



# Impact of jet-production on the next-to-next-to-leading-order determination of HERAPDF2.0 partons distributions Diffraction and Low-x 2022

# Florian Lorkowski on behalf of the H1 and ZEUS collaborations

florian.lorkowski@desy.de

Deutsches Elektronen-Synchrotron DESY

September 27, 2022



# Introduction Deep inelastic scattering



- HERAPDF2.0 Jets NNLO
- Florian Lorkowski 2022-09-27
- Introduction
- Jet production HERA data HERAPDF2.0 Fit strategy Results: PDFs Results:  $\alpha_s$ Summary

- Inclusive deep inelastic scattering (DIS) measurements at lepton-hadron colliders are an essential tool to determine the parton distribution functions (PDFs) of the proton (xf)
- ► Neutral (NC) and charged current (CC) DIS cross sections (at leading order):

$$\left(\frac{2\pi\alpha^2}{x_{Bj}Q^4}\right)^{-1} \frac{d^2\boldsymbol{\sigma}_{NC}^{\pm}}{dx_{Bj}dQ^2} = \underbrace{Y_+ F_2^{NC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} + \boldsymbol{x\bar{q}}} \mp \underbrace{Y_- x_{Bj}F_3^{NC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} - \boldsymbol{x\bar{q}}} - \underbrace{y^2 F_L^{NC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xg} \times \boldsymbol{\alpha_s}} + \underbrace{G_F^2}_{dx_{Bj}} \frac{M_W^4}{(Q^2 + M_W^2)^2}\right)^{-1} \frac{d^2\boldsymbol{\sigma}_{CC}^{\pm}}{dx_{Bj}dQ^2} = \underbrace{Y_+ F_2^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} + \boldsymbol{x\bar{Q}}} \mp \underbrace{Y_- x_{Bj}F_3^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} - \boldsymbol{x\bar{Q}}} - \underbrace{y^2 F_L^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xg} \times \boldsymbol{\alpha_s}} + \underbrace{Y_- x_{Bj}F_3^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} - \boldsymbol{x\bar{Q}}} - \underbrace{y^2 F_L^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xg} \times \boldsymbol{\alpha_s}} + \underbrace{Y_- x_{Bj}F_3^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{xq} - \boldsymbol{x\bar{Q}}} + \underbrace{Y_- x_{Bj}F_3^{CC}(x_{Bj}, Q^2)}_{\sim \boldsymbol{x} - \boldsymbol{x} -$$

- Measurements of inclusive DIS cross sections allow determination quark- and antiquark densities, xU, xD and xŪ, xD̄
- $\Rightarrow\,$  Inclusive DIS data from HERA is the basis of every recent PDF determination
- Including higher order terms or scaling violations in the DGLAP equations, the gluon density xg and the strong coupling constant α<sub>s</sub> can be measured, though they remain highly correlated



# Introduction Jet production



### HERAPDF2.0 Jets NNLO

- Florian Lorkowski 2022-09-27
- Introduction DIS Jet production HERA data HERAPDF2.0 Fit strategy Results: PDFs Results: α<sub>s</sub> Summary
- Already at leading order,<sup>†</sup> jet production in DIS is sensitive to the strong coupling independently of the gluon distribution (left graph)
- Additionally, jet production can also be used to further constrain the gluon distribution (right graph)



<sup>†</sup>Leading order in the Breit frame



⇒ Adding jet data to the analysis allows a simultaneous determination of PDFs and the strong coupling constant



# Introduction HERA data



# Jets NNLO Florian Lorkowsk 2022-09-27 ntroduction

DIS Jet production HERA data HERAPDF2.0 Fit strategy Results: PDFs Results:  $\alpha_s$ Summary

- In 2015, a combined dataset of inclusive DIS from H1 and ZEUS was released<sup>†</sup>
- Based on measurements of neutral and charged current processes at four different centre-of-mass energies
- Supersedes all previous combinations of DIS data at HERA







