Events with isolated high P_T leptons and missing E_T detected with the H1 detector at HERA.

Ytsen de Boer (ITEP)

On behalf of the H1 collaboration.

- HERA and H₁
- <u>Electron/Muon channel</u>
- Results
- Comparison H1 and ZEUS
- Tau channel
- Results
- Summary

HERA and H₁

HERA I (1994-2000) HERA II (2003-2007)

<u>Total lumi ~ 478 pb⁻¹</u>

Isolated Electron/Muon Analysis

Main SM signal contribution:

- Real W production cross section ~ 1 pb
- W decays leptonically, branching ratio 10% per lepton

EPVEC Generator U.Baur at al., Nucl.Phys.B375:3(1992)
+NLO K.P.Diener etal. EPJ.C25,405(2002))

Signal/Background seperation

Signal

Acoplanarity

Backgrounds

Based on topologies define detection phase space:

 $P_{t}^{l}>10 \text{ GeV}, P_{T}^{miss}>12 \text{ GeV}, \text{ theta in } [5, 140]^{\circ}$

Reduces most of the background

Further background supression using:

- -lepton isolation D_{track} , D_{Jet}
- -event balance (Acoplanarity)
- -other kinematical and topological variables

Reminder: Main Results HERA I

Phys. Lett. B561 (2003) 241

In the e^+p data for $P_T^X > 25$ GeV (atypical of W)

10 events observed

2.91 expected

which corresponds to a 3 sigma excess.

HERA I+II Results

I+P_T^{miss} events at HERA I+II (e[±]p, 478 pb⁻¹)

- Full H1 data set analysed 478 pb⁻¹
- Good overall agreement with SM
- \bullet Continue to see high $P_{_{\boldsymbol{T}}}^{\ \boldsymbol{X}}$ events

HERA I+II Results e⁻p and e⁺p

- Now 184 pb⁻¹ of e⁻p available and analysed
- Good agreement with SM

- Good over all agreement with SM
- ullet Still see excess at high $P_{_{T}}^{_{\ \ X}}$

HERA I+II Results

H1 Preliminary		Electron	Muon	Combined	
$l+P_T^{ m miss}$ events at		obs./exp.	obs./exp.	obs./exp.	
HE	RA I+II	(Signal contribution)	(Signal contribution)	(Signal contribution)	
e^+p	Full Sample	26 / 27.3 ± 3.8 (71%)	15 / 7.2 ± 1.1 (85%)	41 / 34.5 ± 4.8 (74%)	
$294 \mathrm{pb^{-1}}$	$P_T^X > 25\mathrm{GeV}$	11 / 4.7 ± 0.9 (75%)	10 / 4.2 ± 0.7 (85%)	21 / 8.9 ± 1.5 (80%)	3.0 sigma
e^-p	Full Sample	16 / 19.4 ± 2.7 (65%)	2 / 5.1 ± 0.7 (78%)	18 / 24.4 ± 3.4 (68%)	
$184 \mathrm{pb^{-1}}$	$P_T^X > 25 \mathrm{GeV}$	3 / 3.8 ± 0.6 (61%)	0 / 3.1 ± 0.5 (74%)	3 / 6.9 ± 1.0 (67%)	
$e^{\pm}p$	Full Sample	42 / 46.7 ± 6.5 (69%)	17 / 12.2 ± 1.8 (82%)	59 / 58.9 ± 8.2 (72%)	
$478 \mathrm{pb^{-1}}$	$P_T^X > 25\mathrm{GeV}$	14 / 8.5 ± 1.5 (68%)	10 / 7.3 ± 1.2 (79%)	24 / 15.8 ± 2.5 (73%)	

- Good over all agreement in both data sets and both lepton channels
- Excess observed in both the electron and muon channel for e⁺p data
- Excess amounts to a 3.0 sigma fluctuation.

H1/ZEUS Results Comparison at high P_T

P _⊤ x> 25 GeV		electrons Data/SM	muons Data/SM	
е⁺р	H <mark>1</mark>	294 pb ⁻¹	11/4.7±0.9	10/4.2±0.7
	ZEUS	228 pb ⁻¹	1/3.2±0.4	3/3.1±0.5
e-p	H1	184 pb ⁻¹	3/3.8±0.6	0/3.1±0.5
	ZEUS	204 pb ⁻¹	5/3.8±0.6	2/2.2±0.3

- ZEUS: good agreement with the Standard Model
- H1: overshoot at high $P_{_{\mathrm{T}}}^{_{_{\mathrm{T}}}}$ in $e^{+}p$ data in both lepton channels
- H1 and ZEUS have slightly different acceptances

Comparison H1 and ZEUS Acceptances Electron channel

	Detection		Electron Channel		
	phase space		H1	ZEUS	
	P_T^{ℓ}	\geq	10	10	
	$P_T^{\rm miss}$	\geq	12	12	
Г	P_T^X	\geq	0	12	
	θ		$5^{\circ} - 140^{\circ}$	$17^{o} - 86^{o}$	

- ullet H1 has acceptance to lowest $P_{_{\mathrm{T}}}^{\ \ \mathrm{X}}$
- High P_T^{X} events observed by both H1/ZEUS
- At higher P_T acceptances similar, H1 higher due to wider theta range
- Most (not all) H1 events in ZEUS acceptance

