPCompt V1.1</td>
<td>80.90 GeV</td>
<td>90.100 GeV</td>
<td>100.120 GeV</td>
<td>120.140 GeV</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td>0.202 ± 0.002</td>
<td>0.119 ± 0.001</td>
<td>0.116 ± 0.001</td>
<td>0.0426 ± 0.0004</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td>0.0159 ± 0.0002</td>
<td>0.00563 ± 0.00006</td>
<td>0.00188 ± 0.00002</td>
<td>0.00170 ± 0.00002</td>
</tr>
</tbody>
</table>

Ihre graphisch Darstellung ergibt:

Man sieht deutlich, daß der Abfall des Wirkungsquerschnittes bei kleinen invarianten Massen, auch durch diese neue Obergrenze nur teilweise, aber nicht vollständig aufgehoben werden kann. Die Verteilungen der kinematischen Größen stimmen für diesen Fall jedoch besser überein.
Untersuchung des tiefinelastischen Bereiches

Viererimpulsübertrag $|k^2|$ auf das einlaufende Elektron

Energie der Elektronen

Energie der Photonen

Invariante Masse des Elektron-Photon-Subsystems

Transversalimpulse

Polarwinkel der Elektronen

Energie der Elektronen

Polarwinkel der Photonen

Invariante Masse der Photonen

Transversalimpulse

Anzahl generierter Ereignisse

Elektronenenergie [GeV]

Energie der Elektronen

Energie der Photonen

Invariante Masse des Elektron-Photon-Subsystems

Transversalimpulse

Anzahl generierter Ereignisse

Polarwinkel [Grad]

Polarwinkel der Elektronen

Polarwinkel der Photonen

Anzahl generierter Ereignisse

Transversalimpulse

Anzahl generierter Ereignisse

Viererimpulsübertrag $|k^2|$ [GeV²]
Dennoch stellt der Wert \(|k^2|_{\text{max}} = \hat{s} - m_e^2\) die korrekte Grenze dar. Wird statt dessen \(|k^2|_{\text{max}} = S - \hat{s} - m_p^2\) gesetzt, so können sich im Fall kleiner invarianter Massen und großer Impulsüberträge beim Boosten des Vierervektors des virtuellen Photons in das Elektron-Photon-Schwerpunktsystem negative Werte für dessen Energie ergeben. Verwirft man diese physikalisch unsinnigen Fälle mittels weiterer Schnitte, so daß sie nicht zum Wirkungsquerschnitt beitragen, so ergeben sich wieder die obigen, deutlich kleineren Werte bei kleinen invarianter Massen.

Da für \(\hat{s} > (8 \text{ GeV})^2\) die Wirkungsquerschnitte der beiden Generatoren recht gut übereinstimmen, ist eine Betrachtung der Verteilungen für diesen Bereich hier auch von Interesse. Hierbei wurde \(|k^2|_{\text{max}}\) wieder auf den richtigen Wert \(|k^2|_{\text{max}} = \hat{s} - m_e^2\) gesetzt.
Trotz der teilweise noch erheblichen Abweichungen, vor allem bei den Energien der Teilchen, ist hier dennoch eine prinzipielle bessere Übereinstimmung der Verteilungen der kinematischen Größen zu erkennen. Dies gibt die Gewißheit, daß die Übereinstimmung der Wirkungsquerschnitte nicht rein zufälliger Natur ist.

An den drei tiefinelastischen Ereignissamplen sind zudem zwei wichtige Dinge zu erkennen. Zum einen hat der in COM200 implementierte Schnitt auf $p_{\perp}^{\text{max}} < 20$ GeV auch im tiefinelastischen Fall praktisch keine Wirkung, und kann somit vernachlässigt werden. Zum anderen ist aber der Akoplanaritätsschnitt $\Psi_{\perp}^{\text{max}}$ sehr wohl wirksam und muß bei einem Vergleich der Generatoren im inelastischen Bereich mitberücksichtigt werden.

