Jets at HERA

Daniel Britzger for the H1 and ZEUS Collaborations

50th Rencontres de Moriond 2015 26 March 2015

HERA with the H1 and ZEUS Detectors

HERA *e*±*p* collider

- √s = 319 GeV
- E_e = 27.6 GeV
- E_p = 920 GeV
- Operational until 2007

Two multi-purpose experiments: H1 and ZEUS

- Luminosity: ~0.5 fb⁻¹ per experiment
- Excellent control over experimental uncertainties
 - Overconstrained system in DIS
 - Electron measurement: 0.5 1% scale uncertainty
 - Jet energy scale: 1%
 - Trigger and normalisation uncertainties: 1-2 %
 - Luminosity: 1.8 2.5%

Inclusive deep-inelastic ep scattering (DIS)

ep scattering:
$$e^{\pm}p = e^{\pm} + X$$

· Centre-of-mass energy

$$\sqrt{s} = \frac{p}{(k+p)^2}$$

Virtuality of exchanged boson

$$Q^2 = -q^2 = -(k \cdot k')^2$$

• Bjorken scaling variable Q^2

$$x_{\rm Bj} = \frac{1}{2p \cdot q}$$

Inealsticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Cross section calculation

- Collinear factorisation
- Hard scattering calculable in pQCD
- PDFs have to be determined from experiment

Eur.Phys.J. C75 (2015) 65 Multijet at high Q² – Inclusive Jet, Dijet, Trijet (H1)

DIS jet production in Breit frame

QCD compton

Boson – gluon fusion

Neutral current phase space $150 < Q^2 < 15000 \text{ GeV}^2$

0.2 < y < 0.7

Jet acceptance

-1.0 < η lab < 2.5 Inclusive Jet 7 < p_T^{jet} < 50 GeV Dijet and Trijet 5 < p_T^{jet} < 50 GeV M_{12} > 16 GeV 7 < < p_T > < 50 GeV

Simultaneous Measurement of

•inclusive jet, dijet and trijet cross sections

•<u>normalised</u>inclusive jet, dijet and trijet CS

•Normalisation w.r.t. inclusive NC DIS

Multidimensional Unfolding using TUnfold

• The 4 double-differential measurements are unfolded simultaneously

Migration Matrix

Eur.Phys.J. C75 (2015) 65 Multijet at high Q² – Inclusive Jet, Dijet, Trijet (H1)

Ratio to NLO calculations from nlojet++ and QCDNUM

Normalised Multijets

- Cancellation of experimental uncertainties
- Normalisation uncertainties cancel
- Other exp. uncertainties cancel partially

Experimental precision higher than theory uncertainty from scale variations

Overall good description of data by theory in NLO

Eur.Phys.J. C75 (2015) 65 Extraction of strong coupling constant α_s

Simultaneous χ^2 -fit to normalised inclusive jet, dijet and trijet cross section

Determination of $\alpha_s(M_z)$ at various scales

- H1 Multijet cross sections with superior experimental precision
- · Consistency with other jet data
- Confirmation of prediction by SU(3) over more than two orders of magnitude

Extraction from all measurements

- Experimental uncertainty significantly smaller than theoretical one
- Value consistent with other extractions

Most precise value of $\alpha_s(M_z)$ from jet cross sections

 $\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{exp} \ (5)_{PDF} \ (7)_{PDFset} \ (3)_{PDF(\alpha_s)} \ (8)_{had} \ (36)_{\mu_r} \ (5)_{\mu_f}$ = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo} .

