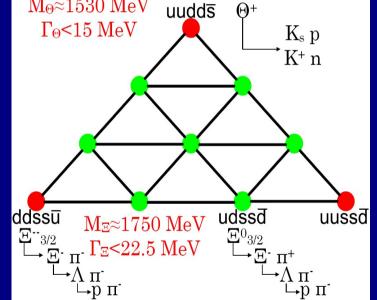
Search for strange pentaquarks in ep collisions at HERA

S.Chekanov (ANL) for the ZEUS and H1 Collaborations

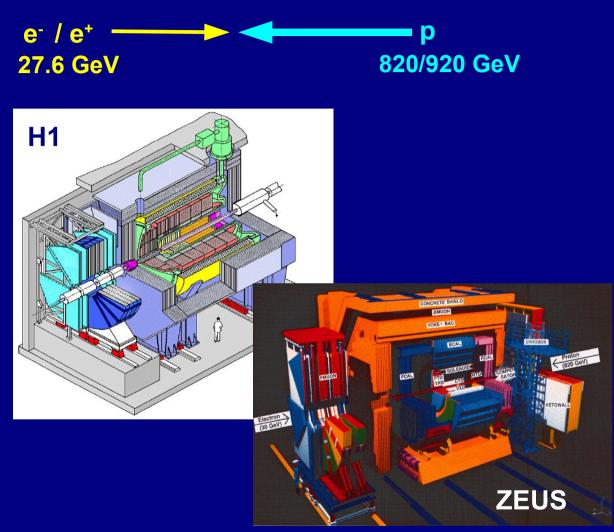
HEP2005 International Europhysics Conference on High Energy Physics EPS (July 21st-27th 2005) in Lisboa, Portugal

- Motivation
- ZEUS K⁰p peak near 1530 MeV new developments
- Comparisons with H1 results
- Searches for strange pentaquarks (PQ) decaying to $\Xi\pi$

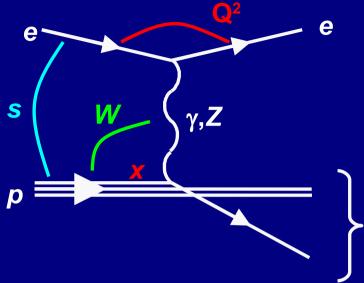

Papers:

- 644 (H1) Search for a Narrow Baryonic Resonance Decaying to K^op
- 363 (ZEUS) Search for Pentaquarks Decaying to $\Xi\pi$ in Deep Inelastic Scattering at HERA
- 392 (ZEUS) Cross section measurements of Θ^+ candidates
- 369 (ZEUS) Production properties of states decaying to strange particles in ep collisions at HERA

Motivation

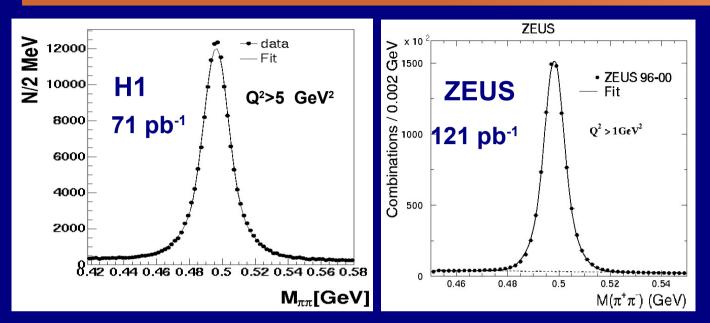

- Triggered by recent observations of possible PQ at 1530 MeV (width <15 MeV)
- Many experiments observed peaks in Kn and K^op channels at ~1530 MeV consistent with PQ predictions -
 - LEPS, DIANA, CLAS, SAPHIR, HERMES, SVD all are low-energy experiments
- In this study, we attempt to find such states by reconstructing K^op final state in ep colliding experiment M_@≈1530 MeV
 - **Note:** K⁰p decay channel is not exotic **Example:** Σ states
- Thus this measurement has to be complemented with those based on K⁺n decay mode

Why $\Theta^+ \rightarrow K^0_{s} p$ channel?



