Diffractive DIS Cross Sections and PDFs from Rapidity Gap and Leading Proton Data

Frank-Peter Schilling (CERN and DESY)

On behalf of the H1 Collaboration

ICHEP 2006 Moscow, July 2006

Results presented (mainly) from two recent papers:

- DESY06-048, hep-ex/0606003 subm to EPJC
- DESY06-049, hep-ex/0606004 subm to EPJC

Overview and Kinematics

Diffractive DIS at HERA: Deep Inelastic Scattering where the proton stays intact and loses just small momentum fraction ...

Event Selection Methods

- 1. Tag and measure final state proton in Forward Proton Spectrometer (FPS method)
 - □ No proton dissociation
 - Can measure t
 - ❑ Acceptance at high x_{IP}
 - □ ... but low Pot acceptance

- 2. Require Large Rapidity Gap spanning at least 3.3<η<7.5 and measure hadrons in central detector (LRG method)
 - Some proton dissociation
 - **Correct to M_{\gamma}<1.6 GeV**
 - Near-perfect acceptance at low x_{IP}

Two Levels of Factorization

- QCD hard scattering collinear factorization (Collins) at fixed x_{IP} and t
 - □ After integration over measured M_Y,t ranges

July 2006

- "Proton vertex" factorization of x,Q² from x_{IP} , t (and M_{Y}) dependences
 - Separately for leading IP and sub-leading IR exchanges

 $\begin{aligned} \mathsf{d}\sigma_{i}(ep \to eXY) &= & f_{i}^{D}(x, Q^{2}, x_{I\!\!P}, t) = \\ f_{i}^{D}(x, Q^{2}, x_{I\!\!P}, t) \otimes \mathsf{d}\widehat{\sigma}^{ei}(x, Q^{2}) & f_{I\!\!P}(x_{I\!\!P}, t) \times f_{i}^{I\!\!P}(\beta = x/x_{I\!\!P}, Q^{2}) \end{aligned}$

ICHEP 2006 Frank-Peter.Schilling@cern.ch

Comparison of Rapidity Gap with Leading Proton (H1,ZEUS) data

LRG vs ZEUS LPS data:

H1 Data H1 Data Q² Q² ZEUS (LPS) H1 (FPS) $\mathbf{X_{IP}} \ \sigma_r^{D(3)}$ X_{IP} Ծ^{D(3)} [GeV²] [GeV²] β=0.04 β=0.1 β=0.4 β=0.01 β**=0.01** β=0.65 β=0.04 β**=0.1** β**=0.4** 0.05 0.05 3.5 3.5 ta d 0 - CO 1 🙀 👌 0.05 0.05 6.5 5 **Co^pci** 0 0.05 0.05 12 12 - **6**00 **P**anop 0.05 0.05 춰 35 25 ₹.Å 10⁻² 10⁻²10⁻⁴ 10⁻²10⁻⁴ 10⁻²10⁻⁴ 10 -4 10⁻² $10^{-2}10^{-4}$ 10⁻²10⁻⁴ 10⁻²10⁻⁴ $10^{-2}10^{-4}$ 10 Х_{IP} XIP

- Agreement in detail between FPS and LRG methods: Ratio LRG/FPS independent of kinematics within errors: $\frac{\sigma(M_Y < 1.6 \text{ GeV})}{\sigma(Y=p)} = 1.23 \pm 0.03 (\text{stat.}) \pm 0.16 (\text{syst.})$
- ZEUS-LPS and H1-FPS normalizations agree to 8%

LRG vs FPS data:

July 2006

• Vergy good agreement between proton tagging and LRG methods if p dissociation is accounted for!

t dependence from FPS measurements

- B(x_{IP}) data constrain IP,IR flux factors in p vertex fact. Model
- Regge motivated form: $f_{I\!\!P/p}(x_{I\!\!P},t) = \frac{e^{B_{I\!\!P}t}}{\frac{2\alpha_{I\!\!P}(t)-1}{x_{I\!\!P}}} \quad \alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$
- Fitting low x_{IP} data to $B = B_{IP} + 2\alpha'_{IP} \ln(1/x_{IP})$ yields

July 2006

$$B_{I\!\!P} = 5.5^{-2.0}_{+0.7} \text{ GeV}^{-2} \alpha'_{I\!\!P} = 0.06^{+0.19}_{-0.06} \text{ GeV}^{-2}$$

 $\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ at x_{IP} =0.0003

- Principal binning scheme for LRG data
- Study Q² and x (=β.x_{IP}) dependences in detail at small number of fixed x_{IP} values
- Good precision in best regions 5% (stat.), 5% (syst.), 6% (norm.)
- Data compared with "H1 2006 DPDF fit" and its error band (assumes p vtx factorization, see later)

