BARYONS07

Seoul, South Korea 11. – 15. June 2007

Exotic Baryons production in ep collisions at HERA

Overview

- Introduction: Pentaquarks (PQ)
- Experimental search at HERA for the:
 - **● ○**+
 - **● Ξ**^{--/0}
 - Θ^0_{c}
- Conclusion

Pentaquarks: first observation

- In 2003 observation of a narrow resonance with flavour exotic quantum numbers (B = +1, S = +1) by the LEPS Collaboration:
- Reaction: $\gamma n \rightarrow K^-K^+n$
- minimal quark content: $ududs \rightarrow \Theta^{+}(1540)$
- Successively confirmed by 10 experiments in various reactions:

Experiment	Reaction	Energy	Mass	significance
		(GeV)	$({ m MeV/c^2})$	
LEPS	$\gamma^{12}C \to K^-X$	$E_{\gamma} \approx 2$	1540 ± 10	4.6σ
DIANA	$K^+ X e o p K_s^0 X$	$E_{K^+} < 0.5$	1539 ± 2	4σ
CLAS(d)	$\gamma d \to p K^- K^+ n$	$E_{\gamma} < 3.8$	1542 ± 5	5.2
SAPHIR	$\gamma p \to K_s^0 K^+ n$	$E_{\gamma} < 2.65$	$1540 \pm 4 \pm 2$	4.4σ
CLAS(p)	$\gamma p \to \pi^+ K^- K^+ n$	$E_{\gamma} = 4.8 - 5.5$	1555 ± 10	7.8σ
$\nu \mathrm{BC}$	$\nu A \to p K_s^0 X$	range	1533 ± 5	6.7σ
ZEUS	$ep o ep K_s^0 X$	$\sqrt{s} = 320$	1522 ± 1.5	4.6σ
HERMES	$ed o pK_s^0 X$	$E_e = 27.6$	$1528 \pm 2.6 \pm 2.1$	5.2σ
COSY	$pp \to \Sigma^+ p K_s^0$	$P_p = 3$	1530 ± 5	3.7σ
SVD	$pA o pK_s^0 X$	$E_p = 70$	$1526 \pm 3 \pm 3$	5.6σ
NA49	$pp \to \Xi^- \pi^- X$	$E_p = 158$	1862 ± 2	4σ
H1	$ep \rightarrow D^{*-}pD^{*+}\bar{p}X$	$\sqrt{s} = 320$	$3099 \pm 3 \pm 5$	5.4σ

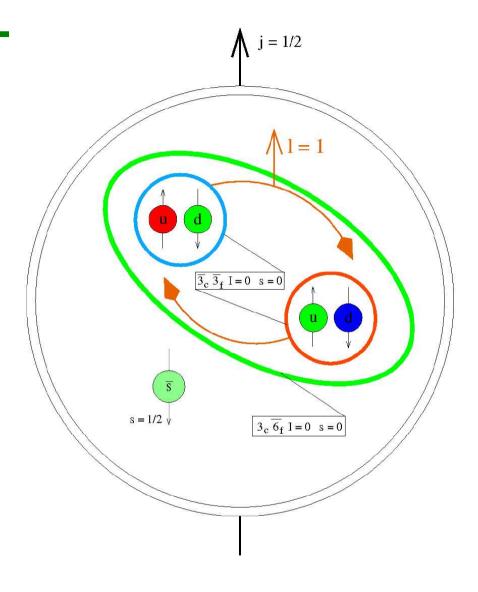
Adapted from V.D.Burkert, hep-ph/0510309

Pentaquarks: first observation

- In 2003 first observation of a narrow resonance with flavour exotic quantum numbers (B = +1, S = +1) by the LEPS Collaboration:
- Reaction: $\gamma n \rightarrow K^-K^+n$
- minimal quark content: $ududs \rightarrow \Theta^{+}(1540)$
- Successively confirmed by 10 experiments in various reactions:

Experiment	Reaction	Energy	Mass	significance
		(GeV)	$({ m MeV/c^2})$	
LEPS	$\gamma^{12}C \to K^-X$	$E_{\gamma} \approx 2$	1540 ± 10	4.6σ
DIANA	$K^+ X e \to p K_s^0 X$	$E_{K^+} < 0.5$	1539 ± 2	4σ
CLAS(d)	$\gamma d \to p K^- K^+ n$	$E_{\gamma} < 3.8$	1542 ± 5	5.2
SAPHIR	$\gamma p \to K_s^0 K^+ n$	$E_{\gamma} < 2.65$	$1540 \pm 4 \pm 2$	4.4σ
CLAS(p)	$\gamma p ightarrow \pi^+ K^- K^+ n$	$E_{\gamma} = 4.8 - 5.5$	1555 ± 10	7.8σ
$\nu \mathrm{BC}$	$\nu A \to p K_s^0 X$	range	1533 ± 5	6.7σ
ZEUS	$ep o ep K^0_s X$	$\sqrt{s} = 320$	1522 ± 1.5	4.6σ
HERMES	$ed \rightarrow pK_s^0 X$	$E_e = 27.6$	$1528 \pm 2.6 \pm 2.1$	5.2σ
COSY	$pp o \Sigma^+ p K_s^0$	$P_p = 3$	1530 ± 5	3.7σ
SVD	$pA o pK_s^0 X$	$E_p = 70$	$1526 \pm 3 \pm 3$	5.6σ
NA49	$pp \to \Xi^- \pi^- X$	$E_p = 158$	1862 ± 2	4σ
H1	$ep \to D^{*-}pD^{*+}\bar{p}X$	$\sqrt{s} = 320$	$3099 \pm 3 \pm 5$	5.4σ

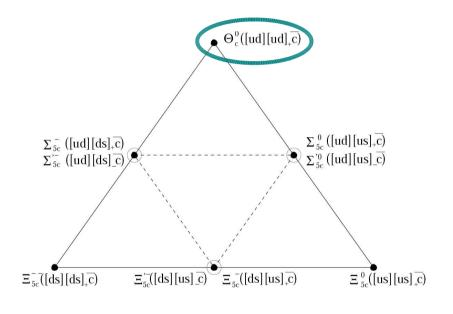
Adapted from V.D.Burkert, hep-ph/0510309

