Measurements of diffractive structure functions with the LRG method and using the leading proton spectrometer at ZEUS

Jarosław Łukasik, DESY / AGH-UST Cracow on behalf of the ZEUS collaboration

XV International Workshop on Deep-Inelastic Scattering and Related Subjects

April 16-20, 2007, Munich, Germany

Outline

- Introduction description of NC diffractive DIS, event topologies, structure functions
- Methods of diffractive sample selection: LPS, LRG
- Preliminary results, comparisons
- Summary

J. Łukasik

NC Deep Inelastic ep Scattering

Standard

e,k y y^*,q Q^2 colour flow

 $x = \beta x_{IP}$

Diffractive

- $t = (p p')^2$
 - M_{X}

$$x_{IP} = \frac{(p - p') \cdot q}{p \cdot q}$$

$$\beta = \frac{Q^2}{2(p-p')}$$

- (four momentum transfer at proton vertex) 2
- diffractive mass
- fraction of the proton momentum
 carried by the *IP*
- fraction of the *IP* momentum carried
 by the struck quark

 Q^2 , x, y

Event topologies

Diffractive structure functions

$$\frac{d^{4} \sigma_{y*p}^{D}}{dQ^{2} d \beta dx_{IP} dt} = \frac{2 \pi \alpha_{em}^{2}}{\beta Q^{4}} \left(1 + (1 - y)^{2}\right) F_{2}^{D(4)} \left(Q^{2}, \beta, x_{IP}, t\right)$$

If Regge factorization:
$$F_2^{D(4)} \Big(\beta, Q^2, x_{IP}, t\Big) = f_{IP}(x_{IP}, t) F_2^{IP} \Big(\beta, Q^2\Big)$$

$$IP \text{ flux} \qquad IP \text{ structure function}$$

When *t* is not measured:

$$\frac{d^{3} \sigma_{y*p}^{D}}{dQ^{2} d\beta dx_{IP}} = \frac{2 \pi \alpha_{em}^{2}}{\beta Q^{4}} \left(1 + (1 - y)^{2}\right) F_{2}^{D(3)} \left(Q^{2}, \beta, x_{IP}\right)$$

Reduced cross section:

$$\frac{d^{3}\sigma^{D}}{dx_{IP}dxdQ^{2}} = \frac{4\pi\alpha^{2}}{xQ^{4}} \left(1 - y + \frac{y^{2}}{2}\right) \cdot \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})$$

we neglect F,D contribution

Scattered proton tagging

- Clean experimental signature
- Outgoing proton escapes through the forward beam hole
- A fraction of these events can be detected by the Leading Proton Spectrometer (LPS)
- LPS measures the momentum of the scattered proton – t information available

$$t = (p - p')^2$$

- Practically free of p-dissociation background
- Drawback: limited acceptance of the LPS (few %), dependent on x_L and p_τ of outgoing proton

$$x_L = \frac{p_z'}{p_z}$$
 spectrum:

 x_L >0.97 – a clean sample of diffractive events

J. Łukasik

Selection methods – LRG

- A large rapidity gap between the system X and outgoing proton (or proton remnant system N)
- Pseudorapidity of the most forward going particle: η_{max} distribution
- Plateau-like structure, due to diffractive events mainly, extends to low η_{max} values – diffractive tail
- Drawback: background from proton dissociation

η_{max} spectrum:

 η_{max} < 3 – a small non-diffractive background

Details of the analyses

- DATA
 - 2000e+, LPS (32.6 pb⁻¹), LRG (45.4 pb⁻¹)
 - Three analysis methods applied for the same data taking period (for M_{χ} analysis see Bernd's presentation)
- Kinematic coverage
 - LPS: $2 < Q^2 < 120 \text{ GeV}^2$, 40 < W < 240 GeV, $2 < M_\chi < 40 \text{ GeV}$ • LRG: $2 < Q^2 < 305 \text{ GeV}^2$, 40 < W < 240 GeV, $2 < M_\chi < 25 \text{ GeV}$
- Event selection
 - Scattered electron in the calorimeter
 - LPS: detection of scattered proton
 - LRG: energy in the Forward Plug Calorimeter (FPC) < 1 GeV, η_{max} < 3

