High E_T Jet Physics at HERA

José Repond Argonne National Laboratory

On behalf of the H1 and ZEUS collaborations

Small-x Workshop, Fermilab, March 28-30, 2007

Introduction: Jets, Algorithms...

Definition of a generic hadronic jet:

Group of particles which are 'close' to each other

Partons in QCD calculations
Final state hadrons in data and MC

Many definition of 'closeness'

Cone algorithms

use geometrical information (no E)

 $\Delta R = \sqrt{\Delta^2 \eta} + \Delta^2 \phi < R_0$

Clustering algorithms

use geometrical information + E

e.g. $d_{ij} = min(E_{T,i}^2, E_{T,i}^2)(\Delta^2 \eta + \Delta^2 \phi)/R_0^2 > any E_{T,k}^2$

Theoretical problems with overlapping cones

→ large uncertainty

Not used at HERA since early days

Clustering Algorithms

Group particles together if

Mass

$$d_{ij} = 2 E_i E_j (1 - \cos \theta_{ij}) < d_{cut}$$

JADE algorithm used extensively in e⁺e⁻ problems with ghost jets

 \mathbf{k}_{\perp}

$$d_{ij} = 2 \min (E_i^2, E_j^2)(1 - \cos\theta_{ij})/E_0^2 < d_{cut} E_0...hard scale$$

Longitudinally invariant k₁

Durham algorithm
allows to vary resolution scale d_{cut}

→ subjets

$$d_{ij} = min(E_{T,i}^2, E_{T,j}^2)(\Delta \eta^2 + \Delta \phi^2)/R_0^2 > any E_{T,k}^2 R_0...radius, chosen = 1$$

Longitudinally Invariant k⊥ algorithm combines features of cone and durham

The remaining objects are called **Jets**

Hadronisation corrections

Needed to compare data and QCD calculations

Hadronisation corrections applied to NLO

Obtained from LO+PS Monte Carlos

Describe jet production at HERA (apart from normalization)

Longitudinally invariant k_T algorithm

Smallest hadronisation correction (smallest uncertainty?)
Preferred algorithm at HERA

Durham (exclusive) k_T algorithm

Allows to vary scale
Only used for subjet studies

Major experimental uncertainties

Error on Jet cross sections

Jet Energy Scale

 E_T (jet) spectrum exponentially falling \rightarrow **Dominant** error First ZEUS jet publications ±10% error in cross section

Select Jets with **high(er) E**_T
Dedicated **effort** to understand hadronic energy scale

Use of fact that \mathbf{p}_{T} (scattered electron) = \mathbf{p}_{T} (hadronic system) Study events with single jets and small remaining hadronic energy

$$\mathbf{d}\sigma_{\mathbf{jet}} = \sum_{\mathbf{a} = \mathbf{q}, \overline{\mathbf{q}}, \mathbf{g}} \int \mathbf{d}\mathbf{x} \ \mathbf{f_a}(\mathbf{x}, \alpha_{\mathbf{S}}, \mu_{\mathbf{F}}) \ \mathbf{d}\hat{\sigma}_{\mathbf{a}}(\mathbf{x}, \alpha_{\mathbf{S}}(\mu_{\mathbf{R}}), \mu_{\mathbf{R}}, \mu_{\mathbf{F}}) \ \mathbf{D}(\mathbf{z}, \mu_{\mathbf{F}'}, \alpha_{\mathbf{s}})$$

PDFs

hard scattering cross section

Fragmentation function

Major theoretical uncertainties

Hadronisation corrections

Typical uncertainty ± 1%

Corrections in general small <10%

Uncertainty taken as difference between estimations based on different MCs

(unsatisfactory)

Proton PDFs

Typical uncertainty ± 1-2%

Traditionally taken from difference obtained with various sets of PDFs (unsatisfactory) Covariance matrix $V_{p\mu,p\lambda}$ of the fitted parameters $\{p_{\lambda}\}$ available correct evaluation of error on cross section

$$(\Delta \sigma_{
m jet})^2 = \sum_{\lambda,\mu} rac{\partial \sigma_{
m jet}}{\partial {f p}_{\mu}} {f V}_{{f p}_{\mu},{f p}_{\lambda}} rac{\partial \sigma_{
m jet}}{\partial {f p}_{\lambda}}$$

