Inclusive Jet Production in DIS at High Q² and Extraction of α_s at HERA

Thomas Kluge, DESY DIS07, 17 April 2007

- Motivation
- Data analysis
- lacktriangle α_s extraction
- Summary

Motivation

Jet production in DIS at high Q² and E_⊤: handle to pQCD

Analysis Strategy

- count all jets in phase space as function of Q² and E_T
- cross section depends on
 - QCD matrix elements
 - strong coupling α_S
 - parton density functions of the proton
- lacktriangle determine α_S by fitting the theory to data

Examples for contributing graphs

Jet Observable

- No unique definition of a jet, here: incl. k₁ cluster algorithm
 - similar to e⁺e⁻ algorithms
 - favoured by theory over (most) cone algorithms
 - infrared and collinear safe at all orders
 - factorisable
- For DIS: ⇒ boost particles to Breit frame of reference

Breit Frame

Born level of deep inelastic scattering, the electron recoils a single jet

Boost final state to Breit system of reference

Data Set

Selection

- Event sample
 - 1999-2000, e^+p , $\mathcal{L}_{int} = 65pb^{-1}$
- Event selection NC DIS
 - 150<Q²<15000 GeV²
 - 0.2<y<0.7
- Jet selection
 - inclusive k_T , p_T recombination scheme, R=1.0
 - $-1.0 < \eta^{LAB} < 2.5$, $7 < E_T^{BREIT} < 50 \text{GeV}$
- "inclusive jet cross section": each jet of an event contributes to the cross section

$$\sqrt{s} = 319 \text{ GeV}$$

$$y = \frac{Q^2}{sx}$$

Data Correction & Systematics

- Correction for acceptance and resolution with RAPGAP (ME+PS) and DJANGO (color dipole model) <20%
- Correction for QED radiation with HERACLES <15%
- Systematic uncertainties
 - 2% hadronic energy scale -> 4% on cross section
 - model dependence (ME+PS, CDM) -> 3% on cross section
 - lepton energy scale, lepton angle, -> small
- Exp. error ~5%, mainly due to hadronic energy scale and model dependence
- Compared to previous analysis
 - twice luminosity, halved energy scale uncertainty

Theory Calculation

- NLOJET++ v2.0.1 for NLO matrix element integration
- $\begin{tabular}{ll} \hline & fastNLO for PDF convolution \\ & and α_s \\ \end{tabular}$
- Proton PDFs: CTEQ6.5
- Hadronisation corrections obtained with MC event generators DJANGO, RAPGAP
- Electro weak corrections with LEPTO/HERACLES
- $\mu_r = E_T$, $\mu_f = Q$, varied by factor 2 to estimate uncertainty

fastNLO

http://projects.hepforge.org/fastnlo/

Results Single Differentially

Inclusive Jet Cross Section

- QCD does a good job describing the jet cross section
- NLO perturbative prediction corrected for hadronisation O(10%)
- At highest Q² need to include also Z⁰ exchange O(10%)

Results Double Differentially

Inclusive Jet Cross Section

- the E_T spectrum gets harder with increasing Q²
- well reproduced at NLO

α_S Extraction Method

- Fit of strong coupling to single data point trivial
 - vary $\alpha_{S}(\mu_{R})$ until theory matches data
 - check that $\alpha_{S}(M_{Z}) = 0.118$ in CTEQ6.5 does not bias the result \checkmark
- Calculating averages: fit takes into account correlations of systematic experimental errors
 - Hessian method, fit sources of systematic uncertainties, e.g. energy scales
 - data points differ in $\mu_{\scriptscriptstyle R}$, evolve to common scale: fit $\alpha_{S}(M_{\scriptscriptstyle Z})$
- Theory error on α_S by offset method: repeat fit with different scales and hadronisation corrections, add in quadrature

α_S Results

α_s from Inclusive Jet Cross Section

- **Each** data point yields one α_S
- Renormalisation scale chosen here: E_T of the jet
- Highest Q² interval statistically limited
- Running of α_S is demonstrated
- Results are compatible -> calculate the average

Asymptotic Freedom

- Points: average of E_T or Q² intervals
- Band: overall average
- Q as renormalisation scale yields a slightly worse description
- Errors are experimental only
 - NLO scale uncertainty → 4% error on α_S
 - NNLO will help
- Compatible with world mean

α_s from Inclusive Jet Cross Section

100

 μ_{r} / GeV

b)

Normalised Jet Cross Section

- Jet analysis applied in NC DIS phase space (Q²,y)
- Alternative: instead of #jets (incl. jet cross section) use #jets/#events (normalised incl. jet cross secion)
- **Equals** σ *jet* $/ \sigma$ *NCDIS*
- lacksquare Ratio calculated at detector level -> systematics $oldsymbol{\sqrt{}}$
- Luminosity uncertainty cancels, exp. systematics reduced
- PDF uncertainty reduced
- Use DISENT and fastNLO for calculation of σ^{NCDIS} at NLO
- Improve precision of α_S fit

Normalised Jet Cross Section (2)

Normalised Inclusive Jet Cross Section

- Appearance very similar to inclusive jet cross section
- More jets per event with increasing Q²
- Theory error for jet and NC DIS part assumed uncorrelated
- El. weak correction cancels only partly:
 - cut on jet E_T shifts mean Q² to higher values

Numerical Values

Inclusive jet cross section, using 24 data points

$$\alpha_s(M_Z) = 0.1179 \pm 0.0024 \,(\text{exp.}) \, {}^{+0.0052}_{-0.0032} \,(\text{th.}) \, \pm 0.0030 \,(\text{pdf.})$$

Normalised inclusive jet cross section, using 24 data points

$$\alpha_s(M_Z) = 0.1193 \pm 0.0014 \,(\text{exp.}) \, {}^{+0.0046}_{-0.0032} \,(\text{th.}) \, \pm 0.0016 \,(\text{pdf.})$$

- Compatible within error, significant reduction of uncertainty
- Theory error main contribution (need NNLO)
- Restricting phase space to where theory error is smallest (700-5000GeV²)

$$\alpha_s(M_Z) = 0.1172 \pm 0.0021 \,(\text{exp.}) \,_{-0.0017}^{+0.0032} \,(\text{th.}) \pm 0.0010 \,(\text{pdf.})$$

 Do not take scale error numerical value too seriously, only order of magnitude

Comparison

Summary

- Update on H1 inclusive jet cross section with improved precision
- Good description by pQCD at NLO (with hadronisation & Z⁰)
- $lacktriangledown_{as}$ fit, with small **experimental** uncertainty, large scale and pdf error
- Precision can be improved by fitting normalised inclusive jet cross section

$$\alpha_s(M_Z) = 0.1193 \pm 0.0014 \,(\text{exp.}) \, {}^{+0.0046}_{-0.0032} \,(\text{th.}) \, \pm 0.0016 \,(\text{pdf.})$$

- exp. error at the 1% level, competitive and consistent with other determinations
- HERA II statistics will allow for further improvements

Backup