Ein Vergleich der Wirkungsquerschnitte von WabGen mit $m_{\text{had}} > 1.8$ GeV² und COM200 liefert:

| Wirkungsquerschnitt, tiefinelastischer Bereich, in pb |
|-----------------|-----------------|------------------|-----------------|
| | 1.2 GeV | 2.4 GeV | 4.6 GeV | 6.8 GeV |
| COM200 (gew.) | 728.8 ± 7.3 | 573.5 ± 5.7 | 179.2 ± 1.8 | 75.17 ± 0.75 |
| WabGen (1.8 GeV)| | | 163.3 ± 1.6 | 83.95 ± 0.84 |
| COM200 (gew.) | 39.45 ± 0.40 | 60.14 ± 0.66 | 13.63 ± 0.14 | 4.545 ± 0.045 |
| WabGen (1.8 GeV)| 48.76 ± 0.49 | 88.69 ± 0.89 | 20.14 ± 0.20 | 6.640 ± 0.066 |
| COM200 (gew.) | 1.878 ± 0.019 | 0.891 ± 0.009 | 0.462 ± 0.006 | 0.255 ± 0.003 |
| WabGen (1.8 GeV)| 2.778 ± 0.028 | 1.308 ± 0.013 | 0.676 ± 0.068 | 0.359 ± 0.004 |
| COM200 (gew.) | 80.90 GeV | 90.100 GeV | 100.120 GeV | 120.140 GeV |
| WabGen (1.8 GeV)| | | 100.120 GeV | 120.140 GeV |
| COM200 (gew.) | 0.145 ± 0.002 | 0.0861 ± 0.009 | 0.0836 ± 0.008 | 0.0325 ± 0.0003 |
| WabGen (1.8 GeV)| 0.210 ± 0.002 | 0.123 ± 0.001 | 0.117 ± 0.001 | 0.0423 ± 0.0004 |
| COM200 (gew.) | 0.0127 ± 0.0001 | 0.00479 ± 0.0005 | 0.00171 ± 0.0002 | |
| WabGen (1.8 GeV)| 0.0157 ± 0.0002 | 0.00547 ± 0.0006 | 0.00174 ± 0.0002 | |
Man sieht deutlich die Unterschiede zwischen den Generatoren.

Der quasielastische Bereich

Auf Grund der Dominanz von kleinen Werten des Viererimpulsübertrages im quasielastischen Bereich, analog zum elastischen Fall erwartet man auch hier eine gute Übereinstimmung zwischen den Generatoren. Bei der Berechnung des totalen Wirkungsquerschnittes in einzelnen Bereichen der invarian ten Masse s, analog zur bisherigen Vorgehensweise erhält man:

<table>
<thead>
<tr>
<th>Bereich \sqrt{s}</th>
<th>1.2 GeV</th>
<th>2.4 GeV</th>
<th>4.6 GeV</th>
<th>6.8 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCOMPT V1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.10 GeV</td>
<td>10.20 GeV</td>
<td>20.30 GeV</td>
<td>30.40 GeV</td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40,50 GeV</td>
<td>50,60 GeV</td>
<td>60,70 GeV</td>
<td>70,80 GeV</td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.57 ± 0.02</td>
<td>0.726 ± 0.007</td>
<td>0.366 ± 0.004</td>
<td>0.195 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.90 GeV</td>
<td>90.100 GeV</td>
<td>100.120 GeV</td>
<td>120.140 GeV</td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.108 ± 0.001</td>
<td>0.0620 ± 0.0006</td>
<td>0.0594 ± 0.0006</td>
<td>0.0230 ± 0.0002</td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00017 ± 0.00009</td>
<td>0.00367 ± 0.00004</td>
<td>0.00143 ± 0.00001</td>
<td>0.000099 ± 0.000001</td>
<td></td>
</tr>
</tbody>
</table>
Auch hier sieht man den Abfall des Wirkungsquerschnittes von WabGen gegenüber EP-COMPT für kleine invariante Massen. Aber auch bei großen \(s \) zeigt sich eine deutliche Abweichung, deren genaue Ursache nicht verstanden ist.

Ein Vergleich zwischen WabGen und COM200:

<table>
<thead>
<tr>
<th>Wirkungsquerschnitt, quasielastischer Bereich inkl. Akoplanaritätschnitt, in pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{s})</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>COM 200 (gew.)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
</tbody>
</table>

mit
hingegen zeigt gravierende Abweichung, die auf den verwendeten unterschiedlichen Parametrisierungen der Strukturfunktion F^p_q beruhen dürften.