# Introduction HERAPDF2.0



HERAPDF2.0 Jets NNLO

Florian Lorkowski 2022-09-27

Introduction DIS Jet production HERA data HERAPDF2.0 Fit strategy Results: PDFs Results:  $\alpha_s$ Summary

- Based on this combined dataset, the HERAPDF2.0 family has been determined using only HERA data at LO, NLO and NNLO
- Most prominent members:
  - HERAPDF2.0 NLO
  - HERAPDF2.0 NNLO
  - HERAPDF2.0Jets NLO }PDF +  $\alpha_s$  fit

PDF fits

- In 2017, NNLO QCD predictions of inclusive jet and dijet production became available<sup>†</sup>
- Now: HERAPDF2.0Jets NNLO completes the HERAPDF2.0 family<sup>‡</sup>
- Present two new QCD fits at NNLO accuracy
  - **1** PDF fit with fixed  $\alpha_s(M_Z^2)$ 
    - $\rightarrow$  judge impact of jet data on PDF fit
  - 2 Simultaneous PDF +  $\alpha_s(M_Z^2)$  fit  $\rightarrow$  determine  $\alpha_s(M_Z^2)$  at NNLO



<sup>†</sup>JHEP 2017, 18 (2017). arXiv:1703.05977 <sup>‡</sup>EPJC 82, 243 (2022). arXiv:2112.01120



# Fit strategy Datasets



| Florian Lorkowski<br>2022-09-27 |  |
|---------------------------------|--|
| Introduction                    |  |
| Fit strategy                    |  |
|                                 |  |
| Parameterisation                |  |
|                                 |  |
| Fit uncertainty                 |  |
| Results: PDFs                   |  |
| Results: $lpha_{ m s}$          |  |
| Summary                         |  |

| Dataset                                      | L                   | Used points |      |
|----------------------------------------------|---------------------|-------------|------|
| Dataset                                      | [pb <sup>-1</sup> ] | NLO         | NNLO |
| H1+ZEUS combined inclusive DIS               | —                   | 1145        | 1145 |
| H1+ZEUS combined charm data                  | _                   | 47          | _    |
| H1 HERA I jets at low Q <sup>2</sup>         | 43.5                | 22          | 20   |
| H1 HERA I jets at high Q <sup>2</sup>        | 65.4                | 24          | 24   |
| H1 HERA II inclusive jets at high $Q^2$      | 351                 | 24          | 30   |
| H1 HERA II dijets at high $Q^2$              | 351                 | 24          | 24   |
| H1 HERA II trijets at high Q <sup>2</sup>    | 351                 | 16          | _    |
| H1 HERA II inclusive jets at low $Q^2$       | 290                 | _           | 37   |
| H1 HERA II dijets at low $Q^2$               | 290                 | _           | 37   |
| ZEUS HERA I inclusive jets at high $Q^2$     | 38.6                | 30          | 30   |
| ZEUS HERA I+II dijets at high Q <sup>2</sup> | 374                 | 22          | 16   |

- Some newly published data points could be added since previous NLO analysis
- Some data points had to be excluded since NNLO predictions are unavailable/unreliable



# Fit strategy Parameterisation



- Jets NNLO
- Florian Lorkowski 2022-09-27
- Introduction Fit strategy Datasets Parameterisation Settings Fit uncertainty Results: PDFs Results:  $\alpha_s$

- Use standard HERAPDF functional form of PDFs
- Use χ<sup>2</sup> saturation method to determine relevant parameters
- $\rightarrow~$  Optimal parameterisation is the same as at NLO

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$

- $A_g$ ,  $A_{u_v}$  and  $A_{d_v}$  determined by sum rules
- Fix  $C'_g = 25$ ,  $B_{\bar{U}} = B_{\bar{D}}$ ,  $A_{\bar{U}} = A_{\bar{D}}(1 f_s)$
- $\Rightarrow$  14 free PDF parameters +  $\alpha_{s}(M_{Z}^{2})$