$\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ at $x_{IP}=0.001$ and 0.003

July 2006

July 2006

Frank-Peter.Schilling@cern.ch

10

H1 2006 DPDF fit: Overview

- Fit LRG data from fixed x_{IP} binning, using NLO DGLAP evolution of DPDFs (massive scheme) to describe x,Q² dependences
- Proton vtx factorisation framework (supported by data)
 - relate data from different x_{IP} values with complementary x,Q² coverage
- For IP exchange, free parameters are

- α_{IP}(0) (describes x_{IP} dependence)
- DPDF parameters at evolution starting scale Q₀²

$$f_{I\!\!P/p}(x_{I\!\!P},t) = rac{e^{B_{I\!\!P}t}}{x_{I\!\!P}^{2lpha} P^{(t)-1}}$$

- For sub-leading IR
 - all flux parameters taken from previous data
 - PDFs taken from Owens-π; single free param for normalization

Kinematic range and DPDF parameterization

- To ensure data fitted are compatible with chosen framework, test sensitivity of fit results to variations of kinematic boundaries
 - **Constant Security Stable for most variations (** β_{max} , β_{min} , $M_{X,min}$, $x_{IP,max}$)
 - Systematic variation of gluon density with minimum Q² of data included in fit for Q²<8.5 GeV²; stable for larger Q²-min
- Fit all LRG data with Q² \geq 8.5 GeV², M_x>2 GeV, β \leq 0.8
- Parameterize

July 2006

- **u** quark singlet $z\Sigma(z,Q_0^2)$
- \Box gluon zg(z,Q₀²) density

$$z\Sigma(z,Q_0^2) = A_q z^{B_q} (1-z)^{C_q} \quad zg(z,Q_0^2) = A_g (1-z)^{C_g}$$

□ Gluon insensitive to B_g

- Small number of parameters

 need to optimize Q₀² wrt χ²
- Using world average value for $\alpha_s(M_z)=0.118$
- Results reproducible with Chebychev polynomials

H1 2006 DPDF fit results (log z scale)

- Q₀²=1.75 GeV²
- χ²~158 / 183 dof
- Experimental uncertainty obtained by propagating errors on data (c.f. incl. fits, Δχ²=1)
- Theoretical uncertainty from varying fixed parameters of fit (flux params, α_s , m_c , m_b etc.) and Q_0^2 ($\Delta \chi^2$ =1)
- Singlet constrained to ~5%, gluon to ~15% at low z; error blowing up at highest z

A closer look at high z region

- As there are only singlet Log. Derivative wrt Q²: quarks, the evolution eq. for $\mathbf{F}_{2}^{\mathsf{D}}$ is . d $\sigma_r^{D(3)}$ / d ln Q^2 0.02 H1 Data (x_{IP} = 0.01) $\frac{\mathrm{d}F_2^D}{\mathrm{d}\ln Q^2} \sim \frac{\alpha_s}{2\pi} \left[P_{qg} \otimes g + P_{qq} \otimes \Sigma \right]$ 0.015 0.01 (IP/p -1(XIP) 000000 At low β , evolution driven by $\mathbf{g} \rightarrow \mathbf{q}\mathbf{q}$: 0 strong sensitivity to gluon H1 2006 DPDF Fit A At high β relative error on Gluon driven evolution -0.005 derivative grows, $q \rightarrow qg$ Quark driven evolution contribution becomes Sum -0.01 10⁻¹ -2 important: 10
 - sensitivity to gluon is lost

July 2006

β

H1 2006 DPDF fit results (lin. z scale)

- Lack of sensitivity to high z gluon confirmed by dropping C_g parameter, so gluon is simple constant at Q₀²:
- Fit B, χ²~164/184 dof
 ❑ Singlet very stable

- Gluon similar at low z
- Substantial change to gluon at high z

Effective Pomeron Intercept

• From QCD fit to LRG data

 $\alpha_{I\!\!P}(0) = 1.118 \pm 0.008(\exp.)^{+0.029}_{-0.010}(\text{th.})$

- Dominant uncertainty from strong correlation with α'_{IP}: taking α'_{IP}= 0.25 instead of 0.06 GeV⁻² yields α_{IP}(0)~1.15
- No significant variation in Q^2 or β (consistent with p vtx factorization)
- Don't confirm α_{IP}(Q²) seen by ZEUS

• Consistent result from fits to FPS data:

