Charmonium Production at HERA

Dmitri Gladkov DESY

XII International Conference on Hadron Spectroscopy HADRON 07 October 08-13 2007, Frascati, Italy

Contents:

- ep Interactions at HERA
- Charmonium Production Mechanism
- Measurements of Charmonium Production:
 Photoproduction and Electroproduction
- Conclusions

Electron-Proton Collider HERA and Experiments ZEUS and H1

HERA ep CM energy of 300/318 GeV

ZEUS and H1 detectors are cylindrical multi-purpose devices with almost full solid angle coverage.

- Tracking system
- Calorimetry
- Muon system

Event Kinematics

Kinematic variables for $ep \rightarrow e' + J/\psi + X$ process:

CM energy:

$$s = (P + k)^2$$

Virtuality of exchanged photon:

$$Q^2 = -q^2 = (k' - k)^2$$

Mass of $\gamma^* p$ system:

$$W^2 = (q + P)^2$$

Inelasticity: fraction of photon momentum transferred to J/ψ in proton rest frame:

$$z = p_{J/\psi} \cdot P/q \cdot P$$

e'(k') -Q² e(k) $\gamma^*(q)$ $J/\psi(p_{J/\psi})$ S W **p**(P)

Two kinematic regimes:

- Photoproduction (PHP) with Q² ~ 0
- Electroproduction (DIS) with Q² > 2 GeV²

Inelastic *ep* process: $M_{\chi} >> m_{\rho}$, otherwise - elastic.

Inelastic Charmonium Production Mechanism

- Charmonium at HERA \Rightarrow mainly J/ψ production
- Dominant process: $BGF \Rightarrow$ sensitive to $G(x, \mu^2)$ (main contribution from direct photon processes)
- ◆ In photoproduction resolved photon processes contribute additionally. At high Q² these contributions are suppressed.

- According two different approaches, a produced charm quark pair can form:
 - a state with the same quantum numbers of J/ψ (color singlet state: CS)
 - a different state (color octet state: CO) with additional soft gluon emissions involved to build J/ψ

D. Gladkov

HADRON 2007

08.10.2007

Inelastic Charmonium Production Mechanism

Theoretical models used in description of charmonium production:

Factorization approach:

$$\sigma(J/\psi + X) = \sum \sigma(ep \to c \, \overline{c} \, [n] + X) \otimes \langle O_n^{J/\psi} \rangle$$
calculated in pQCD non-perturbative part (N-P)

- ♦ CS model: charm quark pair produced in CS state. N-P ⇒ one parameter fixed from $\Gamma(J/\psi \to \ell^+\ell^-)$.
 - LO calculations: for direct and resolved photon processes.
 - NLO calculations: only for direct photon processes and only for PHP.
- ◆ CO model: charm quark pair produced in CO or CS state;
 - N-P ⇒ NRQCD approach: Long Distance Matrix Element (*LDME*) measured from NRQCD fit to Tevatron data and expected to be universal.
 - Only LO calculation. Direct and resolved processes included.
 - No NLO calculation.
- ♦ k, factorization approach:

Unintegrated gluon density convoluted with off-shell matrix element. Used in CO and CS model frameworks. Effectively taking into account higher order corrections at LO level.

Event Selection

 Reconstruction technique is measurement of invariant mass of oppositely charged leptons.

Direct photon is dominant at middle z (0.4 - 0.9). At low z resolved photon contribution is significant. Diffractive production gives sizable contribution at high z.

Main Backgrounds:

- Diffractive production (subtracted).
- J/ψ from B (5%, up to 25% at low z, not subtracted).
- J/ψ from $\chi_c(1\%$, up to 7% at low z, not subtracted).
- J/ψ from ψ '(15%, not subtracted).

