

Measurement of azimuthal decorrelation angle between the leading jet and the scattered lepton in deep inelastic scattering at HERA

Amilkar Quintero on behalf of the ZEUS collaboration 14 April 2021

- 1. Introduction
- 2. Motivation
- 3. Event selection and control plots
- 4. Results
- 5. Multi-jet events
- 6. Unfolding and systematics
- 7. Summary

Measurements in proton collisions

Azimuthal angular decorrelation angle $(\Delta \phi)$ was studied for dijet events in proton collisions [1-3].

- Study parton radiation effects.
- Test pQCD and MC generators.
- High order perturbative effects.
- Search for new physics.

Measurements in proton collisions

Azimuthal angular decorrelation angle $(\Delta \phi)$ was studied for dijet events in proton collisions [1-3].

- Study parton radiation effects.

- Test pQCD and MC generators.

- High order perturbative effects.

- Search for new physics.

Motivation

Hadron Electron Ring Accelerator (1992 - 2007)

e[±]

Ge

(920)

Ge

DESY, Hamburg, Germany

ZEUS

ZEUS Experiment

- One of the two largest multi-purpose collider experiments at HERA.

- The detector component, optimized to measure jets, was a high-resolution Uranium Calorimeter that surround a thin superconducting solenoid (1.43T) and the tracking detectors (CTD and MVD).

Event selection and control plots

- Data from the HERA II period with $\sqrt{s} = 318$ GeV and integrated luminosity of ~330 pb⁻¹.
- Jets are reconstructed using the k_T [7] algorithm in the laboratory frame.
- Measurements were obtained for the kinematic region shown in the table below (like previous γ -jet measurements at ZEUS).
- No significant differences in the results when separating electron and positrons.

[7] Phys. Lett. B 691 (2010) 127-137)

Simulation

ZEUS Preliminary

ZEUS Preliminary

Good agreement between data and MC, but degrades at large multiplicity events

Multi-jet events

- Decorrelation measurements in different jet multiplicities per event, exhibit the same behavior as reported in [3] and [9].
- High jet multiplicity events should be dominated by soft gluon radiation.
- The agreement with the MC model degrades.
- Similar conclusions were reported in proton collisions by the CMS collaboration [9], stating the need from improvements of theoretical models.

Unfolding and Systematics

- Unfolding in 1-D will be performed with the **TUnfold** package [10].
- Differential cross section measurements will be presented, at different p_τ, Q² and jet multiplicity regions.
- The following sources of systematic uncertainty were considered for normalized cross sections measurements, according to previous ZEUS analyses and similar from other experiments measurements in proton collisions:
 - The energy of the scattered lepton was varied by its known scale uncertainty of 2%.
 - The **jet energy scale** was varied 4% for values of $E^{jet}_{T} < 10$ GeV and 2.5% for $E^{jet}_{T} > 10$ GeV.
 - The uncertainty due to the **selection cuts** was estimated by varying the values of the cuts within the resolution of each variable.
 - The **differences** in the measurements obtained by using **ARIADNE** and **Lepto-MEPS** to correct the data for detector effects and bin migration.
 - The **decorrelation angle** was varied to account for its **resolution** effect into the measurements.
- TUnfold calculate systematics by propagating variations of bin migration matrix.

13

Summary

- Perform decorrelation measurements of lepton and leading jet in DIS, similar to previous ZEUS γ -jet results and other experiments in proton collisions.
- The MC predictions from ARIADNE [8] describe the main features of the data well. However, some discrepancies are observable.
- Dedicated predictions for ep collisions from [5] are in progress.
- Differential cross section measurements will be presented, at different p_T , Q^2 and jet multiplicity bins.
- These measurements represent a prelude (p_T range, systematics, etc) of future measurement at a new electron ion collider (EIC), particularly for measurements using polarized beams.

Initial results from proton collisions

Similar conclusions for Tevatron (ppbar at 1.96GeV), ATLAS and CMS (pp):

- NLO describes the data better than LO calculations (except at $\Delta \phi^{\sim} \pi$).
- MC generators describe the data fairly good however discrepancies at $\Delta \phi^{\sim} \pi/2$ where soft gluon radiation dominated.
- Suggest these results to tune MC generators at the time.