Search for a new baryonic state decaying to pK⁰_S

Peter Bussey

University of Glasgow

for the ZEUS Collaboration

Low-x Workshop, Gyöngyös, June 6-10, 2016

History of the subject

Early 2000's: several experiments reported "exotic" objects apparently consisting of more than 2 - 3 quarks.

Results were not consistent.

ZEUS: evidence for a peak in pK_S^0 (+ c.c.) that would correspond to a *uudds* state (pentaquark, PQ) at 1.53 GeV from 1996-2000 data (HERA-1)

Recently, LHCb have announced discovery of two pentaquark states at 4.38, 4.45 GeV, corresponding to *uudcc̄*. The subject is topical again!

Here we report on a new ZEUS search for the previous pK^0_S state, using considerably increased statistics from HERA-2 (2003-2007)

The HERA-1 Results

ZEUS Phys. Lett. B 591 (2004) 7

121 pb⁻¹

Peak at 1.521.5 GeV, consistent with O state reported by other experiments.

H1 Phys. Lett B 639 (2006) 202

No significant signal seen.

HERA-2 ZEUS improvements:

3x luminosity: 358 pb⁻¹

Upgraded tracking system.

ZEUS in HERA-2

Both the CTD and the MVD provided dE/dx information that was critical in helping to identify the (anti)proton in the possible pK⁰ state

DIS event selection

 $E_p = 920 \text{ GeV}, E_e = 27.5 \text{ GeV}$ (electron or positron beam)

- A good scattered electron/positron in the sensitive area of the calorimeters.
- Electron probability > 0.9
- $20 < Q^2 < 100 \text{ GeV}^2$
- E_e' > 10 GeV
- $y_e < 0.95$, $y_{JB} > 0.04$
- $38 < E p_Z < 60 \text{ GeV}$

K⁰_S selection

- Two central ($|\eta|$ < 1.75) tracks with opposite charge $|\eta|$ of combination < 1.6
- > 2 barrel MVD hits, > 2 inner CTD hits for each track.
- p_T (track) > 0.15, pT (combination) > 0.25 GeV/c
- Common vertex fit with $\chi^2 < 5$ and decay length $L_{xy} > 0.5$ cm.
- Collinearity angle of fitted combination direction with vector from primary vertex
 0.06 in XY plane, 0.15 in 3-D.
- To eliminate contaminations, assign track masses and require
 - $m(e^+e^-) > 0.07 \text{ GeV } (\gamma \text{ conversions})$
 - $m(\pi p) > 1.121 \text{ GeV } (\Lambda)$

 \rightarrow 0.31 M K⁰ events, 0.482 < m($\pi^{+}\pi_{-}$) < 0.512 GeV

Proton identification (PID)

- •Track not used in K⁰_s
- $0.2 < p_p < 1.5 \text{ GeV/c}$
- passes though CTD layer 1 and at least to layer 3.
- PID in both CTD and MVD
- Up to 70 CTD hits available
- Up to 6 MVD hits available

In each detector, selection based on distance from Bethe-Bloch function and likelihood of e, π , p hypotheses.

Both selections used for full PID when available.

If no valid CTD dE/dx, just use MVD.

ZEUS Hera-1 analysis had only CTD.

PID efficiency

- Evaluated using a selected sample of ∧ baryons
- Estimated using CTD-only method (HERA-1) and CTD+MVD method (HERA-2, tighter CTD cuts)

Pion rejection

- Evaluated using a selected K⁰_S sample
- Typically 10-100 times better using present method.

Can we see any resonance at all? Check for Λ_c^+ (2286)

Select a photoproduction sample as well as the present DIS sample and plot pK_S^0 mass. Use present optimised CTD+MVD proton PID.

