Perturbative QCD at HERA

Leonid Gladilin
(Moscow State University)

XXX-th International Workshop on HEP 23–27 June 2014, Protvino

Outline: QCD explorer HERA

Proton structure

Jets and α_s

Prompt photons

Heavy quark production and masses

Summary & Prospects

Back-up: some details on above ratio of D** PhP x-sections at different vs charged particle spectra in DIS

The HERA ep collider (1992 - 2007)

ep collider:

e[±] energy: 27.6 GeV

p energy: 920 GeV

Center of mass energy: 319 GeV

2 collider experiments: H1 and ZEUS

• Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

QCD explorer HERA

 $\sigma_{c\bar{c}} \approx 1 \,\mu b \Longrightarrow 10^9 \text{ events } (\mathcal{L}_{int} = 1 \,fb^{-1})$ $\sigma_{b\bar{b}} \approx 10 \text{ nb} \Longrightarrow 10^7 \text{ events } (\mathcal{L}_{int} = 1 \text{ fb}^{-1})$ HER.A

HERA II

1992-2000

2003-2007

320 (300)

 $320\,\mathrm{GeV}$

 $1.5 \cdot 10^{31}$

 $7 \cdot 10^{31} \, cm^{-2} \, s^{-1}$

0.13

 $0.37 \ fb^{-1}$

$$e(k) + p(P) \rightarrow e(k') + X$$
 $s = (P + k)^2$

$$s = (P+k)^2$$

$$Q^2 = -q^2 = -(k - k')^2$$

Photoproduction DIS

$$Q^2 \simeq 0 \, GeV^2 \ Q^2 > 1 \, GeV^2$$

$$W^2 = (P+q)^2$$

$$y = \frac{qP}{kP} \cong \frac{W^2 + Q^2}{s}$$
 $x = \frac{Q^2}{2qP} \cong \frac{Q^2}{sy}$

$$x = \frac{Q^2}{2aP} \cong \frac{Q^2}{8u}$$

Proton Structure

At moderate Q2

rate Q²
reduced cross cross section measurement

$$\tilde{\sigma}_{NC}(x, Q^2, \mathbf{y}) = \frac{d^2 \sigma_{NC}^{ep}}{dx dQ^2} \cdot \frac{xQ^4}{2\pi\alpha Y_+} = F_2(x, Q^2) - \frac{\mathbf{y}^2}{Y_+} F_L(x, Q^2)$$

$$Y_+ = 1 + (1 - y)^2$$

In QPM:
$$F_2(x,Q^2)=\sum e_{q_i}^2 x(q_i+\bar{q}_i)$$
 Total quark content $F_L(x,Q^2)=F_2-2xF_1=0$ Callan-Gross relation

In QCD: add particle to carry angular momentum, gluon is needed

$$F_L(x, Q^2) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) \cdot xg \right]$$

Proton Structure

- 21 HERA I data samples
- 20 HERA II data samples, including:
 - 8 inclusive HERA II E_p = 920 GeV
 - 4 FL data $E_p = 920 \text{ GeV}$
 - 4 FL data $E_p = 575$ GeV
 - 4 FL data $E_p = 460 \text{ GeV}$

- Bulk of HERA data: Ep=920 GeV (HER)
- Ep=460 GeV (LER) and Ep=575 (MER) data taken in 2007

$$\sigma_{r,NC} = F_2 - \frac{y^2}{Y_+} F_L$$

Straight line fit:

$$F_2$$
 = Intercept

 F_{i} = Negative slope

HERAPDF 1.0, 1.5, 2.0

HERAPDF1.0

HERAPDF1.5

HERAPDF2.0 (prel.)

H1prelim-14-041(2) ZEUS-prel-14-005(7)

	Data Set		x Grid		Q ² /GeV ² Grid		L	e^{+}/e^{-}	\sqrt{s}	
			from	to	from	to	pb ⁻¹		GeV	
. [HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets									
	H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301, 319	
П	H1 low Q^2	96-00	0.0002	0.1	12	150	22	e^+p	301, 319	
П	H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	
П	H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	
П	H1 NC	98-99	0.0032	0.65	150	30000	16.4	e^-p	319	
П	H1 CC	98-99	0.013	0.40	300	15000	16.4	e^-p	319	
П	H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319	
П	H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	
П	H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	
	ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	
П	ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	
П	ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	
П	ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	
	ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	
	ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^-p	318	
	ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e^-p	318	
	ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	
П	ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318	

