Physics at LHC Cracow, Poland July $3^{rd} - 8^{th}$, 2006

Hadronic final states and QCD studies in ep collisions

Introduction

- \bullet Jet production in pp collisions will be copious at LHC
- Main background to searches in hadronic channels: QCD multijet production
- Also, luminosity of colliding particles (partons from protons) governed by QCD (proton PDFs)
- *ep* collider HERA: very suitable environment to do precision studies of QCD
 - \rightarrow tests of QCD in hadronic-induced reactions (as opposed to e^+e^- at LEP)
 - ightarrow but cleaner than $p \bar{p}$ at TeVatron
- The main sources of jets at HERA are:

to obtain results on:

- proton, photon, pomeron structure: parton densities
- tests of pQCD: up to which extent does pQCD describe jet dynamics?
- parton dynamics at low x: breakdown of DGLAP?
- measurements of α_s : the fundamental parameter of the theory
- color dynamics: color factors, subprocesses
- non-perturbative effects: can they be described from first principles?

Jet production in neutral current deep inelastic ep scattering

• Jet production in neutral current deep inelastic ep scattering up to $\mathcal{O}(\alpha_s)$:

Jet production in neutral current deep inelastic ep scattering

• Jet production in neutral current deep inelastic ep scattering up to $\mathcal{O}(\alpha_s)$:

• Jet production cross section:

$$d\sigma_{
m jet} = \sum_{a=q,ar q,g}\int dx \ f_a(x,\mu_F) \ d\hat\sigma_a(x,lpha_s(\mu_R),\mu_R,\mu_F)$$

- $-f_a$: parton *a* density in the proton, determined from experiment \rightarrow long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD
 - \rightarrow short-distance structure of the interaction

Jet production in photoproduction

• Jet production in photoproduction up to $\mathcal{O}(\alpha_s)$:

Kinematics:

$$-Q^2 pprox 0$$

- total hadronic cms energy: $W^2 = ys$

Jet production in photoproduction

• Jet production in photoproduction up to $\mathcal{O}(\alpha_s)$:

Jet production cross section:

$$d\sigma_{
m jet} = \sum_{i,j} \int_0^1 dy \ dx_\gamma \ dx_p \ f_{\gamma/e}(y) \ \ f_{i/\gamma}(x_\gamma,\mu_{F_\gamma}) \ \ f_{j/p}(x_p,\mu_{F_p}) \ d\hat{\sigma}_{i(\gamma)j}(i(\gamma)j
ightarrow {
m jet jet})$$

- $-f_{j/p}(f_{i/\gamma})$: parton density in the proton (photon) \rightarrow long-distance structure of the target
- $\hat{\sigma}_{i(\gamma)j}$: subprocess cross section, calculable in pQCD \rightarrow short-distance structure of the interaction

Jet search in ep collisions

- Jet search in e^+e^- annihilations is simple:
 - → initial state: only leptons; final state: arising uniquely from short-distance interaction (all hadrons in final state associated with hard process)
 - \rightarrow best frame: centre-of-mass system = LAB
 - \rightarrow variables invariant under rotations: energies and angles
 - \rightarrow distance between hadrons: angular separation
- Jets in hadronic collisions are not as easily identified because jets carry only a fraction of the available energy and are accompanied by several soft hadrons not correlated with the hard interaction

 $\gamma p \rightarrow e + \mathbf{jet} + \mathbf{jet} + \mathbf{X}$ (resolved photoproduction)

- Initial state: colored partons
- Initial partons carry only a fraction x_p, x_γ of the parent hadron
- Spectator partons:
 - \rightarrow remnant jets
 - \rightarrow "underlying event": soft interaction
 - between the partons in the remnants

 \rightarrow the use of transverse energies helps to disentangle between the products of the hard interaction and the beam remnant jets (absent in e^+e^- annihilations)

