

Measurement and QCD analysis of inclusive jet production in deep inelastic scattering at HERA Diffraction and Low-x 2022

Florian Lorkowski on behalf of the ZEUS collaboration

 ${\tt florian.lorkowski@desy.de}$

Deutsches Elektronen-Synchrotron DESY

ZEUS

September 27, 2022

Motivation Deep inelastic scattering

e(k')

 γ/Z^0

e(k)

P(P

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation

Jet production Theory of DIS Experiment Analysis Cross sections QCD analysis Summary

Deep inelastic scattering

▶ Inclusive deep inelastic scattering (DIS) measurements in lepton-hadron collisions ($ep \rightarrow eX$) are essential to determine the parton distribution functions (PDFs) of the proton (*xf*). At leading order:

$$\frac{d^2 \boldsymbol{\sigma}_{\mathsf{NC} \mathsf{DIS}}^{\pm}}{dx_{\mathsf{Bj}} dQ^2} = \frac{2\pi\alpha^2}{x_{\mathsf{Bj}}Q^4} \left(\underbrace{Y_+ F_2(x_{\mathsf{Bj}}, Q^2)}_{\sim \boldsymbol{xq} + \boldsymbol{x\bar{q}}} \mp \underbrace{Y_- x_{\mathsf{Bj}} F_3(x_{\mathsf{Bj}}, Q^2)}_{\sim \boldsymbol{xq} - \boldsymbol{x\bar{q}}} - \underbrace{y^2 F_L(x_{\mathsf{Bj}}, Q^2)}_{\sim \boldsymbol{xg} \times \boldsymbol{\alpha_s}} \right)$$

- \Rightarrow By measuring F_2 and F_3 , the quark- and antiquarkdistributions, xq and $x\bar{q}$, can be probed
 - By measuring *F*_L or using scaling violations in DGLAP equations the product of the gluon distribution *xg* and the strong coupling constant α_s can be determined
- Using higher order terms, the two can be disentangled to some extent, but a strong correlation remains

Motivation Inclusive jet production

Florian Lorkowsk 2022-09-27

Motivation DIS Jet production Theory of DIS Experiment Analysis Cross sections QCD analysis Summary

Jet measurements

- Already at leading order,[†] jet production in DIS is sensitive to the strong coupling independently of the gluon distribution (upper graph)
- Additionally, jet production can also be used to further constrain the gluon distribution (lower graph)
- Inclusive jet measurements are especially well suited for precision determinations of the strong coupling constant due to their small uncertainties on both the experimental and theoretical side

[†]Leading order in the Breit frame; see slide 5

Theory of deep inelastic scattering Definitions

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Definitions PDFs Breit frame Experiment Analysis Cross sections QCD analysis Summary

Deep inelastic scattering

 Scattering of leptons off hadrons at high momentum transfer Q²

e(k)+P(P)
ightarrow e(k')+p'(p')+X

Boson acts as point-like probe of the hadron

Kinematic quantities

$$Q^2 = -q^2 = -(k'-k)^2$$

$$x_{\rm Bj} = \frac{Q^2}{2P \cdot q}$$
$$y = \frac{P \cdot q}{P \cdot k}$$

Boson virtuality/ Momentum transfer Bjorken scaling parameter

Inelasticity

- $p' \dots$ Scattered hadronic system
- X . . . Proton remnant

Theory of deep inelastic scattering Parton distribution functions

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Definitions PDFs Breit frame Experiment Analysis Cross section:

Cross section: QCD analysis ► To predict cross sections of lepton-hadron collisions, one needs

- The boson-parton cross sections $\hat{\sigma}$ (calculable using perturbative QCD)
- The parton content of the hadron (unknown but assumed to be universal for each hadron); parameterised using PDFs xf
- PDFs can only be determined from fits to measurements

Theory of deep inelastic scattering Breit frame

- Single jets may arise purely from QED, which is uninteresting for studies of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

