Subjet distributions

Angular
correlations
in three-jet
events

Elías Ron (Universidad autónoma de Madrid)

Introduction

- Three jet events arising from hard interactions at HERA allow the study of the underlying gauge structure of QCD.
- The dynamics of a gauge theory such as QCD is determined by the colour factors C_F , C_A and T_F

• At leading order in α_s , the 3-jet cross section in NC DIS can be expressed as:

$$\sigma_{ep \to 3 \text{jets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

• Angular correlations between jets can be defined in DIS providing sensitivity to the different colour configurations.

Introduction

 $\underline{\theta}_{\underline{H}}$: Angle between the plane determined by the **highest** transverse energy jet (**green**) and the beam line, and the plane determined by the two lowest transverse energy jets (**red** and **blue**)

 α_{23} :Angle between the lowest transverse energy jets (red and blue).

 $\eta_{\text{max}}^{\text{jet}}$: pseudorapidity of the **most forward jet**.

$$\cos(\beta_{KSW}) : \cos\left[\frac{1}{2}\left(\angle[(\vec{p}_{1} \times \vec{p}_{3}), (\vec{p}_{2} \times \vec{p}_{B})] + \angle[(\vec{p}_{1} \times \vec{p}_{B}), (\vec{p}_{2} \times \vec{p}_{3})]\right)\right]$$

Angular Correlations in three-jet events at HERA

Jet Events

JETS were searched using the k_T cluster algorithm in the inclusive mode in

the Breit frame.

■ The kinematic region is:

$$ightarrow Q^2 > 125$$
 GeV 2 , $|cos\gamma_h| < 0.65$ $-2 < \eta_{
m B}^{
m jet} < 1.5$

ightarrow at least 3 jets of $E_{T,\mathrm{B}}^{\mathrm{jet1}} > 8$ GeV, $E_{T,\mathrm{B}}^{\mathrm{jet2,3}} > 5$ GeV

The event sample consists of 1015 jet events in the range:

 $\theta_{\rm H}$, α_{23} , $\beta_{\rm KSW}$ and $\eta_{\rm max}^{\it jet}$ normalised cross sections vs. Color Dipole Model (CDM) and Matrix-element + Parton-shower (MEPS) of LEPTO

Cross sections for θ_H and $\cos(\alpha_{23})$

Good agreement with both Monte Carlo models, MEPS does a better description

 θ_H , α_{23} , β_{KSW} and normalised cross sections vs. Color Dipole Model (CDM) and Matrix-element + Parton-shower (MEPS) of LEPTO

Cross sections for $\cos(eta_{ ext{KSW}})$ and $\eta_{ ext{max}}^{ ext{jet}}$

Good agreement with both Monte Carlo models, MEPS does a better description

Predictions for the colour components at $O(\alpha_s^2)$ have been calculated with the program DISENT with:

- -pPDFs: CTEQ6M1 set
- $-\alpha_s$ was calculated at two loops with $\alpha_s(M_z) = 0.118$
- -Renormalization scale $\mu_R = Q$
- -Factorisation scale $\mu_F = Q$

For SU(3), the predicted relative contributions of each colour configuration are:

Data vs. Contributions

 The distributions for σ_B (triple-gluon vertex in quark induced processes) have a very different shape than the others.

The distribution in

 $\eta_{
m max}^{\it jet}$

for σ_D (triple-gluon vertex in gluon induced processes) has a different shape than the others

Measured normalised differential cross sections as functions of $\Theta_{\rm H}$ and $\cos(\alpha_{23})$ are compared with the calculation of DISENT based on SU(3), U(1)³, SU(N) for large N and $C_{\rm F}$ =0.

Measured normalised differential cross sections as functions of $\cos(\beta_{KSW})$ and $\eta_{jet,max}$ compared with the calculations of DISENT based on SU(3), U(1)³, SU(N) for large N and C_F =0.

