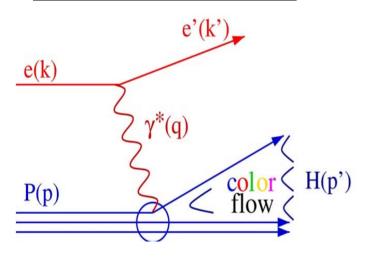


Results on Inclusive Diffraction From The ZEUS Experiment by the M_X -Method

Presented by B.Löhr on behalf of ZEUS


- 1. DIS and diffractive DIS kinematics
- 2. The M_X -Method
- 3. $d\sigma^{diff}/dM_X$
- 4. Diffractive structure function $x_{IP}F_2^{D(3)}$
- 5. The BEKW-fit
- 6. The Q²-dependence of $x_{IP}F_2^{D(3)}$
- 7. Summary

(Data are from the running period 1999-2000 (prelim.) and 1998-1999 (publ.)

Kinematics of DIS and Diffraction

Inclusive DIS events:

$$s = (k+p)^2$$

$$Q^2 = -q^2 = -(k-k')^2$$

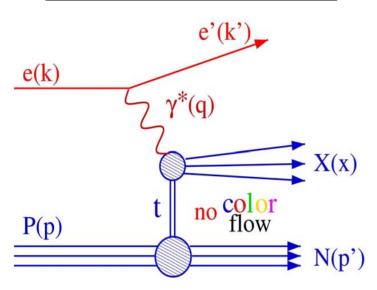
$$W^2 = M_H^2 = (p+q)^2$$

$$x = \frac{Q^2}{2p \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

$$Q^2 = \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{s}$$

center of mass energy squared

virtuality, size of the probe


 $\gamma^{\ast}\text{-}$ proton cms energy squared

x: fraction of the proton carried by the struck parton

y: inelasticity, fraction of the electron momentum carried by the virtual photon

mass of the

Diffractive DIS events:

For diffractive events in addition 2 variables

 M_{x}

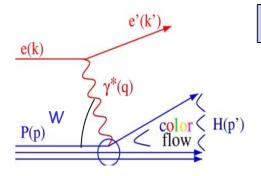
diffractive system X

$$t = (p-p')^2$$

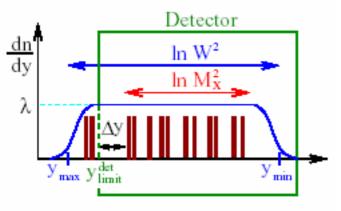
four-momentum transfer squared at the proton vertex

$$x_{IP} = \frac{(p-p') \cdot q}{p \cdot q} = \frac{M_X^2 + Q^2}{W^2 + Q^2}$$

momentum fraction of the proton carried by the Pomeron


$$\beta = \frac{Q^2}{2(p-p') \cdot q} = \frac{x}{x_{IP}} = \frac{Q^2}{M_X^2 + Q^2}$$

fraction of the Pomeron momentum which enters the hard scattering


The M_x -Method (I)

Non diffractive events

Uncorrelated particle emission between incoming p-direction and scattered quark.

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

Rapidity, property of a produced particle

$$\frac{dN_{part}}{dy} = \lambda = const.$$
 W²= $c_0 e^{y_{max} - y_{min}}$

$$W^2 = c_0 e^{y_{\text{max}} - y_{\text{min}}}$$

$$M_x^2 = c_0 e^{y_{\text{limit}} - y_{\text{min}}}$$

Poisson distr. for Δy in nondiffractive events

$$P(0)=e^{-\lambda\Delta y}$$

$$\frac{dN_{\text{nondiff}}}{d \ln M_X^2} = c \cdot e^{b \cdot \ln M_X^2}$$

Diffractive events:

$$\frac{\mathrm{dN}_{\mathrm{diff}}}{\mathrm{dM}_{\mathrm{x}}^2} \propto \frac{1}{\left(\mathrm{M}_{\mathrm{x}}^2\right)^n}$$

At high energies and not too low Mx $n \approx 1$

≈ const.

