Diffraction in e-p and e-ion collisions

Azimuthal correlations in photoproduction and deep inelastic ep scattering at HERA	Marta Ruspa
Corigliano Calabro, Italy	16:40 - 17:00
The LHCspin project	Marco Santimaria
Corigliano Calabro, Italy	17:00 - 17:25
Detectors and physics at the Electron-Ion Collider	Charlotte Van Hulse
Corigliano Calabro, Italy	17:25 - 17:45
Electron-Ion Collisions at the LHeC and FCC-eh	Jani Penttala et al. 🥝
Corigliano Calabro, Italy	17:45 - 18:05
Far-Forward detectors at the Electron-Ion Collider	Aleksandr Bylinkin 🥝
Corigliano Calabro, Italy	18:05 - 18:25
Discussion: ep and e-ion physics	Prof. Daniel Tapia Takaki et al.

Diffraction in e-p and e-ion collisions

Azimuthal correlations in photoproduction and deep inelastic ep scattering at HERA	Marta Ruspa
Corigliano Calabro, Italy	16:40 - 17:00
The LHCspin project	Marco Santimaria
Corigliano Calabro, Italy	17:00 - 17:25
Detectors and physics at the Electron-Ion Collider	Charlotte Van Hulse
Corigliano Calabro, Italy	17:25 - 17:45
Electron-Ion Collisions at the LHeC and FCC-eh	Jani Penttala et al. 🥝
Corigliano Calabro, Italy	17:45 - 18:05
Far-Forward detectors at the Electron-Ion Collider	Aleksandr Bylinkin 🥝
Corigliano Calabro, Italy	18:05 - 18:25
Discussion: ep and e-ion physics	Prof. Daniel Tapia Takaki et al.
Corigliano Calabro, Italy	18:25 - 18:45

Díffraction and Low-x 2022 Sept 26th – Sept 30th, Corigliano Calabro (Italy)

AZIMUTHAL CORRELATIONS IN PHOTOPRODUCTION AND DEEP INELASTIC SCATTERING AT HERA

MARTA RUSPA

univ. Piemonte Orientale & INFN-Torino, Italy

Motivation

In heavy ion collisions evidence of long-range correlatic in $\Delta \eta$ for particle pairs produced at small $\Delta \phi$ (ridge) \rightarrow understood as fluid-like behaviour (QGP)

Motivation

In heavy ion collisions evidence of long-range correlatic in $\Delta \eta$ for particle pairs produced at small $\Delta \phi$ (ridge) → understood as **fluid-like behaviour (QGP)**

Also at LHC similar structure in pPb and pp systems

What happens in an even smaller systems, i.e. electron-proton collision?

JHEP12 (2021) 102, JHEP 04 (2020) 070 (H1: H1prelim-20-033)

Keywords in this measurement

- **DIS** vs **photoproduction**: the probed region in DIS (~ 1/Q) is typically much smaller than the proton while in photoproduction it can be of order the proton's size, $1/\Lambda_{QCD} \approx 1 \text{ fm} \rightarrow \text{interaction region in } \gamma \text{p}$ resembles that in pp and pA
- MPI: 2 → 2 initial partonic scatterings in a single ep collision can be investigated with resolved γp at HERA. Again bridge to heavy-ion collisions where copius MPI→ rescattering between partons → QGP
- Collision zone in the plane transverse to the beam axis irregular, eccentricities in the initial state arise depending on degree of rescattering and imply momentum asymmetries in the final state →azimuthal correlations can quantify asymmetries
- 2-particles azimuthal correlations may be biased by unrelated two-particle correlations such as resonance decays. 4-particle azimuthal correlations less biased (two-particle background subtracted)

The ZEUS experiment and DIS at HERA

Data and simulation

2003-2007 ZEUS data, 366 pb⁻¹

Standard DIS (Q² > 5 GeV²) and γp (Q² < 1 GeV²) selection

Track selection

0.1 < p_T < 5 GeV -1.5 < η < 2.0

High multiplicity

efficiency-corrected charged primary particles in the kinematic acceptance, $N_{ch} > 20$

Monte Carlo simulation:

- for DIS: ARIADNE (color dipole model) and LEPTO (Lund string model)
- for γp : **PYTHIA** (versions 6.22 and 8.303)

PYTHIA 8 **predictions with and without MPI** are compared to the data Three different levels of MPI are chosen with $p_{TO}^{ref}= 2$, 3, and 4 GeV. corresponding

to 8.3, 3.8 and 2.2 mean number of MPI per event

Formalism

Also two-dimensional correlation functions

$$C(\Delta \eta, \Delta \varphi) = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}$$

- S (signal)

