PDF/α_S(M_Z) relevant results from HERA A M Cooper-Sarkar Low-x 2021

- 1. HERAPDF2.0Jets NNLO H1prelim-19-041 ZEUS-prel-19-001
- 2. Study of proton parton distribution functions at high *x* using ZEUS data

I. Abt et al. (ZEUS Collaboration) Phys. Rev. D **101**, 112009 – Published 26 June 2020

3. Measurement of the 1-jettiness event shape observable in deep-inelastic electron-proton scattering at HERA H1prelim-21-032

TOPIC 1: Updating HERAPDF2.0Jets with NNLO predictions for jets from NNLOJET (Gehrmann et al) as implemented in the ApplFast system

Jet Data sets used in the present NNLO analysis

Strong overlap with those used in the NLO analysis

	Data Set	published	Q^2 [GeV	V ²] range	L	e ⁺ /e ⁻	\sqrt{s}	norma-	all	used	
			from	to	pb ⁻¹		GeV	lised	points	points	
Γ	H1 high Q^2 HERA I incl. jets	2007	150	15000	65.4	e ⁺ p	301	yes	24	24	
	H1 low Q^2 HERA I dijets	2010	5	100	43.5	e^+p	301	no	22	16	
	H1 high Q2 HERA II incl. jets	2014	150	15000	351	$e^+ p/e^- p$	319	yes	24	24	
	H1 high Q2 HERA II dijets	2014	150	15000	351	$e^+ p/e^- p$	319	yes	24	24	
	H1 low Q^2 HERA II incl. jets	2016	5	80	290	e ⁺ p/e ⁻ p	319	yes	48	32	\prod
	H1 low Q^2 HERA II dijets	2016	5	80	290	$e^+ p/e^- p$	319	yes	48	32	
	ZEUS incl. jets HERA I	2002	125	10000	38.6	e ⁺ p	301	no	30	30	Γ
	ZEUS dijets HERA I and II	2010	125	20000	374	$e^+ p/e^- p$	318	no	22	16	

These data sets are new and were not used in the 2015 NLO analysis

However as well as adding new data sets we have to subtract some data

- Trijets- there are no NNLO predictions
- Data at low scale µ = (pt² +Q²) < 13.5 fro which scale variations are large (~25% NLO and ~10% NNLO)
- 6 Dijet data points at low pt for which predictions are unreliable

There is a choice of scales to be made for the jets.

Factorisation scale

At NLO we used factorisation scale= Q^2 but this is not a good choice for low Q^2 jets, we have many more low Q^2 jet data points now – from the H1 2016 data- so we move to a choice factorisation scale =(Q^2 +pt²) for all jets- this makes almost no difference to high Q^2 jets

Renormalisation scale

For HERAPDF2.0Jets NLO we chose renormalisation = $(Q^2+pt^2)/2$ For HERAPDF2.0Jets NNLO jets a choice of renormalisation = (Q^2+pt^2) Results in a lower χ^2 , $\Delta\chi^2 \sim -15$

In fact the 'optimal' scale choice for NLO and NNLO is different – if optimal is defined by lower $\chi 2$. At NLO $\Delta \chi 2 \sim -15$ for the old scale choice.

We also explore the consequences of scale variation.

HERAPDF specifications: sources of uncertainty

Experimental

Hessian uncertainties: 14 eigenvector pairs, evaluated with $\Delta \chi 2 = 1$ Cross checked uncertainties evaluated from the r.m.s. of MC replicas

<u>Model</u>: Variation of input assumptions Variation of charm mass and beauty mass parameters is restricted using HERA charm and beauty data

Variation	central	Upper	lower
${\sf f}_{\sf s}$ size and shape	0.4	0.5	0.3
M _c (NLO) GeV	1.43	1.49	1.37
M _c (NNLO) GeV	1.47	1.53	1.41
M _b GeV	4.5	4.25	4.75
Q ² _{min} GeV ²	3.5	2.5	5.0

Parametrisation

Variation of $Q_0^2 = 1.9 \pm 0.3 \text{ GeV}^2$ and addition of 15^{th} parameters

When jets are included we also evaluate a hadronisation uncertainty from offsetting the corrections given for each jet data set

First we determine PDFs by making fits with the fixed value of

α_s(M_Z) =0.118 HERAPDF2.0Jets NNLO

Uncertainties on the gluon are reduced when compare to HERAPD,F2.0NNLO

The standard value of $\alpha_s(M_z)$ for HERAPDF fits is $\alpha_s(M_z) = 0.118$ but we also perform fits with free $\alpha_s(M_z)$, since the jet data enable us to constrain it.

