

Measurements of Lepton-Jet Azimuthal Decorrelations and 1-Jetttiness event shape at high Q² in DIS with H1 experiment at HERA

Sookhyun Lee (University of Michigan, Ann Arbor)

on behalf of the H1 collaboration

PANIC 2021

Sep 8, 2021

sookhyun@umich.edu

HERA (1992-2007)

- First (and so far the only) ep collider
- Electron and positron as well as polarized (~40%) runs.
- E_e = 27.6 GeV, E_p = 920 GeV, \sqrt{s} = 319 GeV
- Total integrated luminosity of 356.1 pb^{-1}

Deep-inelastic Scattering (DIS) at HERA

 $\boldsymbol{\chi}_{s}(Q^{2})$

- Legacy of HERA, ep collider studying DIS
 - Proton structure and parton shower
 - Diffractive physics,
 - Electroweak interactions
 - Beyond standard model (BSM) physics
 - Determination of strong coupling constant – single inclusive jets, dijets.

Deep-inelastic Scattering (DIS) and jet physics at EIC

• Forthcoming EIC era

- Proposed measurements involving jets in DIS such as jet substructure, global event shape, correlations are rich in physics such as
 - 3-dimensional description of nucleon and hadronization, flavor dependence, precision measurements for QCD and BSM.
- Theoretical and experimental advancement
 - pQCD calculation at NNLO and beyond, pushing N3LL accuracy in ressumation.
 - Theory frameworks dealing with multiscale problems such as transverse momentum dependent (TMD) and soft-collinear effective theory (SCET).
 - Grooming technique, ML, sensor technology of a few μm , etc.
- Motivates us to revisit HERA data!

H1 experiment at HERA

- Fully instrumented with
 - Trackers (silicon strip + drift chamber + multi-wire proportional chamber)
 - Calorimeter (Liquid-Argon + Lead- scintillating fiber, EM+ hadronic in both)
 - Solenoid, muon-chambers, etc.
- Particle flow algorithm used for charged/neutral particle reconstruction.
- Events triggered by requiring high-energetic cluster in LAr calorimeter
 - electron or hadron
 - > 99% efficient for *y* < 0.7

Neutral current DIS

- Neutral current DIS
 e p → e' X (e : e+ or e-)
- Kinematic variables

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x = \frac{Q^{2}}{2P \cdot q}$$

$$y = \frac{P \cdot q}{P \cdot k}$$

$$s = (P + k)^{2} = \frac{Q^{2}}{x \cdot y}$$

DIS kinematics reconstruction

Reconstruction methods

• Σ method

$$y_{\Sigma} = \frac{\sum_{i \in HFS} (E - p_z)_i}{\sum_{i \in HFS} (E - p_z)_i + E_{e'}(1 - \cos\theta_{e'})}$$
$$Q_{\Sigma}^2 = \frac{E_{e'}^2 \sin\theta_{e'}^2}{1 - y} \xrightarrow{HFS:}_{\text{hadronic}}_{\text{final state}}$$

• I Σ method

$$y_{I\Sigma} = y_{\Sigma}$$
, $Q_{I\Sigma}^2 = Q_{\Sigma}^2$
 $x_{I\Sigma} = \frac{E_{e\prime}}{E_p} \frac{\cos^2(\theta_{e\prime}/2)}{y_{\Sigma}}$

 \rightarrow Largely insensitive to initial state QED radiative effects

Lepton-jet decorrelation

- Novel way of probing transverse motion of quarks in proton, i.e. quark TMD PDF.
- Exploit lepton-jet p_T balance in Born kinematics

Liu et al. PRL. 122, 192003 (2019) Gutierrez et al. PRL. 121, 162001 (2019) Lepton-jet p_T imbalance $q_T = |\vec{k}_{\perp}^l + \vec{p}_{\perp}^{jet}|$

Lepton-jet decorrelation

- Noble way of probing transverse motion of quarks in proton, i.e. quark TMD PDF.
- Exploit lepton-jet p_T balance in Born kinematics

Liu et al. PRL. 122, 192003 (2019) Gutierrez et al. PRL. 121, 162001 (2019)

$$\begin{split} \frac{d^5 \sigma(\ell \, p \to \ell' J)}{dy_\ell d^2 k_{\ell\perp} d^2 q_\perp} &= \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x, k_\perp, \zeta_c, \mu_F) \\ &\times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_\perp, \mu_F) \\ &\times \delta^{(2)}(q_\perp - k_\perp - \lambda_\perp). \end{split}$$

Lepton-jet p_T imbalance $q_T = |\vec{k}_{\perp}^l + \vec{p}_{\perp}^{jet}|$

Machine-learning based unfolding

PRL 124, 182001 (2020) Omnifold

- Unbinned multidimensional unfolding.
- Deep neural networks trained to learn detector effects.
- Weight assigned to each event in MC.
- Unfolded distributions are obtained by binning reweighted events.

