

Prompt photons with associated jets in photoproduction at HERA

ZEUS Collaboration European Physical Journal C49 (2007) 511-522

S.Chekanov (DESY/ANL)

on behalf of the ZEUS Collaboration

DIS07
Munich, Germany
April 2007

Prompt-photon production

- Sensitive to quark and gluon densities
- Several QCD calculations can be confronted with the data
 - NLO QCD, k_T-factorization, Monte Carlo models (LO+PS)
- Avoid systematics associated with jet identification and measurement
 - photons are simple, well measured EM objects
 - emerge directly from the hard scattering without fragmentation
 - no need for "hadronisation" corrections at low transverse momenta

Still experimentally challenging measurement:

- large background expected from fragmentation (decays of π⁰, η,)
- must be subtracted on statistical basis for data
- conventional isolation requirement: E_T^{y(true)} > 0.9 E_T

y+jet final state

Look at y+jet topologies: $e+p\rightarrow e+\gamma(prompt)+jet+X$

- Expected to be more sensitive to the underlaying partonic process than the inclusive prompt photons
- Hadronisation corrections are smaller than for dijets at similar E_T
 - more reliable predictions
- Experimentally, very clean signatures
 - jet should balance EM object in P_T

QCD predictions

NLO QCD Collinear factorisation

- dominant contribution from diagrams where partons are strongly ordered in virtualities.
- DGLAP evolution for PDF
- K.Krawczyk & A.Zembrzuski (KZ)
 - (not all) NLO corrections
 - resolved & direct contributions
 - GRV PDF
- Fontanaz, Guillet, Heinrich (FGH)
 - full NLO corrections for resolved component
 - MST01 proton PDF
 - AFG02 photon PDF
- $\mu_R = \mu_F = E_T^{\gamma}$ for all above

Monte Carlo models (LO+parton showers) also available: PYTHIA and HERWIG

k_T factorization QCD predictions Virtualities/k_T are no longer ordered:

- Off-shell matrix elements
- Unintegrated PDF
- Kimber-Martin-Ryskin prescription for PDF
- A.Lipatov & A.Zotov (LZ)
 - Direct & resolved processes taken into account

+ some more high-order terms ..

etc.

S.Chekanov: y+jet in photoproduction at HERA

Photon reconstruction

- Previous measurements based on information on shapes of calorimeter clusters associated with electromagnetic (EM) objects
 - Example: y should have a narrower width of a EM cluster compared to contributions from π^0
- Present measurement uses complementary information based on π^0 **Barrel Preshower detector (BPRE):**
 - Inactive material (solenoid) leads to conversions of γ to e+epairs. Conversions of π⁰ and η are stronger
 - BPRE counts charged particles from y conversions. Low mip signal is used to distinguish between y and hadrons (on a statistical basis)

Geant simulation: isolated π^0 and γ

BPRE

10 GeV Photons

32 modules / 13 tiles

Identification of isolated photons

- Verify BPRE response by looking at single photons produced in the deeply virtual compton scattering (DVCS):
 - ep → ye' p
- Reconstruct isolated γ using the same reconstruction method as for γ+jet analysis
- Fraction of events without conversions is similar to the expectation for ~1X0 (~40%)
- Signal for isolated π^0 is by a factor 2 larger
- Dead-material map had to be tuned to obtain good agreement between data and MC

Data sample

Selected events:

- 77 pb⁻¹
- Q² <1 GeV²
- 0.2< y < 0.8

~4000 candidate events

Reconstruction:

- Use Energy-Flow Objects (EFO)
- Reconstruct > 1 jets using longitudinally-invariant k_⊤ algorithm
- y candidates:
 - large electromagnetic fraction E^{EMC}/E^{tot} > 0.9
 - $E_T > 5 \text{ GeV}$ $-0.74 < \eta < 1.1$
- Associated jet:
- $E_{\tau} > 6 \text{ GeV}$ -1.6 < η < 2.4
- EEMC /Etot < 0.9

Detector correction:

- correct data using a MC
- assume isolation E_τ^{γ(true)}>0.9E_τ requirement
- apply parton-to-hadron correction to QCD parton predictions based on PYTHIA (due to measurement of associated jet at rather low $\mathbf{E}_{\scriptscriptstyle T}$)

Extraction of prompt-photon signal

Based on statistical subtraction method

In each E_T & η bin, BPRE mips distribution is fitted with the signal + background from MC

- The method does not rely on transverse size of photon object in calorimeter
- Complimentary to H1 analysis & previous ZEUS results based on the calorimeter shape method.

Several other variables for checks:

- Distance (D) from γ-object to EFO
- Energy outside of γ+jet configuration

- Both PYTHIA & HERWIG fail (both in normalization & shape)
- NLO QCD calculations are closer to the data, but also fail at low E_T
- k_⊤ factorization approach works the best (but somewhat larger scale uncertainty)

$$x_{\gamma}^{\text{obs}} = \sum_{\text{jet},\gamma} (E_i - P_{z,i}) / 2 E_e y$$

fraction of the incoming γ -momentum taken by the γ -jet system

k_T-factorisation approach better describes the resolved part

Total cross-section in the kinematic region:

$$\begin{array}{ll} 0.2 < y < 0.8 & E_T^{\gamma \text{(true)}} > 0.9 \ E_T \\ 5 < E_T^{\gamma} < 16 \ \text{GeV} & -0.74 < \eta^{\gamma} < 1.1 \\ 6 < E_T^{\text{jet}} < 17 \ \text{GeV} & -1.6 < \eta^{\text{jet}} < 2.4 \end{array}$$

$$\sigma(ep \to e + \gamma_{\text{prompt}} + \text{jet} + X) = 33.1 \pm 3.0 \, (\text{stat.}) \, ^{+4.6}_{-4.2} (\text{syst.}) \, \text{pb}$$

Compare to: 23.3 pb (KZ) 23.5 pb (FGH) 30.5 pb (LZ)

(scale uncertainty ~ 2 pb for all)

Monte Carlo models: PYTHIA: 20 pb HERWIG: 13.5 pb

Previous phase space defined as $E_{\tau}^{\gamma} < E_{\tau}^{jet}$

What about changing the phase space available for QCD radiation, i.e.

$$E_T^{\gamma} > E_T^{jet}$$
?

Sensitive to different aspect of high-order QCD contributions?

Difference between the k_T factorization approach and NLO QCD is smaller for $E^{\gamma}_{T} > E^{jet}_{T}$

Both NLO QCD and k_T factorization calculations start to describe the data

- Same conclusion for other kinematic variables
- All QCD calculations describe the data well for

 $E_T^{Y} > 7 \text{ GeV}$ $E_T^{jet} > 6 \text{ GeV}$

12

Summary

- First measurement of prompt photons based on conversion probabilities measured using a dedicated detector (BPRE)
- PYTHIA and HERWIG have wrong shapes and normalizations
- Difference with KZ & FGH NLO QCD calculations
 - mainly in the forward-jet and low E_⊤ region
- k_⊤-factorisation QCD prediction is closer to the data than NLO QCD
- If transverse-momentum cuts are changed from $E^{\gamma}_{\tau} < E^{jet}_{\tau}$ to $E^{\gamma}_{\tau} > E^{jet}_{\tau}$ all QCD calculations describe the data due to harder E^{γ}_{τ} cut
 - different sensitivity to QCD dynamics?