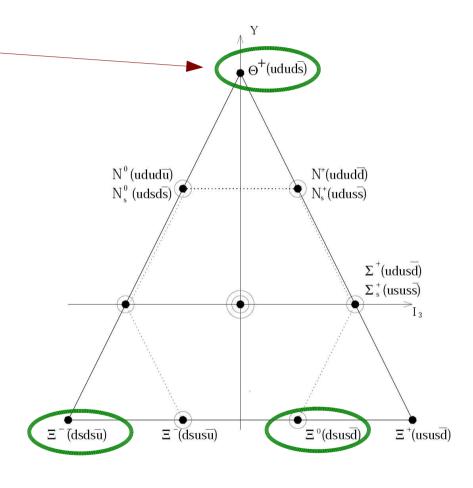

but also several negative results

	D
Group	Reaction
BES	$e^+e^- \to J/\Psi \to \bar{\Theta}\Theta$
BaBar	$e^+e^- \to \Upsilon(4S) \to pK^0X$
Belle	$e^+e^- \to B^0\bar{B}^0 \to p\bar{p}K^0X$
LEP	$e^+e^- \to Z \to pK^0X$
HERA-B	$pA \to K^0 pX$
SPHINX	$pC \to K^0 \Theta^+ X$
HyperCP	$pCu \to K^0 pX$
CDF	$p\bar{p} \to K^0 p X$
FOCUS	$\gamma BeO o K^0 p X$
Belle	$\pi + Si \to K^0 pX$
PHENIX	$Au + Au \to K^- \bar{n}X$

K. Hicks, hep-ph/0504027

Pentaquarks: models


- ◆ Hypothetical 5 quark state: 4q q
- Various theoretical models:
 - → Jaffe Wilczek diquark model: $PQ = \overline{q} (qq) (qq)$
 - * Karliner Lipkin triquark model: $PQ = (qq)(qq\overline{q})$
 - ♦ Both models predicts $8_f \oplus 10_f$ for the light PQ
 - and for the heavy PQ: $6_f \oplus 3_f$
 - Chiral soliton model (Diakonov et al.)
 - → Lattice QCD, ...



The $\Theta^+(1540)$ in the JW model

Representation of the PQ's

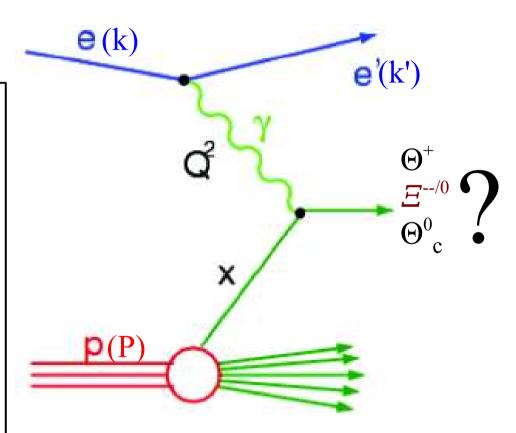
• If the $\Theta^+(1540)$ really exists \rightarrow expect several other states

This talk:

 Θ^+ and $\Xi^{--/0}$ at HERA

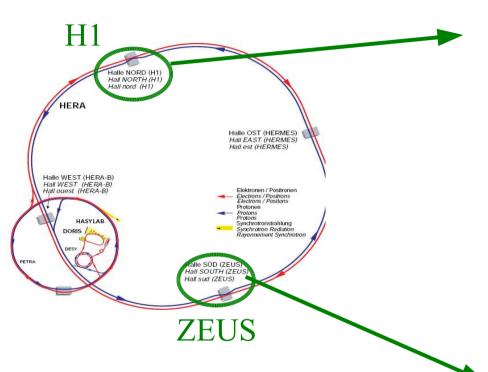
 Θ^0_{c} at HERA

HERA: ZEUS and H1


All studies presented are done in deep inelastic scattering (DIS):

$$Q^2 = -q^2 = -(k - k')^2$$

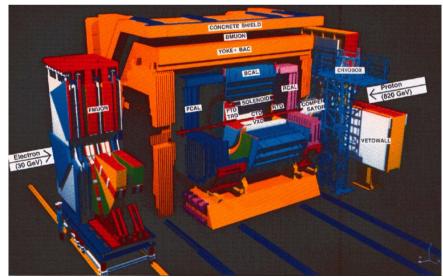
= 4EE'cos($\theta/2$) > 1 GeV²


$$y = P \cdot q/P \cdot k$$

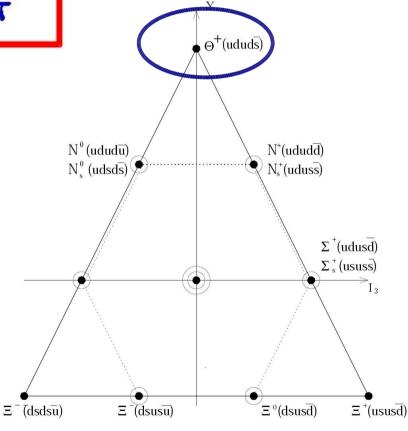
= 1 - E'/(2E)*(1 - cos(\theta/2))

 \rightarrow Reconstructed from Energy E' and angle θ of the scattered electron

Main process at HERA


HERA: ZEUS and H1

LAr Calorimeter Hadronic Final State Scattered Central Jet Forward **Chamber CJC** Tracker 27.5 GeV electrons--920 GeV protons \$paCa Forward Backward Central Silicon Tracker

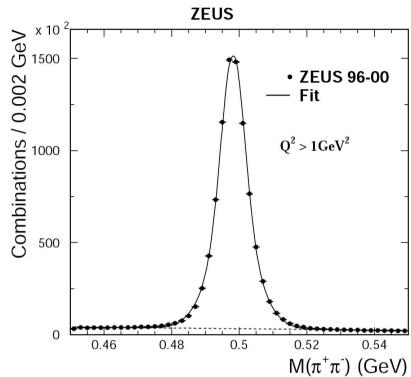

HERA I Data: 1996 – 2000

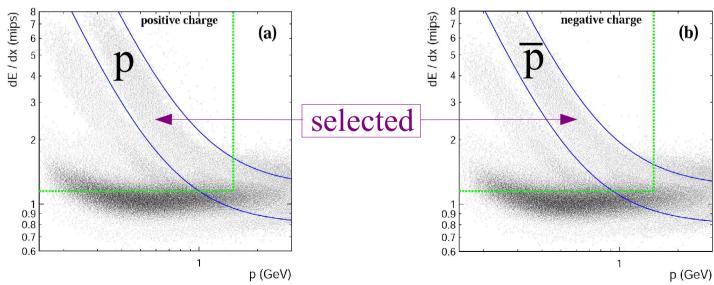
Lumi: O(100 pb⁻¹)

