

25th International Workshop on Deep-Inelastic Scatterring and Related Topics

3-7 April 2016

University of Birmingham, UK

Limits on the effective quark radius from inclusive e[±]p scattering and contact interactions at HERA

O. Turkot
On behalf of ZEUS Collaboration

- Combined inclusive cross sections from HERA
- Beyond-the-Standard-Model analysis simultaneously with PDFs fit
 - Simplified procedure for QCD+BSM fits

HERA - world's only e[±]p collider

Operated during 1992 - 2007

e⁺ energy 27.5 GeV; p energies 920, 820, 575 and 460 GeV.

Kinematics of the e[±]p collisions:

$$Q^2 = -(k-k')^2$$

$$x_{Bj} = \frac{Q^2}{2P \cdot q}$$

$$y = \frac{P \cdot q}{P \cdot k}$$

H1 and ZEUS — two collider experiments at HERA:

~0.5 fb⁻¹ of luminosity recorded by each experiment.

HERA inclusive data combination

- 2927 data points combined to 1307
- up to 8 data points combined to 1

- impressive improvement of precision due to:
 - → increased statistics
 - → better understanding of systematics
 - → cross-calibration of the data from two experiments

QCD analysis of the combined DIS data

Neutral Current:

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{\mathrm{e} \mp \mathrm{p}}}{\mathrm{d} x \mathrm{d} \mathrm{Q}^2} = \frac{2 \pi \alpha^2}{\mathrm{x} \mathrm{Q}^4} \cdot \left(\mathrm{Y}_+ \cdot \mathrm{F}_2 \pm \mathrm{Y}_- \cdot \mathrm{x} \cdot \mathrm{F}_3 - \mathrm{y}^2 \cdot \mathrm{F}_L \right)$$

$$\mathrm{Y}_{\pm} = 1 \pm (1 - \mathrm{y})^2$$

$$F_L \sim \alpha_s g$$

At the Quark-Partom Model:

$$F_2 = \frac{4}{9} (xU + x\bar{U}) + \frac{1}{9} (xD + x\bar{D})$$

$$x \cdot F_3 \sim xu_v + xd_v$$

Charged Current:

$$\frac{d^2 \sigma_{CC}^{e \mp p}}{dx dQ^2} = \frac{G_F^2}{4 \pi x} \cdot \kappa^2 \cdot \left(Y_+ \cdot \mathbf{W}_2^{\mp} \pm Y_- \cdot \mathbf{x} \cdot \mathbf{W}_3^{\mp} - y^2 \cdot \mathbf{W}_L^{\mp}\right) \\ \kappa = \frac{M_W^2}{M_W^2 + Q^2}$$

$$\mathbf{W}_{2}^{-} = x(U + \bar{D})$$
 $\mathbf{W}_{2}^{+} = x(D + \bar{U})$

$$xW_{3}^{-}=x(U-\bar{D})$$
 $xW_{3}^{+}=x(D-\bar{U})$

Parton Density Functions parametrization at starting scale $Q_0^2 = 1.9 \text{ GeV}^2$:

$$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}$$

$$xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+D_{u_{v}}x+E_{u_{v}}x^{2})$$

$$x d_{v}(x) = A_{d} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}$$

$$x \bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x)$$

$$x \bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}$$

Evolve to any Q² > Q²₀ with DGLAP.

Obtained PDFs are referred to as

ZCIPDFs and have a good agreement with the HERAPDF 2.0.

How big is a quark?

One of the possible parameterisations of deviations from SM – spatial distribution or substructure of electrons and/or quarks.

In a semi-classical form factor approach cross sections are expected to decrease at high-Q²:

 R_e , R_q – root mean square radii of the electroweak charge distributions in the electron and quark.

Same dependence expected for NC and CC e⁺p and e⁻p.

Electrons were assumed to be point-like, R_e^2 = 0, and both, positive and negative values of R_a^2 were considered.

