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HERA, ep collider
(DESY, Hamburg, 1993-2007)

E
p  

= 920 GeV      E
e±

= 27.5 GeV

0.5 fb-1… per experiment

HERA
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ep interactions proceed mainly via g* exchange

Diffractive dissociation

 

Diffraction with hard scale in ep

s=(k+P)2  ... CMS energy of collision

Q2=−q2=−(k−k ')2 ... four-momentum transfer at e vertex

W=√(q+P)2 ... hadronic c.m.s. energy

x=
Q 2

2q .P
... Bjorken x

X

(q)

t = (P−PY )
2   ... four-momentum transfer at p vertex

x IP =
q .(P−PY )

q .P
   ... fractional long. mom. loss of proton

HERA domain
→ continuum of masses of X

Diffractive exchange (IP)
→ quantum numbers of vacuum
→ b = x / x

IP 
… mom. fraction of IP participating

ep → eX
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Diffractive dissociation in DIS

● virtual photon dissociates into system X (M
x

2 << W2)

● small momentum transfer to proton, |t| << W2

● proton stays intact or dissociates into system Y (M
Y

2 << W2)

● large rapidity gap (non-exponentially suppressed) between Y and X

● hard scale present (Q2, p
T

2, m
Q

2)

– inclusive

– jet data

– open charm / beauty

– g

● represents ~10% of low x DIS s

ep → eXY

Diffractive dissociation
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Due to vacuum quantum number exchange

→ leading particle at relatively small t

→ rapidity distributions of final state (VM, X) separated from leading particle by  
     non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Diffraction seen in detectors

y

X proton
Dy

gap
LRG method
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Central assumption: Collinear factorization valid for diffractive DIS, Collins

→ diffractive parton distribution functions (DPDFs) factorized from 
predictions of hard X states cross sections

Optionally: Resolved Pomeron approach Ingelman and Schlein

→ virtual photon inteacts with partonic diffractive exchange

→ leading proton ( t , x
IP 

)  treated separately aka Proton vertex factorization

d s ep→e X p
(x ,Q2 , x IP ,t )=∑i

f i
D
( x ,Q2 , xIP ,t )⊗ d ŝ( x ,Q2

)

f i
D (x ,Q 2, xIP , t)=f IP / p(x IP , t) . f i(b ,Q 2)

Collinear factorization

Most used approach to model various features of diffractive DIS.
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Dijets in diffractive DIS
JHEP 1503 (2015) 092 DIS diffraction2-jets

Most precise DDIS dijet measurement from HERA

→ based on ~ 290 pb-1 of HERA-2 H1 data 

→ LRG selection used

→ proton dissociation contribution up to M
Y
< 1.6 GeV

→ detector effects controlled very well by simulation

→ data corrected with regularized unfolding (TUnfold)

→ single and double-differential x-sections measured

Compared with theory

→ in NLO QCD (nlojet++)

→ hadronization corrections from MC

→ using H1 2006 DPDF Fit B

z
IP
 variable 

→ fraction of IP momentum            
     participating in the hard             
     process giving rise to jets
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Data more precise than theory

          DPDF uncertainties 

          DPDF & scale uncertainties 

Data well described by theory

         DIS variables     Diffractive variables

          Jet variables
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Double-differential cross sections

→ agreement with QCD at NLO 

→ precision of the data allows the extraction of a
s 

... in agreement with world average

… not a competitive means for a
s 
extraction

… supports readiness of the data for DPDF fits 
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Dijets in diffractive photoproduction and 
DIS with leading proton

 JHEP 1505 (2015) 056 

Independent of previous analyses from HERA

→ leading proton detected in VFPS

Photoproduction regime  

→ Q2  < 2 GeV2 

→ direct g DIS-like

→ resolved g pp-like

→ x
g
 fraction                … dir/res classification

Performed also in DIS regime 

→4 GeV2  < Q2 < 80 GeV2  
direct
x
g
 = 1

resolved
x
g
 < 1

xg=
P .u
P .q
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Absorptive effects occur

→change of event kinematics

→rescattering or unitarity corrections 

→several approaches exist to calculate so    
    called Survival probability <S2> 

    … i.e. probability of diffractive event to       
    retain the diffractive signature

! DPDFs are not portable to diffractive hadron-hadron (pp) processes ! 

→ order of magnitude overestimation of predicted pp dijet rates first               
     observed by CDF → Factorization breaking

Tested in diffractive dijet photoproduction at HERA due to g 's 
partonic fluctuations (hadron-like object)

Phys. Rev. Lett. 84 5043 (2000)
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Dijets in diffractive photoproduction and 
DIS with leading proton

 JHEP 1505 (2015) 056 

Independent of previous analyses from HERA

→ leading proton detected in VFPS

Photoproduction regime

→ Q2  < 2 GeV2 

→ direct g DIS-like

→ resolved g pp-like

→ x
g
 fraction                … dir/res classification

Performed also in DIS regime

→4 GeV2  < Q2 < 80 GeV2  
direct
x
g
 = 1

resolved
x
g
 < 1

xg=
P .u
P .q

direct
x
g
 = 1

resolved
x
g
 < 1

xg=
P .u
P .q

Previous H1 and ZEUS (LRG) analyses

→H1: 2007 (S2 ~ 0.5), 2010 (S2 ~ 0.6)

→ZEUS: 2010 (S2 ~ 1)

Eur.Phys.J.C 51 (2007) 549 Eur.Phys.J.C70 (2010) 15
Nucl. Phys. B 831 (2010) 1-25
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                          DIS results

Single differential x-sections

→ based on ~ 50 pb-1 of HERA-2 H1 data 

→ detector effects (H1 and VFPS) well simulated

→ data corrected with regularized unfolding

Compared with theory

→ in NLO QCD (nlojet++)

→ hadronization corrections from MC

→ using H1 2006 DPDF Fit B (corrected to M
Y
 = m

p
)

Well described in shape and normalization
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                      Photoproduction

Single differential x-sections

→ based on ~ 30 pb-1 of HERA 2-H1 data 

→ data corrected with regularized unfolding

Compared with theory

→ in NLO QCD (Frixione et al.)