Experimental search for the Θ^+

$$\Theta^+(1530)
ightarrow p\,K_S^{
m o}
ightarrow p\,\pi^+\pi^-$$

$\Theta^+ \rightarrow K_s^0$ p: K_s^0 and p selection



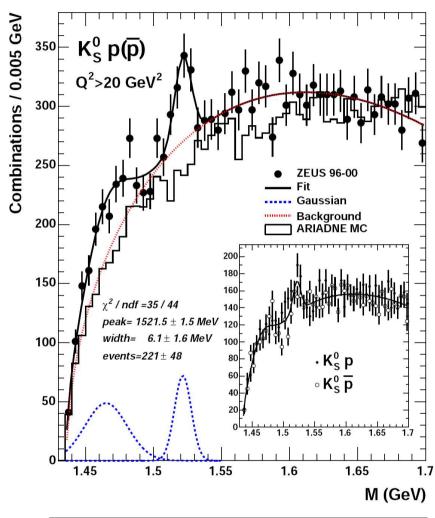

Event selection

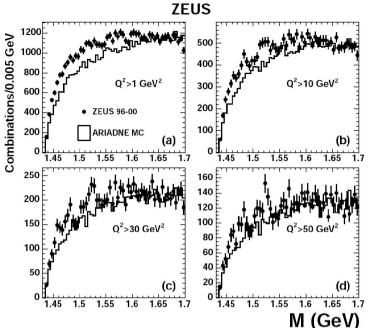
$$Q_e^2 > 1 \text{ GeV}^2$$

 $y_e < 0.95$

K⁰ selection

 $\begin{aligned} &p_{T}(K^{0}_{s}) \geq 0.3 \text{ GeV}, \, |\eta(K^{0}_{s})| \leq 1.5 \\ &N \approx 887k, \, BG: \sim 6\% \end{aligned}$




Search for the Θ^+ at ZEUS

ZEUS Collab., PLB 591 (2004)

$$f_{fit} = P_1(M-M_{th})^{P_2} \cdot [1+P_3(M-M_{th})]$$

 $M_{th} = m_p + m_{\pi}$

 \rightarrow Signal only visible at larger Q²

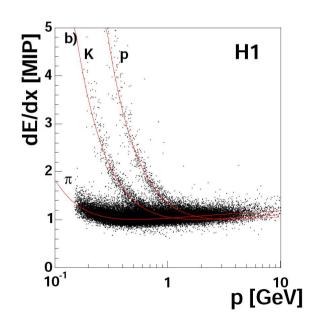
Signal for Q² > 20 GeV
S = 221 ± 48
M = (1521.5 ± 1.5) MeV

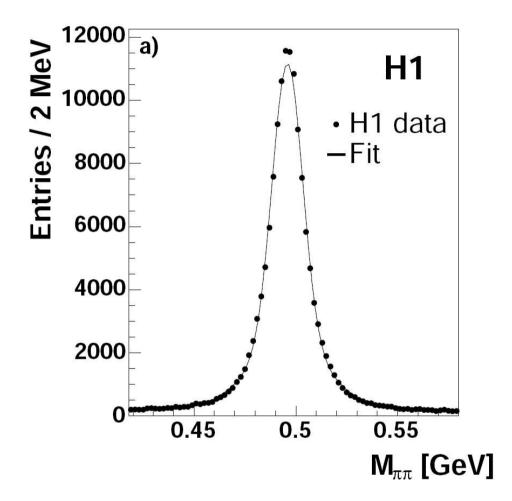
$$\sigma$$
 = (6.1 ± 1.6) MeV
Significance: 3.9 – 4.6 σ

X-section (ZEUS prelim.) $\sigma(ep \to e\Theta^{+}X \to e(K_{s}^{0}p)X) = 125 \pm 27_{-28}^{+36} pb$

ZEUS

 $L = 74 \text{ pb}^{-1}$

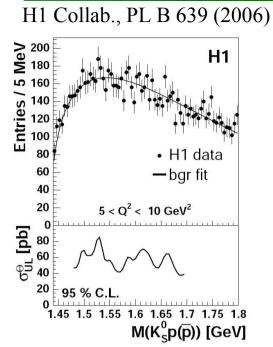


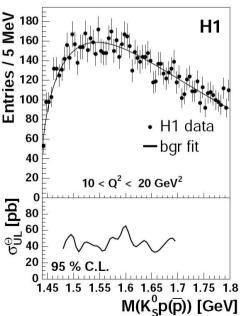

Event selection

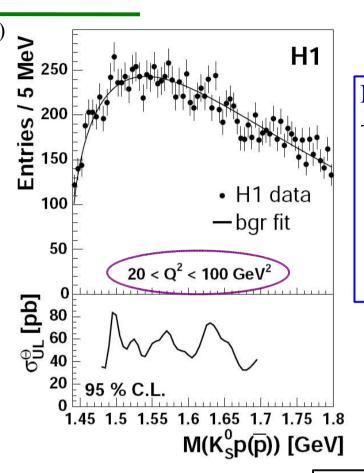
$$5 < Q_e^2 < 100 \text{ GeV}^2$$

 $0.1 < y_e < 0.6$

K⁰_s **selection** (like ZEUS selection)


 $p_T(K_s^0) > 0.3 \text{ GeV}, |\eta(K_s^0)| < 1.5$ N $\approx 133 \text{k}, \text{BG}: \sim 3\%$





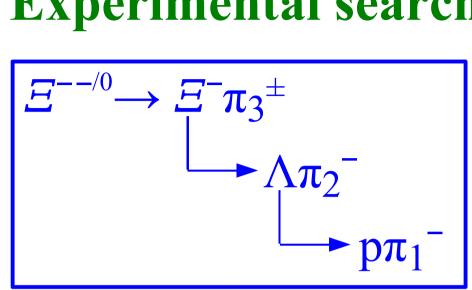
Search for the Θ^+ at H1

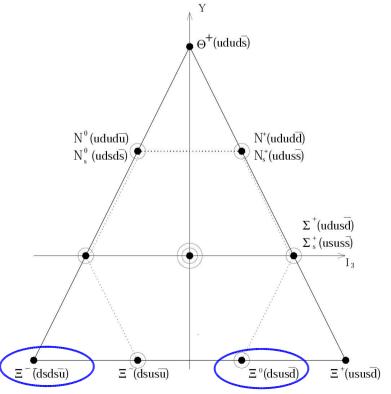
No significant signal in any Q² bin

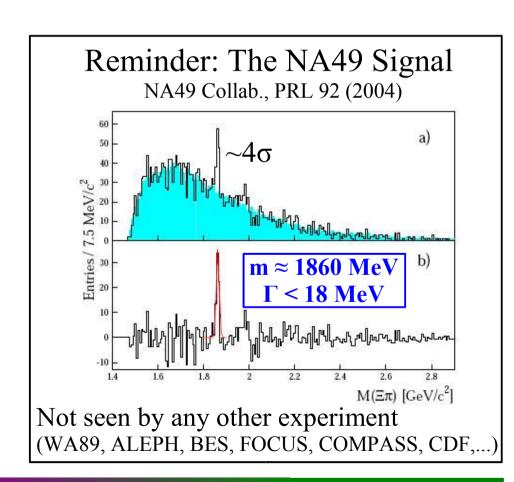
 \rightarrow extract upper limit at 95 % C.L. on the X-section $\sigma(ep \rightarrow e\Theta^+X \rightarrow e(K^0_s p)X)$, using modified Frequentist approach, based on likelihood ratios