HERA II $E_p = 920 \text{GeV}$ data sets									
H1 NC	03-07	0.0008	0.65	60	30000	182	e^+p	319	
H1 CC	03-07	0.008	0.40	300	15000	182	e^+p	319	
H1 NC	03-07	0.0008	0.65	60	50000	151.7	e^-p	319	
H1 CC	03-07	0.008	0.40	300	30000	151.7	e^-p	319	
H1 NC med Q^2	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	
H1 NC low Q^2	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318	
ZEUS CC	06-07	0.0078	0.42	280	30000	132	e^+p	318	
ZEUS NC	05-06	0.005	0.65	200	30000	169.9	e^-p	318	
ZEUS CC	04-06	0.015	0.65	280	30000	175	e^-p	318	
ZEUS NC nominal	06-07	0.000092	0.008343	7	110	44.5	e^+p	318	
ZEUS NC satellite	06-07	0.000071	0.008343	5	110	44.5	e^+p	318	
HERA II $E_p = 575 \text{GeV}$	data sets								
H1 NC high Q ²	07	0.00065	0.65	35	800	5.4	e^+p	252	
H1 NC low Q ²	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252	
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251	
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e^+p	251	
HERA II $E_p = 460 \text{GeV}$	data sets								
H1 NC high Q2	07	0.00081	0.65	35	800	11.8	e^+p	225	
H1 NC low Q ²	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225	
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e^+p	225	
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	

All results are final and published!

HERAPDF 2.0

H1 and ZEUS preliminary

 $^{\sim}1\%$ for 20 < Q² < 100 GeV²

Multijet Production and α_s extraction

150 < Q² < 15 000 GeV² 0.2 < y < 0.7

$$\mu_r^2 = (Q^2 + P_{\rm T}^2)/2$$
 and $\mu_f^2 = Q^2$

Multijet Production and α_s extraction

DESY 14-089 June 2014

$\alpha_s = 0.1165 \pm 0.0008 exp \pm 0.0038 theo$

For $Q^2 > 400 \text{ GeV}^2$:

$$\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{\text{exp}} \ (5)_{\text{PDF}} \ (7)_{\text{PDFset}} \ (3)_{\text{PDF}(\alpha_s)} \ (8)_{\text{had}} \ (36)_{\mu_r} \ (5)_{\mu_f}$$

= 0.1165 \ (8)_{exp} \ (38)_{pdf,theo} .

$$\alpha_s(M_Z)|_{k_T} = 0.1160 \ (11)_{\text{exp}} \ (32)_{\text{pdf,theo}}$$

Prompt photons in photoproduction

direct

 $\frac{1}{e}$ $\frac{1}{p}$ $\frac{1}{p}$

resolved

direct, fragmentation

resolved, fragmentation

box diagram

Extraction of Photon Signals

$$<\delta Z> = \frac{\sum_{i} E_{i} |Z_{i} - Z_{cluster}|}{w_{cell} \sum_{i} E_{i}}$$

 E_T -weighted mean of $|Z_{CELL} - Z_{Mean}|$

Phys. Lett. B730 (2014) 293

ArXiv 1405.7127

Prompt photon Cross Sections

fixed order calculations

- by M. Fontannaz, J.Ph. Guillet and G. Heinrich Eur. Phys. J. C 21 (2001) 303,
 Eur. Phys. J. C 34 (2004) 191 (FGH)
- components:

k_T -factorisation approach

• calculated by A.V.Lipatov, M.A. Malyshev, N.P.Zotov, Phys. Rev. D 72 (2005) 054002, Phys. Rev. D 81 (2010) 094027, Phys. Rev. D 88 (2013) 074001 (LMZ):

-0.5

0.5

- investigation of the photoproduction of the isolated photon at HERA in the framework of kt-factorisation QCD approach
- both direct and resolved processes are considered
- the box contribution was included
- fragmentation contribution is neglected

1.5

Direct/Resolved Contributions to γ + jet

Direct LO process final state:

- jet
- photon
- scattered electron (escape undetected)
- proton remnant (escape undetected)

$$\Rightarrow x_{\gamma}^{\text{meas}} = 1 \text{ (LO direct)}$$

Resolved LO process final state:

- all mentioned above
- + resolved photon remnant

$$\Rightarrow \ \mathrm{x}_{\gamma}^{\mathrm{meas}} < 1$$

$$x_{\gamma}^{\text{meas}} = \frac{E^{\gamma} - p_Z^{\gamma} + E^{\text{jet}} - p_Z^{\text{jet}}}{E^{\text{all}} - p_Z^{\text{all}}}$$

very good description of the $x_{\gamma}^{\rm meas}$ by FGH reasonable description by LMZ (typically theory within 1-2 sigma from data)

LMZ is somewhat too "direct"

Heavy Quark Production and Masses

Expected to be valid at scales ~ m_{b,c}
Programs exist to calculate fully differential cross sections (HVQDIS, FMNR)

Massless scheme (ZM-VFNS)

Allows resummation of terms proportional to log(Q²/m_{b,c}²) Expected to be valid at scales >>m_{b,c}