J. Łukasik

ZEUS LPS results (1)

$$f_{IP}(x_{IP}, t) = \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}}$$

$$f_{IR}(x_{IP},t) = \frac{e^{B_{IR}t}}{x_{IP}^{2\alpha_{IR}(t)-1}}$$

 $F_2^{IR}(\beta, Q^2)$ – pion structure function (GRV)

Fit results:

$$\alpha_{IP}(0) = 1.1 \pm 0.02 (\text{stat.})^{+0.01}_{-0.02} (\text{syst.}) + 0.02 (\text{model})$$
 $\alpha_{IP}' = -0.03 \pm 0.07 (\text{stat.})^{+0.04}_{-0.08} (\text{syst.}) \text{ GeV}^{-2}$
 $B_{IP} = 7.2 \pm 0.7 (\text{stat.})^{+1.4}_{-0.7} (\text{syst.}) \text{ GeV}^{-2}$
 $\alpha_{IR}(0) = 0.75 \pm 0.07 (\text{stat.})^{+0.02}_{-0.04} (\text{syst.}) \pm 0.05 (\text{model})$
 $\alpha_{IR}(0) = 0.75 \pm 0.07 (\text{stat.})^{+0.02}_{-0.04} (\text{syst.}) \pm 0.05 (\text{model})$

ZEUS LPS results (2)

ZEUS LPS results (3)

Comparison of recent LPS and H1 FPS results:

$$\mathbf{R}^{\mathbf{D}} = \boldsymbol{\sigma}_{\mathbf{L}}^{\gamma^* \mathbf{p} \to \mathbf{p} \mathbf{X}} / \boldsymbol{\sigma}_{\mathbf{T}}^{\gamma^* \mathbf{p} \to \mathbf{p} \mathbf{X}}$$

$$\mathbf{R}^{\mathbf{D}} = \mathbf{0} \longrightarrow \mathbf{x}_{\mathbf{IP}} \mathbf{F}_{\mathbf{2}}^{\mathbf{D}(3)} = \mathbf{x}_{\mathbf{IP}} \boldsymbol{\sigma}_{\mathbf{r}}^{\mathbf{D}(3)}$$

Normalization uncertainties are not shown:

+12% / -10% for ZEUS LPS +/-10% for the H1 FPS data

The agreement is fair

ZEUS LRG results (1)

ZEUS LRG results (2)

The Regge-fit gives a good description of the ZEUS LRG data

 χ^2 /ndf = 159/185 (=0.86)

ZEUS LRG results (3)

Comparison of the ZEUS LRG with LPS data:

LPS/LRG = 0.82 ± 0.01 (stat.) ± 0.03 (syst.)

independent of Q^2 and β

→ rough p-dissociation background estimation

~10% normalization uncertainty of the LPS measurement is not shown

LRG results – ZEUS vs. H1

- Fraction of proton dissociation events for ZEUS and H1 detectors is different
- The ZEUS LRG data are rescaled to the H1 LRG data

Good agreement in shapes is observed

ZEUS: comparison of M_{χ} and LRG results (1)

In general reasonable agreement for $x_{IP} < 0.01$

For $x_{IP} > 0.01$ one can expect some differences from Reggeon contributions to the LRG data

ZEUS: comparison of M_{χ} and LRG results (2)

Summary

- ZEUS presented preliminary results on inclusive diffraction obtained with three different methods
- Results for all three methods are derived from data taken during the same time
- The results span a wide kinematic range, up to high Q²
- There is a good to reasonable agreement for the results from all three methods
- There is also a good agreement compared to H1 results for the LRG and FPS methods
- Work on understanding some remaining differences, in particular with respect to the relative normalisation, continues
- We try to get a consistent picture of the inclusive diffractive DIS