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Parton dynamics

Perturbative expansion of parton evolution equations ~3%__ A_ _ In(Q2)™ In(1/x)"

Cannot be explicitly calculated to all orders

1. Fixed order calculations

* DGLAP, collinear factorisation: Y (0 In Q?)"

Ordering in x, strong ordering in k;

* BFKL, k. factorisation: ) (0. In (1/x))"
Strong ordering in x, no k;ordering

* CCFM, k., factorisation: resum In Q? and In (1/x)

Angular ordering |:> k; non-ordered at small x;

2. Approximations ‘ resumming certain infinit subsets of terms
according to the phase space region

O
<

High
Density

Region

Non-perturbative region

If HERA’s x;, are small enough to reveal deficiency of DGLAP?
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QCD Calculations

NLOJET++: Fixed order QCD partonic cross section, on
mass shell ME + DGLAP , (collinear factorisation)

NLO 2-jet NLO 3-jet

FEFE

O Terms of up to O(a?,) (O(a?,)) for dijet (trijet) calculations

d One-loop corrections for virtual particles

4 Correction for 3™ (4t) parton in final state (soft/collinear gluon emissions)
0 O(a3,) calculations possible for dijets for certain jet phase space region

d No fragmentation, hadronization corrections from MC

ot April 2008 L.Khein DIS 2008 3



MC Models

LEPTO: LO ME on mass shell + PS in DGLAP

—»> Strong ordering in k;

CASCADE: LO off mass shell ME + PS based on k; factorized CCFM evolution

transverse momentum of emitted gluon kD> kD°“t

kl; — factorization

uPDF set1 : kD°“*= 1.33 GeV

non-singular term :
cut in splitting function e
uPDF set2 : k ““=1.18 GeV kio\gﬂ
At small xz; o ordering in k; .
ARIADNE: implementation of Color Dipole Model (CDM) v
= Jet

Independently radiating dipoles formed by
emitted gluons {3

-
— Random walk in k; like in BFKL
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Dijets&trijets without forward jet

Event & Jet selection

1998 — 2000 ZEUS e*p data, 82 pb-

Low — xg; DIS selection
10 < xp <1077

10 < O? <100 GeV'*
0.1<y<0.6

Dijet/trijet selection

Elfto, >7GeV
jet2(.3) ,

Ex ven > 5GelV

— 1<l <25

Jets reconstructed with K; algorithm in inclusive mode
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Dijets & trijets vs. X,

NLOjet++ compared with data on inclusive cross-sections (left)
and ratios of trijet to dijet cross-sections (right)

= ‘em zEUSSBZPL' < { 2 - @ ZEUS82pb ]

— i . — NLOjet: O(e2)® C,,,] © 0.2¢ tri-/dijets -

F10°F P, - NLOjet: Ofed) @ C,.3 3 C By — NLOjet: Ofc2)/0(a2) 3

4 = = Eﬂ 13_ '@ i

T 1 o . F% ]

L= [ i 0.16] [ E

10°F E 0.14F =

i 1 0.12p E

10%F trijets E 0.1 E

: ] 0.08F 3

- jet energy scale uncertainty B CI jet energy scalg uncertainty s

103 __ﬂ 1186 ﬂpf;;mziép <1 _ ﬂﬂﬁzm 118 "I—lf-'ﬂﬂz*é] <1 7

B ———+++ 41 F———+—+—++++ H

g IJE 3 E 0.2 ]

£l E , . £|F F :

,;,E 1:3 —t—+—+—+++ —t :::::I: ,[,E oF .

2T  oE Wi — 3 E| .

= S 3 =l 0.2 ]

-'1__| 1 11 ||3 I 3| LT [ I I T T I ||3 I 3| ]
2:10™ 107 2x10° 2x10™ 107 2x10°

x
z

— Dijets and trijets are described by NLO.

— For cross section ratios theoretical uncertainties mainly canceled,
within these smaller uncertainties agreement is again satisfactory
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jet1,2

d3aldz g

data - theor

|dx (pb/GeV)

P, correlations for dijets

Inclusive distributions are of insufficient resolving power, try correlations.
First, abs. value of vector sum of p; of two jets, NLOjet vs data

Without gluon radiation two jets are correlated, back to back in HCMS: |[Zp,| =0

— —

—

T,HCH

—

theory

UE E_ 0.00017 =< Xg; < 0.0003 0.0003 < Xg -: 0.0005 0.0005 < X '-‘-‘- 0.001 _E
0°F
0“;— E
o’k 4
02 §_ =+ = E
10;— —éé— —é— 5
1 E_ il _l;-; [ 1 1 11 III [ [ 1 [ IIIIE- III E
2 E T =+ 1 F il 3
N3 W E i E
OF W I m I @—;
E I 1 1 1 IIIII 1 1 1 11 II:: 1 1 1 11 III 1 1 1 | I | II:: 1 1 1 111 III 1 1 1 11 |||:
'11 2 34 10 20 1 2 34 10 20 1 2 34 10 20 100
—jetl,2
o
1= T HCMI (GeV)