- K^op decay mode can be well reconstructed (no chance for Kn) favor PQ explanation - No K⁰p resonance near 1530 MeV in e⁺e⁻ (LEP, BaBar, Belle, BES). of K⁰_sp signal? \rightarrow PQ suppressed in quark fragmentation?
- No corresponding peak in $\Lambda\pi$ channel. Not a new Σ ?

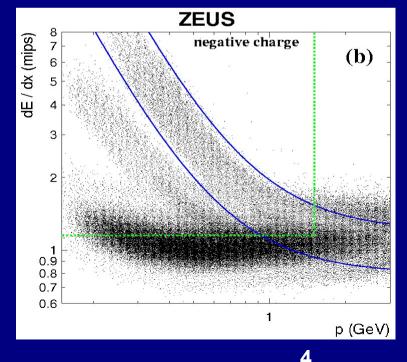
Event kinematics



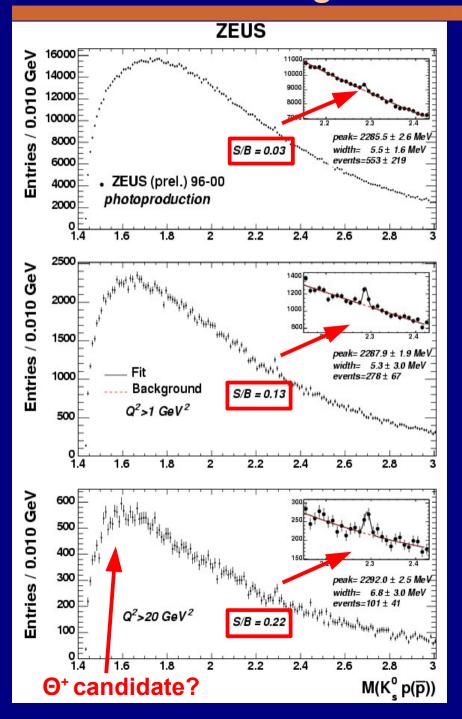
DIS events are triggered by observing scattered electron in calorimeters → unbiased hadronic final-state data sample

- S: ep c.m. energy
 √s = 300 318 GeV
- Q² = -q²: 4-momentum transfer squared
- x: fraction of proton momentum carried by quark
- y: inelasticity parameter
- ⊃ *W*: γ^* -*p* c.m. energy

Reconstruction of K⁰_sp in DIS


K⁰_s reconstruction:

- K⁰_s→π⁺π⁻ using secondary-vertex
- p_T(K⁰_s)>0.3 GeV
- η(K⁰_s)|<1.5
- Dalitz e⁺e⁻ pairs and Λ's removed

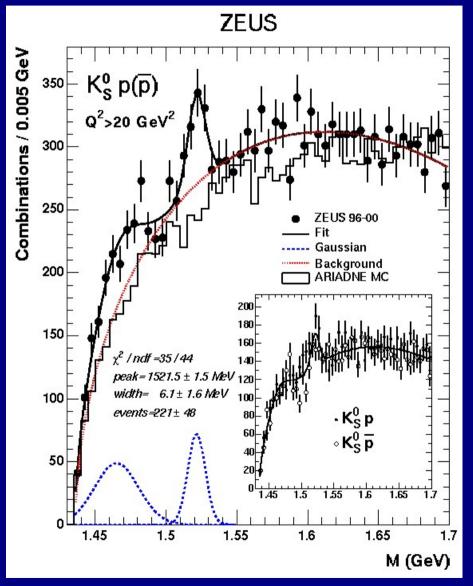

Proton reconstruction:

- tracks originate from primary vertex
- dE/dx identification:
 - ZEUS: "region method"
 - dE/dx>1.15, p<1.5 GeV
 - H1: "likelihood" method