7

Trijet measurement in DIS (ZEUS)

Trijet production in neutral current DIS

- Photon virtuality $125 < Q^2 < 20000 \text{ GeV}^2$
- Inelasticity: 0.2 < y < 0.6
- Jet transverse momentum E_{jet</sup>_{T,B} > 8 GeV}

Statistics

• *L* =295pb⁻¹

Major source of systematic uncertainties:

- Jet energy scale ~1% (3%), for jets with $E^{\rm jet}_{\rm T,L}$ >10GeV (<10GeV)

NLO Calculation

NLOJet++ corrected for hadronisation effects using HERAPDF1.5

arXiv:1503.06042

D* production in DIS (H1+ZEUS)

D*± production in DIS

$$D^{*+} \rightarrow D^{0}\pi^{+}_{s} \rightarrow (K^{-}\pi^{+})\pi^{+}_{s}$$

Clean D^{*+} signal in M(K⁻ $\pi^{+}\pi^{+}_{s}$) -M(K⁻ π^{+})

D*+ differential cross sections in

- differential in Q², y, $p_T(D^*)$, $\eta(D^*)$, $z(D^*)$
- Kinematic region
 - $\bullet 5 < Q^2 < 1000 \text{ GeV}^2$,
 - •1.5 < p_T(D*) < 20 GeV
 - •|η(D±)| < 1.5
 - •0.02 < y < 0.7

Combination of precise H1 and ZEUS data

• Full HERA-II data sets (354 pb-1)

Data of H1 and ZEUS consistent Great benefit from combination

arXiv:1503.06042

D* production in DIS (H1+ZEUS)

Double-differential data combination extends to HERA-I data

• Increased range to lower values of Q²

Negligible swimming corrections

• Data free from swimming corrections

Double-differential cross sections

• Further increase in precision

Compared to NLO calculationsHVQDIS with 3-flavor FFNS PDF

NLO theory describes data well Data yields much higher precision than theory ZEUS-prel-14-004

Exlusive dijets in diffractive DIS (ZEUS)

Exclusive dijets sensitive to the nature of exchanged object:

• Single or double gluon exchange ?

Dijet events identified using 'large rapidity gap' Exclusive Durham jet algorithm in phase space

> $Q^2 > 25 \text{GeV}^2$ 90 < W < 250 GeV $\mathbf{x}_{IP} < 0.01$ $\mathbf{M}_X > 5 \text{GeV}$ $\mathbf{p}_T^{\text{jet}} > 2 GeV$

Compare different models

• Two-gluon exchange model

Resolved Pomeron model

ZEUS-prel-14-004

Exlusive dijets in diffractive DIS (ZEUS)

Normalised single differential cross sections in $\boldsymbol{\phi}$

• Angle between two planes

Fit function

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \propto 1 + A\cos 2\phi$$

Parameter A distiguishes between the two models

- Positive A for single gluon
- Negative A for two gluon

Fit with stat. uncertainties to yields A = -0.18 \pm 0.06 $_{+0.08}$ -0.11

Compares to:

Two-gluon exchange model: A = -0.2Resolved pomeron model: A = +0.34

Fit prefers two-gluon exchange model

arXiv:1412.0928 (acc. by JHEP)

Dijets in diffractive DIS (LRG) (H1)

Diffractive events identified by 'large rapidity gap' (LRG) Jets identified using k_T jet algorithm

Measurement Cross Section Phase Space
$4 < Q^2 < 100 \text{ GeV}^2$
0.1 < y < 0.7
$x_{I\!\!P} < 0.03$
$ t < 1 \text{ GeV}^2$
$M_Y < 1.6 \text{ GeV}$
$p_{\rm T,1}^* > 5.5 { m ~GeV}$
$p_{\rm T,2}^* > 4.0 { m ~GeV}$
$-1 < \eta_{1,2}^{ ext{lab}} < 2$

Data well described by NLO predictions

- nlojet++ (adapted to diff. DIS)
- H1PDF2006 FitB

Large PDF and theory uncertainties

arXiv:1412.0928 (acc. by JHEP)

Dijets in diffractive DIS (LRG) (H1)

Double differential measurement ($p_{T1,}^*Q^2$) employed for extraction of strong coupling constant $\alpha_s(M_z)$

 $\begin{aligned} \alpha_s(M_Z) &= 0.119 \pm 0.004 \,(\text{exp}) \pm 0.002 \,(\text{had}) \pm 0.005 \,(\text{DPDF}) \pm 0.010 \,(\mu_r) \pm 0.004 \,(\mu_f) \\ &= 0.119 \pm 0.004 \,(\text{exp}) \pm 0.012 \,(\text{DPDF}, \text{theo}) \end{aligned}$

- Fit yields good $\chi^2/ndf = 16.7/14$
- Fit limited by theoretical precision
- Experimenal precision limited by normalisation uncertainty (including LRG selection)
- Result supports concept of perturbative QCD calculations for diffractive dijets.