Ein Vergleich der kinematischen Größen analog zum tiefinelastischen Fall zwischen EP-COMPT V1.1 und WabGen liefert hier für $(8 \text{ GeV})^2 < \hat{s} < S - m^2_q$
und zeigt eine gute Übereinstimmung der Verteilungen. Aber auch im Bereich kleiner invarianter Massen ist die Übereinstimmung gut, wie man an dem mit $2 \text{GeV}^2 < \sqrt{s} < 4 \text{GeV}^2$ generierten Sample sehen kann:
darauf hin, daß die Unterschiede im tiefinelastischen Bereich durch die dort auftretenden $|k^2|$ Werte größer 5 GeV^2 hervorgerufen werden.

4.2.1 Vergleich inelastisch

Um einen Vergleich zwischen allen drei Generatoren (EPCOMPT V1.1, WabGen und COM200) im inelastischen Bereich zu ermöglichen werden nun jeweils die Summen der quasielastischen und tiefinelastischen Ergebnisse unter Berücksichtigung des Akoplanaritätsschnittes $\Psi_{aks} < 45^\circ$ in den jeweiligen \hat{s} Bereichen gebildet. Hierdurch soll erreicht werden, daß die Generatoren trotz unterschiedlicher Grenzen zwischen dem elastischen und dem tiefinelastischen Bereich verglichen werden können.

Man erhält für die Werte der Wirkungsquerschnitte

<table>
<thead>
<tr>
<th>Wirkungsquerschnitt, inelastischer Bereich inkl. Akoplanaritätsschnitt, in pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bereiche \sqrt{s}</td>
</tr>
<tr>
<td>COM 200</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COM 200</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COM 200</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COM 200</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COM 200</td>
</tr>
<tr>
<td>WabGen (5 GeV)</td>
</tr>
<tr>
<td>WabGen (1.8 GeV)</td>
</tr>
<tr>
<td>EPCOMPT V1.1</td>
</tr>
</tbody>
</table>

Die graphische Darstellung dieser Werte, relativ zu EPCOMPT:
zeigt die Übereinstimmung der Werte der Generatoren besser als 40% relativ zu EPCOMPT.
4.3 Anwendung auf das VLQ

Die Untersuchung des VLQ-Bereiches wurde unter der Annahme, daß sowohl das gestreute Elektron, als auch das gestreute Photon das VLQ treffen, mit folgenden Schnitten durchgeführt:

<table>
<thead>
<tr>
<th>Impulse der einlaufenden Teilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\text{in}}^e = 27.5$ GeV</td>
</tr>
<tr>
<td>$p_{\text{in}}^n = 820$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schnitte auf auslaufende Teilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_\gamma' > 4$ GeV</td>
</tr>
<tr>
<td>$E'_e > 4$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weitere Schnitte</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{vis}} > 8$ GeV</td>
</tr>
</tbody>
</table>

Die Schnitte auf die Polarwinkel und die Energien der auslaufenden Teilchen wurden dabei dem Proposal des VLQ [VLQ96] entnommen, wobei die horizontale Aussparung des VLQ unberücksichtigt bleibt.

Als Abschätzung der Grenzen für \hat{s} ergibt sich aus den im Proposal des VLQ angegebenen Winkelgrenzen und den Beziehungen

$$\hat{s} = 4E'_c E'_\gamma \frac{1 + \beta}{1 - \beta}$$

mit

$$\beta = \frac{\sin(\theta'_e + \theta'_\gamma)}{\sin \theta'_e + \sin \theta'_\gamma}$$

wie sie z.B. in [Koe95] (Gl. 5.13/5.14) zu finden sind:
(0.288 GeV)² < \hat{s} < (1.296 GeV)²

Zur Sicherheit wurden obige Grenzen für \(\hat{s} \) deutlich weiter gesetzt, um Fehler bei der Integration besser erkennen zu können. Wie aber an den noch zu zeigenden Verteilungen von \(\hat{s} \) für den Bereich des VLQ ablesbar ist, wäre eine engere Abschätzung der Grenzen gemäß der gerade berechneten Werte durchaus sinnvoll und möglich gewesen.

