

Charm and beauty production (in DIS) at HERA

A. Bertolin **INFN** (Sezione di Padova) on behalf of the H1 and <u>ZEUS</u> collaborations

Outline:

"HERA, H1 and ZEUS

- " heavy quark production in DIS at HERA
- " charm DIS cross sections and charm quark mass

"beauty quark mass

"additional observables for charm

" conclusions

The HERA collider and the H1 and ZEUS detectors: short introduction

ÉHERA was an *e p* collider, γ *p* center of mass energy was up to 320 GeV (equivalent to a ~ 50 TeV *e* beam on fixed target)

ÉH1 and ZEUS were ~ 4π -coverage multipurpose experiments (calorimetry, tracking, \tilde{o})

Érunning started in 1992 and ended in 2007 õ over time significant detector upgrades: silicon vertex detectors that boosted charm and beauty performances

" integrated luminosity: ~ 500 pb⁻¹ per experiment, huge for an e p collider

Deep Inelastic Scattering (DIS) kinematic variables

referring to the diagram shown above:

$$^{\prime\prime}$$
 Q ² = - q ²

virtually of the exchanged γ

 $x = Q^2 / 2 P q$

fraction of the electron momentum taken by the incoming γ

" DIS regime: $Q^2 > 1 \text{ GeV}^2$ (photoproduction regime: $Q^2 \sim 0 \text{ GeV}^2$) P: proton 4-momentum k: electron 4-momentum

Heavy quark (charm and beauty) production in DIS at HERA

- important playground for pQCD: the heavy quark mass, m_Q Q=c,b, provides a hard scale that allows pQCD calculations to be made
- dominant heavy quark production process in DIS: boson gluon fusion

hottest questions for pQCD:

- ["] how accurate is the prediction of the hard sub-process cross section ?
- if you plug in the gluon density from inclusive DIS measurements do you get the right results for the heavy quark cross sections ?
- " is the running of the charm and beauty quark masses as expected ?

Available data and tagging techniques

Data set		Tagging method	Q^2 range			N	L
			$[GeV^2]$				$[pb^{-1}]$
1	H1 VTX [14]	Inclusive track lifetime	5	-	2000	29	245
2	H1 D* HERA-I [10]	D^{*+}	2	_	100	17	47
3	H1 D* HERA-II [18]	D^{*+}	5	_	100	25	348
4	H1 D* HERA-II [15]	D^{*+}	100	_	1000	6	351
5	ZEUS D* (96-97) [4]	D^{*+}	1	-	200	21	37
6	ZEUS D* (98-00) [6]	D^{*+}	1.5	-	1000	31	82
7	ZEUS D ⁰ [12]	$D^{0,\mathrm{no}D^{*+}}$	5	-	1000	9	134
8	ZEUS D+ [12]	D^+	5	-	1000	9	134
9	ZEUS μ [13]	μ	20	-	10000	8	126

⁷ two independent experiments

 $\tilde{}$ a large variety of tagging techniques: inclusive methods using the large lifetime of charmed hadrons, inclusive track lifetime, complete reconstruction of charmed mesons, D^{*+}, charm semileptonic decay, μ

- " a large number of measurements, $\sum N = 155$ data points, in a common grid spanning the x. Q² plane (except for [14] where scaling factors, always smaller than 18 %, have been applied to migrate the original measurements to the closest point of the common grid)
- developed a combination method taking into account properly correlated and uncorrelated uncertainties (155 data points in 52 bins)

key observable:

$$\sigma_{\rm red}^{c\bar{c}} = \frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \mathrm{d}Q^2} \cdot \frac{xQ^4}{2\pi \alpha^2 (Q^2) \left(1 + (1-y)^2\right)}$$

Combined reduced charm cross section

✓ good consistency of data among the several possible tests χ^2 / ndf = 62 / 103

✓ good complementarity of data

✓ 10 % uncertainty on average,
 6 % at small x and medium Q²

Reduced charm cross section: data vs N(N)LO QCD

х

Extraction of the charm quark mass

conceptually simple method:

 $\tilde{}$ work out an array of FFNS NLO QCD predictions changing CONSISTENTLY m_c(m_c) in the theory

" find out, using a χ^2 , which m_c(m_c) gives the best description of the data

" parabolic fit

 χ^2_{min} : m_c(m_c), fit uncertainty: χ^2_{min} + 1

Extraction of the charm quark mass (cont.)

- $m_{\rm Q}$ running was available only for beauty from LEP data
- ✓ thanks to HERA now available also for charm !
- ✓ be aware that at large scales, M_{Z/W} or M_{top}, charm can be significantly lighter than you would naively expect !!!

Can we do the same for beauty ?

Reduced charm and beauty cross sections

for different $m_{b}(m_{b})$

which value best matches the data ?

- " a HERA charm combination
- ✓ good agreement with different methods

11

" parton densities

✓ be aware that at large scales, M_{Z / W} or M_{top}, beauty can be significantly lighter than you would naively expect !!!

 $m_b(m_b) = 4.07 \pm 0.14 \,(\text{fit})^{+0.01}_{-0.07} \,(\text{mod.})^{+0.05}_{-0.00} \,(\text{param.})^{+0.08}_{-0.05} \,(\text{theo.}) \,\text{GeV}$

Additional observables in the charm case

(June 2013)

Group

HERA Heavy Flavour Working

1.5

Additional observables in the charm case: data vs NLO QCD

14

Conclusions

" accurate charm and beauty cross section measurements have been performed by the H1 and ZEUS collaborations

" same measurements are performed using different experimental techniques: each technique has its own advantages and disadvantages

" m_c(m_c) extracted for the first time and running clearly measured

 $m_{b}(m_{b})$ extracted as well

["] charm data are significantly more precise than NLO predictions which suffers from large scale variation uncertainties õ we need NNLO for charm !!!

" have already started to combine:

_ different experimental techniques

_ H1 and ZEUS results

to achieve the best accuracy not only for cross section measurement ! see $m_c(m_c)$!