H1 and ZEUS preliminary

 $\alpha_{s}(M_{Z}) = 0.1150 \pm 0.0008_{(exp)} + 0.0002_{-0.0005(model/param)} \pm 0.0006_{(had)} \pm 0.0027_{(scale)}$

The fitted experimental uncertainty is not the whole story.

The experimental, model, parametrisation and hadronisation uncertainties are also determined for these fits.

In addition, in fits with free $\alpha_s(M_Z)$ scale uncertainty becomes important:

Scale uncertainty is determined from the usual procedure

This was to vary factorisation and renormalisation scales both separately and simultaneously by a factor of two taking the maximal positive and negative deviations. These are assumed to be 50% correlated and 50% uncorrelated.

This gives scale uncertainty +0.0026 / _0.0027 by far the largest uncertainty.

To summarise the value of $\alpha_s(M_Z)$ determined from these fits with all uncertainties is:

 $\alpha_{s}(M_{Z})=0.1150 \pm 0.0008_{(exp)} +0.0002_{-0.0005(model/param)} \pm 0.0006_{(had)} \pm 0.0027_{(scale)}$

 $\chi 2{=}1599$ for free $\alpha_s(M_Z)$ fit, using1343 data points, 1328 degrees of freedom $\chi 2/d.o.f$ =1.203

Compare $\chi^2/d.o.f = 1.205$ for HERAPDF2.0NNLO (with only 1131 degrees of freedom)

These scans over the NNLO inclusive +jet data are compared to the published scans done at NLO and to the corresponding scans using only inclusive data.

Just as at NLO the jet data help to constrain $\alpha_s(M_Z)$. There is a similar level of accuracy at NNLO and NLO and $\alpha_s(M_Z)$ clearly moves lower at NNLO –

But note we are using a different scale now- our scale uncertainty studies show that with the old scale choice used at NLO the NNLO result would be even lower $\rightarrow \alpha_s(M_Z) \sim 0.1135$. So this IS a systematic shift.

The NNLO result is: $\alpha_s(M_Z)=0.1150 \pm 0.0008_{(exp)} +0.0002_{-0.0005(model/param)} \pm 0.0006_{(had)} \pm 0.0027_{(scale)}$

 $\begin{array}{l} \text{Compare the NLO result} \\ \alpha_{s}(M_{Z}) = 0.1183 \pm 0.0009_{(exp)} \pm 0.0005_{(model/param)} \pm \\ 0.0012_{(had)} \ ^{+0.0037} \ ^{-0.0030(scale)} \qquad 8 \end{array}$

So now produce PDFs with the fixed value

Conclusions: TOPIC 1

We have completed the HERAPDF2.0 family by performing an NNLO fit including jet data.

This results in two new PDF sets:

HERAPDF2.0JetsNNLO $\alpha_s(M_Z) = 0.118$ – the PDG value

HERAPDF2.0JetsNNLO $\alpha_s(M_Z) = 0.115$ – The value favoured by our own fit

The Jet data allow us to constrain $\alpha_s(M_Z)$. Our NNLO value is $\alpha_s(M_Z)=0.1150 \pm 0.0008_{(exp)} +0.0002_{-0.0005(model/param)} \pm 0.0006_{(had)} \pm 0.0027_{(scale)}$

Compare the NLO result $\alpha_{s}(M_{Z})=0.1183 \pm 0.0009_{(exp)} \pm 0.0005_{(model/param)} \pm 0.0012_{(had)}^{+0.0037}_{-0.0030(scale)}$

There is a systematic shift downwards at NNLO even taking scale variation into account

TOPIC 2: high-x ZEUS data

I. Abt et al. (ZEUS Collaboration) Phys. Rev. D 101. 112009 – Published 26 June 2020

Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e+p)

Where $\overline{\sigma}$ is the total integrated cross section in a given x-Q² bin There is a shape difference between HERAPDF & other PDFs, approaches 10% at x ~ 0.4.

Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e-p)

There is a shape difference between HERAPDF & other PDFs, approaches 10% at x ~ 0.4.

You won't often see this since plots are usually in ln(x) But it is worrying for BSM physics

ZEUS has some measurements at very high-x that are not in the HERAPDF—or indeed in any PDF

H. Abramowicz et al. (ZEUS Collaboration) Phys. Rev. D 89, 072007 – Published 8 April 2014

But there are very few events at high-x So these are not suitable for input to the PDF fits in the usual way

Transfer Matrix for the detector is developed using which number of events reconstructed in data can be predicted from any PDF as below.

 Get a prediction for the generator/hadron level number of events, which is luminosity x radiative corrections x Born cross section.

i.e.
$$u_{i,k} = \mathcal{L} K_{ii} \sigma_{i,k}$$

Apply transfer matrix a, to get the number of events in a bin j.

$$\nu_{j,k} \approx \sum_{i} a_{ij} \nu_{i,k}$$

: data luminosity

K_n : Radiative corrections (calculated using HERACLES)

σ_{1k}: born level cross sections in ith bin for kth PDF

a has all detector and analysis effects

(probability of an event reconstructed in jth bin to come from ith true bin)

 <u>Comparison at reconstructed level</u> from different PDFs : Convolute M with Transfer Matrix to get a prediction of number of events in the cross section Bins (ν) from different PDFs

 - ν from different PDF is compared to observed events from data and Poisson statistics is used to probe how well given PDF is defining the data.

- p-value is determined for different PDFs
- Comparison of p-values in high-x and lower-x range is shown for different PDFs

Probability for explaining high-x data from different PDFs

PDF	$e^{-}p$	e^+p
HERAPDF2.0	0.05	0.5
CT14	0.002	0.8
MMHT2014	0.002	0.8
NNPDF2.3	0.00007	0.6
NNPDF3.0	0.0002	0.7
ABMP16	0.01	0.8
ABM11	0.001	0.6

p-value for e-p and e+p data sets are shown on comparison to different PDFs (includes only statistical fluctuation from Poisson probabilities).

Probability for explaining high-x data from different PDFs in different x-ranges

	e	p	e^+p				
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \geq 0.6$			
HERAPDF2.0	0.06	0.2	0.6	0.1			
CT14	0.0008	0.2	0.7	0.6			
MMHT2014	0.00003	0.1	0.6	0.6			
NNPDF2.3	0.00007	0.2	0.6	0.6			
NNPDF3.0	0.00003	0.2	0.6	0.6			
ABMP16	0.01	0.2	0.8	0.5			
ABM11	0.03	0.3	0.7	0.4			

p-value for e-p and e+p data sets are shown on comparison to different PDFs for two different x ranges.

+1.8 %								
	e	p	e^+p					
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$				
HERAPDF2.0	0.02	0.1	0.2	0.3				
CT14	0.02	0.3	0.8	0.5				
MMHT2014	0.008	0.2	0.8	0.5				
NNPDF2.3	0.009	0.3	0.8	0.4				
NNPDF3.0	0.008	0.3	0.8	0.4				
ABMP16	0.04	0.3	0.6	0.4				
ABM11	0.03	0.3	0.4	0.2				
	-1.8 %							
	e	p	e ⁺ p					
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$				
HERAPDF2.0	0.03	0.3	0.8	0.2				
CT14	0.0	0.08	0.4	0.6				
MMHT2014	0.0	0.04	0.2	0.6				
NNPDF2.3	0.0	0.08	0.2	0.6				
NNPDF3.0	0.0	0.08	0.2	0.6				
ABMP16	0.0003	0.1	0.7	0.6				
ABM11	0.004	0.2	0.7	0.5				

Dominant systematics : due to error in normalization of data quoted as 1.8 %

Conclusions :

>p-values from different PDFs change differently

>Similar behavior as when using only statistical fluctuations.

