Hard Diffraction at HERA

Daniel Britzger for the H1 and ZEUS Collaborations

HERA ep collider

HERA e[±]p collider

- E_e = 27.6 GeV
- E_p = 920 GeV
- √s = 319 GeV
- Operational until 2007

Days of running

The H1 and ZEUS Detectors

Two multi-purpose experiments: H1 and ZEUS

- Recorded integrated luminosity: ~0.5 fb⁻¹ per experiment
- Excellent control over experimental uncertainties
 - Over-constrained system in DIS
 - Electron measurement: 0.5 1% scale uncertainty
 - Jet energy scale: 1%
 - Trigger and normalisation uncertainties: 1-2 %
 - Luminosity: 1.8 2.5%

Diffractive Scattering in DIS

Deep-inelastic scattering (DIS): ep → eX

Diffractive scattering (DDIS): ep → eXp

No activity in 'forward' region:

- rapidity gap
- proton \rightarrow beam pipe
- no color flow between final state X and outgoing proton

920

Kinematics of DIS and diffractive DIS

Deep-inelastic scattering (DIS): ep → **eX**

- $Q^2 = -q^2$ virtuality of the exchanged photon $W = \gamma^* - p$ system energy x = Bjorken-x: fraction of proton's momentum
 - carried by the struck quark
 - $y \qquad \gamma^* \text{ inelasticity : } y = Q^2/s x$

Diffractive scattering (DDIS): ep → eXp

 $\begin{array}{ll} x_{I\!\!P} & \mbox{fraction of proton's momentum of the colour} \\ & \mbox{singlet exchange} \\ & x_{I\!\!P} \simeq \frac{Q^2 + M_X^2}{Q^2 + W^2} \\ \beta & \mbox{fraction of } I\!\!P \mbox{ carried by the quark "seen"} \\ & \mbox{ by the } \gamma^* \quad \beta = x/x_{I\!\!P} \\ t & = (p - p')^2, \mbox{ 4-momentum squared at the } p \mbox{ vertex} \end{array}$

Dijets in diffractive DIS (LRG) (H1)

Inclusive dijet production in diffractive DIS

- HERA-II data: $L = 290 \ pb^{-1}$
 - 6 times more data than previous analysis
- Diffractive events identified by 'large rapidity gap' (LRG) (η_{max} > 3.2)
- Jets identified using $k_{\scriptscriptstyle T}$ jet algorithm
- Regularised unfolding in extended phase space using TUnfold

	Extended Analysis Phase Space	Measurement Cross Section Phase Space
DIS	$3 < Q^2 < 100 { m GeV^2}$	$4 < Q^2 < 100 \text{ GeV}^2$
	<i>y</i> < 0.7	0.1 < y < 0.7
Diffraction	$x_{I\!\!P} < 0.04$	$x_P < 0.03$
	LRG requirements	$ t < 1 { m GeV^2}$
		$M_Y < 1.6 \text{ GeV}$
Dijets	$p_{\rm T,1}^* > 3.0 {\rm ~GeV}$	$p_{\rm T,1}^* > 5.5 { m ~GeV}$
	$p_{\rm T,2}^* > 3.0 {\rm ~GeV}$	$p_{\rm T,2}^* > 4.0~{ m GeV}$
	$-2 < \eta_{1,2}^{\text{lab}} < 2$	$-1 < \eta_{1,2}^{\text{lab}} < 2$

Dijets in diffractive DIS (LRG) (H1)

Measurement of single and double-differential contributions

NLO predictions using nlojet++ (adapted to DDIS) and H1PDF2006-FitB

Data well described by NLO predictions Data precision overshoots theory

• Large PDF and theory uncertainties

Data precision mostly limited by systematic effects

• 7% normalisation uncertainty

Dijets in diffractive DIS (LRG) (H1)

Double differential measurements $d\sigma/d(Q^2, p^*_{T1})$ and $d\sigma/d(Q^2, z_{IP})$

Data precision limited mostly by statistics Data well described by NLO predictions

Data precision overshoots theory precision \rightarrow Also at $z_{IP} > 0.5$ for all Q² values

8

Dijets in diffractive DIS (LRG) (H1)

Double differential measurement ($p_{T1,}^*Q^2$)

 \rightarrow use for extraction of strong coupling constant $\alpha_s(M_Z)$

 $\begin{aligned} \alpha_s(M_Z) &= 0.119 \pm 0.004 \,(\text{exp}) \pm 0.002 \,(\text{had}) \pm 0.005 \,(\text{DPDF}) \pm 0.010 \,(\mu_r) \pm 0.004 \,(\mu_f) \\ &= 0.119 \pm 0.004 \,(\text{exp}) \pm 0.012 \,(\text{DPDF}, \text{theo}) \end{aligned}$

- fastNLO adapted for DDIS
- Fit yields good $\chi^2/ndf = 16.7/14$
- Precision limited by theoretical precision
- Experimenal precision limited by normalisation uncertainty (including LRG selection)

First determination of α_s in hard diffraction at HERA

Although uncertainty is not competitive with other determinations:

 \rightarrow Extraction supports the concept of dijet calculations in pQCD

 \rightarrow Possible impact of dijets for future DPDFs

Factorisation in Diffraction

pQCD framework as long as hard scale is present

→ Factorisation theorem: proven for DDIS by J. Collins [PRD 57 (1998) 3051]

DPDFs are extracted from inclusive DDIS data via NLO QCD fits

- \rightarrow No firm basis in QCD
- → Test DPDFs with semi-inclusive states to *test universality of DPDFs*

Factorisation properties of diffractive dijets

- Factorisation holds for dijets in DDIS
- in *p-p* collisions, factorisation is broken
 - $\rightarrow S^2 \sim 0.1$ at Tevatron/LHC using HERA DPDFs