# Fit strategy Settings



|                                     | Jets NLO                                                                       | Jets NNLO                                 |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Model parameters                    |                                                                                |                                           |  |  |  |
| f <sub>s</sub>                      | $0.4\pm0.1$                                                                    |                                           |  |  |  |
| m <sub>c</sub> [GeV]                | $1.47\pm0.06$                                                                  | 1.41 <sup>+0.04</sup><br>_symmetrise      |  |  |  |
| m <sub>b</sub> [GeV]                | $4.5 \pm 0.25$                                                                 | $\textbf{4.2}\pm\textbf{0.10}$            |  |  |  |
| $Q_{\min}^2$ [GeV <sup>2</sup> ]    | $3.5^{+1.5}_{-1.0}$                                                            |                                           |  |  |  |
| Parameterisation                    |                                                                                |                                           |  |  |  |
| $\mu_{ m f0}^2$ [GeV <sup>2</sup> ] | $1.9\pm0.3$                                                                    | $1.9^{+symmetrise}_{-0.3}$                |  |  |  |
| Additional                          | all missing D and E parameters                                                 |                                           |  |  |  |
| parameters                          | $(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$ |                                           |  |  |  |
| Scales                              |                                                                                |                                           |  |  |  |
| $\mu_{\rm f}^2$                     | $Q^2$                                                                          | $O^2 \perp p^2$                           |  |  |  |
| $\mu_{r}^{2}$                       | $(Q^2+ ho_{\perp}^2)/2$                                                        | $\mathbf{v}_{\perp} + \mathbf{p}_{\perp}$ |  |  |  |

### **Parameter choice**

- Model parameters determined similar to previous analysis
- Charm and beauty mass updated using new combined HERA data on heavy quarks
- Changed choice of central scales improves description of data at NNLO (lower \(\chi^2\)), especially for low \(Q^2\) jets



# Fit strategy Settings



# Results: PDFs Results: $\alpha_{\circ}$

|                                     | Jets NLO                                                                       | Jets NNLO                                 |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Model parameters                    |                                                                                |                                           |  |  |  |
| f <sub>s</sub>                      | $0.4\pm0.1$                                                                    |                                           |  |  |  |
| m <sub>c</sub> [GeV]                | $1.47\pm0.06$                                                                  | 1.41 <sup>+0.04</sup><br>_symmetrise      |  |  |  |
| m <sub>b</sub> [GeV]                | $4.5 \pm 0.25$                                                                 | $\textbf{4.2}\pm\textbf{0.10}$            |  |  |  |
| $Q_{\min}^2$ [GeV <sup>2</sup> ]    | $3.5^{+1.5}_{-1.0}$                                                            |                                           |  |  |  |
| Parameterisation                    |                                                                                |                                           |  |  |  |
| $\mu_{ m f0}^2$ [GeV <sup>2</sup> ] | $1.9\pm0.3$                                                                    | $1.9^{+symmetrise}_{-0.3}$                |  |  |  |
| Additional                          | all missing D and E parameters                                                 |                                           |  |  |  |
| parameters                          | $(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$ |                                           |  |  |  |
| Scales                              |                                                                                |                                           |  |  |  |
| $\mu_{\rm f}^2$                     | $Q^2$                                                                          | $O^2 \perp p^2$                           |  |  |  |
| $\mu_{r}^{2}$                       | $(Q^2+ ho_{\perp}^2)/2$                                                        | $\mathbf{v}_{\perp} + \mathbf{p}_{\perp}$ |  |  |  |

### Uncertainties

- Model: Repeat fit with each parameter in turn modified by its uncertainty
- Parameterisation: Perform fits with one additional parameter
- Variation of m<sub>c</sub> and μ<sub>f0</sub> performed one sided and symmetrised, to ensure m<sub>c</sub> > μ<sub>f0</sub>
- Scale: Perform additional fits, corresponding to a nine-point scale variation by a factor 2, assuming fully correlated cross section scale uncertainty



