Events with isolated high P_T leptons and missing E_T detected with the H1 detector at HERA. ### **Ytsen de Boer (ITEP)** On behalf of the H1 collaboration. - HERA and H₁ - <u>Electron/Muon channel</u> - Results - Comparison H1 and ZEUS - Tau channel - Results - Summary ### HERA and H₁ HERA I (1994-2000) HERA II (2003-2007) <u>Total lumi ~ 478 pb⁻¹</u> ### **Isolated Electron/Muon Analysis** ### Main SM signal contribution: - Real W production cross section ~ 1 pb - W decays leptonically, branching ratio 10% per lepton EPVEC Generator U.Baur at al., Nucl.Phys.B375:3(1992) +NLO K.P.Diener etal. EPJ.C25,405(2002)) ## Signal/Background seperation ### Signal # Acoplanarity ### Backgrounds Based on topologies define detection phase space: $P_{t}^{l}>10 \text{ GeV}, P_{T}^{miss}>12 \text{ GeV}, \text{ theta in } [5, 140]^{\circ}$ Reduces most of the background Further background supression using: - -lepton isolation D_{track} , D_{Jet} - -event balance (Acoplanarity) - -other kinematical and topological variables ### Reminder: Main Results HERA I Phys. Lett. B561 (2003) 241 In the e^+p data for $P_T^X > 25$ GeV (atypical of W) 10 events observed 2.91 expected which corresponds to a 3 sigma excess. ### **HERA I+II Results** I+P_T^{miss} events at HERA I+II (e[±]p, 478 pb⁻¹) - Full H1 data set analysed 478 pb⁻¹ - Good overall agreement with SM - \bullet Continue to see high $P_{_{\boldsymbol{T}}}^{\ \boldsymbol{X}}$ events ### HERA I+II Results e⁻p and e⁺p - Now 184 pb⁻¹ of e⁻p available and analysed - Good agreement with SM - Good over all agreement with SM - ullet Still see excess at high $P_{_{T}}^{_{\ \ X}}$ ### **HERA I+II Results** | H1 Preliminary | | Electron | Muon | Combined | | |-----------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------| | $l+P_T^{ m miss}$ events at | | obs./exp. | obs./exp. | obs./exp. | | | HE | RA I+II | (Signal contribution) | (Signal contribution) | (Signal contribution) | | | e^+p | Full Sample | 26 / 27.3 ± 3.8 (71%) | 15 / 7.2 ± 1.1 (85%) | 41 / 34.5 ± 4.8 (74%) | | | $294 \mathrm{pb^{-1}}$ | $P_T^X > 25\mathrm{GeV}$ | 11 / 4.7 ± 0.9 (75%) | 10 / 4.2 ± 0.7 (85%) | 21 / 8.9 ± 1.5 (80%) | 3.0 sigma | | e^-p | Full Sample | 16 / 19.4 ± 2.7 (65%) | 2 / 5.1 ± 0.7 (78%) | 18 / 24.4 ± 3.4 (68%) | | | $184 \mathrm{pb^{-1}}$ | $P_T^X > 25 \mathrm{GeV}$ | 3 / 3.8 ± 0.6 (61%) | 0 / 3.1 ± 0.5 (74%) | 3 / 6.9 ± 1.0 (67%) | | | $e^{\pm}p$ | Full Sample | 42 / 46.7 ± 6.5 (69%) | 17 / 12.2 ± 1.8 (82%) | 59 / 58.9 ± 8.2 (72%) | | | $478 \mathrm{pb^{-1}}$ | $P_T^X > 25\mathrm{GeV}$ | 14 / 8.5 ± 1.5 (68%) | 10 / 7.3 ± 1.2 (79%) | 24 / 15.8 ± 2.5 (73%) | | - Good over all agreement in both data sets and both lepton channels - Excess observed in both the electron and muon channel for e⁺p data - Excess amounts to a 3.0 sigma fluctuation. # H1/ZEUS Results Comparison at high P_T | P _⊤ x> 25 GeV | | electrons