The M_x-Method (II)

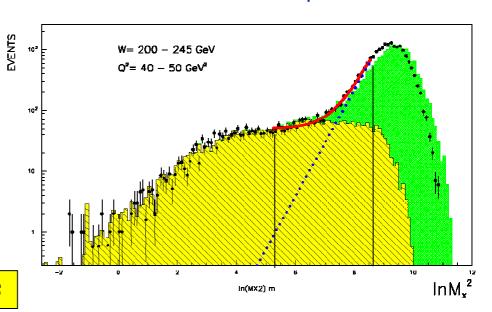
Nondiffractive + diffractive contributions

$$\frac{dN}{d \ln M_X^2} = D + c \cdot e^{b \cdot \ln M_X^2}$$

D is the diffractive contribution

Two approaches for fit to the data

1.) take D=const. for a limited range in ln M²_X

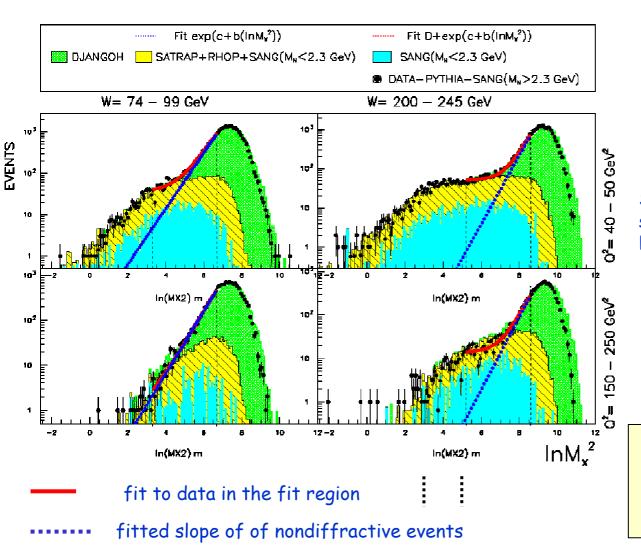

Fit slope b, c and D

for
$$\ln M_X^2 \leq \ln W^2 - \eta_0$$

Determine diffractive events
by subtracting nondiffractive
events from measured data bin
by bin as calculated from
fitted values b and c.

Both approaches give the same results

2.) take D from a BEKW-model (see later) parametrization which describes our measured data.
This is an iterative procedure.



The Mx-Method (III)

Diffractive data selected by the M_X -method do not contain contribution from Regge exchanges. They contain, however, contributions from proton dissociative diffractive events.

MC-simulation

nondiffractive: DJANGOH

diffractive: SATRAP

proton diss.: SANG

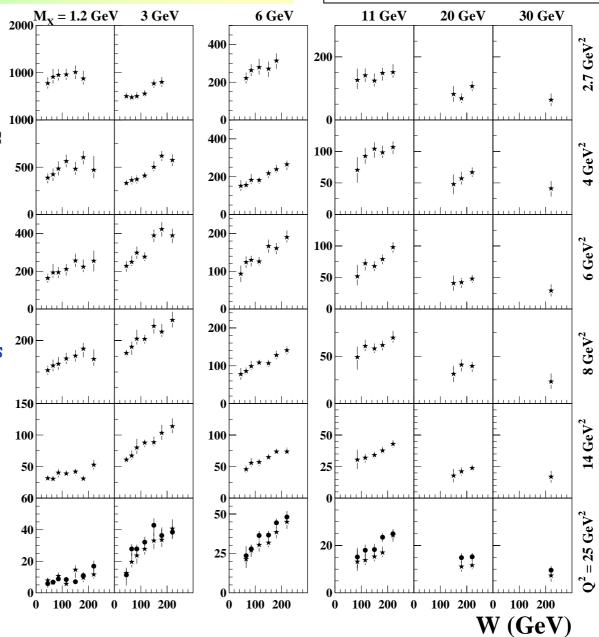
SANG adjusted to fit specially selected data which are dominated by proton dissociation

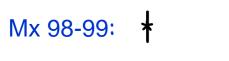
Proton dissociation can be reliably calculated for $M_N > 2.3$ GeV and has been subtracted from data

The ZEUS M_X -results contain contributions from proton dissociation for masses M_N < 2.3 GeV.