In the **Breit frame**, the parton and photon collide head-on

Inclusive je production i DIS at HER

- Florian Lorkowski 2022-09-27
- Motivation Theory of DIS Definitions PDFs Breit frame Experiment Analysis Cross sections QCD analysis Summary

Motivation

Theory of deep inelastic scattering Breit frame

- Single jets may arise purely from QED, which is uninteresting for studies of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

- Lowest order process: produce two jets of equal transverse momentum ("dijet")
- Inclusive jets: count each jet individually; events can contribute multiple times

Experiment HERA and ZEUS

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Summary

HERA accelerator

- Only lepton-hadron collider so far
- Located at DESY in Hamburg, Germany
- Two run periods:
 - HERA 1: 1992 2000
 - HERA 2: 2003 2007
- Circular collider of length 6336 m
- ▶ Collide electrons/positrons at 27.5 GeV with protons at 920 GeV $\rightarrow \sqrt{s} = 318$ GeV

ZEUS detector

- General purpose particle detector
- Integrated luminosity during HERA 2: 347 pb⁻¹
- High-resolution uranium-scintillator calorimeter allows precise measurement of jet energies

Analysis Cross section definition

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Definitions Simulation NNLO predictions Cross sections QCD analysis Summary

- Inclusive jets (count each jet individually, rather than each event)
- ▶ Jets clustered using k_⊥ algorithm and p_⊥-weighted scheme (massless jets) in Breit frame
- Phase space

 $\begin{array}{rrrr} 150\,{\rm GeV}^2 < & Q^2 & < 15\,000\,{\rm GeV}^2 \\ 0.2 < & y & < 0.7 \\ 7\,{\rm GeV} < \rho_{\perp,{\rm Breit}} < 50\,{\rm GeV} \\ -1 < & \eta_{\rm lab} & < 2.5 \end{array}$

- Hadron level jets
- Exchange of Z⁰ boson included
- QED Born level (higher order effects removed)

Analysis Simulation

production in DIS at HERA

Motivation Theory of DIS Experiment Analysis Definitions Simulation NNLO prediction Cross sections QCD analysis Summary

- Reconstructed jets corrected to hadron level using bin-by-bin correction factors obtained from Monte Carlo samples
 - ARIADNE: colour dipole model
 - LEPTO: leading log(Q²) parton cascade
- After reweighting, the models give a good description of the data across the entire phase space

Analysis Theoretical predictions

Inclusive jet production in DIS at HERA

- Florian Lorkowski 2022-09-27
- Motivation Theory of DIS Experiment Analysis Definitions Simulation NNLO predictions QCD analysis Summary

Theoretical predictions

- Cross section predictions are calculated at NNLO accuracy
- Matrix elements calculated using NNLOJET[†]
- PDFs taken from HERAPDF2.0Jets NNLO[‡]
- $\alpha_{s}(M_{Z}^{2}) = 0.1155, \, \mu_{r}^{2} = \mu_{f}^{2} = Q^{2} + p_{\perp}^{2}$
- Predictions corrected for hadronisation and Z⁰-exchange

Theoretical uncertainties

- Six point scale variation by factor 2
- Statistical uncertainty of matrix element generation
- Hadronisation correction uncertainty
- PDF uncertainty (fit, model, parameterisation)

[†]JHEP 2017, 18 (2017). arXiv:1703.05977 [‡]EPJC 82, 243 (2022). arXiv:2112.01120

Cross sections Measured inclusive jet cross sections

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Summary

- Measured cross sections[†] are compatible with previous measurement from H1 collaboration[‡] and uncertainties are comparable[§]
- Measurements are compatible with NNLO QCD predictions and show similar trends relative to the theory
- Uncertainty mostly dominated by jet energy scale; at high Q² or high p_{⊥,Breit} statistical uncertainty becomes dominant

[†]ZEUS-prel-22-001 (2022)

[‡]EPJC 75, 65 (2015). arXiv:1406.4709

[§] Statistical uncertainties of the H1 measurement appear large, due to negative correlations between the data points, which are not shown