K⁰_s p mass resolution: H1: 5 MeV ZEUS: 2.4 MeV

K⁰_sp invariant mass

Peak near 1522 MeV for DIS at Q²>20 GeV²

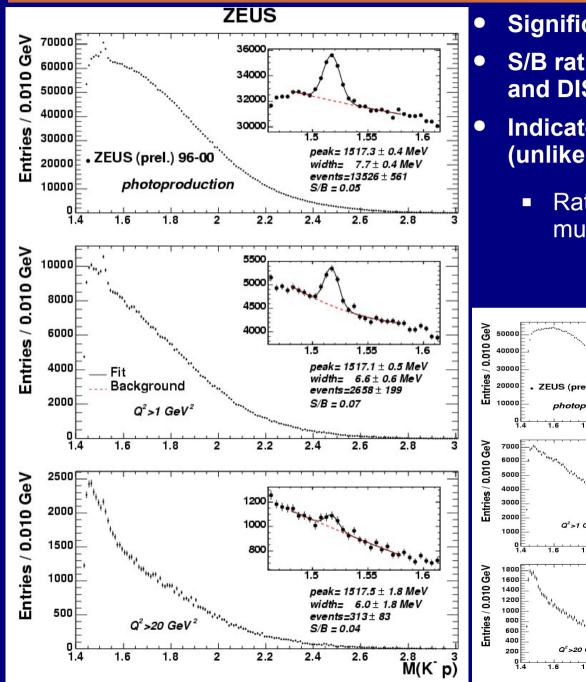

- $\Lambda_c^+ \rightarrow K_s^0 p$ peak near 2285 MeV for photoproduction and DIS:
 - signal-over-background (S/B) ratio is very small for photoproduction
 - such S/B is expected for c-quark fragmentation driven by boson-gluonfusion process g→cc

Note: ZEUS triggers photoproduction events using jets with E_{τ} >6-8 GeV:

→ ZEUS photoproduction events are enriched with K⁰_s and (anti)protons from fragmentation of light quarks

Absence of Θ⁺ peak in photoproduction data could be due to small S/B ratio (significant combinatorial background and particle multiplicity)

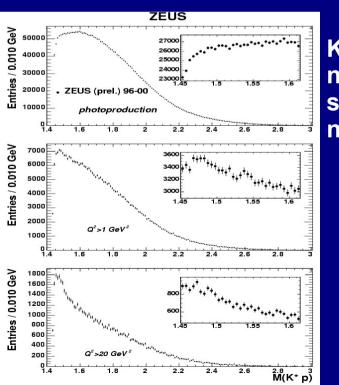
K⁰_sp peak near 1522 MeV in details



- 4.6σ signal near 1522 MeV
- Narrow width Γ=8±4 MeV
- For low proton momenta p<1.5 GeV
- Not in MC simulation
- Exits in DIS for Q²>20-50 GeV²
- Double-peak restructure?
 - evidence for PDG Σ(1480) bump (*)?

see more details in ZEUS Coll. PL B591 (2004) 7

Fit: Double-Gaussian + threshold background function

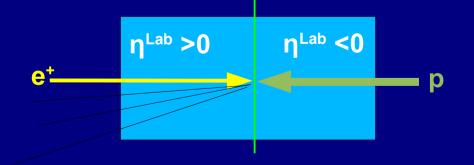

Λ(1520)→K⁻ p

- Significant number of $\Lambda(1520)$ (~16.5K)
- S/B ratio is the same for photoproduction and DIS

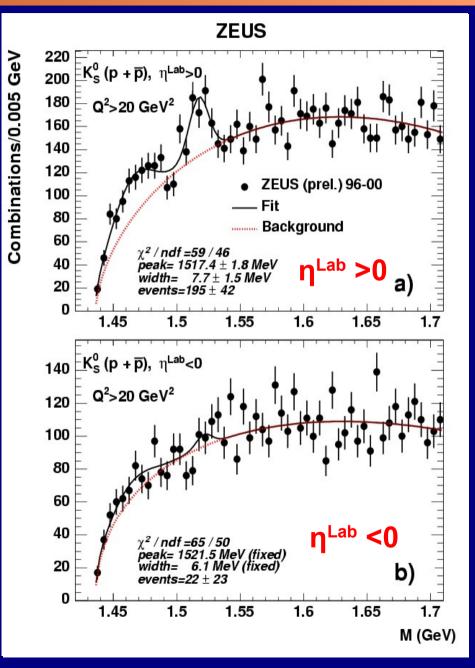
Indicates light-quark fragmentation origin (unlike $\Lambda_{c}{}^{*}$)

 Rate of A(1520) ~ average charge multiplicity.