Perhaps unsurprisingly the HERAPDF does best, but it I still not great

Disagreement comes primarily from lower x in e-p

Systematic uncertainties can also be accounted The dominant one is normalisation

The overall picture is the same as when using only statistical uncertainties

CONCLUSION TOPIC 2: There is further unused information at high-x. Work is ongoing to develop a Bayesian fitting code to incorporate these high-x data into PDF fits. TOPIC 3: H1 measurement of an event shape variable: 1-jettiness with sensitivity to PDFs/ $\alpha_s(M_z)$, resummation and hadronisation effects

Neutral current deep-inelastic scattering

- Process ep → e'X
- Electron or positron scattering

Kinematic variables

- Virtuality of exchanged boson Q^2 $Q^2 = -q^2 = -(k - k')^2$
- Inelasticity, Bjorken-x and centre-of-mass energy

$$y = rac{p \cdot q}{p \cdot k}$$
 $Q^2 = x_{Bj} \cdot y \cdot s$

Breit frame

- Exchanged boson completely space-like
- Collides head-on with parton (brick-wall frame)

1-jettiness

• Axes incoming parton and q + xP:

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

- Infrared safe and free of non-global logs
- Sensitive to strong coupling α_s and PDFs
- DIS thrust normalised to boson axis
 - Normalisation with Q/2 of the event:

$$\tau_Q = 1 - \frac{2}{Q} \sum_{i \in \mathcal{H}_C} P_{z,i}^{Breit}$$

 Only particles in the current hemisphere contribute

Equivalence follows from momentum conservation:

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton
 - \rightarrow Small τ_1^b

- Dijet event
- More and larger contributions to the sum over the HFS
 - \rightarrow Large τ_1^b

Single differential cross section

Single differential cross section

- Unfolded using bin-by-bin method
- Corrected for electron QED radiative effects
- Divide by τ_1^b -bin width
- Stat. & syst. uncertainties smaller than marker size

Comparison with MC models

- Djangoh 1.4: Colour-dipole-model
- Rapgap 3.1: ME + parton shower
- Pythia 8.3 + Dire

Dire Parton Shower

- Dipole-like shower
- Inclusive NLO DGLAP corrections to the shower evolution are included

Phase space

- $150 < Q^2 < 20.000 \text{ GeV}^2$
- 0.2 < y < 0.7

$\gamma p \rightarrow 2$ jets+X NNLO prediction form NNLOJET

- NP corrections from Pythia 8.3 (sizeable)
- NNLO provides a reasonable description of fixed-order region
- NNLO improves over NLO

Peak region (resummation region)

- Not well described by the models
- Tail region (fixed order region)
 - Djangoh and Rapgap perform well
 - Pythia+Dire underestimates the data

NLO ($ep \rightarrow e + 2jets + X$) α_s variations (± 5%)

Ratio to data

- Stat. uncertainties of a few to O(10%)
- Syst. uncertainties are in the range of 5%

 \rightarrow 'Classical' MC models perform reasonably well over entire phase space

 \rightarrow Pythia+Dire similar to Rapgap at low y, but too large at low τ

NNLO pQCD ($ep \rightarrow 2 \text{ jets} + X$)

- Reasonable description in entire phase space
- Improved description with increasing Q²
- Small scale uncertainties

 \rightarrow Altogether: NNLO improves over NLO but NP corrections are sizeable

CONCLUSION: Topic 3

- A first measurement of the 1-jettiness event shape observable in NC DIS was presented
- 1-jettiness is equvalent to DIS thrust normalised with Q/2
- Classical Monte Carlo provides a good description of the data
- Modern Monte Carlo performs reasonably well
- NNLO fixed order predictions (*ep* →2 jets) provide good description in the region of validity, but hadronisation corrections are large
- H1prelim-21-032 https://wwwh1.desy.de/psfiles/confpap/EPSHEP2021/H1prelim-21-032.pdf

Outlook

- N3LL and NNLO+PS predictions need to be confronted with data
- Sensitivity to α_s and PDFs needs to be explored
- Data will become useful for improving (DIS) MC generators

Back-up

Note on NNLOJet predictions for DIS jets

A bug was found in August2020 This has led to two errata on papers published by NNLOJet and H1 which used these grids in the extraction of $\alpha_{s}(M_{7})$

V. Andreev *et al.* [H1 Collaboration], Eur. Phys. J. C **77**, 791 (2017), [Erratum: Eur. Phys. J. C 81, 738 (2021)], [1709.07251].