 $lpha_{I\!\!P}(0) = 1.114 \pm 0.018 (\text{stat.}) \pm 0.012 (\text{syst.})^{+0.040}_{-0.020} (\text{th.})$

ICHEP 2006 Frank-Peter.Schilling@cern.ch

Ratio diffractive / inclusive DIS

- Ratio remarkably flat (derivative~0) except at high β
- Ratio also measured vs x (not shown): approx. flat as well

Q² derivative and gluon/quark ratios

At low x, quark:gluon ratio ~ 70%/30%, common to diffractive and inclusive

ICHEP 2006 Frank-Peter.Schilling@cern.ch

New Data using Rapidity Gap Method

- Published data
- Prel. 99-00 data, 34 pb⁻¹
 10<Q²<105 GeV²
- Prel. 2004 data, 34 pb⁻¹
 17.5<Q²<105 GeV²
- Large increase in statistics
- Consistent with published data
- For details, see contributed paper

Summary

- H1 diffractive measurements using FPS and LRG methods published

 hep-ex/0606003 and hep-ex/0606004 (both subm. to EPJC)
 Data from two methods agree in detail! Also agreement with ZEUS-LPS
- New preliminary H1 data with large statistics
- Proton vertex factorization with reggeon exchanges at high x_{IP} provides good model for x_{IP} dependence: α_{IP}(t)~0.118 + 0.06 t
- Ratio diffractive/inclusive DIS measured
 ~flat with Q² (fixed x,x_{IP}), also with W (fixed Q²,M_x)
- Diffractive PDFs extracted from NLO QCD fits to β,Q² dependences for Q²≥ 8.5 GeV² (H1 2006 DPDF Fits A+B)
 - □ Quark singlet very well constrained (~5%)

- □ Gluon constrained to ~15%, but poorly known at high z
- New DPDFs basis for prediction of diffractive cross sections at HERA, TEVATRON and LHC!
- □ Use diffractive dijets to constrain gluon at high z (see talk by M.Kapishin)

Backup / Extra Figures

Data Sets and Observables

- FPS data sample
 1999-2000 data (28 pb⁻¹)
 - □ Study of t dependence:

$$x_{I\!\!P} \frac{\mathrm{d}^2 \sigma^{ep \to eXp}}{\mathrm{d} x_{I\!\!P} \mathrm{d} t}$$

• LRG data sample

□ 1997 data (2 pb⁻¹, Q²<13.5 GeV²)

- □ 1997 data (11 pb⁻¹, 13.5<Q²<105 GeV²)
- □ 99-00 data (62 pb⁻¹, Q²>133 GeV²)

□ The Diffractive reduced cross section:

$$\frac{\mathrm{d}^4 \sigma^{ep \to eXp}}{\mathrm{d}x \mathrm{d}Q^2 \mathrm{d}x_{I\!P} \mathrm{d}t} = \frac{4\pi\alpha^2}{xQ^4} Y_+ \sigma_r^{D(4)}(x, Q^2, x_{I\!P}, t)$$

Q Relates to the structure functions F_2^D and F_L^D as:

$$\sigma_r^{D(4)}(x, Q^2, x_{I\!\!P}, t) = F_2^{D(4)} - \frac{y^2}{Y_+} F_L^{D(4)} \approx F_2^{D(4)}$$

Integrated over t:

$$\sigma_r^{D(3)}(x,Q^2,x_{I\!\!P}) = \int_{-1}^{t_{min}} \sigma_r^{D(4)}(x,Q^2,x_{I\!\!P},t) dt$$

Logarithmic Q² derivative

- σ_r^{D(3)} measures diffractive quark density
- Its dependence on Q² is sensitive to diffractive gluon density
- Fit data at fixed (x,x_{IP}) to σ_r^D=A+B InQ², so that B=dσ_r^D/d In Q²
- Divide results by f_{IP/p}(x_{IP}) to compare different x_{IP} values

July 2006

- Derivatives large and positive at low β
- Suggests large gluon density (independent of x_{IP} within errors)

Comparison LRG vs FPS Data

 Form ratio LRG/FPS of measurements as function of x_{IP}, β or Q² after integration over others

□ Independent of kinematics within errors $\frac{\sigma(M_Y < 1.6 \text{ GeV})}{\sigma(Y=p)} = 1.23 \pm 0.03 \text{(stat.)} \pm 0.16 \text{(syst.)}$

Agreement in detail between methods

July 2006

 M_Y dependence factorizes within (10% nonnormalization) errors!

t-slope dependence on β or Q²?