ZEUS M_x - data from 1998 - 2000 (II)

Mx 98-99, Mx 99-00 (prel.)

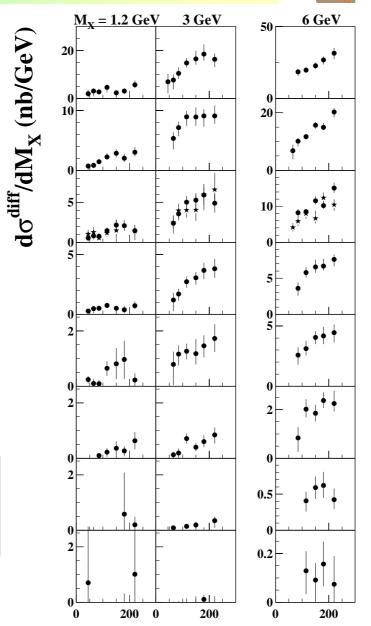

Mx 98-99:
Published data from 1998-1999 period

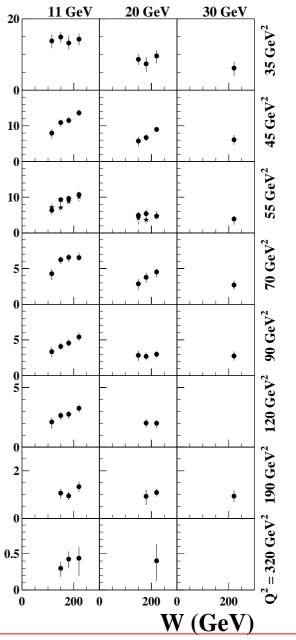

(ZEUS Coll., S.Chekanov et al. D. 713-3 (2005)) ZEUS Coll., S.Chekanov en Such Nucl. Phys B 713, 3 (2005))

Prel. Mx 99-00:

Preliminary results from 1999-2000 period. Extension of Mx 98-99 analysis to higher Q2.

Mx 98-99 and Mx 99-00analyses have common bin at $Q^2 = 25 \, GeV^2$





Prel. Mx 99-00:

Mx 98-99 and Mx 99-00 analyses have common bin at $Q^2 = 55 \text{ GeV}^2$

Within syst. errors good agreement between Mx 98-99 and Mx 99-00 results

Fit of W-dependence of inclusive DIS and inclusive diffractive DIS cross sections

Inclusive DIS:

For small x, F_2 rises rapidly as $x \rightarrow 0$

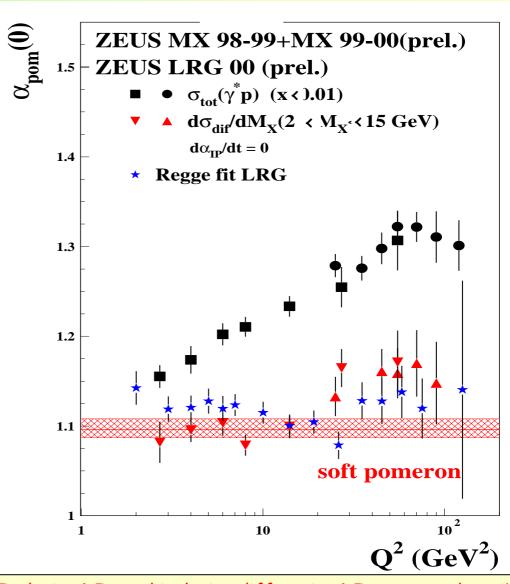
$$F_2 = \mathbf{c} \cdot \mathbf{x}^{-\lambda}$$

$$\lambda = \alpha_{IP}(0) - 1$$

$$W \propto \frac{1}{\mathbf{x}}$$

Inclusive diffractive DIS:

$$\frac{d\sigma_{\gamma^* p \to XN}}{dM_X} = h \cdot \left(\frac{W}{W_0}\right)^{a^{diff}}$$