Jet search in ep collisions

- The kinematics of NC DIS poses several challenges:
 - \rightarrow presence of beam remnant jet
 - \rightarrow the initial-state γ^* -parton system is boosted (the parton carries a fraction of the proton momentum) and rotated (the γ^* carries p_T)
- The effect of the p_T carried by the γ^* is removed by selecting a frame in which the γ^* collides head-on with the proton, eg the Breit frame
- k_T cluster algorithm in longitudinally inclusive mode:
 - \rightarrow best algorithm to reconstruct jets at HERA
 - \rightarrow in use since many years for making precision tests of pQCD
- Advantages of k_T algorithm in hadronic-type interactions:
 - → allows transparent translation of experimental set-up to theoretical calculations (avoids ambiguities of overlapping and merging of jets (cone algorithm))
 - ightarrow calculations using k_T are finite at all orders
 - \rightarrow smallest hadronisation corrections

Inclusive-jet cross sections in NC DIS

e

.**Jet**

- Measurements of jet cross sections in NC DIS at large Q^2 ($Q^2 > 125$ GeV²) allow tests of pQCD and determination of α_s
- The LO prediction for the jet cross section in the Breit Jet frame is proportional to α_s

 \rightarrow the measurements are directly sensitive to α_s :

 $\alpha_s(M_Z) = 0.1212 \pm 0.0017 \text{ (stat.)} \begin{array}{c} +0.0023 \\ -0.0031 \text{ (exp.)} \begin{array}{c} +0.0028 \\ -0.0027 \text{ (th.)} \end{array}$

- \rightarrow experimental uncertainties: 2.9% ($Q^2 > 500$ GeV²)
- \rightarrow theoretical uncertainties: 2.3%
- \rightarrow Test of the energy-scale dependence of α_s from $d\sigma/dE_{T,{
 m B}}^{
 m jet}$ in NC DIS

July 5, 2006

C Glasman (Universidad Autónoma de Madrid)

<mark>Z</mark>EUS

Hadronic final states and QCD studies in ep collisions

Inclusive-jet cross sections in NC DIS

- ullet Measurements of the differential inclusive-jet cross section at large Q^2 $(Q^{2} > 150 \text{GeV}^{2}) \text{ as a function of } E_{T,B}^{\text{jet}} \text{ in different } Q^{2}$ regions \rightarrow harder spectrum in $E_{T,B}^{\text{jet}}$ as Q^{2} increases $(Q^{2} > 150 \text{GeV}^{2}) \text{ as a function of } E_{T,B}^{\text{jet}} \text{ as } Q^{2}$ increases $(Q^{2} > 150 \text{GeV}^{2}) \text{ as a function of } E_{T,B}^{\text{jet}} \text{ as } Q^{2}$ 10 ² 10
- Comparison with NLO QCD calculations:

 - \rightarrow Validity of the description of the dynamics of inclusive jet production by pQCD at $\mathcal{O}(\alpha \alpha_s^2)$ over a wide range in Q^2 and $E_{T,\mathrm{B}}^{\mathrm{jet}}$
- \rightarrow The measurements are directly sensitive to α_s :

 $\alpha_s(M_Z) = 0.1186 \pm 0.0030 \text{ (exp.)} \pm 0.0051 \text{ (th.)}$

- \rightarrow experimental uncertainties: 2.5% ($Q^2 > 150$ GeV²)
- \rightarrow theoretical uncertainties: 4.3%

EPJ C 19 (2001) 289

Physics at LHC

Hadronisation process

- The HFS in NC DIS has also been used to study the hadronisation process:
 - \rightarrow non-perturbative effect
 - → event-shapes observables can be used to test the power-correction model: understanding of hadronisation process from first principles

- Event-shape variables (inspired by e^+e^- measurements): \rightarrow thrust, broadening, C parameter, jet mass
- In this type of analysis, the data are compared to a model prediction which consists of a combination of NLO QCD calculations and the expectations of the power corrections, characterised by an effective coupling $\bar{\alpha}_0$:

$$F = F_{\text{perturbative}} + F_{\text{power correction}}$$

where F is an event-shape mean or distribution (NLO + matched NLL)

- → It is possible to obtain good description of event-shape observables in hadronicinduced reactions using NLO+NLL+power corrections calculations
- \rightarrow Extracted value of $\alpha_s(M_Z)$ consistent for all observables and with the world average
- ightarrow Universal non-perturbative parameter $ar{lpha}_0=0.5\pm10\%$
 - → supports concept of power corrections as appropriate alternative approach for description of hadronisation effects

