

Recent HERA results on hard QCD and

heavy flavour production

Paweł Sopicki IFJ PAN

On behalf of the H1 and ZEUS Collaborations

Crete 23-30.08.2015

HERA

HERA: world's only e[±]p collider

Energies: $E_{e\pm} = 27.6 \text{ GeV} \quad E_p = 460-920 \text{ GeV}$ centre-of-mass energy: $\sqrt{s} = 225-319 \text{ GeV}$

Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

 Two running periods:

 1994-2000 : HERA I

 2003-2007 : HERA II

Physics topics' outline

Multijets and determination of strong coupling constant

H1	EPJ C75 (2015) 2, 65
H1+ZEUS	EPJ C73 (2013) 2311 hep-ex 1503.06042
ZEUS	JHEP 09 (2014) 127 JHEP 10 (2014) 003
	H1 H1+ZEUS ZEUS

QCD Instantons

H1prelim-15-031

Introduction

Kinematics:

- Q^2 virtuality of exchanged boson
- x Bjorken scaling variable
- y inelasticity
- $Q^2 = sxy$ (\sqrt{s} centre-of-mass energy)

Neutral Current (NC): $ep \rightarrow eX$ Charged Current (CC): $ep \rightarrow vX$

Photoproduction (PHP): $Q^2 \approx 0 \text{ GeV}^2$

Deep Inelastic Scattering (DIS): $Q^2 > 1 \text{ GeV}^2$

Multi-jets and strong coupling α_s determination

Jet production in NC DIS

H1 measurements performed in *Breit frame:* 2xP + q = 0 \rightarrow virtual boson collides head on with the parton from proton

Inclusive jets: measure transverse jet's momentum

Dijets/trijets: average P_T of two/three leading jets

In Breit frame only hard QCD process can generate significant P_{T} Direct sensitivity to α_{s} and gluon PDF

Eur. Phys. J. C75 (2015) 2, 65

- normalised inclusive, dijet and trijet cross sections (w.r.t. inclusive NC DIS) **Partial cancellation of** experimntal uncertainties

NLO QCD predictions, corrected for hadronisation and electroweak effects, in good agreement with data within uncertainties

7

The determination and running of α_s

From normalised multijet:

$$\alpha_{\rm S}({\rm M_Z}) = 0.1165 (8)_{\rm exp} (38)_{\rm pdf, theo}$$

The most precise measurement from jet cross sections so far

Running of strong coupling:

Consistent with other jet data

Agreement with theory prediction for more than two orders of magnitude

Better than CMS results on inclusive jet measurements

arXiv:1410.6765

ZEUS trijet measurements

Phase space:

125 < Q² < 20000 GeV² 0.2 < y < 0.6

- At least three jets with $E_{T,B}^{jet} > 8 \text{ GeV and } -1 < \eta_{LAB}^{jet} < 2.5$ M > 20 CeV
- $M_{jj} > 20 \text{ GeV}$

Prediction: NLOJet++

ZEUS trijet measurements

Double differential cross sections

Good agreement between data and NLO calculations

Charm & beauty

D^{*+/-} **PHP/DIS and charm mass measurements**

Beauty production in DIS

Heavy quarks production and masses

Massive scheme (FFNS)

FFNS: Fixed Flavour number scheme Expected to be valid for Q² ≈ m²_{c/b} Three active flavours in proton One can calculate differential cross sections (i.e. HVQDIS)

Massless scheme (ZM-VFNS)

Zero-mass variable flav. number scheme Expected to be valid for Q² >> m²_{c/b} c or b treated as massless parton Resummation of large logarithms of Q²/m²_g

Mixed scheme (GM-VFNS)

Employ both FFNS and ZM-VFNS Interpolation in between (various schemes) Used in PDF fits – useful at LHC

D* PHP cross sections

JHEP 10 (2014) 003

Clear $\mathbf{D}^{*+/-}$ signals seen in $M(K^{-}\pi^{+}\pi^{+}) - M(K^{-}\pi^{+})$ distributions at 3 different CM energies:

Charm production

D* differential cross sections in DIS

hep-ex 1503.06042 submt. to JHEP

Precision of combined data: ≈5%

Combined:

H1 high O²

ZEUS all O²

Similar results and precision obtained for $d\sigma/dQ^2$ and $d\sigma/dy$

Charm mass measurement

EPJ C73 (2013) 2311

The value of m^{pole}=1.4 GeV was found to describe data better in a study of reduced cc cross sections (m^{pole}) effective (not physical) mass parameter). Using the running mass definition in MS scheme, instead of pole mass, measured mass yields:

$$m_{C}(m_{C}) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \pm 0.02_{param} \pm 0.02_{alpha-S} \text{ GeV}$$