• B measured double differentially in (β or Q²) and x_{IP}

• No change of t dependence with β or Q^2 at fixed x_{IP}

July 2006

• Proton vertex factorization for t dependence working within errors

Diffractive Charged Current

- Sensitive to flavour decomposition of singlet (completely unconstrained by NC data)
- Good agreement with 2006 DPDF fit (assumes u=d=s=ubar=dbar=sbar, c from BGF), though statistics very limited so far

Ratio diffractive/inclusive: x dependence

- Plot σ_r^D/σ_r at fixed β,Q² (hence fixed M_X) vs x (~1/W²)
- Corresponds to

$$M_X^2 \cdot rac{{
m d}\sigma^D_r}{{
m d}M_X^2}/\sigma_{tot}$$

- Remarkably flat vs x over most of kinematic range (bins with large F_L or IR contrib not shown)
- Diffractive and inclusive cross sections cannot be described with the same $\alpha_{IP}(0)$, even if it is Q² dependent

July 2006

Comparison H1-LRG and ZEUS-Mx data

July 2006

Ratio diffractive/inclusive vs Q² extra plots

July 2006

t dependence in bins of β or Q^2

Q^2 and β dependences of FPS data

July 2006

x_{IP} dependence of FPS data

July 2006

Final Results from two Publications

ISSN 0418-9833 DESY 06-049 DESY 06-048 ISSN 0418-9833 May 2006 May 2006 Measurement and QCD Analysis of the Diffractive Diffractive Deep-Inelastic Scattering 1 Jun 2006 Deep-Inelastic Scattering Cross Section at HERA 1 Jun 2006 with a Leading Proton at HERA H1 Collaboration H1 Collaboration arXiv:hep-ex/0606003 v1 DESY 06-049, hep-ex/0606004 DESY 06-048, hep-ex/0606003 Abstract Abstract A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep \rightarrow$ The cross section for the diffractive deep-inelastic scattering process $ep \rightarrow eXp$ is meaeXY, where Y is a proton or a low mass proton excitation carrying a fraction $1-x_{_{P}} > 0.95$ sured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. of the incident proton longitudinal momentum and the squared four-momentum transfer at The data analysed cover the range $x_P < 0.1$ in fractional proton longitudinal momenthe proton vertex satisfies $|t| < 1 \text{ GeV}^2$. Using data taken by the H1 experiment, the tum loss, $0.08 < |t| < 0.5 \ {
m GeV}^{-2}$ in squared four-momentum transfer at the proton cross section is measured for photon virtualities in the range $3.5 \le Q^2 \le 1600 \text{ GeV}^2$, vertex, $2 < Q^2 < 50 \text{ GeV}^2$ in photon virtuality and $0.004 < \beta = x/x_P < 1$, where triple differentially in x_{μ} , Q^2 and $\beta = x/x_{\mu}$, where x is the Bjorken scaling variable. x is the Bjorken scaling variable. For $x_F \lesssim 10^{-2}$, the differential cross section has a de-At low x_p , the data are consistent with a factorisable x_p dependence, which can be pendence of approximately $d\sigma/dt \propto e^{6t}$, independently of x_P , β and Q^2 within uncerdescribed by the exchange of an effective pomeron trajectory with intercept $\alpha_w(0) =$ tainties. The cross section is also measured triple differentially in x_{IP} , β and Q^2 . The 1.118 ± 0.008 (exp.) $^{+0.029}_{-0.010}$ (model). Diffractive parton distribution functions and their x_{IP} dependence is interpreted in terms of an effective pomeron trajectory with intercept uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q^2 $\alpha_{F}(0) = 1.114 \pm 0.018 \text{ (stat.)} \pm 0.012 \text{ (syst.)} + \frac{0.040}{-0.020} \text{ (model)}$ and a sub-leading exchange. and β dependences of the cross section. The resulting gluon distribution carries an inte-The data are in good agreement with an H1 measurement for which the event selection is grated fraction of around 70% of the exchanged momentum in the Q^2 range studied. Total based on a large gap in the rapidity distribution of the final state hadrons, after accounting and differential cross sections are also measured for the diffractive charged current process for proton dissociation contributions in the latter. Within uncertainties, the dependence of $e^+p \rightarrow p_e XY$ and are found to be well described by predictions based on the diffractive the cross section on \bar{x} and Q^2 can thus be factorised from the dependences on all studied parton distributions. The ratio of the diffractive to the inclusive neutral current ϵp cross

Submitted to Eur. Phys. J. C

ICHEP 2006

sections is studied. Over most of the kinematic range, this ratio shows no significant de-

pendence on Q^2 at fixed x_w and x or on x at fixed Q^2 and β .

Submitted to Eur. Phys. J. C

variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.