Parton evolution at low x and unintegrated PDFs

- One of the main channels of Higgs production at LHC is expected to be $gg \rightarrow H$
- Predictions for these processes need information on
 - \rightarrow parton evolution at low x \rightarrow unintegrated proton PDFs $\}$ \rightarrow forward-jet data at HERA
- At high scales (Q, $E_T^{
 m jet}$), calculations using the DGLAP evolution equations give a good description of the data at NLO
- ⇒ Measurements at HERA have provided
 - \rightarrow accurate determination of the proton PDFs
 - \rightarrow sensitive tests of pQCD and precise determinations of α_s

July 5, 2006

- DGLAP evolution equivalent to exchange of a parton cascade with exchanged partons strongly ordered in virtuality k_T
- But, DGLAP approximation expected to break down at low x:
 - only leading logs in Q^2 are resummed
 - contributions from $\log 1/x$ neglected (important for
 - $\log Q^2 \ll \log 1/x$)

н

Parton evolution at low x and unintegrated PDFs

- HERA \rightarrow ideal testbed for theoretical approaches that account for low-x effects:
 - BFKL evolution: resummation of large $\log 1/x$ to all orders (very low x)
 - ightarrow no k_T ordering
 - \rightarrow integration taken over full k_T phase space of gluons
 - \rightarrow use of off-shell matrix elements together with unintegrated PDFs
 - CCFM evolution: angular-ordered parton emission (low and larger x)
 - \rightarrow equivalent to BFKL for $x \rightarrow 0$ and to DGLAP at large x
 - \rightarrow use of off-shell matrix elements together with unintegrated PDFs
 - virtual-photon structure: higher-order QCD effects mimicked at low x by introducing a second k_T -ordered parton cascade on the photon side \rightarrow resolved is expected to contribute for $(E_T^{\text{jet}})^2 > Q^2$ and suppressed with increasing Q^2
- By restricting jet data to
 - \rightarrow large $\eta^{\rm jet}$ (forward direction, proton side)
 - $ightarrow x_{
 m jet} \!=\! E^{
 m jet}/E_p \gg x_{
 m Bj}$ (to suppress QPM)
 - $ightarrow Q pprox E_T^{
 m jet}$ (to restrict evolution in Q^2)

these different approaches has been investigated

Forward jet production at low x in NC DIS

 \rightarrow Forward-jet cross section rises with decreasing x

- Comparison to predictions:
 - ightarrow NLO pQCD (DGLAP): fails to describe the data at low x
 - \rightarrow CASCADE (CCFM): improved description of data at low x (sensitivity to unintegrated PDFs)
 - \rightarrow CDM (BFKL-like) and resolved-photon: better description of data

Azimuthal jet separation

• Insight into low-x dynamics can be gained also S by studying the azimuthal separation between the two hardest jets: an excess of events at 0.1 small $\Delta \phi$ would signal a deviation from DGLAP evolution

• The ratio $\rightarrow S = \frac{\int_0^{\alpha} N_{2jet}(\Delta \phi^*, x, Q^2) d\Delta \phi^*}{\int_0^{\pi} N_{2jet}(\Delta \phi^*, x, Q^2) d\Delta \phi^*}, \ \alpha = \frac{2}{3}\pi$

is well suited to test small-x effects

Comparison to CCFM predictions (CASCADE):

 → calculations of S show sensitivity to the
 unintegrated gluon distributions

 \rightarrow These measurements can be used to constrain the unintegrated PDFs

Dijet cross sections in photoproduction

- Measurements of jet cross sections in photoproduction allow tests of color dynamics
- At HERA, quark and gluon exchange can be studied in the same hadronic-induced reaction by separating resolved and direct processes in PHP using

$$x_{\gamma}^{\text{obs}} = \frac{1}{2yE_e} (E_T^{\text{jet1}} e^{-\eta^{\text{jet1}}} + E_T^{\text{jet2}} e^{-\eta^{\text{jet2}}}) \quad \rightarrow \begin{cases} x_{\gamma}^{\text{obs}} < 1 \text{ for resolved} \\ x_{\gamma}^{\text{obs}} \sim 1 \text{ for direct} \end{cases}$$