K⁺p spectrum does not have statistically significant peak near 1530 MeV


no Θ⁺⁺ signal

Non-observations of Θ^+ in e^+e^- may indicate that ZEUS Θ^+ signal could be related to the proton fragmentation


- If this is the case (S.C. hep-ph/0502098):
- 1) high-Q² events are more favorable
- 2) Θ^+ mainly in the forward region ($\eta^{Lab} > 0$)
- 3) Θ^+ rate should be larger than for Θ^+

Check this by reconstructing the K⁰_sp signal:

- in forward and rear pseudorapidity regions
- for proton and antiproton combinations

peak is predominantly for $\eta^{Lab} > 0$

Combinations/0.005 GeV

3200

3000

2800

2600

2400

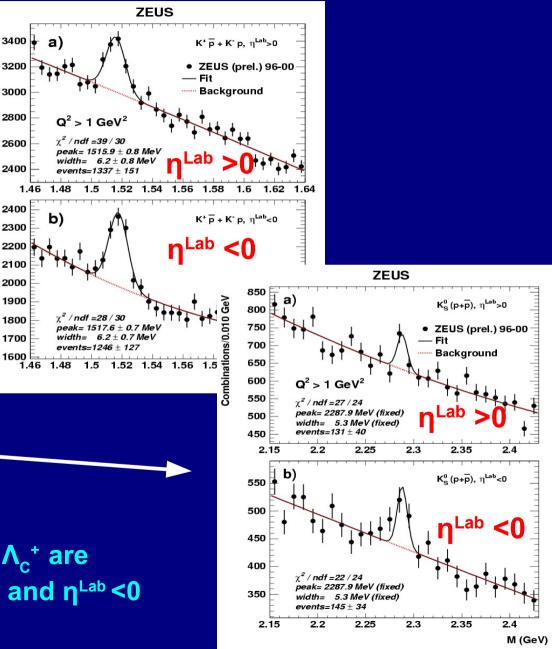
2400

2300 2200 2100

2000

1900

1800

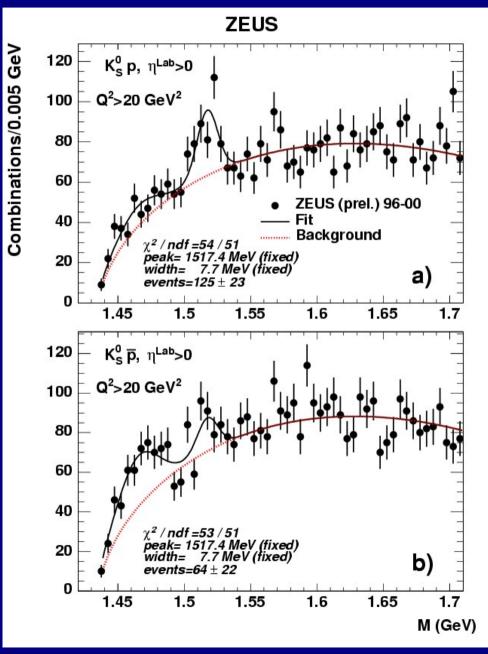

1700

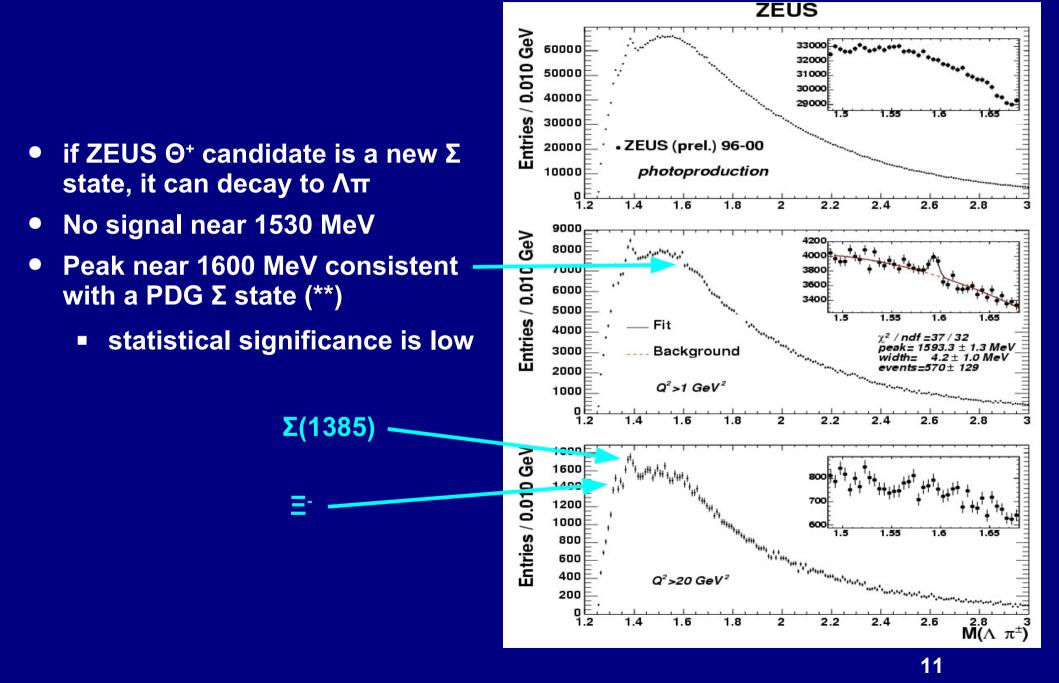
1600

- What about known states?
 - $\Lambda(1520)$ from u,d,s-quark fragmentation
 - Λ_c^+ from c-quark fragmentation after the hard process $g \rightarrow c\overline{c}$
- **Good reference for comparison** with O⁺ candidate

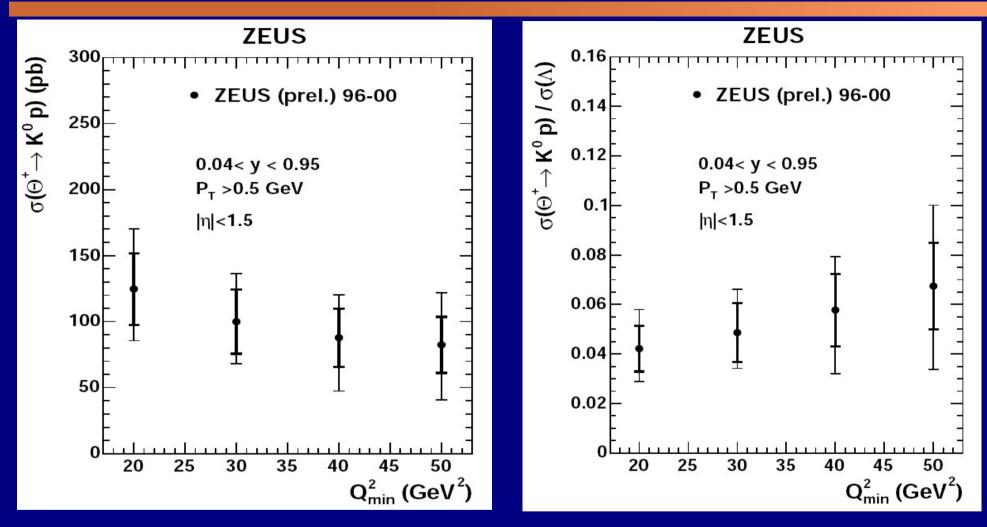
same numbers of baryons for n^{Lab}>0 and n^{Lab}<0

unlike Θ^+ candidate, $\Lambda(1520)$ and Λ_c^+ are democratically produced in $\eta^{Lab} > 0$ and $\eta^{Lab} < 0$ pseudorapidity regions