QCD analysis Strategy

- Inclusive jet production in DIS at HERA
- Florian Lorkowski 2022-09-27
- Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Strategy Results Summary

- Simultaneous fit of PDF parameters and α_s(M²_Z) at NNLO accuracy
- Datasets used
 - H1+ZEUS combined inclusive DIS
 - ZEUS HERA 1 inclusive jets at high Q²
 - ZEUS HERA 1+2 dijets at high Q²
 - ► ZEUS HERA 2 inclusive jets at high Q²
- Inclusion of additional jet data is expected to reduce uncertainty of α_s(M²_Z)
- Statistical correlations between ZEUS HERA 2 jet datasets taken into account via correlation matrix
- ► Use HERAPDF parameterisation of PDFs ($f = g, u_v, d_v, \bar{U}, \bar{D}$)

$$xf(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x+E_f x^2)$$

Use settings similar to HERAPDF2.0Jets NNLO (central scales, cuts, model parameters, treatment of hadronisation and theory grid uncertainty)

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Strategy Results

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm S}(M_Z^2) = 0.1156 \pm 0.0011$ (exp/fit) $^{+0.0001}_{-0.0002}$ (model/parameterisation) ± 0.0029 (scale)

This analysis

 $\alpha_{s}(M_{Z}^{2}) = 0.1138 \pm 0.0014$ (exp/fit) $^{+0.0004}_{-0.0008}$ (model/parameterisation) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ► Significantly decreased scale uncertainty, due to absence of low Q² jet data
 - Scale uncertainty of the cross sections is assumed as fully correlated between all jet points and datasets, which is reasonable for neighbouring points in phase space
 - When fitting points far away from each other in phase space or in different final states, the scale uncertainty might be much less correlated or even anti-correlated
 - ► Fully correlated treatment across entire phase space might give a larger uncertainty

Inclusive jet production ir DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Strategy Results

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp/fit)}^{+0.0001}_{-0.0002} \text{ (model/parameterisation)} \pm 0.0029 \text{ (scale)}$

This analysis

 $\alpha_{s}(M_{Z}^{2}) = 0.1138 \pm 0.0014$ (exp/fit) $^{+0.0004}_{-0.0008}$ (model/parameterisation) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ► Significantly decreased scale uncertainty, due to absence of low Q² jet data
 - Scale uncertainty of the cross sections is assumed as fully correlated between all jet points and datasets, which is reasonable for neighbouring points in phase space
 - When fitting points far away from each other in phase space or in different final states, the scale uncertainty might be much less correlated or even anti-correlated
 - ► Fully correlated treatment across entire phase space might give a larger uncertainty

Inclusive jet production ir DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Strategy Results

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp/fit) $^{+0.0001}_{-0.0002}$ (model/parameterisation) ± 0.0029 (scale)

This analysis

 $\alpha_{s}(M_{Z}^{2}) = 0.1138 \pm 0.0014$ (exp/fit) $^{+0.0004}_{-0.0008}$ (model/parameterisation) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ► Significantly decreased scale uncertainty, due to absence of low Q² jet data
 - Scale uncertainty of the cross sections is assumed as fully correlated between all jet points and datasets, which is reasonable for neighbouring points in phase space
 - When fitting points far away from each other in phase space or in different final states, the scale uncertainty might be much less correlated or even anti-correlated
 - ► Fully correlated treatment across entire phase space might give a larger uncertainty

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Strategy Results Summary

- To further mitigate this problem, an alternative treatment of the scale uncertainty as half correlated/half uncorrelated between all points and datasets was investigated
- Due to absence of low Q² jet data in fit, additional reduction is moderate

 $^{+0.0012}_{-0.0005} \ \rightarrow \ ^{+0.0008}_{-0.0007}$

- When fitting data across a wider range in phase space, the alternative approach is expected to make a more significant impact
- Reduced scale uncertainty means that the present analysis is one of the most precise measurements of α_s(M²_Z) at hadron colliders so far[†]