Jet transverse momentum and pseudorapidity

arXiv:2108.12376

- p_T and η of jets reasonably well described by NNLO + NP.
- Rapgap of all MC best describes data.
- Overall shape difference seen for Cascade (TMD based) in both variables.

Lepton-jet momentum imbalance and azimuthal angular distance

- \mathbf{q}_{T} reasonably well described by NNLO in higher region and by TMD at lower region, similar pattern for $\Delta\phi$.
- Large overlap covered by data will help constrain matching between TMD and collinear pQCD frameworks.

1-jettiness global event shape

• 1-jettiness

•
$$\tau_1^b = \frac{2}{Q^2} \Sigma_{i \in X} \min\{q_J \cdot p_i, q_B \cdot p_i\},$$

where $q_J = xP + q, q_B = xP$

- Global, Lorentz invariant and infrared-safe observable
- Sensitive to strong coupling constant α_s and PDFs

Kang, Lee, Stewart, PRD 88 (2013) 054004

N2LL published, N3LL WIP

In Breit Frame

- Breit frame
 - Only spatial component in exchanged boson momentum.
 - Direction of momentum reversed after boson-parton head-on collision, i.e. brick-wall frame.

•
$$\tau_Q \stackrel{\text{\tiny def}}{=} 1 - \frac{2}{Q} \sum_{i \in \mathcal{H}_C} p_{z,i}^{Breit}$$

- By momentum conservation
 - $\tau_Q = \tau_1^b$

MC simulations

- Contributions of different particles to τ_1^b
 - Major contribution from tracks in central region and particles with E > 1GeV.
 - Dominated by well measured particles.
- Kinematic phase space:
 - 150 < Q² < 20,000 GeV2
 - 0.2 < y < 0.7

H1prelim-21-032

Single differential cross section

- Limits of au_1^b
 - $au_1^b
 ightarrow 0$: two pencil-like jets
 - $au_1^b \gg 0$: multi-jets
 - $\tau_1^b = 1$: empty current hemisphere
- NNLO (α_s^2) prediction from NNLOJET + NP corrections
 - Description of far-tail region sensitive to fixed-order (FO) improved by higher order NNLO.
 - Near peak region, improvement by NP corrections (Pythia 8.3).

Unfolded by bin-by-bin correction. QED radiative effects corrected.

Q² and y dependent cross sections

- τ_1^b -differential cross section in $y Q^2$ space.
- Jets increasingly collimated with Q^2 .
- NP effects (shift of peak position) more prominent in low Q^2 .
- As y increases $\tau_1^b = 1$ peak enhanced.

Q² and y dependent cross sections

H1prelim-21-032

- NNLO pQCD predictions
 - High y high Q^2 regions well described by NNLO.
 - NP corrections sizable at low Q^2 .
 - Small scale uncertainty.
- Predictions with N3LL accuracy in SCET framework available soon.
 - Extended range in τ_1^b , e.g. peak to far region with a few percent level theory uncertainty (a percent level constraining power on α_s) expected in high Q - high y region.

Summary and Outlook

- First measurements of lepton jet momentum imbalance and azimuthal decorrelation in NC DIS presented as a new way to constrain TMD PDFs and their evolution.
- TMD calculation describes low q_T region of measured data well and pQCD collinear prediction does large q_T region. Large overlap region covered by data can constrain matching between TMD and collinear frameworks.
- First measurement of **1-jettiness event shape observable** in NC DIS was presented as a new way to greatly improve precision of PDF and α_s determination.
- NNLO (α_s^2) fixed order predictions provide good description in the region of validity, but hadronization corrections are sizable.
- N3LL and NNLO+PS predictions will be compared with data.
- Sensitivity to α_s and PDFs needs to be explored.
- Data will become useful for improving description of less inclusive DIS MC generators.

backup

Single differential cross section

- Djangoh 1.4 : color-dipole model
- Rapgap 3.1 : ME + parton shower
- Dire: Dipole-like shower + inclusive NLO DGLAP corrections.

Q2 and x dependent cross sections

Q2 and x dependent cross sections