D. Britzger *et al.* [NNLOJet and Applfast Collaboration], Eur. Phys. J. C **79**, 845 (2019), [arXiv:1906.05303].

We are wor V. Andreev *et al.* [H1 Collaboration], Eur. Phys. J. C **77**, 791 (2017), [Erratum: Eur. Phys. J. C 81, 738 (2021)], [1709.07251]. We present essentially ¹D. Britzger *et al.* [NNLOJet and Applfast Collaboration], Eur. Phys. J. C **79**, 845 (2019), [arXiv:1906.05303]. The PDFs do not change visibly The extracted value of $\alpha_{\rm S}(M_Z)$ could be marginally larger, see for example: The H1 value extracted in a similar manner, with a joint PDF and $\alpha_{\rm S}(M_Z)$ fit, changed from 0.1142 to 0.1147 with an experimental uncertainty of 0.0011

The HERAPDF approach uses only HERA data

- The combination of the HERA data yields a very accurate and consistent data set for 4 different processes: e⁺p and e⁻p Neutral and Charged Current reactions and for e⁺p Neutral Current at 4 different beam energies
- The use of the single consistent data set allows the usage of the conventional χ^2 tolerance $\Delta\chi^2 = 1$ when setting 68%CL experimental errors
- NOTE the use of a pure proton target means no need for heavy target/deuterium corrections.
- d-valence is extracted from CC e⁺p without assuming d in proton= u in neutron
- All data are at high W (> 15 GeV), so high-x, higher twist effects are negligible.

HERAPDF evaluates model uncertainties and parametrisation uncertainties in addition to experimental uncertainties

- HERAPDF2.0 is based on the new final combination of HERA-I and HERA-II data which supersedes the HERA-I combination and supersedes all previous HERAPDFs
- HERAPDF2.0Jets fits add HERA Jet data to this.

HERAPDF specifications: parameterisation and $\chi 2$ definition

For the NLO and NNLO fits the central parametrisation at $Q_0^2 = 1.9 \text{ GeV}^2$ is

 $\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \left(1+D_{\overline{U}} x\right), \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. \end{aligned}$

QCD sum-rules constrain $A_{g'}A_{uv'}A_{dv}$ $x\overline{s} = f_s x\overline{D}$; sets the size of the strange PDF and the constraints $B_{\overline{U}} = B_{\overline{D}}$ and $A_{\overline{U}} = A_{\overline{D}}(1 - f_s)$ ensure $x\overline{u} \to xd$ as $x \to 0$.

- There are 14 free parameters in the central fit determined by saturation of the χ^2
- But extra D and E parameters are added to all flavours of PDF for parametrisation uncertainty plus Ag'=0 for no negative gluon term is also checked.
- $\alpha_{S}(M_{Z}) = 0.118, 0.115, \text{ free } \alpha_{S}(M_{Z})$
- PDFs are evolved using the DGLAP equations using QCDNUM and convoluted with coefficient functions to evaluate structure functions and hence measurable cross sections
- Heavy quark coefficient functions are evaluated by the Thorne Roberts Optimized Variable Flavour Number scheme – this is the standard, unless otherwise stated
- Jet predictions from NNLOJet (T.Gehrmann et al) via Applfast

Since it is well known that HERA data at low x and Q^2 may be subject to the need for ln(1/x) resummation or higher twist effects we also perform $\chi 2$ scans with harder Q^2 cuts

The Q^2 cuts do not result in any significant change to the value of $\alpha_s(M_Z)$ that is determined