= Calculations at O(a_2) are much below data

= Difference is largest for smallest xg,

= Addition of O(a.3) leads to agreement with data
(within theoretical uncertainty, which is large)
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e ZEUS 82 pb’
dijets

--- NLQjet: O(cZ) @ C_

— NLOjet: O(c) @ C_
jet energy scale

] uncertainty

1116 < p2(Q*E;) < 1

had
had



P. correlations for trijets

Abs. value of vector sum of p; of two highest E; jets, NLOjet vs data

TTT] T T T T T T7T17T
< 0.001

0.0003_< x_. < 0.0005 0.0005 <x
T
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107 E E
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234 10 20

IIIIII 1 1 IIIIII:E 1 1 11
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raaal 1 1 |||||l:
10 20 100

—jetl,2
=B end (GEV)

e ZEUS 82 pb’
trijets
— NLOjet: O(c?)® C,__

] jet energy scale
uncertainty

EZ1116 < p2/(QE;) < 1

Calculations agree with data within theoretical uncertainty
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data - theorx

theory

10°

Leanwn

@ correlations for dijets

Separation in azimuthal angle @ of two jets, NLOjet vs data

|A@| = Tt without gluon radiation

F 0.00017 <x,, <0.0003 ]  0.0003 <>x,, <0.0005 F  0.0005 <x., <0001 ] 1
p . | o zEUS82pb
dijets

. i --- NLOjet: O(cZ) @ C, |
_ + + 1 —NLOjet: O(c?) @ C ..
L T = ‘ + 3 jet energy scale

i T ; uncertainty
1 Fovevbrreebrom b :l:i'-::I::::I::::I::::I::::I::::I:f: RN e A ARRRRE I 1”5{“3!{&:{?]{1
R R R Y- 8- s - B YT - S - R B YT Y-
1A q}jeﬂ_.zl
HCM

0 NLOjet calculations at O(a_2) are much below data

O Difference seemingly increases with decrease of
one order of magnitude for smallest x;, and most

Xg; , reaching almost
décorrelated jets

O Addition of O(a.2) leads to agreement with data

One additional gluon is not enough, at least two are needed
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Forward Jets

Event & Jet selection

Kinematic range
98-00 Data, L 182 pb

20 < Q2< 100 GeV?
0.0004 < x;;< 0.005

Xp,j small

evolution
from large
to small x

0.04<y<0.7

Forward Jet selection

"forward’ jet

Ejc
Inclusive K; algorithm p ¥ E‘p:{)m: large
Ejet> 5 GeV
2¢< nie<4.3 1.4 unit more forward than before

LRE(FOVIORW N Al (E°t)2[1Q2? suppresses DGLAP evolution

CORTR I Sl % = E /E ,, >> Xz enhances BFKL evolution
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do/dQ” (pb/GeV?)

do/dE’; (ph/GeV)

Inclusive Forward Jets
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Two versions, with default

tuning (“default”) and
retuned by H1 (“tuned”)
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Inclusive Forward Jets
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Trijet with a Forward Jet

Event & Jet selection

Kinematic range the same as for WA N jet 1
inclusive forward jets An,

Xg > ~ jet 2
Forward jet the same, %J-W‘M‘
0.5 < (E/*')?/Q? < 2 constraint excluded : An,

Two additional jets with E/* > 5 GeV

0000000000000000 - forward jet

2000000000 ~ -
&
~

rlel < rljet1 < rljet-z < r]forward-jet
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do/dAn, (pb)

Trijet with a Forward Jet

'NLOJET++ vs data.
ZEUS

- = NLO (uy =1,=Q)
U/} NLO Unl::ertainty
2% Had. Cor. Uncertainty

do/dAn, (pb)

100

5

50

25
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For NLOjet scales |1 2=2=Q?
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do/dAn, (pb)

do/dAn, (pb)

Trijet with a Forward Jet

LEPTO & ARIADNE vs data
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Summary & Conclusions

)

& ZEUS measured jets at small x, in highly extended forward region

@ Inclusive cross-sections of dijets and trijets without forward jets are satisfactorily described by
collinear factorisation based NLO

@ Correlations are more sensitive to parton dynamics, in particular they reveal failure of NLO for
dijets, where only NNLO, i.e. O(0.3), suffices = four partons at HERA'’s lowest x;, are needed.

@ Further insight provides addition to analysis of a forward jet, in particular | correlations for
trijets with a forward jet reveal in certain phase space deficiency of O(0.3), here at least five

partons are needed.

@ Resummed DGLAP, realized by MC with LO matrix element and parton showers, LEPTO,
yields about twice too low forward jet cross-sections.

@ LO CCFM based MC, CASCADE, cannot fully describe data on forward jets, other sets of
uPDF are to be tried (and/or more serious problems show up, i.e. lack of quarks).

@ Only CDM (ARIADNE MC), featured by BFKL-like non-ordered in k; parton cascade, is

capable of successful description of the whole volume of data on forward jets. A problem
could to be, nevertheless, that being based on phenomenology ARIADNE is too free in tuning.
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