H1 can not confirm the ZEUS result

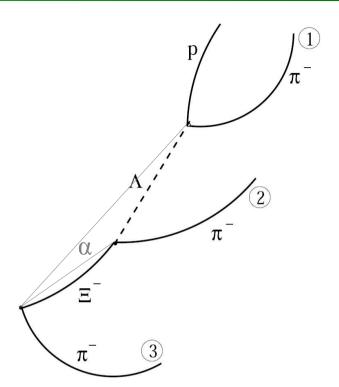
Comparison with **ZEUS**


$$\sigma_{\text{ZEUS}} = 125 \pm 27^{+36}_{-28} \text{ pb}$$


$$\sigma_{H1}(M=1.52) < 72 \text{ pb } 95\% \text{ C.L.}$$


extrapolate to y < 0.95:

$$\sigma_{H1}(M=1.52) < 100 \text{ pb } @ 95\% \text{ C.L.}$$

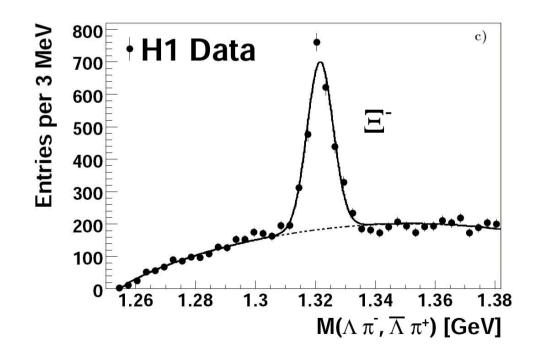

Experimental search for the $\Xi^{-/0}$

$\Xi^{-/0} \to \Xi^{-}\pi^{\pm}$: Baryon selection

Ξ⁻ selection:

 $|Dca'(\Xi^{-})| < 2.5 \text{ mm}$ $\alpha < 0.6 \text{ rad}$

$L = 101 \text{ pb}^{-1}$


DIS-selection:

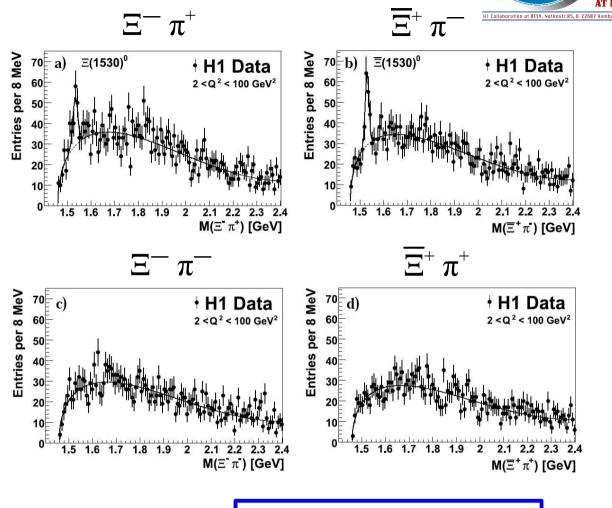
$$2 < Q^2 < 100 \text{ GeV}^2$$

 $0.05 < y < 0.7$

Λ selection:

 $p_{T} > 0.3 \text{ GeV}$

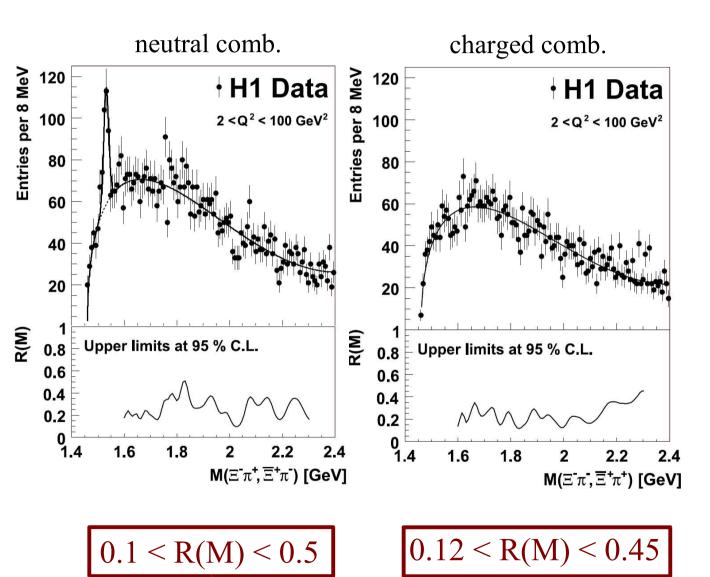
Decay length > 0.75 cm



Search for the $\Xi^{-/0}$ at H1

Apart from $\Xi(1530)^0$ signal, **no other significant signal** observed

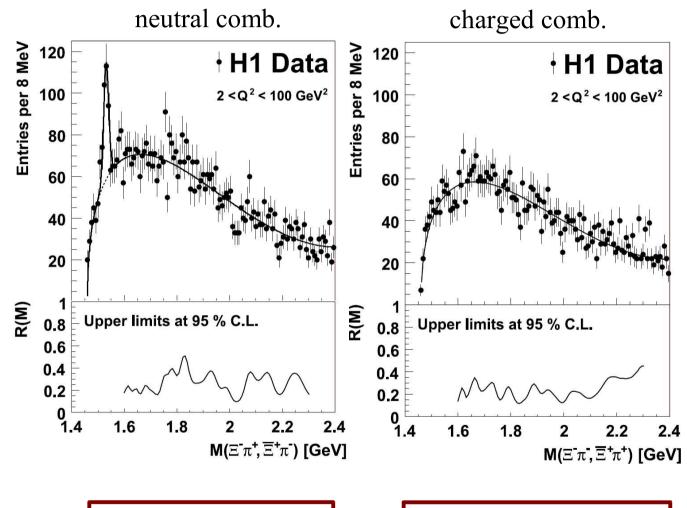
Extract upper limit on R(M) at 95% C.L., using modified Frequentist approach