Als Ergebnisse für den totalen Wirkungsquerschnitt in den drei Bereichen, erhält man:

<table>
<thead>
<tr>
<th>Wirkungsquerschnitte in pb</th>
<th>Bereiche</th>
<th>elastisch</th>
<th>quasi</th>
<th>DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WabGen</td>
<td>62557 ± 626</td>
<td>3564 ± 36</td>
<td>(\approx 0)</td>
<td></td>
</tr>
<tr>
<td>COM200</td>
<td>61634 ± 616</td>
<td>1121 ± 11</td>
<td>2451 ± 25</td>
<td></td>
</tr>
<tr>
<td>WabWWA</td>
<td>61880 ± 619</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

KAPITEL 4. DIE ERGEBNISSE DER UNTERSUCHUNGEN

Polarwinkel [Grad]

<table>
<thead>
<tr>
<th>Polarwinkel [Grad]</th>
<th>Anzahl generierter Ereignisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>177.5</td>
<td>0</td>
</tr>
<tr>
<td>178</td>
<td>200</td>
</tr>
<tr>
<td>178.5</td>
<td>400</td>
</tr>
<tr>
<td>179</td>
<td>600</td>
</tr>
<tr>
<td>179.5</td>
<td>800</td>
</tr>
<tr>
<td>180</td>
<td>1000</td>
</tr>
<tr>
<td>180.5</td>
<td>1200</td>
</tr>
<tr>
<td>181</td>
<td>1400</td>
</tr>
<tr>
<td>181.5</td>
<td>1600</td>
</tr>
<tr>
<td>182</td>
<td>1800</td>
</tr>
<tr>
<td>182.5</td>
<td>2000</td>
</tr>
</tbody>
</table>

Polarwinkel der Elektronen

Polarwinkel der Photonen

Viererimpulsübertrag |k^2| [GeV^2]

<table>
<thead>
<tr>
<th>Viererimpulsübertrag</th>
<th>Anzahl generierter Ereignisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
</tr>
<tr>
<td>0.7</td>
<td>10</td>
</tr>
</tbody>
</table>

Transversalimpulse

Anzahl generierter Ereignisse

<table>
<thead>
<tr>
<th>Transversalimpulse</th>
<th>Anzahl generierter Ereignisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4</td>
<td>0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>35000</td>
</tr>
<tr>
<td>0.2</td>
<td>10000</td>
</tr>
<tr>
<td>0.4</td>
<td>25000</td>
</tr>
<tr>
<td>0.6</td>
<td>30000</td>
</tr>
<tr>
<td>0.8</td>
<td>35000</td>
</tr>
</tbody>
</table>
Elektron im VLQ, Photon im Hauptdetektor

Betrachtet man abschließend noch den Fall, daß das Elektron das VLQ trifft, während das auslaufende Photon im Hauptdetektor detektiert wird, so ergeben sich die folgenden Wirkungsquerschnitte:

<table>
<thead>
<tr>
<th>Bereiche</th>
<th>Wirkungsquerschnitt in pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>elastisch</td>
</tr>
<tr>
<td>WabGen</td>
<td>4779 ± 48</td>
</tr>
<tr>
<td>WabWWA</td>
<td>4912.39</td>
</tr>
</tbody>
</table>

Sie betragen also nur 8% des zuvor untersuchten Falles, in dem beide Teilchen das VLQ treffen. Auch hier blieb die Aussparung des VLQ im horizontalen Bereich der Strahlröhre unberücksichtigt.
Zusammenfassung

Anhang A

Berechnungen der kinematischen Grenzen

Berechnung von $|k^2|_{\text{max}}$

Der Viererboostvektor b beim Übergang aus dem Laborsystem in das Schwerpunktsystem des einlaufenden Elektrons und des virtuellen Photons entspricht

$$b = e + k$$

Daraus folgt

$$m_e^2 = e^2 = (b - k) = \hat{s} - 2bk - |k^2|$$

Die Schwerpunktenergie dieses Systems beträgt:

$$\hat{s} = (e + k)^2$$

Woraus sich durch Einsetzen

$$e \cdot k = \frac{\hat{s} + |k^2| - m_e^2}{2}$$

ergibt.