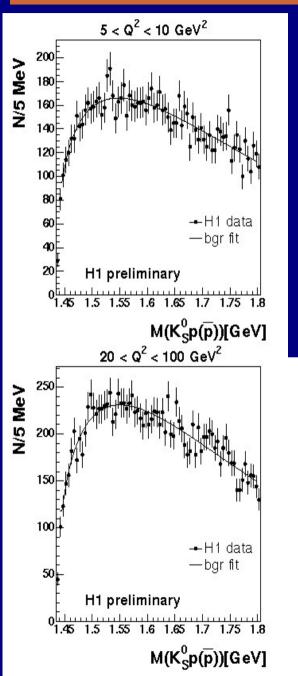



9

- Split the signal to K⁰_s-proton and K⁰_s-antiproton combinations for η^{Lab} >0
- Double-Gaussian fit gives 5.4σ statistical significance for the proton channel
- Background is simpler than for the sum of the two distributions

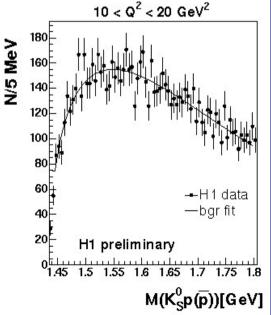

Notes on the fitting procedure:

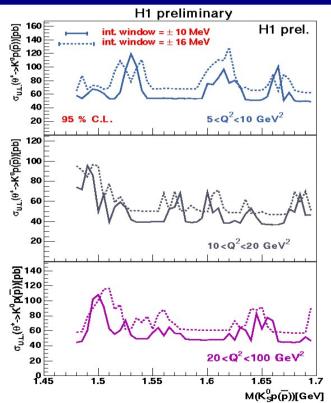
- peak and width are fixed to the sum of the two distributions
- fit using continuous background is also fine


Cross-section measurement

assume Σ kinematics for Θ⁺ (as for quark fragmentation)

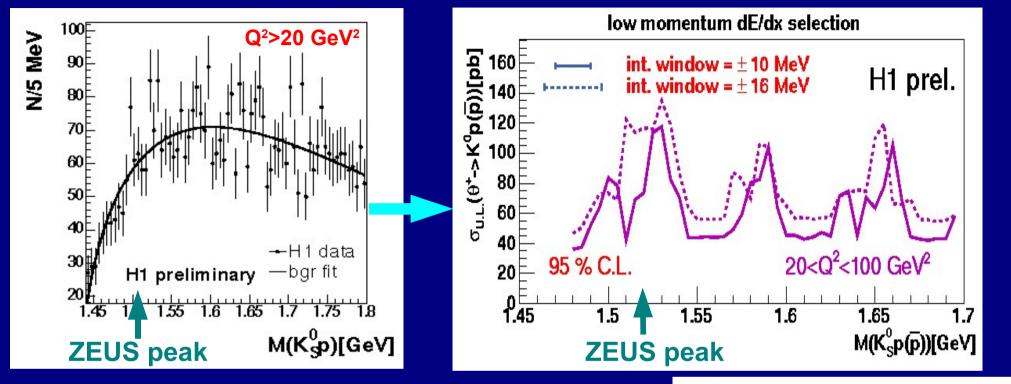
• estimate acceptance using RAPGAP model (for DIS process) Q²>20 GeV² $\sigma(e^{\pm}p \rightarrow e^{\pm} \Theta^{+} X \rightarrow e^{\pm} K^{0}p X) = 125 \pm 27(\text{stat.})^{+36}_{-28}(\text{syst.}) \text{ pb.}$