In γ P: additional uncertainty due to PDFs of photon

$$\mathbf{d}\sigma_{\mathbf{jet}} = \sum_{\mathbf{a}=\mathbf{q},\overline{\mathbf{q}},\mathbf{g}} \int \mathbf{d}\mathbf{x} \ \mathbf{f_a}(\mathbf{x}, \alpha_{\mathbf{S}}, \mu_{\mathbf{F}}) \ \mathbf{d}\hat{\sigma}_{\mathbf{a}}(\mathbf{x}, \alpha_{\mathbf{S}}(\mu_{\mathbf{R}}), \mu_{\mathbf{R}}, \mu_{\mathbf{F}}) \ \mathbf{D}(\mathbf{z}, \mu_{\mathbf{F}'}, \alpha_{\mathbf{s}})$$

PDFs

hard scattering cross section

Fragmentation function

Strong coupling α_s

Current uncertainty ± 1.7%

Enters PDFs value assumed to evolve to different scales in fit to inclusive DIS data

Enters $d\sigma_a$ governs strength of interaction

Current world average value $\alpha_s(M_z) = 0.1176 \pm 0.0020$

Used **consistently** in PDFs and $d\sigma_a$

Only free parameter of pQCD: jet cross sections sensitive to it

Terms beyond α_{S}^{2}

Uncertainty can be large Dominating theoretical error

Corresponding uncertainty **NOT** known Estimated through residual dependence on renormalization μ_R and factorization μ_F scales

ightarrow Choice of scales: Q, $E_{T,jet}$ or linear combination Customary, but arbitrary to vary scales by factor 2

Jet Production Processes at HERA

Event classes

Photoproduction: Q² ~0 (real photons)

Deep inelastic scattering: $Q^2 > \text{few GeV}^2$ (virtual photons)

Jet production mechanisms (LO in α_S)

QCD Compton Scattering

Multi-jet

Higher order processes (α_S^n , n>1) Multi-parton interactions (\rightarrow L. Stanco)

Inclusive-Jet Cross Sections in DIS

Data sample

 $Q^2 > 125 \text{ GeV}^2$ L = 82 pb⁻¹ of e[±]p collisions

Jet reconstruction

With k_T algorithm in the longitudinally invariant inclusive mode And in the Breit frame

Jet selection

 E_{T}^{Jet} (Breit) > 8.0 GeV E_{T}^{Jet} (lab) > 2.5 GeV -2 < η^{Jet} (Breit) < 1.5

Results

dσ/dE_Tiet(Breit) in large range of Q² Nice description by NLO QCD

Ratio to NLO QCD

Dominant experimental uncertainty: energy scale

Theoretical uncertainty ~ experimental uncertainty

With HERA II data statistical uncertainty at high Q² will be significantly reduced

Determination of strong coupling constant $\alpha_s(M_z)$

Q² > 500 GeV² Smaller experimental (E scale) uncertainties Smaller theoretical (PDFs and scale) uncertainties

Parameterize theoretical cross section as

 $d\sigma/dQ^2(\alpha_S(M_Z)) = C_1\alpha_S(M_Z) + C_2\alpha_S^2(M_Z)$ (same value of α_S in PDF and calculation)

Determine C_1 and C_2 from χ^2 fits

Fit parameterized theoretical cross $d\sigma/dQ^2(\alpha_S(M_Z))$ to measurement

Result

 $\alpha_{\rm S}({\rm M_Z}) = 0.1207 \pm 0.0014 \text{ (stat.)} ^{+0.0035}_{-0.0033} \text{ (syst.)} ^{+0.0022}_{-0.0023} \text{ (theo.)}$

One of world's most precise...

PDG: $\alpha_{\rm S}({\rm M}_{\rm Z})$ = 1.176 ± 0.002

Multi-Jets in DIS

Data sample

150 GeV² < Q² < 15,000 GeV² L = 65 pb⁻¹ of e⁺p collisions

Jet reconstruction

With k_T algorithm in the longitudinally invariant inclusive mode And in the Breit frame

Jet selection

 E_T^{Jet} (Breit) > 5.0 GeV -1 < η^{Jet} (lab) < 2.5 Dijets: m_{2jet} > 25 GeV Trijets: m_{3jet} > 25 GeV

To reduce infrared regions ($E_T^1 \sim E_T^2$)

Results

d_σ/dQ² in large range of Q² Nice description by NLO QCD

Ratio of 3-jet/2-jet

Many experimental uncertainties cancel

Theoretical uncertainty ~ experimental uncertainty

Average $\alpha_S(M_Z)$

Extraction of $\alpha_s(M_z)$

Similar procedure as with incl. jets

 $\alpha_{\rm S}({\rm M_z})$ = 0.1175 ± 0.0017 (stat.) ± 0.005 (syst.) $^{+0.0054}_{-0.0068}$ (theo.)