Boostet man nun den Vierervektor des virtuellen Photons k entlang b in obiges Schwerpunktssystem, so transformiert sich die Energie E_k nach \hat{E}_k, gemäß:

$$\hat{E}_k = \frac{b \cdot k}{\sqrt{\hat{s}}} = \ldots = \frac{\hat{s} - m_e^2 - |k^2|}{2\sqrt{\hat{s}}}$$

Da Teilchen keine negativen Energien besitzen können, also

$$\hat{E}_k > 0$$

gelten muß, ergibt sich

$$\hat{s} - m_e^2 - |k^2| > 0$$

und damit

$$|k^2| < \hat{s} - m_e^2$$

bzw.

$$|k^2|_{\text{max}} = \hat{s} - m_e^2$$
Berechnung von $|k^2|_{\text{min}}$

Aus der Viererimpulserhaltung am $p \to k + p'$ Vertex ergibt sich

$$k^2 = (p - p')^2 = 2(m_p^2 - (E_p E'_p - |p_p||p'_p| \cos \theta_p))$$

$$= 2 \left(m_p^2 + E_p E'_p \left(\sqrt{1 - \frac{m_p^2}{E_p^2}} \sqrt{1 - \frac{m_p^2}{E_p^2} \cos \theta_p - 1} \right) \right)$$

Für kleine $|k^2|$ und somit für kleine Winkel θ_p entwickelt man die Wurzelterme für kleine $\frac{m_p^2}{E_p^2}$ zu $1 + \frac{1}{2} \frac{m_p^2}{E_p^2}$. Zudem gilt für diesen Fall die aus dem Kapitel 2.2.3 zur Weizäcker-Williams-Approximation bekannte Beziehung $E'_p = (1 - z) E_p$, so daß sich

$$|k^2|_{\text{min}} = m_p^2 \cdot \frac{z^2}{1-z}$$

ergibt.
Anhang B

Monte Carlo Integration

Die einfachste Variante für die numerische Integration einer n-dimensionalen Funktion f im Volumen V^n mittels Monte Carlo Methoden besteht in der Wahl von N gleichmäßig verteilten Zufallspunkten x_1, x_N und der anschließenden Summation über die Funktionswerte von f in diesen Punkten. Hieraus ergibt sich als Abschätzung des Integrals I:

$$
I \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) \pm \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}
$$

Der angegebene Fehler entspricht einer Standardabweichung, ist jedoch nicht unbedingt gaussverteilt. Er ist umso größer, je mehr Samplepunkte nicht oder nur wenig zur Berechnung des Integrals beitragen. Somit bieten sich als einfachste varianzreduzierende (fehlerreduzierende) Technik an, das gesampelte Gebiet möglichst klein zu halten, sowie durch eine Transformation den Integranden in eine möglichst konstante Form zu bringen. Effektiver und eleganter hingegen sind folgende Methoden:

Importance Sampling

Die Methode des Importance Sampling basiert darauf, die Wahl der Samplepunkte in Volumen V nicht mehr kontinuierlich vorzunehmen, sondern dem Verlauf der zu integrierenden Funktion anzupassen. So werden in Bereichen, in welchen die Funktion f große Werte besitzt, mehr Samplepunkte liegen, als dort wo f klein ist. Daher lautet der Name dieser Methode: 'Importance Sampling'.

Statt den Integranden selbst zu transformieren, ist es auch möglich, mittels einer an die zu integrierende Funktion f angespähte Sampledichte p, die Wahl der Samplepunkte selbst wieder gleichförmig über dem zu integrierenden Interval zu gestalten:

$$
I \equiv \int f dV = \int \frac{f}{p} p dV \approx <\frac{f}{p}> \pm \sqrt{\frac{\langle \frac{p^2}{p} \rangle - \langle \frac{f}{p} \rangle^2}{N}}
$$

Die beste Wahl der Sampledichte p ist dann gegeben, wenn der Quotient $\frac{f}{p}$ möglichst konstant ist. Mittels Variationsrechnung ergibt sich dann:

$$
p = \frac{\langle f \rangle}{\int |f| dV}
$$

Startified Sampling:

