Test of factorization in in DIS and γ -p at HERA

Richard Polifka

Charles University in Prague University of Toronto

on behalf of the H1 Collaboration

15.9.2014 Diffraction 2014, Primošten, Croatia

Ep =
$$820-920$$
 GeV
L_{int} = $^{\sim}0.5$ fb⁻¹/experiment

$$L_{int} = 12.4 \text{ pb}^{-1}$$

$$Ep = 575 \text{ GeV}$$

$$L_{int} = 6.2 \text{ pb}^{-1}$$

Diffractive kinematics

$$Q^{2} = -q^{2} = (k - k')^{2}$$

 $x = Q^{2} / 2Pq$
 $x_{IP} = q(P - P')/qP = 1 - E'p/Ep$

$$\beta = x/x_{IP}$$

$$z_{IP} = (Q^2 + M_{jj}^2)/x_{IP}ys$$

 $M_Y = m_p$ intact proton $m_p \le M_Y \le 1.6$ GeV intact proton or proton dissociation

Collins factorisation, proven:

$$d\sigma^{ep\to eXp}(\beta,Q^2,x_{IP},t) = \sum_{i} f_{i}^{D}(\beta,Q^2,x_{IP},t) \cdot d\sigma^{ei}(\beta,Q^2)$$

Proton Vertex Factorisation, consistent with data:

$$f_i^D(\beta, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_i(\beta, Q^2)$$

direct, dominant for DIS

Will the photoproduction preserve factorization, or will additional remnants interaction destroy the rapidity gap signature?

picture holds in LO

Breaking(?)

Eur. Phys. J C70 (2010)

$$E_T^{\text{jet1(2)}} > 5(4) \text{GeV}$$

Nucl. Phys. B 831 (2010)

H1 and ZEUS did not converge on same answer -> new and independent measurement by H1

Experimental Methods

- LRG method:
 - no activity in forward part of the calorimeter
 - + high statistics
 - proton dissociative background

- Proton Tagging:
 - detection of the outgoing proton in forward proton spectrometers (PS)
 - FPS and VFPS
 - + direct extraction of diffractive variables, t dependence
 - + free of p-diss background
 - small acceptance -> low stats

Diffractive PDFs

- extracted from inclusive DIS measurement
 - H1 2006 fit A & B
- diffractive jets constrain the gluon part of DPDF at high z
 - H1 2007 Jets, ZEUS SJ

Dijets in DIS (1)

- measurement of di-jets in diffraction using the FPS detector (arXiv)
- comparison with NLO predictions (nlojet++) with
 H1 2006 Fit B and H1 2007 Jets implementation

very good agreement between data and NLO QCD observed, consistency with old LRG measurement (HERA-I) shown

Dijets in DIS (2)

- analysis of full HERA-II statistics based on the LRG method is in preliminary stage
- comparison with NLO QCD with H1 2006 Fit B performed

very good agreement between data and NLO QCD observed

Dijets in DIS (3)

- analysis of events with proton tagged in VFPS
- comparison with NLO QCD (nlojet++) with H1 2006 Fit B performed, "validation region" of the YP analysis
- $\mu_{\rm r,f} = \sqrt{(E_{\rm T,i}^2 + Q^2/4)}$

Dijets in $\gamma P(1)$

 $Q^2 < 2 \text{ GeV}^2$

 analysis repeated with same conditions except for Q²

NLO QCD: Frixione et. al.

(x-check with Klasen&Kramer)

• DPDF: H1 2006 Fit B

YPDF: GRV HO

Data over-predicted by MC

Dijets in $\gamma P(2)$

Dijets in $\gamma P(3)$

- naively, x_Y-> 1 (direct) should not show any suppression
- resolved component expected to be suppressed

surprisingly,
 suppression is
 observed almost
 independently on x_Y

problem with rather large uncertainties solved by...

Dijets in YP and DIS (1)

- double-ratio of data/NLO cancels most of systematics uncertainties
- integrated result:

$$\frac{({\rm DATA/NLO})_{\gamma p}}{({\rm DATA/NLO})_{\rm DIS}} = 0.55 \pm 0.10 \, ({\rm data}) \pm 0.02 \, ({\rm theor.})$$

Factorization breaking in diffractive photoproduction observed with sufficient statistical precision not due to proton dissocoation

Dijets in YP and DIS (2)

- double-ratio of data/NLO cancels most of systematics uncertainties
- binning driven by DIS statistics
- data/NLO:
 - DIS: ~1.07 x PHP: ~0.61

statistically significant deviation from unity, constant in E_T^{jet1} as well as z_{IP}

summary

- new preliminary results on diffractive dijets from the H1 Collaboration (shutdown 2007!) presented
- in DIS, all independent measurements are consistent with Proton Vertex Factorization
- in Photo-Production, deviation from unity in the double ratio is consistent with factorization breaking:

$$\frac{(\mathrm{DATA/NLO})_{\gamma p}}{(\mathrm{DATA/NLO})_{\mathrm{DIS}}} = 0.55 \pm 0.10 \, (\mathrm{data}) \pm 0.02 \, (\mathrm{theor.})$$

stay tuned for final publications (coming SOON)

backup

Cross Sections

	PHP	DIS
Data	$242 \pm 15 (\text{stat.}) \pm 33 (\text{syst.}) \text{pb}$	$29.7 \pm 2.0 (\text{stat.}) \pm 2.7 (\text{syst.}) \text{pb}$
NLO QCD	400^{+140}_{-90} (scale) ± 80 (DPDF) pb	$27.2^{+10.2}_{-5.9}$ (scale) ± 5.3 (DPDF) pb
Data/NLO	$0.60 \pm 0.08 (data) \pm 0.21 (theor.)$	$1.09 \pm 0.10 (data) \pm 0.40 (theor.)$