Jet-based TMD measurements with H1 data, unfolded using machine-learning techniques

Miguel Arratia, on behalf of the H1 Collaboration

ML4Jets 2021, July 2021

A new channel to probe for quark TMDs and evolution

Liu et al. PRL. 122, 192003 (2019)

 $q_T = |\vec{k}_{l\perp} + \vec{p}_{\perp}|$

Motivation

Lepton-jet imbalance $q_T = |\vec{k}_{l\perp} + \vec{p}_{\perp}^{j}|$ In Born-level configuration Probes quark TMD PDFs

Liu et al. PRL. 122, 192003 (2019) Gutierrez et al. PRL. 121, 162001 (2019)

$$egin{aligned} &rac{d^5\sigma(\ell^\prime p o \ell^\prime J)}{dy_\ell d^2 k_{\perp} d^2 q_\perp} = \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x,k_\perp,\zeta_c,\mu_F) \ & imes H_{ ext{TMD}}(Q,\mu_F) S_J(\lambda_\perp,\mu_F) \ & imes \delta^{(2)}(q_\perp-k_\perp-\lambda_\perp). \end{aligned}$$

The H1 experiment at HERA

Tracking system
(silicon tracker, jet chambers, proportional chambers)

- LAr calorimeter (em/had)
- Scintillating fiber calorimeter

Both combined using an energy flow algorithm

Accurate and precise jet and lepton measurements

Neural-net based in-situ jet calibration for data and MC.

1% Jet energy scale

0.5-1% lepton energy scale

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

This is the <u>first-ever</u> measurement that uses machine-learning to correct for detector effects.

Reweighting the reco-level distributions

We use simple fully connected networks with a few hidden layers.

The distribution is binned for illustration, but the reweighting is unbinned.

All these distributions are simultaneously reweighted

Weighting works well multidimensionally (unbinned)

Closure tests (Pseudodata: Django, Response: Rapgap)

Closure tests

Pseudodata: Djangoh Response: Rapgap

Closure tests

Pseudo Data: Djangoh Response: Rapgap

Closure to within 10% or less in all distributions Similar results obtained With Rapgap as pseudo data

Closure test works well when binned in Q...

Statistical uncertainties estimated with bootstrap, e.g

Preliminary Results

Measurement of lepton-jet correlations in high Q^2 neutral-current DIS with the H1 detector at HERA

The H1 Collaboration

Abstract

A measurement of jet production in high Q^2 neutral-current DIS events close to the Born-level configuration $\gamma^* a \rightarrow a$ (Born kinematics) is presented. This cross section is measured deferentially as

https://www-h1.desy.de/h1/www/publications/html 1prelim-21-031.long.html

Jet transverse momentum and pseudorapidity

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap-> Data will help constrain matching between TMD and collinear pQCD frameworks

Outlook: azimuthal correlations of "hadron-in-jet" measurements in DIS. Can be 10+ D!

- These will be highly differential measurements, need to constrain angles between hadrons and jet and electrons Motivated in PRD 102, 074015 (2020)
- Have become practically possible with unbinned unfolding (Omnifold)
- Possible with H1 data, crucial reference for EIC program (which will add polarization and PID)

Outlook (for brave souls): unbinned measurement!

See Ben's talk in PhysTeV 2021: https://indico.in2p3.fr/event/24331/timetable/#20210614.detailed

Summary

- We report a measurement of lepton jet momentum and azimuthal imbalance in DIS, which provide a new way to constrain TMD PDFs and their evolution
- First-ever measurement that uses machine-learning to correct for detector effects. (using Omnifold method)
 - This is the first measurement in a series of studies that aim at creating a **pathfinder program for the future EIC**

Backup

Data well described by MC generators, which "bracket data"

CASCADE (TMD-based) describes low values well but misses large values

Jet transverse momentum and pseudorapidity

- Djangoh and Rapgap provide give good description; Pythia8, Cascade miss pseudorapidity $_{23}$

Jet performance (energy flow reconstruction)

DIS kinematic reconstruction

$$y = \frac{\sum_{i \in had} (E_i - p_{i,z})}{\sum_{i \in had} (E_i - p_{i,z}) + E_{e'} (1 - \cos \theta_{e'})}$$

$$Q^2 = \frac{E_{e'} \sin^2 \theta_{e'}}{1 - y},$$

*No QED rad. Corrections applied for this preliminary result