\footnote{[NumRec] Kap. 7.8 Adaptive and Recursive Monte Carlo Methods}
\footnote{$\langle f \rangle$ entspricht hier dem arithmetischen Mittel}
Eine weitere Möglichkeit zur Varianzreduktion besteht darin, das zu sampelnde n-dimensionale Gebiet in eine Anzahl von K Untergebieten zu unterteilen. Für die Wahl von nur zwei Untergebieten a und b ergibt ist die Varianz dann zu 3:

$$\text{Var}(f) = \frac{1}{2} \left[\text{Var}_a(f) + \text{Var}_b(f) \right] + \frac{1}{4} \left(\langle f \rangle_a - \langle f \rangle_b \right)^2$$

Somit ist bereits bei einer Unterteilung in zwei Untergebiete, die Gesamtvarianz immer kleiner als oder gleich der im einfachen Monte Carlo.

Mixed Strategies

Auf den ersten Blick scheinen beide Methoden nur schlecht kombinierbar zu sein. Damit jedoch das Importance Sampling möglichst effektiv ist, bedarf es bereits vor der Integration einer möglichst guten Nähерung für p, so daß sich der Integrand im gesampelten Bereich nicht mehr rapide ändert. Eine solche Nähervrung läßt sich über die Methode des Stratified Sampling beschaffen, da hier a priori keine Information über die zu integrierende Funktion benötigt wird. Verwendet man zudem einen iterativenAlgorithmus, der das Ergebnis der n-ten Iteration als Grundlage der $(n+1)$-ten verwendet, so erreicht man eine recht hohe Effizienz der numerischen Integration.

VEGAS

Der von Lepage entwickelte Algorithmus VEGAS$^{[Lep80]}$ basiert auf der angepaßten Konstruktion einer mehrdimensionalen separablen Gewichtsfunktion g welche als Sampletdichte p benutzt wird, gemäß:

$$p \equiv g(x, y, z, ...) = g_x(x)g_y(y)g_z(z)\ldots$$

Diese Vorhersagen haben programmierotechnisch gesehen, zwei wesentliche Vorteile. Zum einen lassen sich die g_k als separate 1-dimensionale Funktionen speichern, die durch K Werte in einem Array geben ist, so daß sich die Anzahl der benötigten Werte von K^d auf $K \cdot d$ reduziert. Zum anderen können so die Sampletdichten in den einzelnen Dimensionen durch gleichzeitiges Sampling gefunden werden. Die optimale separable Gewichtsfunktion findet man durch

$$g_x(x) \equiv \sqrt{\frac{\int dy \int dz \ldots f^2(x, y, z, \ldots)}{g_y(y)g_z(z)\ldots}}$$

Die adaptive Strategie von VEGAS besteht nun darin, für die erste Interation g konstant zu setzen. Das anschließende Samplen von f liefert dann sowohl eine erste

3Hierbei steht $\langle \langle f \rangle \rangle$ für das wahre Mittel von $f = \frac{1}{V} \int f \, dV$
Abschätzung für das Integral als auch für den obigen Wurzelterm und verbessert somit \(g \) für den nächsten Iterationsschritt. Für den Fall, daß der Integrand in einer einzigen Region des \(d \) dimensionalen Volumens konzentriert ist, wird \(g \) dort schnell groß.

Die Schwäche des Algorithmus zeigt sich in solchen Funktionen, bei denen die Projektion des Integranden auf die Koordinatenachsen uniform ist, so daß VEGAS dort keine Konzentration von Samplepunkten liefern kann. In diesem Fall bietet der Algorithmus keinen Vorteil gegenüber einer einfachen Monte Carlo Integration.

BASES/SPRING

Das von S. Kawabata speziell zur Ereignisimulation in der Hochenergiephysik entwickelte Programmpaket BASES/SPRING [Kaw86] [Kaw94] basiert auf einem modifizierten und erweiterten VEGAS-Algorithmus. Es beruht im wesentlichen auf der oben beschriebenen Methode des Importance Sampling, verrichtet aber auch Stratified Sampling sofern die Anzahl der zu integrierenden Dimensionen \(d \) klein genug ist, um eine Explosion der Anzahl der Untergebiete zu vermeiden.