Mixed schemes (GM-VFNS)

Employ both FFNS and ZM-VFNS Interpolation is ambiguous → various approaches (RT, ACOT etc.) exist

HQ signals and Cross Sections in DIS

in p rest frame

Charm DIS Data Samples

Data set		Tagging method	Q^2 range		N	\mathcal{L}	
			$[{\sf GeV^2}]$			[pb ⁻¹]	
1	H1 VTX [14]	Inclusive track lifetime	5	_	2000	29	245
2	H1 D^* HERA-I [10]	D^{*+}	2	_	100	17	47
3	H1 <i>D</i> * HERA-II [18]	D^{*+}	5	_	100	25	348
4	H1 <i>D</i> * HERA-II [15]	D^{*+}	100	_	1000	6	351
5	ZEUS D* (96-97) [4]	D^{*+}	1	_	200	21	37
6	ZEUS D* (98-00) [6]	D^{*+}	1.5	_	1000	31	82
7	ZEUS D^0 [12]	$D^{0,\mathrm{no}D^{st+}}$	5	_	1000	9	134
8	ZEUS D^{+} [12]	D^+	5	_	1000	9	134
9	ZEUS μ [13]	μ	20	_	10000	8	126

- two independent experiments
- a large variety of tagging techniques: inclusive methods using the large lifetime of charmed hadrons, inclusive track lifetime, complete reconstruction of charmed mesons, D*+, charm semileptonic decay, μ
- a large number of measurements, $\sum N = 155$ data points, in a common grid spanning the x Q² plane (except for [14] where scaling factors, always smaller than 18 %, have been applied to migrate the original measurements to the closest point of the common grid)
- developped a combination method taking into account properly correlated and uncorrelated uncertainties (155 data points in 52 bins)

key observable:
$$\sigma^{c\bar{c}}_{\rm red} \ = \ \frac{{\rm d}^2\sigma^{c\bar{c}}}{{\rm d}x{\rm d}Q^2} \cdot \frac{xQ^4}{2\pi\alpha^2(Q^2)\left(1+(1-y)^2\right)}$$

Combined Charm Reduced x-sections

- ✓ good consistency of data among the several possible tests χ^2 / ndf = 62 / 103
- √ good complementarity of data
- ✓ 10 % uncertainty on average,
 6 % at small x and medium Q²

Sensitivity to m_c

well described using HERAPDF1.5 (fitted from inclusive DIS only)

strong charm mass dependence (blue band: 1.35->1.6 GeV)

Can be used to constraint m_c

m_c value and running

$$m_c(m_c) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \ \pm 0.02_{param} \pm 0.02_{\alpha_c} \ GeV$$

Errors are experimental, model, parametrisation and α_s

Consistent with PDG: $m_c(m_c) = 1.275 \pm 0.025 \text{ GeV}$

$$\mu = \sqrt{Q^2 + 4m_c^2}$$

$$m_c(\mu) = m_c(m_c) \frac{\left(\frac{\alpha_s(\mu)}{\pi}\right)^{\frac{1}{\beta_0}}}{\left(\frac{\alpha_s(m_c)}{\pi}\right)^{\frac{1}{\beta_0}}}$$

$$\beta_0 \text{ for } N_f = 3 \text{ is } \frac{9}{4}$$

Beauty signals and x-sections in DIS

Reasonable description by HVQDIS NLO QCD

Beauty Reduced x-sections and F₂

Sensitivity to m_b comes mostly from low Q²

m_b value and running

mass running consistent with QCD

Summary & Prospects

No new data but a lot of new results

Proton Structure studied in almost full range of LHC sensitivity HERAPDF 2.0 is available and widely used

Extensive results on jet production Precise α_s measurements

New precise measurements of prompt photon production Verification of collinear and k, predictions

Charm and beauty contributions to proton structure Extraction of m_c and m_b values