→ hadronization corrections from MC

→ using H1 2006 DPDF Fit B (corrected to M
Y
 = m

p
)

→ GRV, AFG g-PDF

Within errors well described in shape

Global overestimation of normalization

→ x
g
 independent (again)

http://dx.doi.org/10.1016/j.nuclphysb.2010.01.014
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                    Ratios of gp / DIS 

Profits from cancellations of scale uncertainties

→ theory / theory, if varied simultaneously

No significant dependence on kinematics

→ only global ratios are shown
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Open charm production in diffractive deep inelastic 
scattering at HERA

Open charm from c → with D* fragmentation

→based on 280 pb-1 HERA-2 data                          
     (previous H1 publ. at 50 pb-1 H1 HERA 1)

→gluon initiated process at LO

→open charm tagged with D* 

→fits of m = m(D*
cand

) - m(D0

cand
)

→large rapidity gap selection

   

5  < Q2 < 100 GeV2    0.02  < y < 0.65

p
t,D*

 > 1.5 GeV           |
D*

| < 1.5    … in lab

x
IP
 < 0.03

D∗+
→D 0

π slow
+

→(K −
π

+
)π slow

+
+C .C .
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Detector level distributions

→ satisfactory description with simulation

→ inv. mass fits performed in each bin

→ proton dissociation contr. simulated

→ non-diffractive background negligible

→ corrected for detector effects

Measurement compared with theory

→ NLO QCD (HVQDIS in FFNS)

→ using H1 2006 DPDF Fit B

→ H1 tune of fragmentation Eur.Phys.J.C71 (2011) 1769

→ theoretical uncertainties (scale, m
c
)

… 
r
 = 

f
  varied by 0.5 and 2 

… 1.3 < m
c
 < 1.7 GeV
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New preliminary measurement with 
a larger statistics

NLO QCD prediction agree well 
within errors with measured cross 
sections

→ new test of factorization

Final measurement might serve as 
an input to DPDF fits
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Studies of the diffractive photoproduction of 
isolated photons at HERA.

First diffractive analysis of isolated (prompt) photon production

→ based on 91 pb-1 and 374 pb-1 HERA-1 and HERA-2 data, respectively

→ photons directly from hard process

→ sensitive to quark content of IP

→ photoproduction  → resolved / direct component

→ photon isolation selection to suppress background

→ data corrected to hadron level and compared with theory provided by Rapgap MC

→ inclusive photon and photon+jet measurements performed

4<E t
g
<15GeV , −0.7<ηg

<0.9

4<Et
jet<35GeV , −1.5<ηjet<1.8

Q2
<1GeV2 , 0.2< y<0.7 , xIP<0.03

resolved direct
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g + jet eventsinclusive g 

Most photon events

accompanied by jet

MC prediction normalised to 
the data

Reasonable description of 
shapes MC

NLO needed to test 
factorization in this channel
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x
g
: Direct proccesses dominate

z
IP
: models at high z

IP
 do not peak

→ seen at detector level already

→ to be studied
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Production of exclusive dijets in diffractive deep 
inelastic scattering at HERA

Resolved pomeron models in DDIS for dijet 
analyses describes well various event observables

→ in limit of large z
IP
 all energy exclusively in jets            

  … no IP remnant

Two-gluon exchange well suited for exclusive dijets

Distribution of lepton-dijet angle plane differs for 
both theoretical approaches

f ~  1 + A cos2f

A > 0 … resolved IP

A < 0 … two-gluon exchange

z
IP

Eur. Phys. J. C 76 (2016) 1
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Measurement performed corrected to 
hadron level

→ control distributions well described

→ unfolding with TSVDUnfold

f distribution obey  1 + A cos2f

in bins of b = x / x
IP

→fitted A parameters b dependence             
    extracted
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None of the models does particularly well 
as to the normalization of ds / db

→ NLO ?

→ qqg final state included in two-gluon             
    exchange model

Study of A indicates two-gluon exchange 
may be relevant for b > 0.3

Resolved IP does not reproduce A(b) 

- 

http://link.springer.com/article/10.1140/epjc/s10052-015-3849-z?wt_mc=internal.event.1.SEM.ArticleAuthorIncrementalIssue
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Discussion

Collinear factorization tested by H1 and ZEUS in diffractive DIS

1)  Factorization approach with QCD NLO predictions successfully describes diffractive   
     DIS dijet data  

     → most recent dijet measurement precise enough to contribute in DPDF fits

2)  Recent preliminary result on D* production (together with previous ZEUS and H1       
     results) results supports validity of collinear factorization

3)  Prompt photons in diffractive photoproduction measured for the first time indicating    
     reasonable description of x-section shapes with LO prediction

Collinear factorization breaking repeatedly tested in diffractive  photoproduction 
of dijets at HERA

→ inconsistency remains in the size of the survival probablity between H1 and ZEUS

→ H1 and ZEUS consistently observe lack of dependence of the s.p. on kinematics

→ most recent H1 result experimentally “orthogonal” to previous H1 results

Recent result of ZEUS on exclusive dijet production in diffractive DIS provide 
indication of applicability of two gluon exchange 
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Thank you for your attention!
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Double ratios php/DIS diffractive dijets
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