Dijets in photoproduction

- Real photon develops a hadronic structure ($Q^2 \rightarrow 0 \ GeV^2$)
- 'Suppression' w.r.t. to NLO observed by H1
- No indication observed by ZEUS in QCD analysis

Nucl. Phys. B 831 (2010) 1

Klasen, Kramer [EPJ C 38 (2004) 93]

Measure final state proton in VFPS (Very Forward Spectrometer)

- VFPS is 220m from interaction point
 - 2 stations at 218 and 220m
 - high acceptance (90%) and efficiency (96%)
 - low background (<1%)
- direct measure of the scattered proton:
 - giving x_{IP} and t measurements
- Complementary method to LRG method

Simultaneous measurement of dijets

- · in **Photoproduction** (γp)
- in **DIS**
- → Counter analysis performed

Data fully unfolded to hadron level using TUnfold

 \rightarrow Extended phase space to control migrations

 \rightarrow Could contribution of p-dissociation be the reason ?

$$egin{aligned} 4 < Q^2 < 80 \; {
m GeV}^2 & | \; Q^2 < 2 \; {
m GeV}^2 \ 0.2 < {
m y} < 0.8 \ E_T^{jet1(2)} > 5.5(4) \; {
m GeV} \ -1 < \eta_{jet1,2} < 2.5 \ 0.010 < x_{I\!\!P} < 0.024 \ |t| < 0.6 \; {
m GeV}^2 \ M_Y = M_p \end{aligned}$$

Dijets in **DIS**

- Luminosity: $L \sim 50 \ pb^{-1}$
- NLO by nlojet++ with H12006 Fit-B

DIS: Shape and normalisation well described by NLO

Dijets in **yp**

- Luminosity: $L \sim 30 \ pb^{-1}$
- NLO by FKS (Frixione et al.)
- H12006 Fit-B
- GRV and AFG y-PDF

yp: Shape well described by NLO, but normalisation is overestimated

Direct comparison of DIS and γp data with NLO and RAPGAP

New analysis confirms previous results from H1 with complementary experimental method Double-ratio yp/DIS of total cross sections

Suppression factor: $S^2 = 0.511 \pm 0.085$ (data) ± 0.022 (th.)

Double-ratio $(data/NLO)_{yp}$ / $(data/NLO)_{DIS}$ of single-differential cross sections

No hint for 'suppression' as function of z_{IP} , x_{γ} or E_{T}^{jet1} Largest deviation from constant for $|\Delta \eta|$ ZEUS-prel-15-001

Diffractive photoproduction of isolated photons

Measure *prompt photons* with and without accompanying jet

Photon must couple to a charged particle \rightarrow explore non-gluonic nature of pomeron

LRG method for diffractive final state

$$\begin{array}{l} Q^2 < 1 \; GeV^2 \\ x_{IP} < 0.03 \\ E_{T\gamma} > 5 \; GeV \\ -0.7 < \eta_{\gamma} < 0.9 \\ -1.5 < \eta_{jet} < 1.8 \\ E_{Tjet} > 4 \; GeV \end{array}$$

Comparison to: Rapgap with H12006-FitB normalised to data

Diffractive photoproduction of isolated photons

Summary

Data well described in NLO Inclusive dijets in diffractive DIS Data precision overshoots theory precision α_{s} extraction feasible ($\Delta^{theo} > \Delta^{data}$) Inclusive dijets in yp (and DIS) Complementary measurements using VFPS proton spectrometer **DIS: NLO well describes VFPS cross sections** yp: NLO overshoots VFPS cross sections Prompt photons in diffractive yp Measurement of another hard process to investigate factorisation breaking Shapes mostly well described by RAPGAP η^{max} and z_{IP} not well described Exclusive dijets in diffractive DIS see talk by A. Bruni

JDR

Inclusive deep-inelastic ep scattering (DIS)

ep scattering:
$$e^{\pm}p = e^{\pm} + X$$

· Centre-of-mass energy

$$\sqrt{s} = \frac{p}{(k+p)^2}$$

Virtuality of exchanged boson

$$Q^2 = -q^2 = -(k \cdot k')^2$$

• Bjorken scaling variable Q^2

$$x_{\rm Bj} = \frac{1}{2p \cdot q}$$

Inealsticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Cross section calculation

- Collinear factorisation
- \cdot Hard scattering calculable in pQCD
- PDFs have to be determined from experiment

DESY-15-070, subm. to EPJC

Exlusive dijets in diffractive DIS (ZEUS)

Exclusive dijets sensitive to the nature of exchanged object:

• Single or double gluon exchange ?

Dijet events identified using 'large rapidity gap' Exclusive Durham jet algorithm in phase space

$$\begin{array}{l} \mathrm{Q}^2 > 25 \mathrm{GeV}^2 \\ 90 < W < 250 \mathrm{GeV} \\ \mathrm{x}_{IP} < 0.01 \\ \mathrm{M}_X > 5 \mathrm{GeV} \\ \mathrm{p}_T^{\mathrm{jet}} > 2 GeV \end{array}$$

Two-gluon exchange model

Resolved Pomeron model

→ Study nature of diffractive exchange

DESY-15-070, subm. to EPJC

Exlusive dijets in diffractive DIS (ZEUS)

jet plane

Large NLO corrections?

Exlusive dijets in diffractive DIS (ZEUS)

 $d\sigma/d\phi$ fitted in each β bin using fit function

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \propto 1 + A\cos 2\phi$$

- Parameter A distiguishes between the two models
 - Positive A for single gluon exchange
 - Negative A for two gluon exchange

A vs φ : good descripton by two gluon model for $\beta > 0.3$

H1 and ZEUS Roman pots