- B (background) formed with pairs from the sameand mixed-event

Near-side ($\Delta \phi \sim 0$) peak and away-side ridge clearly visible

No visible long-range near-side double ridge

No visible long-range near-side double ridge

Correlation strenght decreases from DIS to photoproduction

Formalism

 2-particle and 4-particle azimuthal correlations defined as

 $egin{array}{rcl} C_n\{2\} &\equiv& \left\langle \cos\left[n(arphi_1-arphi_2)
ight]
ight
angle \,, \ C_n\{4\} &\equiv& \left\langle \cos\left[n(arphi_1+arphi_2-arphi_3-arphi_4)
ight]
ight
angle \, \end{array}$

Also two-dimensional correlation functions

$$C(\Delta \eta, \Delta \varphi) = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}$$

In the plots are shown cumulants:

 $c_n\{2\} = C_n\{2\}$

- $c_n\{4\}(p_{T,1}) \equiv C_n\{4\}(p_{T,1}) 2 c_n\{2\}(p_{T,1}) \times c_n\{2\},\$
- Alternative approach: Fourier transform of $C(\Delta \eta, \Delta \varphi) \rightarrow$ flow coefficients v_n typical of the anisotropic hydrodynamic expansion in heavy -ion collisions

- $arphi_{
 m i}$ the azimuthal angle of particle i
- n the harmonics
- () averages over pairs and quadruplets
 (corrections for non-uniform acceptance
 taken into account by proper weights)
 - S (signal)
 B (background)
 formed with pairs from the sameand mixed-event

Formalism

 2-particle and 4-particle azimuthal correlations defined as

$$egin{array}{rll} C_n\{2\} &\equiv& \left\langle \cos\left[n(arphi_1-arphi_2)
ight]
ight
angle \,, \ C_n\{4\} &\equiv& \left\langle \cos\left[n(arphi_1+arphi_2-arphi_3-arphi_4)
ight] \end{array}$$

Also two-dimensional correlation functions

$$C(\Delta \eta, \Delta \varphi) = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}$$

In the plots are shown cumulants:

 $c_n\{2\} = C_n\{2\}$

 $c_n\{4\}(p_{\mathrm{T},1}) \equiv C_n\{4\}(p_{\mathrm{T},1}) - 2 \ c_n\{2\}(p_{\mathrm{T},1}) \times c_n\{2\},$

- $arphi_{
 m i}$ the azimuthal angle of particle i
- n the harmonics
- () averages over pairs and quadruplets
 (corrections for non-uniform acceptance
 taken into account by proper weights)
 - S (signal)
 - B (background) formed with pairs from the sameand mixed-event

■ Alternative approach: Fourier transform of $C(\Delta \eta, \Delta \varphi) \rightarrow$ flow coefficients v_n typical of the anisotropic hydrodynamic expansion in heavy -ion collisions

Negative (and decreasing) c₁

Positive (and decreasing) c₂

Short range correlation unrelated to collective fluidodynamics behaviour expected to **decrease with rapidity cut.**

C₁ negative much more than C₂ is positive, in constrast to heavy-ion collisions

2-particle cumulants in photoproduction

Correlation strenght grows with increasing p_T

From photoproduction to DIS Long-range, high p_T

4-particle cumulants in photoproduction

4-particle cumulant is mostly positive, in contrast to heavy-ion collisions

Particle multiplicities

The inclusion of MPI in PYTHIA generally increases the number of events at high multiplicity and softens the p_T spectrum

The scenario in a snapshot

 Measurement of charged-particle azimuthal correlations by ZEUS in DIS and photoproduction do not show a long-range near-side ridge
 → no collectivity

- Data and correlation functions sensitive to the number of MPI: a useful tool to help understand the onset of collective behaviour?
- New insight on particle-correlations in photon intiated scattering
 → UPC at LHC and EIC

The scenario in a snapshot

 Measurement of charged-particle azimuthal correlations by ZEUS in DIS and photoproduction do not show a long-range near-side ridge
 → no collectivity

- Data and correlation functions sensitive to the number of MPI: a useful tool to help understand the onset of collective behaviour?
- New insight on particle-correlations in photon intiated scattering
 → UPC at LHC and EIC

The scenario in a snapshot

 Measurement of charged-particle azimuthal correlations by ZEUS in DIS and photoproduction do not show a long-range near-side ridge
 → no collectivity

 Data and correlation functions sensitive to the number of MPI: a useful tool to help understand the onset of collective behaviour?

THANKS!

New insight on particle-correlations in photon intiated scattering
 → UPC at LHC and EIC

Resoved component in PYTHIA 8 (3 GeV) with MPI improves description