Di-Jets in Photoproduction

Data sample

 $Q^2 < 1 \text{ GeV}^2$ 134 < W < 277 GeV

Jet reconstruction

With k_T algorithm in the longitudinally invariant inclusive mode

Jet selection

 $E_T^{Jet} > 14.0$ and 11.0 GeV $-1 < \eta^{Jet}$ (lab) < 2.4

$d\sigma/dx_{\gamma}$ in bins of E_{T}^{jet}

Large discrepancy with theory

Photon PDF inadequate? NLO pQCD calculation inadequate?

Photon PDFs determined from $\gamma\gamma$ interactions at low scales

At HERA photon PDFs being **probed at high scales** (jet E_T)

Similar study of H1 shows 'perfect' agreement with NLO pQCD

H1 uses **slightly higher E_{T,2} cut** at 15 GeV

Study of **dependence** on $E_{T,2}$ cut

Dependence **NOT** reproduced by NLO

H1 cut more fortunate

NNLO calculations needed

Until then, no meaningful constraint on photon PDFs

Event Shapes

Data sample

 $196 < Q^2 < 40,000 \text{ GeV}^2$ L = 106 pb⁻¹ of e[±]p data

Event shape of hadronic final state

Theoretical calculations

Available at NLO level including resummed next-to-leading logarithms (NLO+NLL) Hadronisation corrections taken care of by calculable **power corrections** (~ 1/Q)

$$P_v \sim \alpha_0 P_V^{calc}$$

where α_0 is a universal parameter (independent of ES variable V)

Differential distribution

Nicely reproduced by NLO+NLL+PC

Mean of ES Variable versus Q

Nicely reproduced by NLO+NLL+PC (2 parameter fit: α_S and α_0)

Fit to differential distributions

 \rightarrow ~Consistent values of α_S and α_0 (α_0 indeed universal within 10%)

Combined fit over all ES Variables

$$\rightarrow \alpha_0 = 0.476 \pm 0.008 \text{ (exp)} \quad ^{+0.0018}_{-0.0059} \quad \text{(theo)}$$

HERA Measurements of $\alpha_{\rm S}$

Conclusions

Precision jet physics at HERA

Experimental uncertainties often < 3% Uncertainties dominated by jet energy scale uncertainty

Performed large number of measurements

```
Photoproduction (inclusive jets, dijets, multijets...)
DIS NC (inclusive, dijets, multijets, subjets...)
DIS CC (inclusive...)
```

Results provide

Constraints on proton PDF (included in NLO QCD fits of F_2) Constraints on photon PDF (needs better calculations) High precision measurements of the strong coupling constant $\alpha_s(M_z)$

 $\alpha_{\rm S}(M_{\rm Z})_{\rm HERA} = 0.1193 \pm 0.0005 \,({\rm exp}) \pm 0.0025 \,({\rm theo})$

Backup Slides

Frames for Jet Finding

e⁺e⁻ annihilation

Laboratory frame = center-of-mass frame (unless there is significant initial state radiation)

Events p_T balanced

Cone algorithm invariant to longitudinal boost

Analysis in **laboratory** frame

pp colliders

Deep Inelastic Scattering

Hadronic system recoils against scattered electron

jets have p_⊤ in laboratory frame

High-E_T Jet Production in Breit Frame

suppression of Born contribution suppression of Beam remnant jet(s)

E_T – Cuts for Dijet Selection

Symmetric cuts

For instance $E_{T,1}$, $E_{T,2} > 5$ GeV

Reduced phase space for real emission of soft gluons close to cut

Complete cancellation of the soft and collinear singularities with the corresponding singularities in the virtual contributions **not possible**

Unphysical behavior of calculated cross section

Solutions

Additional cut on Sum of E_T

for instance $E_{T,1} + E_{T,2} > 13 \text{ GeV}$

Asymmetric cuts

for instance $E_{T,1} > 8 \text{ GeV}, E_{T,2} > 5 \text{ GeV}$

Jets in Photo-production

Photon has very **low virtuality** $Q^2 \sim 0 \text{ GeV}^2$

Only one inclusive variable

W_{vP} ... photon – proton center of mass

To $O(\alpha \alpha_S)$ \longrightarrow 2 types of processes contribute to jet production

Direct photo-production

Photon interacts as an entity

Resolved photo-production

A parton with momentum fraction x_{γ} in the photon enters the hard scattering process

Momentum fraction x_v

Can be reconstructed as

$$\mathbf{x}_{\gamma} = \frac{\sum_{\mathbf{jets}} (\mathbf{E} - \mathbf{p_z})}{\sum_{\mathbf{all\ hadrons}} (\mathbf{E} - \mathbf{p_z})}$$

Direct $x_v = 1$

Resolved $x_v < 1$