Angular Correlations in three-jet events at HERA

Summary

- Angular correlations ($\Theta_{\rm H}$, α_{23} , $\beta_{\rm KSW}$ $\eta_{\rm max}^{\rm jet}$)in three-jet events in NC DIS have been measured using 82 pb⁻¹ in the kinematic region defined by Q² > 125 GeV² and $|\cos \gamma_{\rm b}| < 0.65$
- Fixed-order calculations separated according to the colour configurations were used to study the sensitivity of the angular distributions to the underlying gauge structure:
 - \triangleright Θ_H , α_{23} , β_{KSW} distinguish well the contribution from the **triple-gluon vertex in quark-induced processes**
 - \nearrow $\eta_{\text{max}}^{\text{jet}}$ distinguishes the contribution coming from the **triple-gluon vertex in gluon induced processes**.
- The measurements are consistent with the admixture of color configurations as predicted by SU(3).
- The data disfavour SU(N) in the limit of large N and $C_F = 0$.

Subjet Distributions

Internal structure of jets

At high transverse energy the fragmentation effects become negligible and the main contribution to the jet substructure comes from parton radiation.

Subjets are resolved within a jet by reapplying the k_T cluster algorithm on all the particles belonging to a jet. Subjets are all the particles within a jet which are at a distance bigger than d_{cut} from each other, where d_{cut} is:

$$d_{
m cut} = y_{
m cut} \cdot (E_T^{
m jet})^2$$

The subjet multiplicity depends on the value chosen for the parameter y_{cut}

Subjet Distributions

Variables and selection.

The pattern of QCD radiation has been studied by means of differential cross

sections with respect to the variables:

 α^{sbj} , the angle between the highest E_T subjet and the beam line, as seen from the jet axis.

$$^{\bullet}E_{T}^{sbj}/E_{T}^{jet}$$

$$\boldsymbol{\eta}_{sbj} - \boldsymbol{\eta}_{jet}$$

$$\phi_{sbj} - \phi_{jet}$$

subjet 1

The kinematic range is:

$$Q^2 > 125 \text{ GeV}^2$$

 $E_T^{\text{jet}} > 14 \text{ GeV} -1 < \eta^{\text{jet}} < 2.5$

Final Sample: Jets in the lab frame with exactly 2 subjets at $y_{cut} = 0.05$

Fixed-order QCD predictions were calculated at LO and NLO using DISENT with:

- α_s was calculated at two loops with $\alpha_s(M_z) = 0.1175$
- Renormalisation and factorisation scales were: $\mu_R = \mu_F = Q$
- •pPDFs: MRST99 sets
- Calculations were corrected to hadron level to compare with the data

NLO predictions describe the data within ±10%

Normalised differential cross sections for α^{sbj} and $|\phi_{sbj} - \phi_{jet}|$

NLO predictions describe the data within ±10%

Normalised differential cross sections for $|\phi_{sbj} - \phi_{jet}|$, $\eta_{sbj} - \eta_{jet}$ and E_T^{sbj} / E_T^{jet} are compared with calculations for quark- and gluon-induced processes separately. The prediction of QCD is 82% of quark-induced processes and 18% of gluon induced.

Comparison shows that the data are better described by the calculations for jets arising from a qg pair than those coming from a $q\overline{q}$ pair.

Subjet Distributions

Summary

- Normalised differential subjet cross sections for jets with **exactly** two subjets for $y_{cut}=0.05$ in inclusive-jet NC DIS have been measured using 82 pb⁻¹ in the kinematic region defined by $Q^2 > 125 \text{ GeV}^2$
- The data show that the two subjets:
 - tend to have similar transverse energies,
 - tend to be close to each other
 - the highest E_T subjet tends to be in the rear part with respect to jet axis.
- Reasonable description of data by fixed-order QCD calculations:
 - ➤ The pattern of parton radiation as predicted by QCD explains the subjet topology in the data.
 - The data are consistent with the dominance of quark-induced processes.