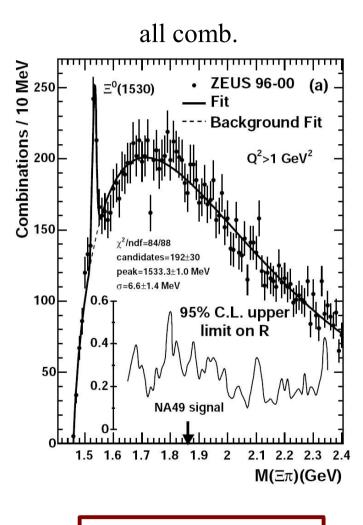

$$R(M) = \frac{N^{res}(M, q)}{N(1530, 0)} \times \frac{\epsilon(1530, 0)}{\epsilon(M, q)}$$

$$\Xi(1530)^{0}$$
N = 163 ± 24
M = (1532 ± 2) MeV
 σ = (9.4 ± 1.5) MeV

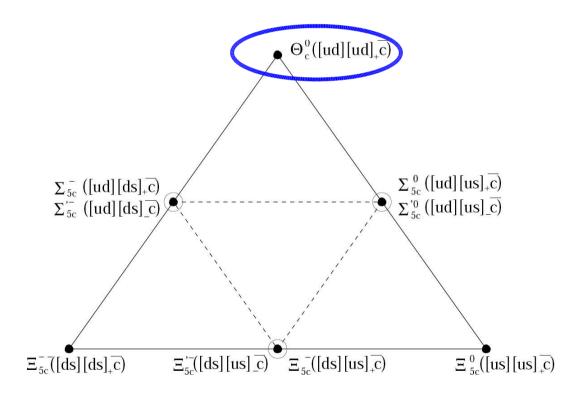
Limit on the $\Xi^{--/0}$

hep-ex:0704.3594 ZEUS Collab., PL B610 (2005)


Limit on the $\Xi^{-/0}$


hep-ex:0704.3594

ZEUS Collab., PL B610 (2005)


0.12 < R(M) < 0.45

0.1 < R(M) < 0.5

0.1 < R(M) < 0.5

Experimental search for the Θ_{c}^{0}

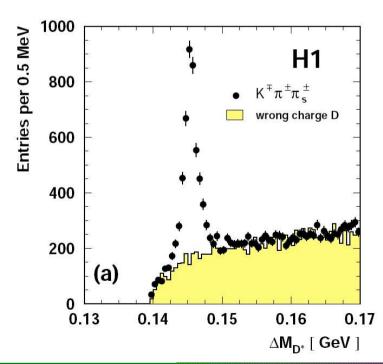
$$\Theta^0_c \to D^{*-}p$$

$\Theta^0_c \to D^{*-}$ p: D^{*+} reconstruction

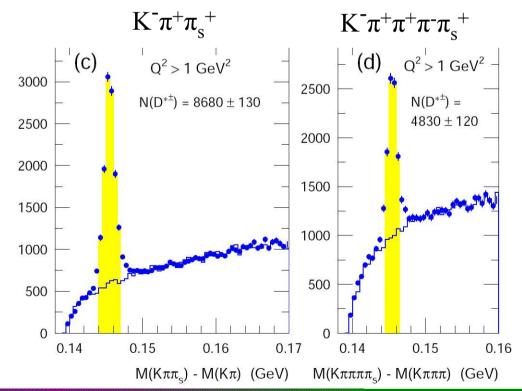
H1 Collab., PL B588 (2004) ZEUS Collab., EPJ C38 (2004)

 $L = 126 \text{ pb}^{-1}$

DIS-selection:

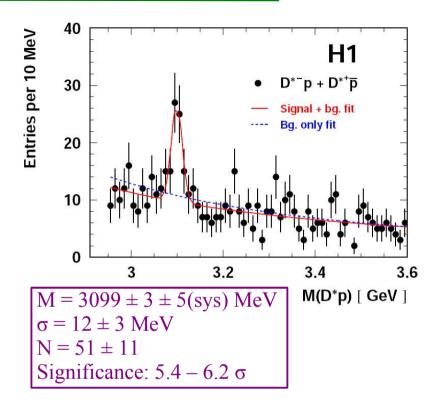

$$Q^2 > 1 GeV^2$$

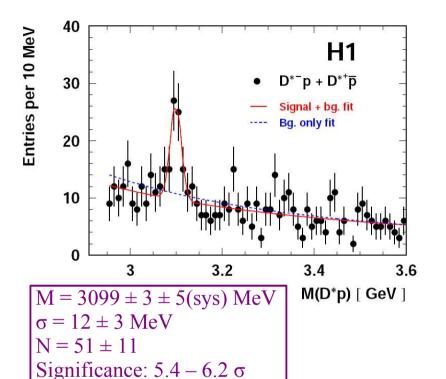
 $Q^2 < 100 GeV^2$ (H1 only)
 $0.05 < y < 0.7$ (H1)
 $y < 0.95$ (ZEUS)

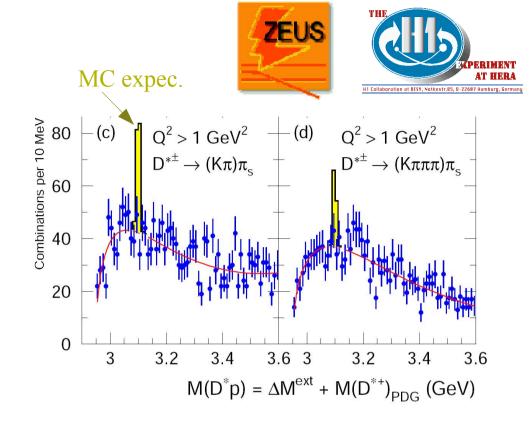

Reconstruction of D*+ mesons:

$$D^{*+} \rightarrow D^0 \pi_s^+$$

$$D^0 \rightarrow K^-\pi^+$$


$$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$$
 (ZEUS only)


Search for the Θ_{c}^{0}



Signal so far not confirmed by any other experiment!

Search for the Θ^0_{c}

Acceptance corrected yield ratio (D*p) / D*_{inc}: Visible range: $p_T > 1.5 \text{ GeV}$, $-1.5 < \eta < 1.0$ H1: $R_{cor}(D*p(3100)/D*) = (1.59 \pm 0.33^{+033}_{-0.45})\%$ ZEUS: $R_{cor}(D*p(3100)/D*) < 0.51\%$ (@95%C.L.)

Signal so far not confirmed by any other experiment!