The central values from the three scans are: $\alpha_s(M_Z) = 0.1150 \pm 0.0008 \ Q^2 > 3.5 \ GeV^2$ $\alpha_s(M_Z) = 0.1144 \pm 0.0010 \ Q^2 > 10 \ GeV^2$

 $\alpha_{\rm s}({\rm M_Z}) = 0.1148 \pm 0.0010 \ {\rm Q^2} > 20 \ {\rm GeV^2}$

Now compare the HERAPDF2.0 Jets NNLO fit with $\alpha_s(M_z)=0.115$ to the jet data

Now compare the HERAPDF2.0 Jets NNLO fit with $\alpha_s(M_z)=0.115$ to the jet data

Now compare the HERAPDF2.0 Jets NNLO fit with $\alpha_s(M_z)=0.115$ to the jet data

Now compare the HERAPDF2.0 Jets NNLO fit with $\alpha_s(M_7)=0.115$ to the jet data

Compare PDFs for

 $\alpha_s(M_Z)$ =0.115 and $\alpha_s(M_Z)$ =0.118

Compare PDFs for $\alpha_s(M_Z) = 0.115$ and $\alpha_s(M_Z) = 0.118$ At high scale Q² = M_z²

Measurement of neutral current $e^{\pm}p$ cross sections at high Bjorken x with the ZEUS detector

H. Abramowicz et al. (ZEUS Collaboration) Phys. Rev. D 89, 072007 – Published 8 April 2014

At high Q², scattered electron seen with \approx 100% acceptance For not too high x, measure x from jet and measure in small bins For x>x_{Edge}, measure integrated cross section to x=1

Transfer Matrix : Probability of an event reconstructed in jth bin to come from ith true bin

Tracing back the path of MC reconstructed events in the generated x-Q² phase space

 $a_{ij} = \frac{\sum_{m=1}^{M_i} \omega_m I(m \in j)}{\sum_{m=1}^{M_i} \omega_m^{MC}}$

a, = probability of an event reconstructed in jth bin to come from ith bin

 $\omega_m = MC$ weights given to mth event in bin i

I = 1 if mth event is reconstructed in bin j, else = 0

M = total events generated in it bin

xsection binning 'N' (total 153 bins)

Generated distribution of these events in extended binning 'M' (total 429 bins)

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

HERA-II data • High- Q^2 region: $Q^2 > 150 \text{ GeV}^2$ 800008 Events • Luminosity: $L = 351 \text{ pb}^{-1}$ Signal Monte Carlo models 60000 Rapgap (ME + PS) 40000 Djangoh (CDM) Little background in incl. DIS 20000 Photoproduction Low-Q² NC DIS Ratio to data 1.5 Other sources are negligible (QEDC, CC DIS, di-lepton production) 0.5 ō Reconstruction Use the IΣ method \rightarrow Independent of electron

ISR

$$y = y_{\Sigma} = \frac{\Sigma}{\Sigma + E_{e'}(1 - \cos \vartheta_{e'})}$$

$$Q^2 = Q_{\Sigma}^2 = rac{E_{e\prime}^2 \sin \vartheta_{e\prime}}{1 - y_{\Sigma}}$$

DIS thrust - a 4π observable

- All particle candidates in all DIS events contribute $\left(\tau_Q = 1 \frac{2}{Q} \sum_{i \in \mathcal{H}_C} P_{z,i}^{Breit}\right)$
- Normalised contribution to au_Q for different ranges in polar angle ϑ and energy

- Mainly tracks and clusters in the central part of the detector contribute ($25^\circ < \vartheta < 153^\circ$)
- Mainly particles with high energy contribute (E > 1 GeV)
 ⇒ Well measured particles dominate in τ_Q

1-jettiness - DIS thrust

DIS thrust: Sum of longitudinal momenta

- Longitudinal momentum distribution of single particles in the current hemisphere
- Particles are well modelled by simulation for clusters and tracks

- $\tau_Q \rightarrow 0$: DIS 1-jet events
- $\tau_Q \rightarrow 1$: Dijet events
- $\tau_Q = 1$: Dijet event, both jets in beam hemisphere

- Reasonable agreement between data and MC
- Full τ_Q range measurable