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PDFs are crucial inputs for studies at the LHC, therefore precise knowledge and 
understanding of them is essential.

PDFs are parametrised and extracted from fits, however the parametrisation 
uncertainty needs to be understood.

H1 and ZEUS collaborations made an effort to estimate uncertainty on the HERAPDF 
parametrisation by scanning the parameter space affecting especially the high x region
 [see S.Habib’s presentation]

Introduction
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Neural Network PDF group uses Neural Nets to study PDF param. biases 

Standard Parametrisation Form:

describes the shape of PDFs with few input parameters
difficult to study systematically both the low and high x 
regions 
multiple similar solutions for x>xmin 

equivalent solutions for D~0 and Dxmin>>1

AxB(1− x)C(1 + Dx + ..)

AxB(1− x)C(1 + Dx) = DAxB+1(1− x)C

(
1

Dx
+ 1

)
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Chebyshev Polynomials
Another method to study parametrisation biases, is to use orthogonal polynomials to 
parametrise PDFs: Chebyshev Polynomials of the first kind

• Orthogonally defined in the [-1,1] interval and given by the recurrence relation:

To approximate PDFs, change variable                                                                       
such that [log(xmin),0] interval is mapped to [-1,1]
This allows to approximate PDF with few parameters:

(1-x) term is to force xf(x)=0 for x=1

• Momentum Sum Rule leads to simple finite integrals
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Settings
    The study is performed using:

Published Combined HERA I data of NC and CC e±p scattering cross sections following 
HEP01 (2010) 109
Fit program HERAPDF based on QCDNUM implementation at NLO [ref. M. Botje]

       renormalisation scheme, DGLAP evolution at NLO, massless quarks (ZMVFNS)
starting scale Q02= 1.9 GeV2

PDFs are parametrised using ZEUS Parametrisation  [EPJ C42,1(2005)hep-ph/0503274] 

                                                                     with xΔ fixed

                                                                              using Chebyshev Polynomials 

up to the 15th order in Chebyshev series expansion
Chebyshev Polynomials can reproduce  the shape 
of the standard parametrisation with few parameters

Errors are estimated using Monte Carlo technique [DESY-PROC-2009-02]
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xdv(x) = AdvxBdv (1− x)Cdv

xuv(x) = AuvxBuv (1− x)Cuv (1 + Duvx)

MS

xdv(x),xuv(x),x∆ = xū(x)− xd̄(x)

xS(x) = 2x
(
ū(x) + d̄(x) + s̄(x) + c̄(x)

)
,xG(x)
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Monte Carlo Method

Method consists in preparing replicas of data sets allowing the central values of the 
cross sections to fluctuate within their systematic and statistical uncertainties taking into 
account all point to point correlations. 

• Various assumptions can be considered for the error distributions: Gauss, Log-Normal, etc. ...

Shift central values randomly within their uncorrelated errors assuming Gauss distributions 
of the errors:

Shift central values with the same probability of the corresponding correlated systematic 
shift assuming Gauss distribution of the errors:

Preparation of the data is repeated for N times (N>100):
For each replicas NLO QCD fit is performed to extract the PDF set

Errors on the PDFs are estimated from the RMS of the spread of the N curves 
corresponding to the N individual extracted PDFs.
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Fit Results

All Plots are shown for gluon 
distribution at Q2=1.9 GeV2

MC replicas are shown in green 
lines (N>100)

The uncertainty is estimated as 
the RMS of the spread and is 
shown in red

Study in more details for fixed x 
points 

x=0.0001
x=0.001
x=0.01
x=0.1 

at the edges of sensitivity and for 
the bulk of precision.
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Npar=15
for xG, xS

Npar=5
for xG, xS
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Dependence on Chebyshev Expansion
Observe shape differences with the increased number of Chebyshev parameters:
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n=3
for xG, xS

n=4 n=5 n=6

n=8 n=10 n=12 n=15
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Double minima for low Npar

A feature is observed for low number of Chebyshev parameters.
Two solutions are preferred by the minimisation procedure for n=3 Chebyshev 
parameters, clearly observed at x=0.01
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n=3
for xG, xS

Q2=1.9 GeV2
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Constraining the shape of PDFs
Humpy shapes in x can be 
correlated with the humps in the W:

Resonances are observed at low W 
but they disappear for high W
• Resonances at low W, as depicted 

by the JLAB CLAS experiment

Idea: use “length” as an extra 
constraint [Ref: W. Giele]:

prefer solutions which are 
smoother in W
apply length penalty to χ2 
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Stabilising the fit using Length Constraint
Focus on the low x region:

Wmin=10 GeV
Apply length penalty at the starting scale 
for each MC replica

p=0, 10, 100, 1000

The Constraint is efficient (χ2/ndf)
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n=15

p=10

Q2=1.9 GeV2

p=100 p=1000p=0

Central, no MC
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Effect of the Length Constraint

Even soft constraint against extra 
minima reduces uncertainty at low X

p=10 (red line)

Tighter constraints limit the 
uncertainty better than the data.

For x=0.1 constraint does not do 
much 

For the bulk of the data constraint 
does not do much for RMS but it 
becomes more constant vs Npar.

11



V. Radescu, A. Glazov, S. Moch DIS2010-Firenze

Summary

Presented a study on the PDF parametrisation using Chebyshev polynomials with the 
emphasis on the low x region for gluon and sea quarks.

Presented a method to constrain PDFs using simple, physically motivated penalty term 
against extra min/max vs W.

The data are stable vs parameterisation change in the bulk region 
x=0.001-0.01.

Minimal constraint improve precision for smallest x.
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