Data/SM | muons
Data/SM | | |--------------------------|------------------|----------------------|------------------|------------| | е⁺р | H <mark>1</mark> | 294 pb ⁻¹ | 11/4.7±0.9 | 10/4.2±0.7 | | | ZEUS | 228 pb ⁻¹ | 1/3.2±0.4 | 3/3.1±0.5 | | e-p | H1 | 184 pb ⁻¹ | 3/3.8±0.6 | 0/3.1±0.5 | | | ZEUS | 204 pb ⁻¹ | 5/3.8±0.6 | 2/2.2±0.3 | - ZEUS: good agreement with the Standard Model - H1: overshoot at high $P_{_{\mathrm{T}}}^{_{_{\mathrm{T}}}}$ in $e^{+}p$ data in both lepton channels - H1 and ZEUS have slightly different acceptances # Comparison H1 and ZEUS Acceptances Electron channel | | Detection | | Electron Channel | | | |---|------------------|--------|---------------------------|-------------------|--| | | phase space | | H1 | ZEUS | | | | P_T^{ℓ} | \geq | 10 | 10 | | | | $P_T^{\rm miss}$ | \geq | 12 | 12 | | | Г | P_T^X | \geq | 0 | 12 | | | | θ | | $5^{\circ} - 140^{\circ}$ | $17^{o} - 86^{o}$ | | - ullet H1 has acceptance to lowest $P_{_{\mathrm{T}}}^{\ \ \mathrm{X}}$ - High P_T^{X} events observed by both H1/ZEUS - At higher P_T acceptances similar, H1 higher due to wider theta range - Most (not all) H1 events in ZEUS acceptance # Comparison H1 and ZEUS Acceptances Muon channel | | Detection | Muon Channel | | | |---|----------------------|-------------------|--------------------|--| | | phase space | H1 | \mathbf{ZEUS} | | | | $P_T^{\ell} \geq$ | 10 | 10 | | | | $P_T^{ m miss} \geq$ | 12 | 12 | | | _ | $P_T^X \geq$ | 12 | 12 | | | l | θ^{-} | $5^{o} - 140^{o}$ | $17^{o} - 115^{o}$ | | | L | | | | | - ullet High $P_{_{\mathrm{T}}}^{_{\ \ X}}$ events observed by both H1/ZEUS - At higher P_T acceptances similar, H1 higher due to wider theta range - Most (not all) H1 events in ZEUS acceptance # **Isolated Tau Analysis** - Cross check results in elec/muon chann - Look for: - events with P_t miss - narrow jets ("1-prong") W production cross section ~ 1 pb Tau branching ratio ~ 43% (1-prong) EPVEC Generator U.Baur at al., Nucl.Phys.B375:3(1992) +NLO K.P.Diener etal. EPJ.C25,405(2002)) # HERA I analysis in good agreement with the Standard Model: • HERA I (118 pb⁻¹) Published: Eur.Phys.J.C48:699-714,2006 Found 6, expected 9.9, signal 0.9, no events at $P_{_{\rm T}}^{_{\rm X}} > 25 \text{ GeV}$ - Improved track isolation: New analysis - More lumi (from all H1 data 471 pb⁻¹) ### **HERA I+II Tau Results** ### HERA I+II Tau Results e⁺p and e⁻p 10 | <u> </u> | | | | | | |--|--------------------------|---------|-----------------|-----------------|-----------------| | H1 Preliminary | | H1 Data | SM Expectation | SM Signal | Other SM | | $ au + P_T^{ ext{miss}}$ events at HERA I+II | | | | | Processes | | e^+p | Full Sample | 10 | 10.8 ± 1.8 | 1.6 ± 0.3 | 9.2 ± 1.6 | | 287 pb ⁻¹ | $P_T^X > 25 \text{ GeV}$ | 0 | 0.53 ± 0.07 | 0.38 ± 0.06 | 0.15 ± 0.01 | | e^-p | Full Sample | 10 | 8.6 ± 1.5 | 1.0 ± 0.2 | 7.6 ± 1.4 | | $184 \mathrm{pb^{-1}}$ | $P_T^X > 25 \text{ GeV}$ | 1 | 0.47 ± 0.07 | 0.25 ± 0.04 | 0.22 ± 0.03 | | $e^{\pm}p$ | Full Sample | 20 | 19.5 ± 3.2 | 2.7 ± 0.4 | 16.8 ± 2.8 | | 471 pb ⁻¹ | $P_T^X > 25 \text{ GeV}$ | 1 | 0.99 ± 0.13 | 0.62 ± 0.10 | 0.37 ± 0.03 | - Analysed 184 pb⁻¹ of e⁻p and 287 pb⁻¹ of e⁺p data - Good agreement with the Standard Model in both data sets ### **Summary and Conclusions** - For the presented results, use was made of the full H₁ ep data set ~ 478 pb⁻¹ - Electron/Muon Channel: - Found good overall agreement with the Standard Model 59 found vs. 58.9 expected - The HERA I excess in e⁺p data at high P_T X continues to be seen 21 found vs. 8.9 expected The fluctuation remains a 3 sigma effect. - <u>Tau Channel:</u> Found good agreement with SM 20 found vs. 19.5 expected Backup slides ### **Interpretation** Particle coupling to e-q with fermion number F=0 : Large mass i.e. large x_{Bj} d >> d, hence $\sigma(e+)$ >> $\sigma(e-)$ Another example: Squarks in R-parity violating SUSY If LSP is \widetilde{v}_{τ} and no large RpV coupling involving the τ : \widetilde{v}_{τ} could be long-lived RpV via couplings involving two 3^{rd} generation fields, light sbottom. Large $M_{top} \rightarrow large x_{Bj}$ ### **HERA I Single Top Results** Eur. Phys. J. C33 (2004) 9 - Standard Model Single top negligible cross section ~ 1 fb - Consider anomalous (FCNC) single top production where W decays both leptonically and hadronically. - Observed 5 events vs. 1.31 +/- 0.22 expected - H1 Measured single top production X-sec 0.29 + 0.15 0.14 pb - H1 set cross section limit of 0.55 pb at 95% confidence level - Better description of data with anomalous (FCNC) single top - Does not provide larger yield for e⁺p over e⁻p data ### **Tau Event Selection** | Tau Channel Selection | | | |-----------------------|---|--| | Inclusive CC | $P_T^{ m calo} > 12 \; { m GeV}$ | | | | $P_T^{\mathrm{had}} > 12 \text{ GeV}$ | | | | $P_T^{ m miss} > 12~{ m GeV}$ | | | | $\delta^{\text{miss}} > 5 \text{ GeV}$ | | | | $V_{ap}/V_p < 0.5$ | | | | $(< 0.15 \text{ if } P_T^{\text{miss}} < 25 \text{ GeV})$ | | | Narrow Jets | $P_T^{jet} > 7 \text{ GeV}$ | | | | $20^{\circ} < \theta^{jet} < 120^{\circ}$ | | | | $R^{jet} < 0.12$ | | | | $N_{tracks}^{jet} \ge 1, \max(P_T^{track}) > 5 \text{ GeV}$ | | | Isolation | $D_{em,\mu,jet} > 1.0$ | | | Acoplanarity | $\Delta \varphi(\tau, X) < 170^{\circ} \text{ if } P_T^X > 5 \text{ GeV}$ | | | 1-Prong Jets | $N_{tracks}^{Djet<1.0} = 1$ | | | Final Selection | $N_{\rm DTNV}^{D_{track} < 0.3} = 1$ | |