Measurements of K_s and Λ spectra and B-E correlations between Kaons in DIS

Boris Levchenko

SINP Moscow University

On behalf of the ZEUS Collaboration

- Identification of K[±], K⁰_s and Λ
- Differential cross-sections in p_T^{lab} , η^{lab} , x_{Bj} , Q^2
- Baryon-antibaryon asymmetry
- Baryon-to-meson ratio
- Bose-Einstein correlations between K[†]K[†], K⁰_sK⁰_s

K and A identification

K[±] by energy-loss, dE/dx

K⁰_s and ∧ by displaced secondary vertex

K_s and Λ reconstruction

Background at the level of $\sim 6\%$ in Λ and $\sim 3\%$ in the K_{s}^{0} sample

- strangeness suppression factor

Motivation

Based on about 100 times larger data sample of 121 pb⁻¹ collected by the ZEUS experiment in a wide kinematic range of ep interactions at HERA

- How well MC generators model s-quark production with λ_s =const
- Origin of the low momentum (0.5-5 GeV) baryons in the central region, $|\eta| < 1.5 : B \bar{B}$ asymmetry, baryon charge transport
- Bose-Einstein correlations between pure states of π^{\pm} , K^{\pm} in comparison with a mixed state $K_{5}^{0} = (K^{0} + \overline{K}^{0})/\sqrt{2}$

Event and Particle Selection

ep: 300 GeV, 39 pb⁻¹ ⊕

318 GeV, 82 pb⁻¹

ZEUS 1996-2000 data 121 pb⁻¹

PHP:

DIS:

Q²<1 GeV²;

5<Q²<25 and Q²>25 GeV²;

0.2 < y < 0.85

0.02 < y < 0.95

2 jets with E, jet > 5 GeV

Particle selection: - Secondary vertex, V^o;

$$0.6 < P_T(K_S^0, \Lambda) < 2.5$$

$$|\eta(K_S^0,\Lambda)| < 1.2$$

MC generators

To study physics, determine the response of the detector and obtain the correction factors

DIS

CDM ARIADNE 4.1 **MEPS** LEPTO 6.5

PHP

PYTHIA 6.1

$$\lambda_s = P(s)/P(u)$$

- strangeness suppression factor

Baryon-antibaryon asymmetry

Ratios are statistically consistent with 0 No evidence for $B - \bar{B}$ asymmetry and the string junction mechanism

DIS cross-sections: Differential features

K_s: All model predicts steeper p_t slopes

Λ: ARIADNE with λ_s =0.3 describes data well, 0.22 less satisfactory LEPTO fails to describe the data (too fast growth of dσ/dη with Q²)

Baryon - to - meson ratio

✓ ARIADNE underestimates the data at high Q² by up to 20%; Ratios are similar to those from ee and pp.

Photoproduction

event with 2 jets

fireball-like event

Fireball sample selection in PHP ZEUS

 E_T (GeV) $E_{T}^{\text{Jet(1)}}/E_{T}=0.3$ ZEUS 121 pb Photoproduction (a) < 0.3 60 > 0.3 40 10² 20 10 0 15 20 E_T^{jet(1)} (GeV) x 10²

Highest transverse energy jet

Fireball-enriched

Total transverse

energy

$$E_T^{jet(1)}/E_T < 0.3$$

Fireball-depleted events dominated by jj carrying most of E_¬

PHP: Baryon-to-meson ratio

PYTHIA fails to describe the data MI makes several independent jets

Bose-Einstein correlations between K[±]K[±]

Double ratio method

$$R(Q_{12}) = \frac{P(Q_{12})^{data}}{P_{mix}(Q_{12})^{data}} / \frac{P(Q_{12})^{MC, nBEC}}{P_{mix}(Q_{12})^{MC, nBEC}}$$

$$Q_{12} = \sqrt{-(p_1 - p_2)^2}$$

55522 $K^{\dagger}K^{\dagger}$, p < 0.9 GeV

Goldhaber form

$$R(Q_{12})=1+\lambda \exp(-r^2Q_{12}^2)$$

Parameters (r, λ) are consistent with the H1 result

Bose-Einstein correlations between $K_s^0 K_s^0$

BB Levchenko, Strange particle

DIS'07 18.04.07 Munich

subthreshold f₀(980) decays¹⁴

Comparison of DIS and LEP results

Fraction of
$$c_f = 4\%$$

$$\lambda = 1.16 \pm 0.29$$

$$\rightarrow \lambda(c_f) = 0.70 \pm 0.19$$

$$r = 0.61 \pm 0.08 \text{ fm}$$

$$\rightarrow$$
 r(c_f) = 0.63±0.09 fm

Summary

Measurements of K^{\pm} , K^{0}_{S} , Λ 's production have been made at ZEUS using 121 pb⁻¹ integrated luminosity:

- No sizeable baryon-antibaryon asymmetry is observed;
- ARIADNE and PYTHIA satisfactorily describe some of the distributions with λ in the range [0.22-0.3], however λ value depends on \mathbf{Q}^2 , \mathbf{x}_{Bi} , \mathbf{p}_T and $\mathbf{\eta}$;
- The ratio of baryons to mesons is large in the PHP resolved region and in the fireball PHP region, much larger than in e+e- and is not described by PYTHIA;
- The values of (r, λ) from Bose-Einstein correlations between $K^{\dagger}K^{\dagger}$ and $K^{0}{}_{s}K^{0}{}_{s}$ agrees and consistent with e+e- data.
- The f(980)-> $K_s^0K_s^0$ decay can significantly affect the λ value.