- The Λ_c^+ is clearly seen in the photoproduction sample, and evident with lower statistics in the DIS sample.
- No sign of previously claimed pentaquark (PQ)

Results of search

 $20 < Q^2 < 100 \text{ GeV}^2$ $0.5 < pT(pK_S^0) < 3.0 \text{ GeV/c}$ $|\eta(pK_S^0)| < 1.5$

No pentaquark-like peak seen in present search. Using conditions resembling HERA-1 search (only CTD dE/dx, different cuts) on present data sample, again **no peak seen.**

5% pion contamination in present search, >50% in HERA-1 like search, which had looser proton dE/dX selection.

Comparison to HERA-1 analysis

The expectation from the claimed ZEUS HERA-1 Θ^+ signal is indicated as a dashed peak (286 events). Clearly not confirmed.

So we calculate production limits from the present analysis.

Limit calculation – general method

- Use RAPGAP 3.1030 to simulate production cross section of a pentaquark (PQ) state.
- Model PQ by replacing $\Sigma^+(1189)$ in the particle table with PQ, isotropically decaying to $p+K^{0.}$ Generate PQs for: mass values (1.45,1.5,1.522,1.54,1.56,1.6,1.65 GeV), $Q^2 > 1 \text{GeV}$ at least one PQ in event with rapidity |y| < 2.5 BR $(K \to K^0_S)$, BR $(K^0_S \to \pi^+\pi^-) = 0.5$ and 0.6895 respectively.
- Pass generated events through the GEANT 3.21-based ZEUS detector + trigger simulation program.
- Fit data to background (see next page) + generated signal
- Define particle-level kinematic region: $20 < Q^2 < 100 \text{ GeV2}, 0.5 < p_T(PQ) < 3.0 \text{ GeV/c}, |\eta(PQ)| < 1.5 Calculate acceptances relative to this region.$

Limit calculation – Fitting method.

- For the proposed signal choose a Gaussian function with 3 possible widths:
 - 6.1 MeV as reported in ZEUS HERA I analysis.
 - $1\times$ and $2\times$ the detector mass resolution (0.009591MM- 0.01111 GeV)
- Background: an empirical function

$$\alpha$$
 (M-M₀) β × (1 + γ (M – M))
M = (pK⁰_S) mass
M₀ = sum of p + K⁰_S masses
 α , β , γ are free parameters

• Vary signal strength for each mass, calculate minimum $\chi^2 = \chi^2_0$ and signal strength giving

$$\chi^2 = \chi^2_0 + 2.71$$
 (95% CL)

(example: M = 1.53 and width=6.1 MeV)

Limit calculation – systematic uncertainties

Systematic uncertainties were estimated for the following items. 10% effect on upper limits.

p_{_} of MC

- DIS event selection
- PID
- Acceptance for (pK⁰_S) system
- p_T distribution of (pK⁰_S) system
- Luminosity

원용 PQ(1189) PQ(1189) PQ(1540) PQ(1540) reweighted 10⁴ (Largest effect PQ(1680) PQ(1680) reweighted was with reweighting the 10³ p_⊤ distribution to make it 10² 10² independent of M(PQ).) default reweighted 14

p_reweighted to PQ(1189)

Limit calculation – results and comparisons

- 95% CL upper limits for PQ × BR(PQ $\rightarrow pK^{0}$) production cross section are shown for 6.1 MeV width (left) and detector resolution width models (right).
- The broader detector resolution most resembles H1 (also shown)

SUMMARY

- ZEUS have searched for a pentaquark-like resonance in the (pK⁰_S) system using the full HERA-2 DIS data sample, updating an earlier claim for evidence for a Θ⁺(1520) state based on HERA-1 data.
- Improvements in tracking, particle identification and integrated luminosity produce a much improved result.
- The previously claimed state is not confirmed.
- Limits for production cross section of such a state are presented, as a function of mass, for the kinematic region $20 < Q^2 < 100 \text{ GeV}^2$, $0.5 < p_T(PQ) < 3.0 \text{ GeV/c}$, |y| < 1.6,