[†]PTEP 2020, 8, 083C01 (2020)

ZEUS preliminary

- Compare measurement to two sets of calculated cross sections:
 - Using on PDFs and α_s from fit presented on previous slides (green line)
 - Using similar fit, but excluding the new jet dataset (dashed blue line)
- Including the new dataset improves the agreement between calculation and data very slightly, indicating that the new cross sections are consistent with previous jet datasets from ZEUS
- Changes are due to updated value of α_s and the gluon PDF; quark distributions are not significantly affected by additional jet dataset

Summary

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

Motivation Theory of DIS Experiment Analysis Cross sections QCD analysis Summary

Cross section measurement

- Inclusive jet cross sections have been measured using ZEUS data during HERA 2
- Cross sections are compatible with the corresponding H1 measurement and NNLO theory
- Uncertainties comparable with the corresponding H1 measurement

QCD analysis

- New dataset is ideal ingredient for precision determinations of $\alpha_s(M_Z^2)$ in future QCD fits
- A very competitive measurement of $\alpha_s(M_Z^2)$ has been achieved due to
 - Restriction to high Q^2 jet data in the fit
 - ► To a lesser extent: alternative treatment of scale uncertainty

QCD analysis

α_{s} -scan

Upper plot: this analysis

 $\overline{\alpha_s(M_7^2)}$

- Lower plot: HERAPDF2.0Jets NNLO
- Increased experimental uncertainty but decreased overall uncertainty

QCD analysis Fit settings

Inclusive jet production in DIS at HERA

Florian Lorkowski 2022-09-27

QCD analysis α_s -scan Fit settings Results at NLO

Fit settings		
	NLO	NNLO
Model parameters		
f _s	0.4 ± 0.1	
<i>m</i> _c [GeV]	1.46 ^{+0.04} _symmetrise	1.41 ^{+0.04} _symmetrise
m _b [GeV]	$\textbf{4.3}\pm\textbf{0.10}$	$\textbf{4.2}\pm\textbf{0.10}$
Q_{\min}^2 [GeV ²]	$3.5^{+1.5}_{-1.0}$	
Parameterisation		
$\mu_{ m f0}^2$ [GeV ²]	1.9 ^{-0.3} _{+symmetrise}	
Additional	all missing <i>D</i> and <i>E</i> parameters	
parameters	$(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$	
Scales		
$\mu_{\rm f}^2$	Q^2	$O^2 \perp p^2$
$\mu_{ m r}^{ m 2}$	$(Q^2+ ho_{\perp}^2)/2$	$\mathbf{Q}^{+}\mathbf{p}_{\perp}$

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{split}$$

Constraints

 A_g determined by sum rules A_{u_v} determined by sum rules A_{d_v} determined by sum rules

$$C_g' = 25$$

 $B_{\bar{U}} = B_{\bar{D}}$
 $A_{\bar{U}} = A_{\bar{D}}(1 - f_s)$

QCD analysis Results at NLO

HERAPDF2.0Jets NLO

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009$ (exp/fit) ± 0.0005 (model/param.) $^{+0.0037}_{-0.0030}$ (scale) ± 0.0012 (hadr.)

This analysis (fully correlated scale uncertainty)

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1170 \pm 0.0015$ (exp/fit) $^{+0.0005}_{-0.0007}$ (model/parameterisation) $^{+0.0028}_{-0.0014}$ (scale)

This analysis (half correlated scale uncertainty)

 $lpha_{
m s}(M_Z^2) = 0.1170 \pm 0.0015$ (exp/fit) $^{+0.0005}_{-0.0007}$ (model/parameterisation) $^{+0.0015}_{-0.0012}$ (scale)

- In HERAPDF2.0Jets NLO, the scale uncertainty was already treated as half correlated/half uncorrelated
- Improved scale uncertainty due to absence of low Q² jets