Imperial College London

Charged current DIS with polarised e[±] beams at HERA

Alex Tapper

XXXIII INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

The HERA accelerator

Longitudinal polarisation at HERA

Longitudinal polarisation of the lepton beam at HERA: new at

HERA II

__ *N*/ _ *N*/

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

- Transverse polarisation builds up naturally through synchrotron radiation (Sokolov-Ternov effect)
- Build-up time around 40 minutes at HERA
- Spin rotators flip transverse polarisation to longitudinal before interaction regions and back afterwards
- Polarisation measured by two independent Compton polarimeters (+ new one being commissioned currently)

The H1 and ZEUS detectors

- LAr calorimeter (45000 cells)
- EM $\frac{\sigma(E)}{E} = \frac{12\%}{\sqrt{E}} \oplus 1\%$
- HAD $\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 1\%$

- DU calorimeter (6000 cells)
- EM $\frac{\sigma(E)}{E} = \frac{18\%}{\sqrt{E}}$
- HAD $\frac{\sigma(E)}{E} = \frac{35\%}{\sqrt{E}}$

Deep inelastic scattering at HERA

Q² is the probing power x is the Bjorken scaling variable y is the inelasticity

Two deep inelastic scattering processes:

- Neutral current: exchange of γ or Z^0 See talk by V. Chekelian
- Charged current: exchange of W[±]
 The topic of this talk

$$Q^2 = -q^2 = -(k - k')^2$$

$$x = \frac{Q^2}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k}$$

$$s = (p+k)^2 \quad Q^2 = x \cdot y \cdot s$$

Charged current DIS at HERA

CC e⁺p cross section:

Sensitive to density of d quark

$$\frac{d^2\sigma^{CC}(e^+p)}{dxdQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[\overline{u} + \overline{c} + (1 - y)^2 (d + s) \right]$$

CC e-p cross section:

cross section:
$$\frac{d^2\sigma^{CC}(e^-p)}{dxdQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \left[u + c + (1 - y)^2(\overline{d} + \overline{s})\right]$$
Sensitive to density of u quark

Electron/positron-proton collisions probe different quark content of proton

Big difference in cross section magnitude

- u-quark density larger than d-quark
- d-quark contribution suppressed by helicity factor (1-y)²

Polarised charged current DIS

Polarisation is asymmetry of helicity states

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

- Helicity = chirality (neglecting masses)
- Can use polarised beams to directly test chiral structure of the Standard Model
- Standard Model weak interaction left-handed
 - only LH particles (RH anti-particles) interact

CC cross section modified by P_e:

$$\sigma_{CC}^{e^{\pm}p}(P_e) = (1 \pm P_e) \cdot \sigma_{CC}^{e^{\pm}p}(P_e = 0)$$

Polarisation scales P_e=0 cross section linearly - clear and large effect at HERA

Standard Model predicts zero cross section for $P_e = +1(-1)$ in $e^{-(+)}p$ scattering

Data samples: luminosities and polarisations

Data sample	H1		ZEUS	
	$P_e < 0$	P _e >0	P _e <0	$P_e > 0$
e ⁺ p	$P_e = -0.40 \pm 0.01$	$P_e = +0.34 \pm 0.01$	$P_e = -0.41 \pm 0.01$	$P_e = +0.32 \pm 0.01$
	L = 20.7 pb ⁻¹	L = 26.9 pb ⁻¹	L = 11.5 pb ⁻¹	L = 12.3 pb ⁻¹
e-p	P_e =-0.27±0.01	$P_e = +0.37 \pm 0.02$	$P_e = -0.27 \pm 0.01$	$P_e = +0.33 \pm 0.02$
	L = 68.6 pb ⁻¹	L = 29.6 pb ⁻¹	L = 78.8 pb ⁻¹	L = 42.7 pb ⁻¹

Charged current events

- Neutrino escapes undetected
- CC candidate events selected using missing E_T
- Topological cuts to remove non-ep backgrounds
- ep backgrounds estimated by MC and subtracted
 - Typically around 1%

Detector calibration

Only the hadronic final state available to reconstruct the event

- Excellent understanding of detector effects necessary
- Use high statistics NC DIS samples to calibrate detectors

Dependence on P_e

- Clearly demonstrate linear dependence on P_e
- Consistent with SM predictions
- Direct sensitivity to W_R → next slide

W_R mass limit

- Linear fit to P_e dependence gives cross section limit at P=-1(+1) for $e^{+(-)}p$
- Assume $g_R = g_L$ and v_R is light
- Cross section limit at P=-1(+1) for e⁺⁽⁻⁾p gives lower limit on mass of W_R
 - M_{WR}> 186 GeV @ 95% CL (from H1 e⁻p)
 - M_{WR}> 180 GeV @ 95% CL (from ZEUS e⁻p)
 - M_{WR}> 208 GeV @ 95% CL (from H1 e+p)

Single differential cross sections

- Cross sections as a function of Q², x and y
 - Clear difference between different polarisations
 - Independent of kinematic variables as predicted by the SM
- Combine polarised samples to give unpolarised cross sections
 - Clear difference between e⁻p and e⁺p as predicted by SM

Double differential cross sections

- Reduced cross section = PDF content
- Measured with much higher precision than ever before in charged current DIS
- Input to QCD and EW fits → see talk by Y. Ri

Summary and future prospects

- Charged current DIS with longitudinally polarised lepton beams measured
 - first e⁺p results published (H1: PLB 634 (2006) 173 ZEUS: PLB 637 (2006) 210)
 - e⁻p results preliminary
- Measurements in good agreement with Standard Model
- Set limit of M_{WR}>208 GeV
- Still more data to analyse in e⁻p scattering
- More data to come in e⁺p scattering
- Higher precision measurements to come