More final and combined H1+ZEUS results HERA legacy forever

Back-up Slides

Data Samples

H1 ZEUS

Data set		Ĺ [pb⁻¹]	e+ / e-	\sqrt{s} [GeV]	Data set		£ [pb⁻¹]	e+ / e-	\sqrt{s} [GeV]
HERA I E_p = 820 GeV and E_p = 920 GeV data sets									
H1 svx-mb H1 low Q ² H1 NC H1 CC H1 NC H1 CC H1 NC HY H1 NC	95-00 96-00 94-97 94-97 98-99 98-99 98-99 99-00	2.1 22 35.6 35.6 16.4 16.4 65.2 65.2	e+ p e+ p e+ p e+ p e+ p e+ p	301, 319 301,319 301 301 319 319 319 319 319	ZEUS BPC ZEUS BPT ZEUS SVX ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS CC	95 97 95 96-97 94-97 98-99 98-99 99-00 99-00	1.65 3.9 0.2 30.0 47.7 15.9 16.4 63.2 60.9	e+ p e+ p e+ p e+ p e- p e+ p e+ p	300 300 300 300 300 318 318 318 318
HERA II E_p = 920 GeV data sets									
H1 NC H1 CC H1 NC H1 CC H1 NC med Q ² H1 NC low Q ²	03-07 03-07 03-07 03-07 03-07 03-07	182.0 182.0 151.7 151.7 182.0 182.0	e⁺ p e⁺ p e∙ p e⁺ p	319 319 319 319 319 319	ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS NC nominal ZEUS NC satellite	06-07 06-07 05-06 04-06 06-07 06-07	135.5 132.0 169.9 175.0 44.5 44.5	e+ p e+ p e- p e+ p e+ p	318 318 318 318 318 318
HERA II E_p = 575 GeV data sets									
H1 NC high Q ² H1 NC low Q ²	07 07	17.2 5.9	e⁺ p e⁺ p	252 252	ZEUS NC nominal ZEUS NC satellite	07 07	7.1 7.1	e⁺ p e⁺ p	251 251
HERA II $E_p = 460$ GeV data sets									
H1 NC high Q ² H1 NC low Q ²	07 07	17.2 12.2	e⁺ p e⁺ p	225 225	ZEUS NC nominal ZEUS NC satellite	07 07	13.9 13.9	e⁺ p e⁺ p	225 225

The Longitudinal Structure Function $F_L(Q^2)$

Average F_L measurement over x at each Q² to reduce statistical uncertainty

Good agreement between the NNLO predictions and the measurement Additional constraints to PDF's at low Q² Agreement between H1 and ZEUS is within one sigma

The Ratio R = σ_{L} / σ_{T} Extraction

For γ^*p R measures interaction with longitudinally polarized virtual photon. Relation between F_L and R: $F_L = F_2*R/(R+1)$.

R is approximately constant. Constant value fit gives

H1
$$0.23 \pm 0.04$$

ZEUS $0.105 + 0.055 - 0.037$

The Gluon Density Extraction

- Shaded area prediction from the QCD fit
- Data and dashed line extraction at order α_s from the F_L measurement and prediction

$$xg(x,Q^2) \approx 1.77 \frac{3\pi}{2\alpha_S(Q^2)} F_L(ax,Q^2)$$

A. M. Cooper-Sarkar et al., Z. Phys. C 39 (1988)

E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B 383 (1992)

G. R. Boroun, B. Rezaei, Eur. Phys. J. C72 (2012) 2221:

G. R. Boroun, B. Rezaei, arXiv:1401.7804.

Reasonable agreement between direct gluon density (approximate) extraction and indirect measurement from scaling violation

Heavy Quark Production

Secondary vertex method

Phase space of the measurement:

Tag: jet + secondary vertex

- Employs long lifetime of ground state hadrons containing charm or beauty quarks

- Select tracks belonging to a jet
 - > p_⊤(track)>500 MeV
- Fit a secondary vertex
- Project decay length onto a jet axis
- Calculate decay length significance

 $5 < Q^{2} < 1000 \text{ GeV}^{2}$ 0.02 < y < 0.7 $E_{T}^{\text{jet}} > 5(4.2) \text{ GeV}$ $-1.6 < \eta^{\text{jet}} < 2.2$

Quark mass definitions

Pole quark mass

- Based on (unphysical) concept of quark being a free parton
- Pole mass is ambiguous up to corrections of $O(\lambda_{QCD})$

Running quark mass (\bar{MS})

- \overline{MS} (minimal substraction scheme) mass definition m(μ_R) realizes running mass (scale dependence)
- renormalization group equation (mass anomalous dimenstion γ)

$$\left(\mu_R^2 \frac{\delta}{\delta \mu_R^2} + \beta(\alpha_s) \frac{\delta}{\delta \alpha_s}\right) m(\mu_R) = \gamma(\alpha_s) m(\mu_R)$$

Ratio of D** PhP x-sections at different Vs

DESY 14 082 May 2014

Parameters for NLO QCD calculation:

Fixed-flavor-number scheme (FFNS):

Strong coupling constant : $\alpha_s(Mz) = 0.118$,

mass of c quarks: m =1.50 GeV

Fragmentation fraction f(c->D*)=0.237

PDFs: proton - ZEUS-S FFNS

photon - GRV-G HO

Peterson fragmentation function: = 0.079

Scales were set to $\mu = \sqrt{m_c^2 + \hat{p_T^2}}$

Charged Particle Spectra in DIS

DJANGOH does best, RAPGAP is also satisfactory at low p_{τ} but not at high p_{τ} .

CASCADE (based on CCFM) is the least successful model.