Although uncertainty is not competitive with other determinations, the extraction supports the concept of dijet calculations in pQCD

arXiv:1502.01683 (subm. to JHEP) Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

History

- 'Suppression' w.r.t. to NLO observed by H1
- No indication observed by ZEUS

Simultaneous measurement of dijets

・in DIS

• in Photoproduction (yp): $Q^2 \rightarrow 0 \text{ GeV}^2$ Data corrected to hadron level using TUnfold

PHP	DIS	
$Q^2 < 2 \mathrm{GeV^2}$	$4{ m GeV^2} < Q^2 < 80{ m GeV^2}$	
Common Cuts		
0.2 < y < 0.7		
$E_T^{*jet1} > 5.5 \mathrm{GeV}$	$E_T^{*jet2} > 4.0 \mathrm{GeV}$	
$-1 < \eta^{\rm jet1} < 2.5$	$-1 < \eta^{\rm jet2} < 2.5$	
$ t < 0.6 \mathrm{GeV^2}$	$0.010 < x_{I\!\!P} < 0.024$	
$z_{I\!\!P} < 0.8$		

Measure scattered proton in VFPS (Very Forward Spectrometer)

- •VFPS is 220m from interatction point
- Complementary method to LRG method

arXiv:1502.01683 (subm. to JHEP) Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

Dijets in **DIS**

- Single diff. cross sections
- NLO by nlojet++
- H12006 Fit-B

Shape and normalisation well described by NLO

Dijets in **yp**

- Single diff. cross sections
- NLO by FKS (Frixione et al.)
- H12006 Fit-B
- GRV and AFG y-PDF

arXiv:1502.01683 (subm. to JHEP) Diffractive Dijets in Photoproduction and DIS (VFPS) (H1)

Direct comparison of DIS and γp data with NLO and RAPGAP

New analysis confirms previous results from H1 with complementary experimental method

Double-ratio yp/DIS of singledifferential cross sections

No hint for 'suppression' as function of x_y or $E_{T^{jet1}}$

Summary

New QCD results from HERA experiments with final data precision

Combined D* cross sections

Trijet cross sections in DIS

Multijet cross sections in DIS

Data precision surpasses NLO precision

Cross sections well described in NLO

Inclusive jets, dijets and trijets simultaneously Highest precision on α_s from jet measurements

Exclusive dijets in diffractive DIS

Inclusive dijets in diffractive DIS

Data prefers two-gluon exchange model

Data well described in NLO α_s extraction feasible ($\Delta^{theo} > \Delta^{data}$)

Inclusive dijets in yp (and DIS)

Complementary measurements using VFPS NLO overshoots yp cross sections

Outlook

H1 and ZEUS are still active More measurements to come HERAPDF2.0 together with final inclusive cross sections very soon ZEUS-prel-14-008

Double differential trijet cross sections

Good agreement between data and NLO calculations

Multijet at high Q² – Inclusive Jet, Dijet, Trijet

NLO Calculations

- NLOJet++ corrected for
- hadronisation effects
 Scale Choice:
 - $\cdot \mu_{f^2} = Q^2$

$$\cdot \mu_{r^2} = (Q^2 + P_{T^2})/2$$

Theory uncertainty

 \cdot Vary scales by factor 2

NLO QCD with MSTW2008 describes well inclusive jet, dijet and trijet differential cross sections

Correlation matrix of all data points

Covariance matrix

Obtained through linear error propagation of statistical uncertainties

Correlations

- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for

- Cross section ratios
- Combined fits
- Normalised cross sections

Correlation Matrix

Correlation matrix is employed for correct error propagation for norm. cross sections