Conclusion

- $\Theta^+(1530)$:
 - > ZEUS sees a signal for Q² > 20 GeV: $\sigma(ep \rightarrow e\Theta^{+}X \rightarrow e(K^{0}_{s}p)X) = 125 \pm 27 ^{+36}_{-28} pb$
 - > H1 does not see a signal, upper limit at 95% C.L compatible with ZEUS measurement

- $\Xi^{--/0}(1860)$:
 - > Not seen, neither by ZEUS nor by H1
 - ▶ Upper limit at 95% C.L. on production ratio with respect to the $\Xi(1530)^0$ vary from 10 to 50%
 - > ZEUS and H1 are compatible

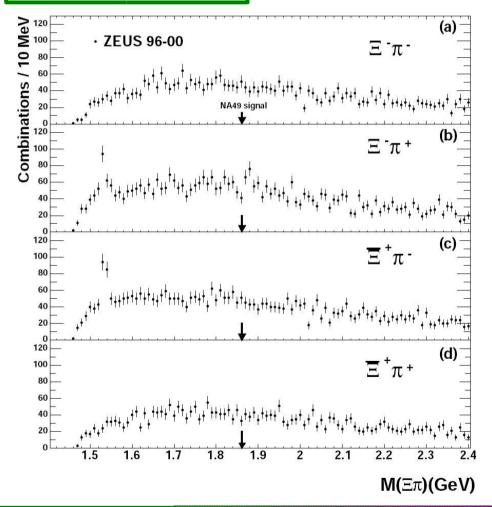
- $\Theta^{0}_{c}(3100)$:
 - H1 sees a signal in DIS and in γp
 - > ZEUS can not confirm, upper limit on acceptance corrected yield is not compatible with H1

Outlook: HERAII data should resolve the open questions

Additional material

$\Xi^{-/0} \to \Xi^{-}\pi^{\pm}$: Baryon selection

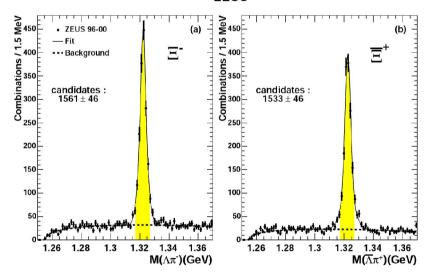
$L = 121 \text{ pb}^{-1}$



DIS-selection:

 $Q^2 > 1 GeV^2$ $E_e' > 5 GeV$ 35 < E-pz < 60 GeV|z-vertex| < 50 cm

A selection:


dE / dx for proton candidate fit to secondary vertex

Ξ selection:

$$\begin{aligned} |m_{inv}(p,\pi) - m_{\Lambda}| &< 5 \text{ MeV} \\ |Dca'(\Xi)| &< 1 \text{ cm} \\ Decay length (L) &> 1.75 \text{ cm} \\ L(\Lambda) &> L(\Xi) \\ p(\pi) &< p(\Lambda) \end{aligned}$$

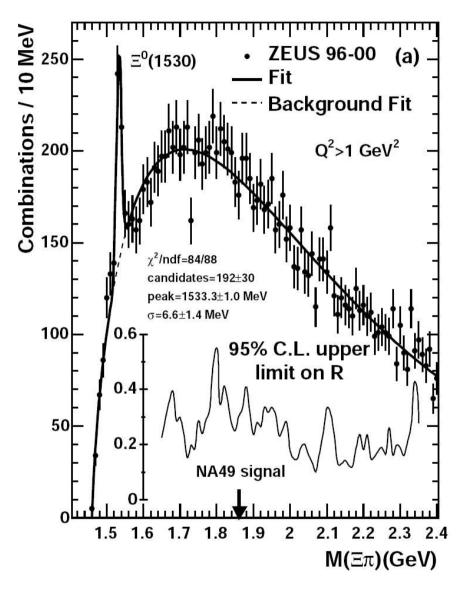
ZEUS

$(\Xi\pi)$ -selection:

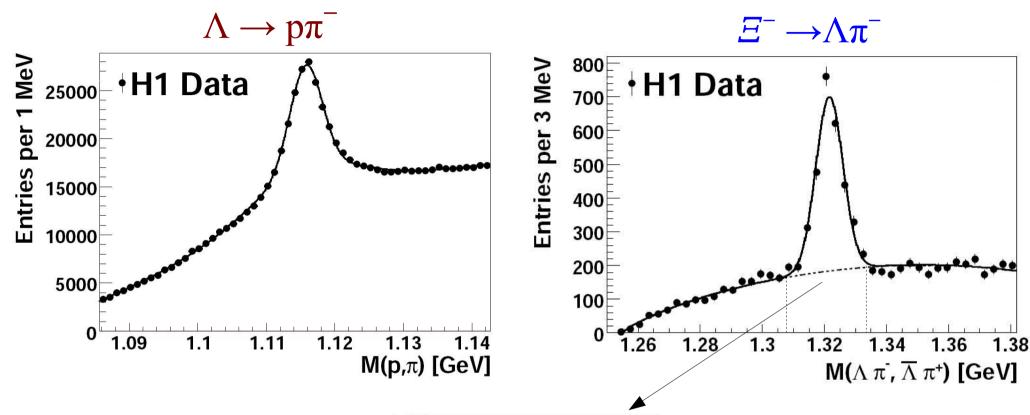
$$\begin{aligned} |m_{inv}(\Lambda\pi) - m_\Xi| &\leq 6 \ MeV \\ p(\pi) &\leq p(\Xi) \end{aligned}$$

Search for the $\Xi^{-/0}$ at ZEUS

ZEUS Collab., PL B610 (2005)

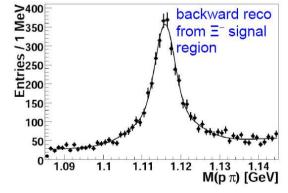

Apart from $\Xi(1530)^0$ signal, **no other** significant signal observed

 \rightarrow extract upper limits on R(M)


$$\Xi(1530)^0$$

$$N = 192 \pm 30$$

 $M = (1533 \pm 1) \text{ MeV}$
 $\sigma = (6.6 \pm 1.4) \text{ MeV}$



Search for new baryonic states @ H1

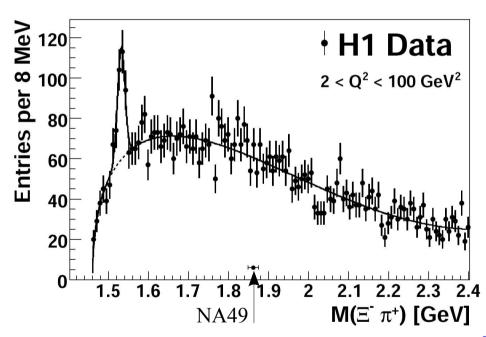
150k reconstructed Λ:

$$m = 1115.8 \text{ MeV}$$

 $\sigma \approx 5 \text{ MeV}$
 $c\tau = (7.6 \pm 0.9) \text{ cm}$

→ PDG compliant

1870 reconstructed Ξ^- :

