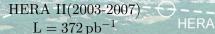


Exclusive Dijet Production in Diffractive Deep Inelastic Scattering at HERA

Marcin Guzik
(on behalf of the ZEUS Collaboration)

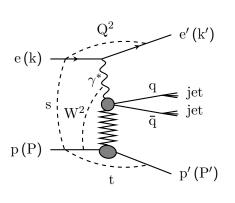

AGH University of Science and Technology, Cracow

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects Warsaw, 28 April - 2 May 2014

The HERA ep collider and the ZEUS detector

The only lepton-proton collider

 $E_{lepton} = 27.5 \, GeV$ $E_{proton} = 920 \, GeV$

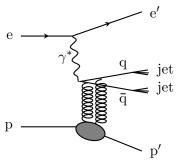


Kinematic variables

DIS

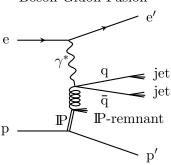
- q = k k'
- $Q^2 = -q^2$ $Q^2 > 1 \text{ GeV}^2 \Rightarrow \text{DIS}$
- $W^2 = (P + q)^2$
- $s = (P + k)^2$
- $x = \frac{Q^2}{2P \cdot q}$

Diffraction


- $x_{\mathbb{P}} = \frac{(P-P') \cdot q}{P \cdot q}$
- $\beta = x/x_{\mathbb{P}}$

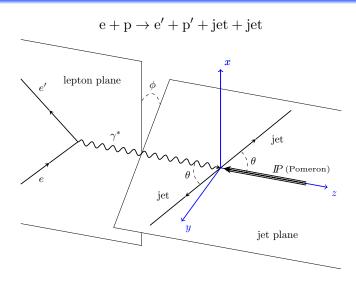
Diffractive Dijet Production Mechanisms

ZEUS


Phys. Lett. B386 (1996) 389-396

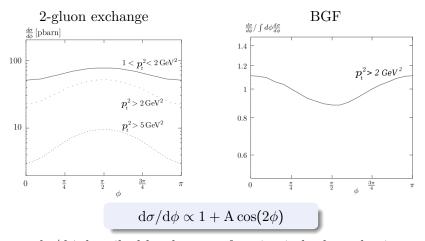
2-gluon exchange

fully perturbative calculations based on proton PDF


Boson-Gluon Fusion

calculations based on pomeron structure functions

Diffractive Dijet Production in $\gamma^* - \mathbb{P}$ CMS


- ϕ angle between lepton and jet planes
- θ polar angle of a jet

Parton Level Azimuthal Angular Distribution

Phys. Lett. B386 (1996) 389-396

- $d\sigma/d\phi$ described by the same function in both mechanisms
- two-gluon exchange mechanism predicts negative A
- boson-gluon fusion mechanism predicts positive A

Monte Carlo

MC Generator

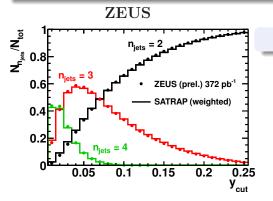
RAPGAP 3.01/26 + JETSET(hadronisation)

Detector Level MC

SATRAP - RapGap 3.01/26 + HERACLES 4.6.3(radiation)

- color dipole model with saturation
- qq and qqg in a final state
- description of p_T and ϕ distributions of the dijet sample required hadron level reweighting

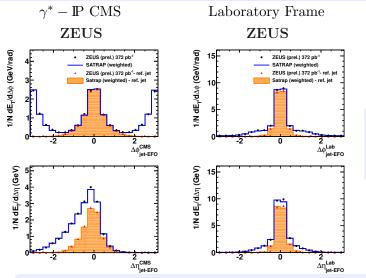
Hadron Level Predictions


- \bullet 2-gluon exchange model RapGap 3.01/26
- BGF (resolved Pomeron) RapGap 3.01/26

Durham Exclusive k_t Jet Algorithm (FastJet)

$$y_{ij} = 2\frac{\min\left(E_i^2, E_j^2\right)}{M_X^2}\left(1 - \cos\theta_{ij}\right)$$

 θ_{ij} is the angle between objects (i, j) and $M_{\rm X}$ is the total mass of hadronic system.



$y_{cut} = 0.15$

- if $y_{ij} < y_{cut}$ then i and j are merged
- every particle must be clustered into a jet

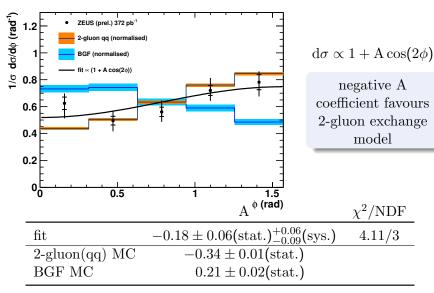
Transverse Energy Flows

ref. jet i.e. jet with higher p_T in lab. frame

Weighted SATRAP describes the jet shape of exclusive dijet sample in both CMS and laboratory frames

Hadron Level

Kinematic range to which data are unfolded


$$\begin{array}{cccc} 90 \; \mathrm{GeV} < & W & < 250 \; \mathrm{GeV} \\ 25 \; \mathrm{GeV}^2 < & Q^2 & & & \\ & & x_{\mathrm{I\!P}} & < 0.01 \\ & 0.5 < & \beta & < 0.7 \\ & & n_{\mathrm{jets}} & = 2 \\ & 2 \; \mathrm{GeV} < & p_{\mathrm{T} \; \mathrm{jet}} \end{array}$$

Unfolding and Regularisation

• TSVDunfold (Nucl. Instrum. Meth. A372 (1996) 469-481) Singular Value Decomposition with Regularisation

ZEUS

Summary

- transverse energy flows as functions of pseudorapidity and azimuthal angle have been measured
- the shape of the azimuthal angular distribution of exclusive dijets in diffractive DIS has been measured for the first time at HERA
- the data favour 2-gluon exchange model of quark anti-quark production over BGF

Thank You for Your Attention!