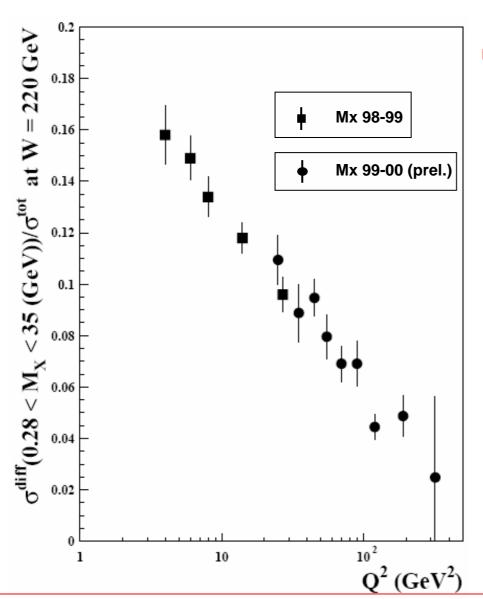

$$\overline{\alpha}_{IP} = 1 + \frac{a^{\text{diff}}}{4}$$
 averaged over t

$$\alpha_{\rm IP}(t) = \alpha_{\rm IP}(0) + \alpha'_{\it IP} \cdot t$$

$$\frac{d\sigma}{dt} = f(t) \cdot e^{2(\alpha_{IP}(t) - 1) \cdot \ln\left(\frac{W}{W_0}\right)^2}$$

$$\frac{d\sigma}{dt}\!\propto\!e^{A\cdot t}\quad\text{for small t.}$$

take $A = 7.9 \pm 0.5 (stat.) ^{+0.9}_{-0.5} (syst.) GeV^2$ as measured by ZEUS LPS


Inclusive DIS and inclusive diffractive DIS are not described by the <u>same</u> 'Pomeron'.

Ratio of total diffractive cross-section to total DIS cross-section

Ratio plotted at W=220 GeV because only there the full M_x range is covered by measurments

 $r = \sigma^{diff}(0.28 \cdot M_X \cdot 35 \text{ GeV})/\sigma^{tot}$

Within the errors of the measurements r is independent of W.

At W=220 GeV, r can be fitted by

$$r = 0.22 - 0.034 \cdot \ln(1+Q^2)$$

This logarithmic dependence of the ratio of total diffractive cross-section to the total DIS cross section indicates that diffraction is a leading twist process for not too low Q^2 .

Diffractive Cross-Section and Diffractive Structure Functions

$$\frac{d^4\sigma}{dQ^2dtdx_{IP}d\beta} = \frac{2\pi\alpha_{em}}{\beta Q^2} [1-(1-y)^2] \cdot F_2^{D(4)}(Q^2,t,x_{IP},\beta)$$

ZEUS neglects the contribution from longitudinal structure function

H1 defines: sizable only at high y

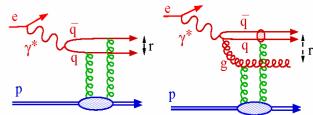
$$\sigma_{\rm r}^{\rm D} = F_2^{\rm D} - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}^{\rm D}$$

If t is not measured:

$$\frac{\mathbf{d}^{3} \sigma_{\gamma^{*} \mathbf{p} \to \mathbf{X} \mathbf{N}}^{\text{diff}}}{\mathbf{d} \mathbf{Q}^{2} \mathbf{d} \boldsymbol{\beta} \mathbf{d} \mathbf{x}_{\text{IP}}} = \frac{2\pi \alpha^{2}}{\boldsymbol{\beta} \mathbf{Q}^{4}} \left[1 + (1 - \mathbf{y})^{2} \right] \cdot \mathbf{F}_{2}^{\mathbf{D}(3)} \left(\boldsymbol{\beta}, \mathbf{x}_{\text{IP}}, \boldsymbol{Q}^{2} \right)$$

$$\frac{1}{2M_{X}}\frac{d\sigma_{\gamma^{*}p\rightarrow XN}^{diff}\left(\!M_{X},W,Q^{2}\right)}{dM_{X}}=\frac{4\pi^{2}\alpha}{Q^{2}\!\left(\!Q^{2}+M_{X}^{2}\right)}x_{IP}F_{2}^{D(3)}\!\left(\!\beta,x_{IP},Q^{2}\right)$$