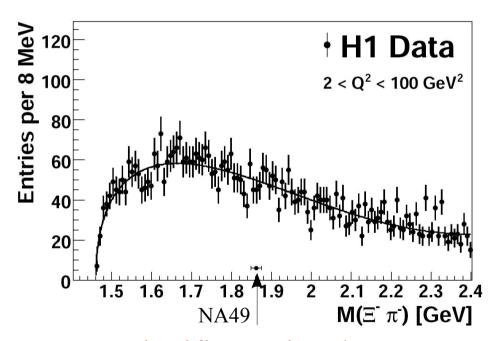

$$m = 1321.6 \text{ MeV}$$

 $\sigma \approx 4.3 \text{ MeV}$
 $c\tau = (5.1 \pm 0.3) \text{ cm}$

Search for new baryonic states @ H1

Combine Ξ^- candidates with additional (primary vertex-fitted) track assumed to be π

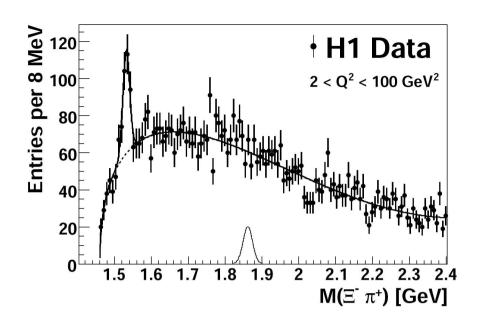
neutral combinations:

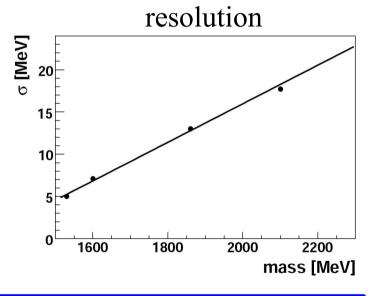

$$\Xi^-\pi^+$$
 and $\overline{\Xi}^+\pi^-$

Clear signal of $163 \pm 24 \Xi (1530)^0$ $m = (1532.1 \pm 1.6) \text{ MeV}$ $\sigma = (9.4 \pm 1.5) \text{ MeV}$

charged combinations:

$$\Xi^-\pi^-$$
 and $\overline{\Xi}^+\pi^+$

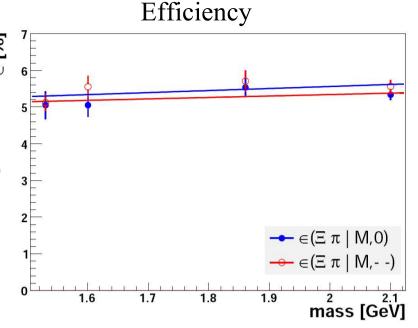



No significant signal

→ no hint for the NA49 resonance

Limit calculation I

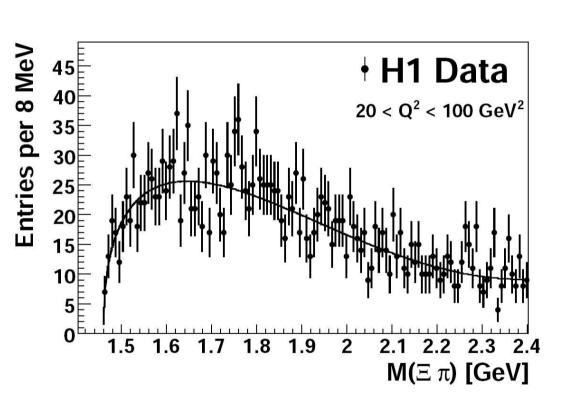
- Modified frequentist approach (T.Junk)
- Assumptions:
 - BR($X \rightarrow \Xi \pi$) = 100 %
 - Small width
 - Production similar to $\Xi(1530)^0$
- Mass-dependent upper limit for possible $\Xi^-\pi^{\pm}$ signal at 95 % C.L.: $N_{u.l.}(\Xi^-\pi^{\pm})$
- Neutral and charged combinations for simultaneous BG determination
- Gaussian for the possible signal, width from MC (mass-dependent)
- Separate limits for neutral and charged combinations
- Normalise upper limit wrt number of $\Xi(1530)^0 \rightarrow$ systematics mostly cancel:

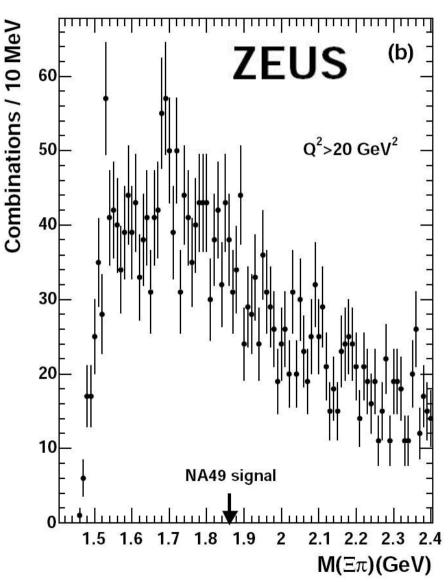

$$\mathbf{R^*_{u.l.}(M)} = \frac{\mathbf{N_{u.l.}(\Xi^-\pi^\pm)}}{\mathbf{N(\Xi(1530)^0)}}$$

Limit calculation II

 Correct R*_{u.l.} for small differences in efficiency (mass-dependent):

$$R_{u.l.}(M) = R^*_{u.l.}(M) \cdot \frac{\epsilon(\Xi(1530)^0)}{\epsilon(M, q)}$$


Efficiency correction new wrt ICHEP06



- Uncertainties considered:
 - Number of $\Xi(1530)^0$: 15% (from fit)
 - Width of signal: 5% (diff σ (Ξ (1530)⁰) data-MC)
 - Efficiency correction factor: 8%
 - ▶ BG: 2% (performing BG determination under different assumption)

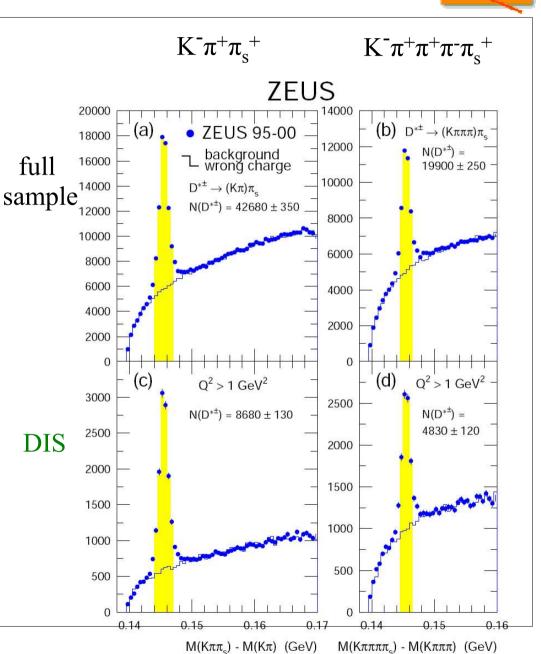
Search for the $\Xi^{-/0}$ (1860) pentaquark