Comparison H1 and ZEUS Acceptances Muon channel

	Detection	Muon Channel		
	phase space	H1	\mathbf{ZEUS}	
	$P_T^{\ell} \geq$	10	10	
	$P_T^{ m miss} \geq$	12	12	
_	$P_T^X \geq$	12	12	
l	θ^{-}	$5^{o} - 140^{o}$	$17^{o} - 115^{o}$	
L				

- ullet High $P_{_{\mathrm{T}}}^{_{\ \ X}}$ events observed by both H1/ZEUS
- At higher P_T acceptances similar, H1 higher due to wider theta range
- Most (not all) H1 events in ZEUS acceptance

Isolated Tau Analysis

- Cross check results in elec/muon chann
- Look for:
 - events with P_t miss
 - narrow jets ("1-prong")

W production cross section ~ 1 pb Tau branching ratio ~ 43% (1-prong)

EPVEC Generator U.Baur at al., Nucl.Phys.B375:3(1992) +NLO K.P.Diener etal. EPJ.C25,405(2002))

HERA I analysis in good agreement with the Standard Model:

• HERA I (118 pb⁻¹) Published: Eur.Phys.J.C48:699-714,2006

Found 6, expected 9.9, signal 0.9, no events at $P_{_{\rm T}}^{_{\rm X}} > 25 \text{ GeV}$

- Improved track isolation: New analysis
- More lumi (from all H1 data 471 pb⁻¹)

HERA I+II Tau Results

HERA I+II Tau Results e⁺p and e⁻p

10

<u> </u>					
H1 Preliminary		H1 Data	SM Expectation	SM Signal	Other SM
$ au + P_T^{ ext{miss}}$ events at HERA I+II					Processes
e^+p	Full Sample	10	10.8 ± 1.8	1.6 ± 0.3	9.2 ± 1.6
287 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	0	0.53 ± 0.07	0.38 ± 0.06	0.15 ± 0.01
e^-p	Full Sample	10	8.6 ± 1.5	1.0 ± 0.2	7.6 ± 1.4
$184 \mathrm{pb^{-1}}$	$P_T^X > 25 \text{ GeV}$	1	0.47 ± 0.07	0.25 ± 0.04	0.22 ± 0.03
$e^{\pm}p$	Full Sample	20	19.5 ± 3.2	2.7 ± 0.4	16.8 ± 2.8
471 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	1	0.99 ± 0.13	0.62 ± 0.10	0.37 ± 0.03

- Analysed 184 pb⁻¹ of e⁻p and 287 pb⁻¹ of e⁺p data
- Good agreement with the Standard Model in both data sets

Summary and Conclusions

- For the presented results, use was made of the full H₁ ep data set ~ 478 pb⁻¹
- Electron/Muon Channel:
 - Found good overall agreement with the Standard Model 59 found vs. 58.9 expected
 - The HERA I excess in e⁺p data at high P_T X continues to be seen 21 found vs. 8.9 expected The fluctuation remains a 3 sigma effect.
- <u>Tau Channel:</u> Found good agreement with SM 20 found vs. 19.5 expected

Backup slides

Interpretation

Particle coupling to e-q with fermion number F=0 :

Large mass i.e. large x_{Bj} d >> d, hence $\sigma(e+)$ >> $\sigma(e-)$

Another example: Squarks in R-parity violating SUSY

If LSP is \widetilde{v}_{τ} and no large RpV coupling involving the τ : \widetilde{v}_{τ} could be long-lived

RpV via couplings involving two 3^{rd} generation fields, light sbottom. Large $M_{top} \rightarrow large x_{Bj}$

HERA I Single Top Results

Eur. Phys. J. C33 (2004) 9

- Standard Model Single top negligible cross section ~ 1 fb
- Consider anomalous (FCNC) single top production where W decays both leptonically and hadronically.
- Observed 5 events vs. 1.31 +/- 0.22 expected
- H1 Measured single top production X-sec 0.29 + 0.15 0.14 pb
- H1 set cross section limit of 0.55 pb at 95% confidence level
- Better description of data with anomalous (FCNC) single top
- Does not provide larger yield for e⁺p over e⁻p data

Tau Event Selection

Tau Channel Selection		
Inclusive CC	$P_T^{ m calo} > 12 \; { m GeV}$	
	$P_T^{\mathrm{had}} > 12 \text{ GeV}$	
	$P_T^{ m miss} > 12~{ m GeV}$	
	$\delta^{\text{miss}} > 5 \text{ GeV}$	
	$V_{ap}/V_p < 0.5$	
	$(< 0.15 \text{ if } P_T^{\text{miss}} < 25 \text{ GeV})$	
Narrow Jets	$P_T^{jet} > 7 \text{ GeV}$	
	$20^{\circ} < \theta^{jet} < 120^{\circ}$	
	$R^{jet} < 0.12$	
	$N_{tracks}^{jet} \ge 1, \max(P_T^{track}) > 5 \text{ GeV}$	
Isolation	$D_{em,\mu,jet} > 1.0$	
Acoplanarity	$\Delta \varphi(\tau, X) < 170^{\circ} \text{ if } P_T^X > 5 \text{ GeV}$	
1-Prong Jets	$N_{tracks}^{Djet<1.0} = 1$	
Final Selection	$N_{\rm DTNV}^{D_{track} < 0.3} = 1$	