If $F_2^{D(3)}(\beta,x_{IP},Q^2)$ is interpreted in terms of quark densities, it specifies the probability to find in a proton which undergoes a diffractive interaction a quark carrying a fraction $x = \beta x_{IP}$ of the proton momentum.



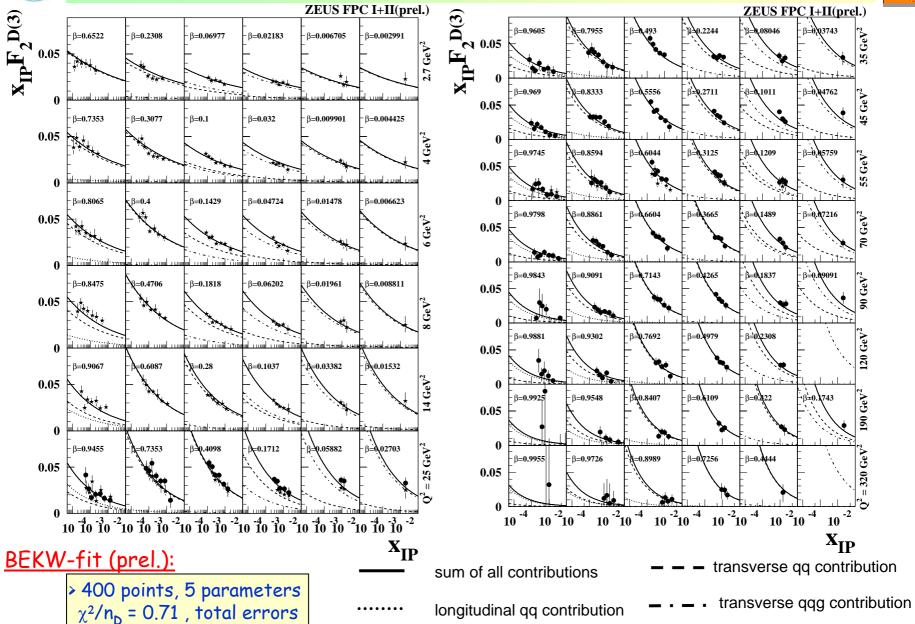
ZEUS modified BEKW Fit

Fit with BEKW model

(Bartels, Ellis, Kowalski and Wüsthoff, 1998)

