Combination of D* differential cross sections measurements in DIS at HERA

DIS2015, Dallas, USA, 28th april 2015

Olaf Behnke (DESY) on behalf of

Results published as DESY-15-037, submitted to JHEP (arXiv:1503.06042)

Charm production in DIS at HERA

Photon kinematics: $Q^2 = -q^2$ $y = (E_{\gamma}/E_e)|p-frame$

DIS: Q^2 > few GeV²

Motivation:

- Test of pQCD (multiple hard scales: Q², p_T(c), m_c)
- Sensitive to gluon density in p and to m_c

D^{*} combination Combine most precise D^{*} measurements in DIS EPJ C71 (2011) 1769 H1 medium Q² PL B686 (2010) 91 H1 high Q² JHEP 05 (2013) 097 ZEUS all Q² 6000 Combinations per 0.45 MeV $D^* \rightarrow K\pi\pi_s$ γ(**a** ZEUS D* 363 pb⁻¹ 5000 Similar signals 4000 in H1 analyses 3000 2000 **g**(ξ**j** N(D^{*±}) = 12893 ± 185 1000 0 145 150 140 155 160 165 170

- Combine D^{*} visible cross sections
- Common phase space: 1.5<p_τ(D*)<20 GeV, |η(D*)|<1.5, 5<Q²<1000 GeV², 0.02<y<0.07</p>
- Small extrapolation uncertainties (unlike full phase space combi EPJ C73 (2013) 2311)
- Compare to HVQDIS NLO QCD (also used to calculate small phase space corrections)

Μ(Κππ_s)-**Μ(Κ**π) (MeV)

Combination example: Q²

Combinations:

separately for each

0.8

z (D*)

NLO QCD predictions: HVQDIS

Massive scheme \rightarrow only light flavours in pdf: u,d,s,g; NLO = o(α_s^2)

HVQDIS setup for ep \rightarrow cc X \rightarrow D^{*}X (uncertainties):

- $\mu_r = \mu_f = \sqrt{Q^2 + 4m_c^2}$ vary independently by factor 0.5 and 2
- $m_c^{pole} = 1.50 \pm 0.15 \text{ GeV}$
- $\alpha_s^{nf=3}(m_Z) = 0.105 \pm 0.002$ (corresponds to $\alpha_s^{nf=5}(m_Z) = 0.116 \pm 0.002$)
- HERAPDF1.0 FFNS

 \bullet

 Fragmentation:
 Longitudinal: Karvelishvili FF with α_κ(D^{*})

\hat{s} range	$\alpha_K(D^*)$
$\hat{s} \leq \hat{s}_1$	6.1 ± 0.9
$\hat{s}_1 < \hat{s} \le \hat{s}_2$	3.3 ± 0.4
$\hat{s} > \hat{s}_2$	2.67 ± 0.31

$$\hat{s}_1 = 70 \pm 40 \text{ GeV}^2$$

 $\hat{s}_2 = 324 \text{ GeV}^2$

- Transverse: $f(k_T) = k_T exp(-\frac{2k_T}{\langle k_T \rangle}); \quad \langle k_T \rangle = 0.35 \pm 0.15 \text{ GeV}$
- $f(c \to D^*) = 0.2287 \pm 0.0056$

Use HVQDIS also to predict small additional component: $ep \rightarrow bb X \rightarrow D^* X$

Customised NLO QCD predictions: HVQDIS

Try to find parameters such that calculation describes normalisation & shapes of all differential cross sections presented in the following

•	$\mu_r = \sqrt{Q^2 + 4m_c^2} -$	→	$0.5\sqrt{6}$	$\overline{Q^2+4m_c^2}$	→ Increase cross section
•	$m_c^{pole} = 1.50 \text{ GeV}$ –	→	1.4	O GeV	→ Increase cross section
•	 Fragmentation: Longitudinal: Karvelishvili FF with α_K(D[*]) 	$ \begin{array}{c c} \hat{s} \\ \hat{s} \\ \hat{s} \\ \hat{s} \\ \hat{s} \end{array} $	range $\leq \hat{s}_1$ $\langle \hat{s} \leq \hat{s}_2$ $> \hat{s}_2$	$lpha_K(D^*)$ 6.1 ± 0.9 3.3 ± 0.4 2.67 ± 0.31	
•	$\hat{s}_1 = 70 \text{ GeV}^2$	→	30	GeV ²	→ Soften fragmentation

Leave all other parameters at their default values

This is no prediction \rightarrow but may give hints in which direction to develop theory

Results: Q²

Results: y

Results: p_T(D^{*})

Results: $\eta(D^*)$

Results: $z(D^*)$

Combination of 2d cross sections: Q²,y

13

Results: Q²,y

NLO prediction:
→ describes data
→ large uncertainties
→ customised variant:

Summary

- Most precise differential D* measurements in DIS by H1 and ZEUS combined:
 - Q², y and for the first time D^{*} final state distributions: p_T(D^{*}), η(D^{*}) and z(D^{*})
 - Significantly improved precisions \rightarrow ~5%
- HVQDIS NLO QCD predictions:
 - Describe data reasonably
 - Large uncertainties 10-30% → need NNLO and improved fragmentation models
 - Customised prediction with varied m_c, µ_r and fragmentation hardness → hints in which direction to improve the calculation

Backup slides

The HERA ep collider (1992-2007)

Customised NLO QCD predictions: HVQDIS

Find parameters \rightarrow calculation describes norm./shapes of data

HVQDIS setup for ep \rightarrow cc X \rightarrow D^{*}X (uncertainties): $\mu_r = 0.5 \sqrt{Q^2 + 4m_c^2}$

- $\mu_r = \mu_f = \sqrt{Q^2 + 4m_c^2}$ vary independently by factor 0.5 and 2
- $m_{c}^{pole} = 1.50 \pm 0.15 \text{ GeV}$ $m_{c}^{pole} = 1.4 \text{ GeV}$
- $\alpha_{\rm s}^{\rm nf=3}({\rm m_Z}) = 0.105 \pm 0.002$
- HERAPDF1.0 FFNS
- Fragmentation:
 - Longitudinal: Karvelishvili FF with $\alpha_{\kappa}(D^*)$

\hat{s} range	$\alpha_K(D^*)$
$\hat{s} \le \hat{s}_1$	6.1 ± 0.9
$\hat{s}_1 < \hat{s} \le \hat{s}_2$	3.3 ± 0.4
$\hat{s} > \hat{s}_2$	2.67 ± 0.31

 $\hat{s}_{1} =$ **30 GeV^{2}** $\hat{s}_{1} =$ **70 \pm 40 GeV^{2}** $\hat{s}_{2} =$ **324 GeV^{2}**

$$s_2 = 324 \text{ GeV}^2$$

- Transverse: $f(k_T) = k_T exp(-\frac{2k_T}{\langle k_T \rangle}); \quad \langle k_T \rangle = 0.35 \pm 0.15 \text{ GeV}$
- $f(c \rightarrow D^*) = 0.2287 \pm 0.0056$

No prediction \rightarrow may give hints in which direction to develop theory

Results: data vs NLO with parameter variations

Results: data vs NLO with parameter variations

Results: data vs NLO with parameter variations