# Fit strategy Experimental/fit uncertainty



# Jets NNLO

Florian Lorkowski 2022-09-27

Introduction Fit strategy Datasets Parameterisation Settings Fit uncertainty Results: PDFs Results:  $\alpha_s$ 

# Theory related uncertainties

- ► In previous analysis: change hadronisation correction within its uncertainty and repeat fit
- Now: treat hadronisation uncertainty as systematic uncertainty of data points half correlated/half uncorrelated across all jet points and datasets
- ightarrow Hadronisation uncertainty becomes part of fit uncertainty
- $\rightarrow$  Significantly reduced influence of hadronisation uncertainty
- Similar treatment for statistical uncertainty of theory grids (in previous analysis, uncertainty of NLO grids was not available)

# Experimental/fit uncertainty

- ► Vary each parameter according to its uncertainty  $(\Delta \chi^2 = 1)^{\dagger}$
- Determine 14 eigenvector pairs (hessian uncertainties)
- Exp/fit uncertainty is given by sum of variations of eigenvectors from central value

<sup>&</sup>lt;sup>†</sup>After diagonalising the Hesse matrix, to obtain uncorrelated parameters



# Results: PDFs Central values







- As expected, PDF central values do not change significantly when including jet data
- The same effect was already observed at NLO



# Results: PDFs Uncertainties



### Jets NNLO Florian Lorkowski 2022-09-27 Introduction Fit strategy Results: PDFs Central values Uncertainties Results: $\alpha_s$ Summary



- Uncertainty of gluon distribution reduced significantly
- Improvements at small x (x ≤ 10<sup>-3</sup>) mostly due to improved procedures
- Improvements at larger x mostly due to inclusion of jet data





# HERAPDF2.0Jets NLO

Florian Lorkowski 2022-09-27

Introduction Fit strategy Results: PDFs Results:  $\alpha_s$ Strong coupling PDFs Comparison to data Summary

# $\alpha_{\rm S}(M_Z^2) = 0.1183 \pm 0.0009$ (exp/fit) $\pm 0.0005$ (model/param.) $^{+0.0037}_{-0.0030}$ (scale) $\pm 0.0012$ (hadr.) HERAPDF2.0Jets NNLO

 $lpha_{
m s}(M_Z^2)=0.1156\pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm$  0.0029 (scale)

- Preferred value is smaller that at NLO, as expected from other analyses
- $\blacktriangleright$  NNLO value is compatible with PDG world average (0.1179  $\pm$  0.0009)
- Exp/fit uncertainty reduced (compared to exp/fit⊗hadr. at NLO), due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties





### HERAPDF2.0 Jets NNLO

Florian Lorkowski 2022-09-27

```
Introduction
Fit strategy
Results: PDFs
Results: \alpha_s
Strong coupling
PDFs
Comparison to
data
Summary
```

# HERAPDF2.0Jets NLO

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009$  (exp/fit)  $\pm 0.0005$  (model/param.)  $^{+0.0037}_{-0.0030}$  (scale)  $\pm 0.0012$  (hadr.) HERAPDF2.0Jets NNLO

 $\alpha_{s}(M_{Z}^{2}) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm 0.0029$  (scale)

- Preferred value is smaller that at NLO, as expected from other analyses
- $\blacktriangleright$  NNLO value is compatible with PDG world average (0.1179  $\pm$  0.0009)
- Exp/fit uncertainty reduced (compared to exp/fit⊗hadr. at NLO), due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties





### HERAPDF2.0 Jets NNLO

Florian Lorkowski 2022-09-27

```
Introduction
Fit strategy
Results: PDFs
Results: \alpha_s
Strong coupling
PDFs
Comparison to
data
Summary
```

# HERAPDF2.0Jets NLO

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009 \text{ (exp/fit)} \pm 0.0005 \text{ (model/param.)}^{+0.0037}_{-0.0030} \text{ (scale)} \pm 0.0012 \text{ (hadr.)}$ 