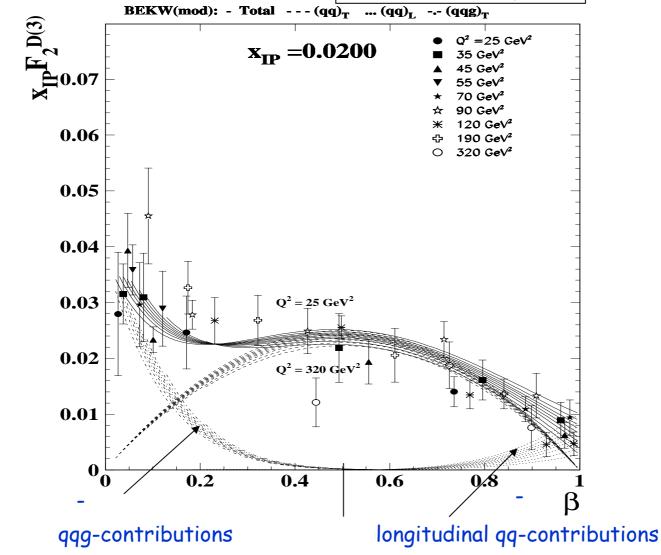
$$\begin{split} \bullet \ \ x_{IP} F_2^{D(3)} &= c_T \cdot F_{q\bar{q}}^T + c_L \cdot F_{q\bar{q}}^L + c_g \cdot F_{q\bar{q}g}^T \\ F_{q\bar{q}}^T &= \left(\frac{x_0}{x_{IP}}\right)^{n_T(Q^2)} \cdot \beta (1-\beta) \ , \\ F_{q\bar{q}}^L &= \left(\frac{x_0}{x_{IP}}\right)^{n_L(Q^2)} \cdot \frac{Q_0^2}{Q^2 + Q_0^2} \cdot \left[\ln(\frac{7}{4} + \frac{Q^2}{4\beta Q_0^2})\right]^2 \cdot \beta^3 (1-2\beta)^2 \ , \\ F_{q\bar{q}g}^T &= \left(\frac{x_0}{x_{IP}}\right)^{n_g(Q^2)} \cdot \ln(1 + \frac{Q^2}{Q_0^2}) \cdot (1-\beta)^\gamma \\ \text{assume } n_T(Q^2) &= c_4 + c_7 \ln(1 + \frac{Q^2}{Q_0^2}) \ , \ n_L(Q^2) &= c_5 + c_8 \ln(1 + \frac{Q^2}{Q_0^2}) \ , \\ n_g(Q^2) &= c_6 + c_9 \ln(1 + \frac{Q^2}{Q_0^2}) \end{split}$$

The ZEUS data support taking $n_T(Q^2) = n_a(Q^2) = n_1 \ln(1 + Q^2/Q^2)$ and $n_L = 0$


Taking $x_0 = 0.01$ and $Q^2_0 = 0.4$ GeV² results in the modified BEKW model (BEKW(mod)) with the 5 free papameters:

$$c_T$$
, c_L , c_g , $n_1^{T,g}$, γ

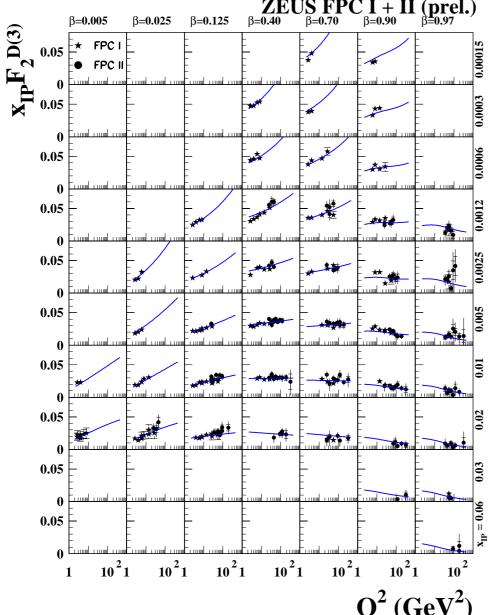
$x_{IP}F_2D(3)$ Results from the Mx 98-99 and Mx 99-00 Analyses with BEKW(mod) Fit (I)



$x_{IP}F_2D(3)$ Results from the Mx 99-00 Analysis with BEKW(mod) Fit (II)