D* differential cross sections in DIS

Combination procedure does not introduce theoretical ucertainties to data points

Precision of combined data: ≈5%

NLO scale uncertainties: O(10-30%)

Customised NLO describe data well (although it is NOT a prediction) with two (arbitrary) parameters: $\mu_r^2 = 0.25 (Q^2 + 4m_c^2); m_c^{pole} = 1.4 \text{ GeV}$

"NLO QCD customised"

NNLO calculation and improved fragmentation models might help

Similar conclusion for D* doubledifferential cross section in Q² and y

Beauty production in DIS JHEP 09 (2014) 127

QCD Instantons

QCD Instantons

Instantons

- Solutions to Yang-Mills equations of motion
- Physical interpretations: pseudo particle or tunneling process between topologically different vacuum states

QCD Instantons at HERA

- Produced in quark-gluon fusion*
- Analysis phase space:

150 < Q² < 15000 GeV² 0.2 < y < 0.7

• QCDINS Monte Carlo: access to full event topology

Selected Signatures

- One hard jet
- \bullet Densely populated eta band, flat in ϕ
- Large particle multiplicities

Variables of *I*-subprocess: $Q'^{2} \equiv -q'^{2} = -(\gamma - q'')^{2}$ $x' \equiv Q'^{2} / (2 g \cdot q')$ $W_{I}^{2} \equiv (q' + g)^{2} = Q'^{2} (1 - x')/x'$

- *S. Moch, A. Ringwald, F. Schrempp, Nucl Phys. B 507 (1997) 134 [hep-ph/9609445],
- A. Ringwald, F. Schrempp, Phys. Lett. B 438 (1998) 217 [hep-ph/9806528],
- A. Ringwald, F. Schrempp, Phys. Lett. B 459 (1999) 249 [hep-ph/9903039].

QCD Instantons analysis

Multivariate Analysis

- Probability density estimator with range search (PDERS)
- Training with Rapgap/Djangoh MC as background and QCDINS as signal MC
- Good discriminator description in the background region
- Signal region: D > 0.86

QCD Instantons - results

Data are *consistent with background* No evidence for QCD Instantons

Theoretical prediction in the analysis phase space:

10±2 pb

Upper limit for the instanton cross section at 95%CL: 1.6 pb

Exclusion of the Ringwald & Schrempp predictions for the QCD Instantons at HERA 20

QCD Instantons - results

QCD Instanton cross section limits in extended phase space

Summary

New interesting QCD results from the HERA experiments

Multi-jets and determination of α_s

- ZEUS and H1 measurements consistent with NLO calculations
- Most precise $\alpha_s(M_z)$ is extracted from fit to the normalised multijet cross section, yielding

 $\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo}$

- The running of $\alpha_s(\mu_r)$ consistent with results from other jet data
- Precision of the measurement (H1) is better than that of NLO calculations Need NNLO

Heavy flavours - charm(ing)&beauty(full)

- H1 and ZEUS provide new results with HERA data, making tighter constraints on QCD
- New precise (combined) measurements well described by NLO QCD, but still challenge to theory and fragmentation models
- Masses of b/c quarks agree with PDG values. Running of m_b consistent with QCD

QCD Instantons searches

• Ringwald & Schrempp predictions for the QCD Instantons at HERA appear to be excluded

Thank you for your attention

Backup slides

H1 High Q² Jet Production Analysis

Unfolding

- Regularised unfolding with TUnfold*
- Multidimensional unfolding in Q², y, P_T
- Migrations of up to 7 observables and correlations between samples taken into account

QCD Instantons analysis

Search strategy

- Find jets in hadronic centre of mass frame
 - Remove hardest jet from objects of hadronic final state (HFS)
- Boost to instanton rest frame and define variables
 - Topological: sphericity, Fox-Wolfram moments, azimuthal isotropy (Δ_{R}) , ...
 - Number of charged particles n_R
 - Transverse energy of the band...

• Variables are used as input to MVA

Observables not used in the TMVA training Full range of the discriminator

30

E_{T.B}

H₁₀

H1 Preliminary

Observables not used in the TMVA training Signal range of the discriminator

No excess of events in the signal region

Azimuthal isotropy

$$\Delta_b = (E'_{in,B} - E'_{out,B}) / E'_{in,B}$$

$$E_{out} = \min_{in} \sum_{n \ Hadr.} | \vec{p_n} \cdot \vec{i} |$$

$$E_{in} = \max_{n} \sum_{n \ Hadr.} | \vec{p_n} \cdot \vec{i} |$$

Test statistic distribution

Construct test statistics for **Data**, Background and Backgr+Signal