Reason for the simultaneous fit procedure

- → BSM signal in the data could affect the PDF fit and result in biased PDFs.
- → Use of the biased PDFs in the BSM analysis would result in overestimated limits.
- → This cannot be avoided for the analysis of HERA data by using another available PDF set, since all high-precision PDF fits include the DIS data from HERA (MMHT2014, NNPDF3.0, etc.).
- → The proper procedure for a BSM analysis of the HERA data global QCD analysis which includes a possible contribution from BSM processes.

Necessity of the simultaneous fit procedure

 χ^2

Pseudodata generated for values of $R_a^2 = R_a^2$ True

R²_q+PDF procedure provides unbiased values of R²_q^{Fit} Pseudodata generated for

$$R^2_a = 0$$

R²_q-only procedure results in too strong limits

Limit setting method

Limits are derived in a frequentist approach using the technique of Monte Carlo replicas (probability method).

Two procedures were used:

R_q-only

Monte Carlo replicas generated for R_q^{True} using **ZCIPDFs** and R_a parameter fited with PDFs fixed to **ZCIPDFs**.

R_q+PDF

Monte Carlo replicas generated for R_q^{True} using **ZCIPDFs** and R_q parameter fited simultaneously with PDFs.

The R_q+PDF probability method was a main analysis method.

Monte Carlo replicas

Monte Carlo replicas of cross-section measurements calculated with

For
$$R_q^{True} = 0.48 \cdot 10^{-16} \text{ cm}$$
:

R_a limits with the MC replicas

R_a limits with the MC replicas

Comparison to Data

Simplified fit procedure

On average every CI+PDF fit takes ~1.5 hours of cpu time.

For final R_q analysis 215000 replicas were fitted, taking ~36.8 years of cpu time.

To proceed with other BSM models a simplified fit procedure based on the approximation of the cross-section predictions with a Taylor expansion have been developed and implemented, reducing the average fit duration to ~2 minutes of cpu time.

For $R_a^{\text{True}} = 0.43 \cdot 10^{-16} \text{ cm}$:

Contact interactions

Four-fermion *eeqq* contact interactions provide a convenient method to search for possible effects due to the virtual exchange of new particles with mass much higher than center of mass energy.

$$\mathcal{L}_{CI} = \sum_{\substack{i,j=L,R\\q=u,d}} \eta_{ij}^{eq} (\bar{e}_i \gamma^{\mu} e_i) (\bar{q}_j \gamma_{\mu} q_j)$$

$$\eta_{ij} = \epsilon_{ij} \cdot \frac{4\pi}{\Lambda^2}$$

$$\epsilon_{ij} = \pm 1; 0$$

Considered models:

Model	Model η_{LL}^{eq}		η_{RL}^{eq}	η_{RR}^{eq}	
LL	+η				
RR				+η	
VV	+η	+η	+η	+η	
AA	+η	$-\eta$	$-\eta$	+η	
VA	+η	$-\eta$	+η	$-\eta$	
Х1	+η	$-\eta$			
Х2	+η		+η		
Х4		+η	+η		

Contact interactions

Following approach from the R_q analysis:

VV model

(highest sensitivity)

Evaluated 95% C.L. limits:

$$-5.8 \cdot 10^{-8} \text{GeV}^{-2} < \eta < 13.9 \cdot 10^{-8} \text{GeV}^{-2}$$

 $\Lambda^{-} > 14.7 \text{ Tev}$ $\Lambda^{+} > 9.5 \text{ Tev}$

Contact interactions

Following approach from the R_q analysis:

AA model

(deviation from SM 2.5 σ)

Evaluated 95% C.L. limits:

11.6·10⁻⁸ GeV⁻² <
$$\eta$$
 < 53.1·10⁻⁸ GeV⁻²
 Λ^+ < 10.4 Tev Λ^+ > 4.8 Tev

Evaluated CI limits

HERA e^{\pm} p 1994-2007 95% C.L.