Hierzu legt BASES ein Gitter von Hyperkuben auf den zu sammelpenden Phasenraumbereich, und verzerrt dieses iterativ so lange, bis die Größe der Hyperkuben den Verlauf der zu integrierenden Funktion widerspiegelt. Die Iteration wird abgebrochen, sobald entweder die maximale Anzahl von Iterationen (NDIM) oder eine vorgegebene Genauigkeit (ACC1) erreicht ist.

Literaturverzeichnis

[And92] V.F. Andreev, “Absolute luminosity Measurement with the H1 detector using Quasi-
Real QED Compton Process”, H1-NOTE 03/92 - 224

[Ber97] Ch. Berger, “private Mitteilung”

e/gamma scattering at e+e- colliders”, Phys. rev. D /bf33/7 , 2024 1986

[Cou91] A. Coureau, “Quasi-real QED Compton at HERA”, H1-NOTE 07/91-186

MONTE CARLO for HERA”, H1-NOTE 01/92 -207

[Ebe96] A.Ebel, “Untersuchung der elastischen QED-Compton-Streuung ep \rightarrow epγ mit dem
ZEUS-Detektor”, Interner Bericht DESY F35D-96-02, Januar 1996

strahlung Overlapping Events and quasi-real QED Compton Events”, H1-NOTE 11/96 -503

Akademie Verlag

generators at H1”

[H1Col96] H1 Collaboration, “Search for Excited Fermions with the H1 Detector”, H1-NOTE
08/96 -163

[H1Det] H1 Collaboration, “The H1 Detector at HERA”, Nucl. Instr. and Meth.
1997/A386/310-347

95
[H1Det2] H1 Collaboration, “The H1 Detector at HERA”, Internal Report, Desy H1-96-01, March 96

[H1LUMI], “Homepage des H1-Luminositäts Systems”, http://www-h1.desy.de/h1/www/h1work/lumi/poster.html

[H1REC], “H1REC Manual”,

[H1SIM] Stephan Egli, “Running H1SIM”, H1SIM guide

[Hei33] W. Heitler, “Über die bei sehr schnellen Stößen emittierte Strahlung”, ZS f. Phys. 84, 145, 1933

[HeB], “Homepage des HERA-B Projektes”, http://www-hera-b.desy.de

[Her], “Homepage des Hermes Projektes”, http://www-hermes.desy.de

Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>1.1</th>
<th>HERA</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Das H1 Experiment</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Totaler Photoabsorptionsquerschnitt für die γ^*p-Streuung</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematische Darstellung der Komponenten des VLQ. Die Strahlröhre wurde bei dieser Grafik weggelassen</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Darstellung der Bauweise des Kalorimeters</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Darstellung der Mechanik und der Einbauumgebung des VLQ</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Darstellung der verschiedenen Schritte der Simulation bis hin zum Vergleich mit Meßwerten</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Feynmandiagramme des Grundprozesses der Weitwinkelbremsstrahlung</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Feynmandiagramme EPCOMPT</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Darstellung des Schnittwinkels γ der beiden Ebenen</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Kinematik WabGen (elastisch)</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Kinematik WabGen (inelastisch)</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Bezeichnungen der WWA Kinematik</td>
<td>52</td>
</tr>
</tbody>
</table>
ABBILDUNGSVERZEICHNIS
Danksagung

Am Ende möchte ich alle denen Danken sagen, die in der einen oder anderen Weise zu dieser Diplomarbeit beigetragen haben!

Zu allererst möchte ich meinen Dank für Herrn Prof. Dr. Ch. Berger zum Ausdruck bringen, der nicht nur durch die interessante Themennstellung sondern auch durch seine aufopfernde Betreuung einen maßgeblichen Anteil am Gelingen dieser Diplomarbeit hatte. Ebenso hat er mir durch Reisen zum DESY sowie zur DPG Frühjahrstagung 1998 in Freiburg erlaubt hautnah am Geschehen der physikalischen Grundlagenforschung dabei zu sein, und eine Vielzahl von Persönlichkeiten der Hochenergiephysik selbst zu erleben.

Danksagung