Fixed $x_{TP} = 0.02$

 $25 < Q^2 < 320 GeV^2$ in one plot

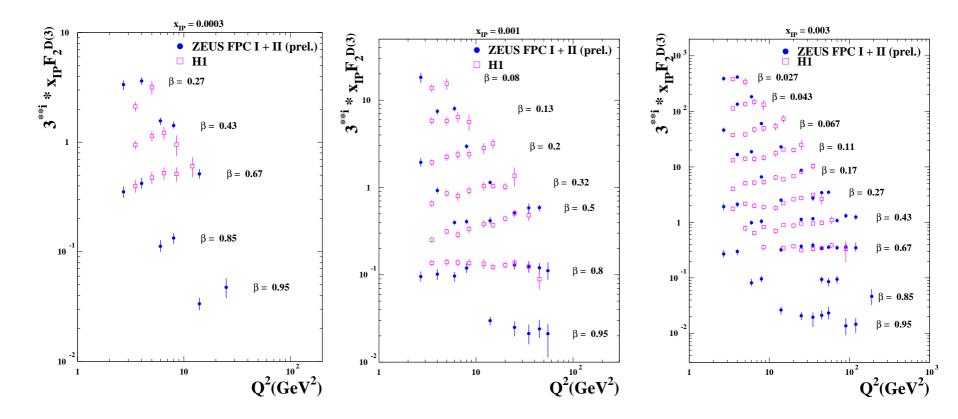

The 3 contributions from BEKW(mod) fit for the above Q^2 values plotted

The BEKW model has an effective QCD-type Q²-evolution incorporated.

$x_{IP}F_2D(3)$ Results from the Mx 98-99 and Mx 99-00 Analyses with BEKW(mod) Fit (III)

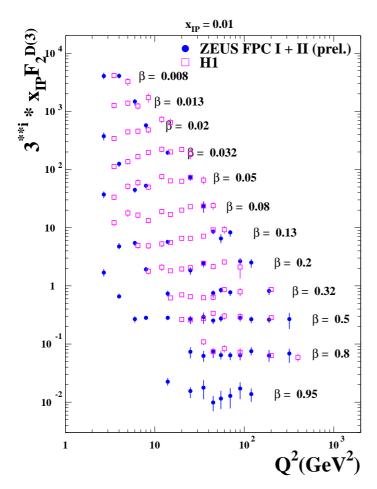
Events in fixed (x_{IP},β) -bins

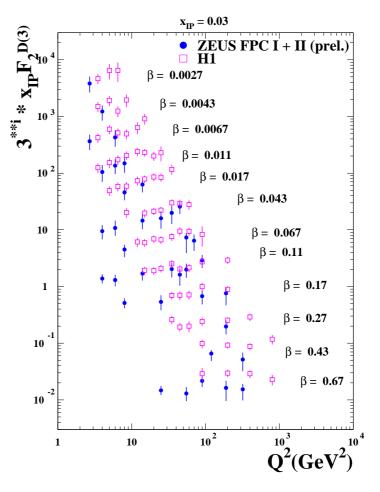
Result of the BEKW(mod) fit


 $x_{TP}F_2D(3)$ shows considerable scaling violations:

from positive scaling violations over near constancy to negative scaling violations.

$x_{IP}F_2D(3)$ Results from the Mx 98-99 and Mx 99-00 Analyses Comparison with H1 Results in H1-binning (I)


Note: ZEUS results contain contributions from p-dissociation with masses $M_{\text{p-diss}} < 2.3~\text{GeV}$, H1 results contain contributions with masses $~M_{\text{p-diss}} < 1.6~\text{GeV}$.


ZEUS results do not contain contributions from Reggeon-exchanges, H1 results may contain such contributions for higher x_{IP} .

X_{IP}F₂D(3) Results from the Mx 98-99 and Mx 99-00 Analysis Comparison with H1 Results in H1-binning (II)

Comparison to H1 data

Fair agreement, except maybe for a few (x_{IP}, β) bins

Note: ZEUS points are shifted to H1 bins using BEKW parametrization. Only those ZEUS point are shown for which the shift was <30%.

Summary

- \cdot ZEUS presented preliminary results on inclusive diffraction from the M_X -Method for the extraction of inclusive diffractive events from the 1999-200 data and from published data taken during 1998-1999.
- The results span a wide range of the kinematic region from low to high Q².
- There is good agreement between the published data from 1998-1999 and the preliminary results from 1999-2000.
- The ratio of the total diffractive cross section to the total DIS cross section indicates that diffraction is a leading twist process.
- DIS and diffractive DIS cannot be describe by a single unique pomeron.
- The combined data from 1998-2000 are well described by the BEKW(mod) model.
- The diffractive structure function $x_{IP}F_2^{D(3)}$ exhibits logarithmic scaling violations.
- There is good agreement compared to results from H1.