	Mo	easured	Ехре	p _{sm}		
	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$	(%)	
LL	22.0	4.5	5.9	6.2	6.5	
RR	32.9	4.4	5.7	6.1	5.6	
VV	14.7	9.5	11.0	11.4	24.8	
AA		4.8 - 10.4	7.9	7.8	0.7	
VA	_	3.6 - 10.1	4.1	4.1	2.1	
Х1	_	3.5 - 6.6	5.7	5.6	0.3	
Х2	10.8	6.8	7.8	8.2	23.1	
Х4	7.6	9.2	8.0	8.6	60.3	

 $\pm 1/\Lambda^2 (\text{TeV}^{-2})$

Summary

- → Combined HERA inclusive DIS cross sections allow BSM searches up to TeV svales
 - Limits on the quark form factor:

$$-[0.47 \times 10^{-16} \text{cm}]^2 \le R_q^2 \le [0.43 \times 10^{-16} \text{cm}]^2$$

- → Simultaneous fit procedure is necessary since limits obtained with fixed PDFs are too strong
- → Some of the contact interactions models provide improved description of the data

BackUp

Determination of ZCIPDFs

The QCD analysis done with the HERAFitter, ancestor of the xFitter.

(available at www.xfitter.org/xFitter/).

The procedure established for HERAPDF 2.0 was closely followed:

- $Q^2_{min} = 3.5 \text{ GeV}^2$ \rightarrow 1145 data points used
- Renormalisation and factorisation in the \overline{MS} scheme, with $\mu_R^2 = \mu_F^2 = Q^2$
- NLO calculations and DGLAP evolution
- Heavy quarks evaluated in RTOPT scheme with $M_c = 1.47$ GeV and $M_h = 4.5$ GeV
- Starting scale Q²₀ = 1.9 GeV²
- $\alpha_s(M_7^2) = 0.118$, $f_s = 0.4$

The χ^2 definition for ZCIPDF was different from HERAPDF 2.0:

$$\chi^{2}(\mathbf{m}, \mathbf{s}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} s_{j} - \mu_{0}^{i}\right]^{2}}{\delta_{i, \text{stat}}^{2} (\mu_{0}^{i})^{2} + \delta_{i, \text{uncorr}}^{2} (\mu_{0}^{i})^{2}} + \sum_{j} s_{j}^{2}$$

ZCIPDFs

Good agreement with HERAPDF 2.0

Simplified fit procedure

In simplified procedure cross-section predictions were approximated by first-order Taylor expansion in PDFs \vec{p} and second-order expansion in BSM parameter η :

$$m(x_{i},Q_{i}^{2},\vec{p},\eta)=m_{0}^{i}+\sum_{k}\Theta_{0,k}^{i}\Delta p^{k}+(m_{1}^{i}+\sum_{k'}\Theta_{1,k'}^{i}\Delta p^{k'})\cdot\eta+(m_{2}^{i}+\sum_{k''}\Theta_{2,k''}^{i}\Delta p^{k''})\cdot\eta^{2}$$

Comparing simplified and full fit results for $R_q^{True} = 0.43 \cdot 10^{-16}$ cm:

R_q limits with simplified procedure

Very good agreement of the analyses results

Comparison to other experiments

Measured 95% C.L. limits (×10 ⁻¹⁶ cm)									
HERA combined		LEP 2		ZEUS	2004	H1 2011			
R _q	R _q ⁺	R _q -	R _q ⁺	R _q -	R _q ⁺	R_q^-	R_q^+		
0.47	0.43		0.42	1.06	0.85		0.65		

	Measured 95% C.L. limits (TeV)											
	HERA	combined	At	las	CN	4 S	ALI	EPH	ZEUS	2004	H1 2	2011
	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$	Λ -	$\Lambda^{\scriptscriptstyle +}$
LL	22.0	4.5	20.7	16.4	18.3	13.5	7.2	12.9	1.7	2.7	4.0	4.2
RR	32.9	4.4	20.2	16.6			5.3	10.2	1.8	2.7	3.9	4.4
VV	14.7	9.5					8.3	16.9	6.2	5.4	7.2	5.6
AA		4.8 - 10.4					9.6	15.9	4.7	4.4	5.1	4.4
VA	_	3.6 - 10.1							3.3	3.2	3.6	3.8
X1		3.5 - 6.6							3.6	2.6		
Х2	10.8	6.8							3.9	4.0		
Х4	7.6	9.2	25.2	19.2			6.8	3.7	5.1	4.8	4.8	5.4