All charge combinations, $20 < Q^2 < 100 \text{ GeV}^2$

$$\Theta_c^0 \rightarrow D^{*-}$$
 p: D^{*+} selection

$L = 126 \text{ pb}^{-1}$

DIS-selection:

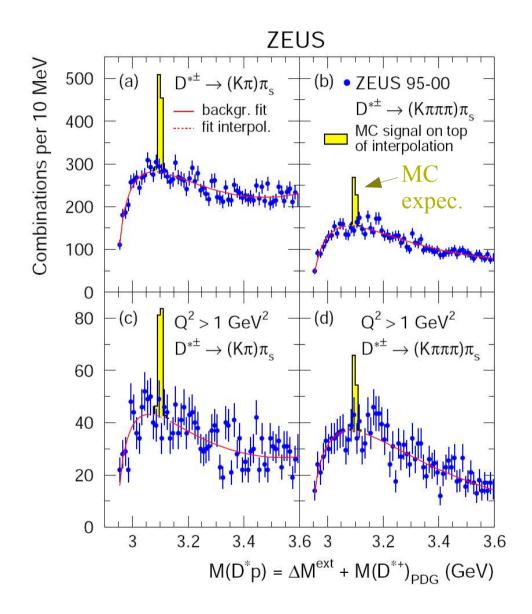

$$Q^2 > 1 GeV^2$$

y < 0.95
 $E_e' > 8 GeV$
 $40 < E-pz < 65$
|z-vertex| < 50 cm

Reconstruction of D*+ mesons:

$$D^{*+} \to D^0 \pi_s^+,$$

$$D^0 \to K^-\pi^+$$
 and


$$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$$

Search for the Θ_c^0 at ZEUS

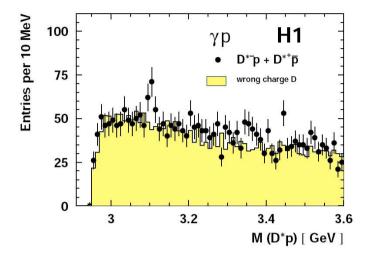
ZEUS Collab., EPJ C38 (2004)

No significant signal in any channel, neither in DIS nor in γp

Acceptance corrected **yield ratio** (**D*p**) / **D***_{inc}:

$$R_{cor}(D*p(3100)/D*) < 0.51\%$$

(@95%C.L.)

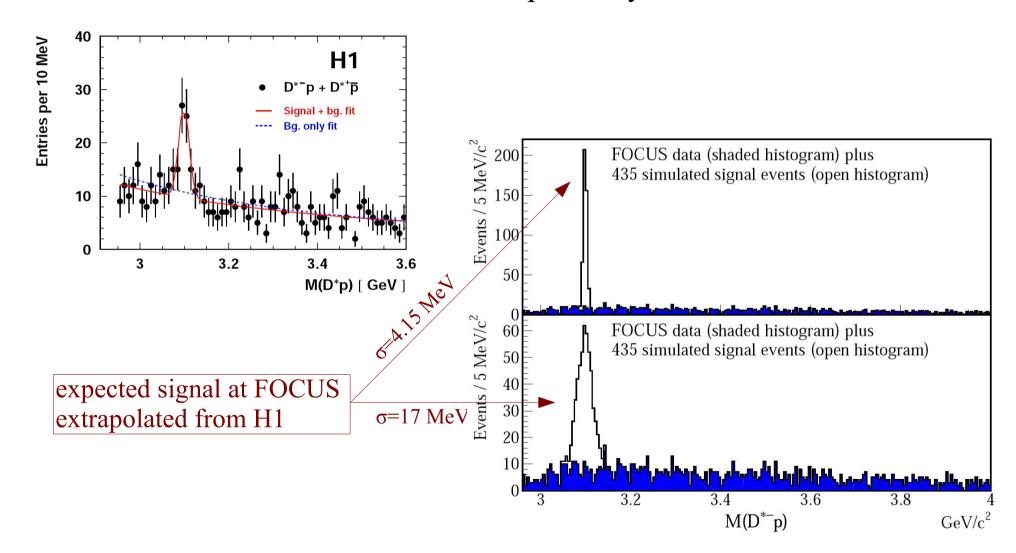

for $Q^2 > 1$ GeV and $D^0 \rightarrow K^-\pi^+$

→ ZEUS data not compatible with H1 signal

Search for the Θ_c^0 at H1

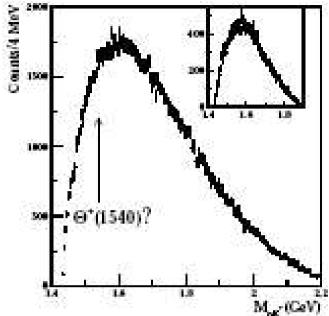
Signal also visible in photoproduction

Acceptance corrected **yield ratio** (**D*p**) / **D***_{inc}:


Visible range: $p_T > 1.5 \text{ GeV}$, $-1.5 < \eta < 1.0$

$$R_{cor}(D*p(3100)/D*) = (1.59 \pm 0.33^{+0.33}_{-0.45})\%$$

Visible corss section (extrapolate to full D* phase space): $\sigma_{vis}(D*p(3100)) / \sigma_{vis}D* = (2.48 \pm 0.52^{+0.85}_{-0.64})\%$


The Θ_c at H1 and FOCUS

- ▶ The H1 signal $\Theta_c \rightarrow D^*p$:
 - ZEUS and FOCUS claimed incompatibility

The new CLAS experiments

- $\rightarrow \gamma p \rightarrow K^0_s K^+(n)$
 - No Signal observed
 - Upper limit on production cross section: (0.85-1.3)nb at 95% CL and $m \approx 1.54$ GeV
 - Contradicts SAPHIR experiment by two orders of magnitude (300nb)
 - Implies very small coupling of Θ^+ to NK*; but in many models major source of Θ^+ production

- $\gamma d \rightarrow p K^-K^+(n)$
 - Previous CLAS results claimed $\sim 5 \sigma$ for Θ^+ in the same channel and same energy
 - New high statistics results see no hint for a Θ^+ state!
 - Clearly contradicts the previous data
 - New fit of old data with improved BG (from new data) yields a significance of only 3 σ , previous: $(5.2 \pm 0.6) \sigma$
 - The new CLAS data leaves room only for a Θ^+ state with intrinsic width of less than 0.5 MeV