## HERAPDF2.0Jets NNLO

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm 0.0029$  (scale)

- Preferred value is smaller that at NLO, as expected from other analyses
- $\blacktriangleright$  NNLO value is compatible with PDG world average (0.1179  $\pm$  0.0009)
- Exp/fit uncertainty reduced (compared to exp/fit⊗hadr. at NLO), due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties





HERAPDF2.0 Jets NNLO

Florian Lorkowski 2022-09-27

Introduction Fit strategy Results: PDFs Results:  $\alpha_s$ Strong coupling PDFs Comparison to data HERAPDF2.0Jets NLO (half correlated cross section scale uncertainty)

 $\alpha_{\rm s}(M_Z^2) = 0.1183 \pm 0.0009$  (exp/fit)  $\pm 0.0005$  (model/param.)  $\frac{+0.0037}{-0.0030}$  (scale)  $\pm 0.0012$  (hadr.)

HERAPDF2.0Jets NNLO (fully correlated cross section scale uncertainty)

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm 0.0029$  (scale)

HERAPDF2.0Jets NNLO (half correlated cross section scale uncertainty)

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm$  0.0022 (scale)

- Preferred value is smaller that at NLO, as expected from other analyses
- $\blacktriangleright\,$  NNLO value is compatible with PDG world average (0.1179  $\pm\,0.0009)$
- Exp/fit uncertainty reduced (compared to exp/fit⊗hadr. at NLO), due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties
- Scale uncertainty significantly reduced (when evaluated similar to NLO)







### $lpha_{s}$ -scan

- Result from α<sub>s</sub>-free fit confirmed by α<sub>s</sub>-scan
- Series of  $\alpha_s$ -fixed fits performed
- Location and width of minimum of χ<sup>2</sup>(α<sub>s</sub>) curve correspond very well to central value and fit uncertainty obtained of α<sub>s</sub>-free fit

### Uncertainties

- Total uncertainty dominated by scale uncertainty
- Model/parameterisation uncertainty negligible



# **Results:** $\alpha_s$ Partons distributions functions



Jets NNLO Florian Lorkowski 2022-09-27 Introduction Fit strategy Results: PDFs Results:  $\alpha_s$ Strong coupling PDFs Comparison to

Summary

### H1 and ZEUS



- PDF central values are affected by the change in α<sub>s</sub>
- Most notable effect: normalisation of gluon distribution increased
- PDF uncertainties similar to the previous fit at fixed α<sub>s</sub>



# **Results:** $\alpha_{s}$ Comparison to data





- Cross sections calculated using fitted PDFs are in very good agreement with the input measurements
- Fit achieved a  $\chi^2$ /d.o.f. = 1614/1348 = 1.197 (cf. without jets: 1363/1131 = 1.205), indicating that the jets do not introduce additional tension compared to fit with inclusive data only



# Summary Published PDF sets





• Two PDF sets are provided including full uncertainties at fixed  $\alpha_s(M_Z^2) = 0.118$  and  $\alpha_s(M_Z^2) = 0.1155$ 





# Jets NNLO

- Florian Lorkowski 2022-09-27
- Introduction Fit strategy Results: PDFs Results: α<sub>s</sub> Summary
- ► HERAPDF2.0 family has been completed, which is one of the major legacies of HERA
- Settings from previous analysis have been kept, except when improvements were possible due to new data or when transition to NNLO required change in strategy
- At fixed α<sub>s</sub>(M<sup>2</sup><sub>Z</sub>), the PDF central values do not change significantly, but the uncertainty of the gluon PDF is reduced
- A new value of  $\alpha_s(M_Z^2)$  has been determined at NNLO

 $lpha_{
m s}(M_Z^2) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/param.)  $\pm 0.0029$  (scale)

- Exp/fit and model/parameterisation uncertainties reduced due to improved procedures
- Scale uncertainty of \(\alpha\_s(M\_Z^2)\) reduced due to NNLO corrections