Photoproduction: Data vs NLO

Photoproduction: Data vs LO NRQCD

- Good description of $J/\psi p_{\tau}$ spectrum within large uncertainties (coming from LDME).
- Good description of z spectrum by lower limit (LDME [NLO]) of error bands.
- Resolved photon contribution (CO included) improves shape agreements.
- Rise at high $z \Rightarrow$ delicate phase space: soft gluons.

Photoproduction: Data vs NRQCD

LO CS \Rightarrow falls down at high z due to hard gluon radiation.

LO CO \Rightarrow steep rise at high z due to soft gluon emission at high z: resummation!

Reasonable shape description by resummed NRQCD.

Photoproduction: ψ' Contribution

0.7

8.0

0.9

Z

0.2

0

0.6

ZEUS Data: 50 < W < 180 GeV 0.55 < z < 0.9

$$\sigma(\psi')/\sigma(J/\psi) = 0.33 \pm 0.10^{+0.01}_{-0.02}$$

Flatness. 15% of measured J/ψ come from ψ ' cascade decays.

Photoproduction: J/ψ Polarization Measurement

ZEUS Data:

50 < W < 180 GeV 0.1 < z < 0.9 $p_{\tau} > 1 \text{ GeV}$

- ◆ CS and CO + CS: fit data reasonably well within errors.
- ◆ CO + CS picture is preferable by data? ⇒ NLO needed!

Electroproduction: Data vs NRQCD

---- kt-fact. (LZ)
---- CASCADE

NRQCD (CS)

→ NLO needed.

LO CS: lower but consistent with data within errors

- ◆ LO CS+CO: fails to describe data due to soft gluons
 ⇒ resummation needed.
- CASCADE MC: above data but shape is ok.
- LO CS with k_{τ} factorization: reasonable description of data.

0.2 < z < 0.9

 $-1.6 < Y_{lab} < 1.3$

08.10.2007

Electroproduction: Data vs CS MC

CASCADE:

- \Rightarrow reasonable description of data but p_{τ} spectrum is harder
- **EPJPSI**: (collinear factorization)
 - ⇒ consistent with data but Q² distribution is soft

H1 Data:

H1

preliminary

20

10⁻¹

0

$$50 < W < 225 \text{ GeV}$$

 $3. 6 < Q^2 < 100 \text{ GeV}^2$
 $0.3 < z < 0.9$
 $p_{\tau}^{*2} > 1 \text{ GeV}^2$

40

60

80

 P_T^{*2} [GeV²]

100

Elastic Bottomonium Photoproduction at HERA

Production mechanism:

Two theoretical approaches:

- Pomeron exchange ⇒ soft interactions
- 2 gluon exchange ⇒ perturbative QCD
- Sensitive to gluon density $G(x, \mu_F^2)$: $W^2 \Leftrightarrow 1/x$

$$\sigma \propto W^{\delta}$$
 and $\sigma \propto G(x, \mu_F^2)^2$

 δ is expected to increase with increasing hard scale ⇒ vector meson (VM) mass.

Elastic Vector Meson Photoproduction Measurements at HERA

Conclusions

Photoproduction:

- LO CS model fails to describe the data, while ...
- NLO CS calculations provide good description of data.
- LO CO + CS NRQCD calculations with small LDME are also reasonable.
 - ⇒ At low z resolved photon contribution improves agreement with data but contaminations of B meson decays and higher mass charmonium states are poorly know and not subtracted.
- Helicity measurements looks to favor CO + CS picture but ...
 - ⇒ Experimental and theoretical errors are large.
 - ⇒ NLO calculations are needed to estimate theoretical uncertainties.

Electroproduction:

- LO CS predictions are below but consistent with data except high p_{τ} range.
- LO NRQCD predictions overshoot data.
 - ⇒ NLO calculations for CS and CO are needed.
- CS model with k_{τ} factorization provides reasonable description of data.
- MC predictions exhibit rather good agreement with data.
- Prospect with full HERA statistics:
 - Higher Q^2 and p_{τ} .
 - Improvements in helicity measurements.