• Resolved processes dominated by gluon exchange (like dijets in pp):

$$heta^* o 0, \pi: rac{d\sigma}{d\cos heta^*} \sim rac{1}{(1 - |\cos heta^*|)^2}$$

• Direct processes proceed via quark exchange (like prompt photon in *pp*):

$$\theta^* \to 0: \frac{d\sigma}{d\cos\theta^*} \sim \frac{1}{(1 - |\cos\theta^*|)^1}$$
 $g \to g \to g$
resolved direct

 \rightarrow The $\cos \theta^*$ distribution reflects the underlying parton dynamics since it has sensitivity to the spin of the exchanged particle in two-body processes

Dijet cross sections in photoproduction

July 5, 2006

17

ZEUS

Inclusive-jet cross sections in photoproduction

C Glasman (Universidad Autónoma de Madrid)

ZEUS

Inclusive-jet cross sections in photoproduction

- The structure of the photon is investigated by measuring jet cross sections most sensitive to the γ PDF's, eg $d\sigma/d\eta^{\rm jet}$ or $d\sigma/dx_{\gamma}^{\rm obs}$, and comparing the measurements to predictions based on different parametrisations of the γ PDF's
 - → the measurements can be used to discriminate among different parametrisations or used in a global fit to constrain them

Physics at LHC

Dijet cross sections in photoproduction

EPJ C 23 (2002) 4

20

ZEUS

- This is achieved by measuring jet cross sections less sensitive to the $\gamma {\rm PDF}$'s, eg $d\sigma/dE_T^{\rm jet}$ for $x_\gamma^{\rm obs}>0.75$
- These measurements have been incorporated in a global fit of the pPDFs to improve the determination of the gluon density in the proton

EPJ C 42 (2005) 1

Conclusions: jets and PDFs

- Very precise jet cross sections in NC DIS and PHP that are directly sensitive to the gluon content of the proton: useful to constrain gluon density, especially at mid- to high-x (most relevant at LHC energies)
- Measurements incorporated in a QCD fit to determine PDFs parametrisations:

21

ZEUS

EPJ C 42 (2005) 1

• The result is an improvement on the determination of the gluon density in the proton \rightarrow the uncertainty in the gluon density decreases for mid- to high-x by up to a factor of 2

EPJ C 42 (2005) 1

Conclusions: α_s

• HERA has become a unique QCD-testing machine: very useful for understanding multijet production in "clean" hadronic-induced reactions

 \rightarrow considerable progress in understanding and reducing uncertainties led to

Physics at LHC

July 5, 2006

C Glasman (Universidad Autónoma de Madrid)

Multijet cross sections in photoproduction

• Measurements of jet cross sections in photoproduction allow tests of hard multijet production, multiparticle interactions and "underlying event"

- Multijet production is directly sensitive to high orders: $\sigma_{
 m 3jet} \propto lpha_s^2$
- Test of parton showers in Monte Carlo models
- Sensitivity to multiparton interactions/underlying event \rightarrow test/tune models

Multijet cross sections in photoproduction

PYTHIA MPI tuned to generic collider data

- HERWIG MPI tuned to $x_{\gamma}^{
 m obs}$ data • Monte Carlo models without multiparton interactions describe the $y (= \sqrt{Ws})$
- but fail describe the shape of the measured $x_{\gamma}^{
 m obs}$ distribution
- PYTHIA MPI fails to describe the data
- HERWIG MPI describes the $x_{\gamma}^{
 m obs}$ but the description of y gets spoiled
- $\to x_{\gamma}^{
 m obs}$ and y distributions: ideal ground for tuning and testing models

ZEUS

Multijet cross sections in photoproduction

→ very precise hadronic data can be used as testing ground for hadronisation and multiparton interaction models

C Glasman (Universidad Autónoma de Madrid)

26

ZEUS