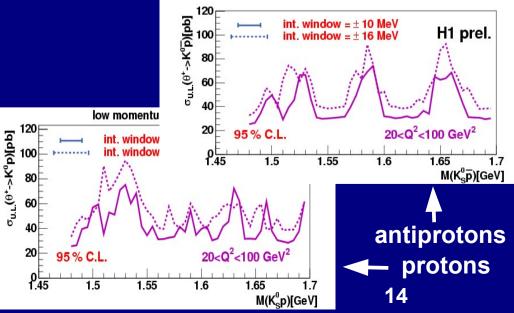

H1 results



• H1: DIS Q²>5 GeV² 0.1<y<0.6 (ZEUS: 0.01<y<0.95)

- Protons are selected using the dE/dx likelihood method without explicit cut on the proton momenta (allows to use protons with p>1.5 GeV)
- Similar K⁰_s reconstruction as for ZEUS

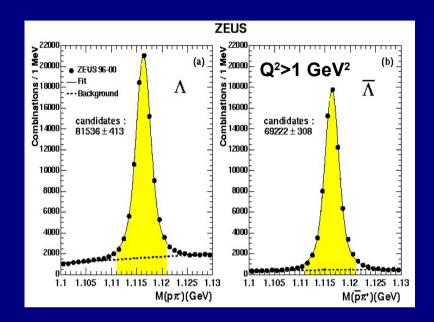


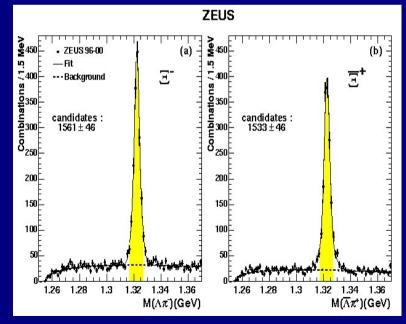


upper limits on $\sigma(\Theta^+)$ assuming quark fragmentation of Θ^+

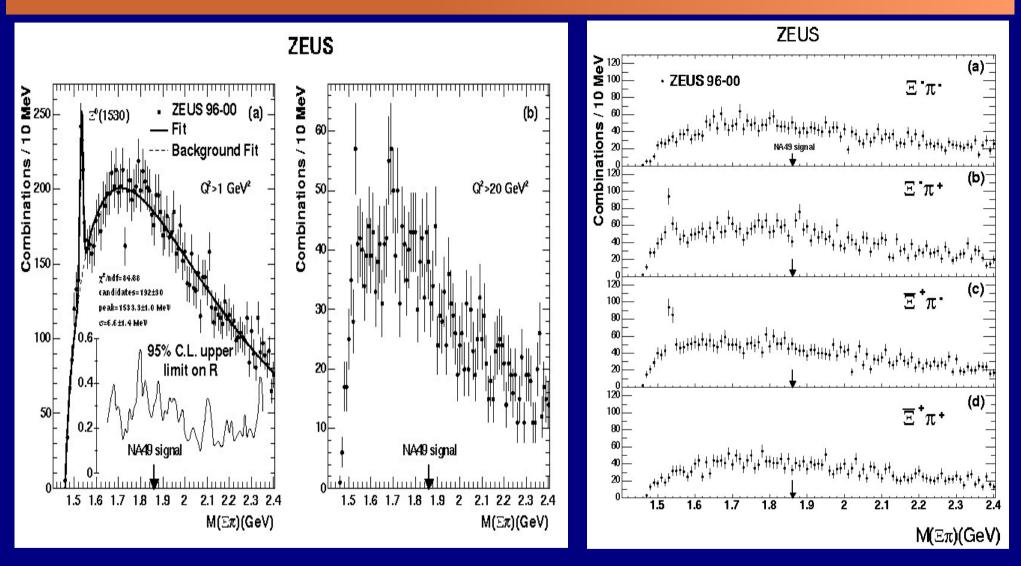
H1 results

- Use low-momentum protons as in ZEUS case (p<1.5 GeV) – a better proton purity
- Still no ZEUS signal
- Statistics is lower than in ZEUS case
- Upper limit does not contradict to the ZEUS observation
 - σ(Θ⁺)~120 pb for Q²>20 GeV²
- Need more data

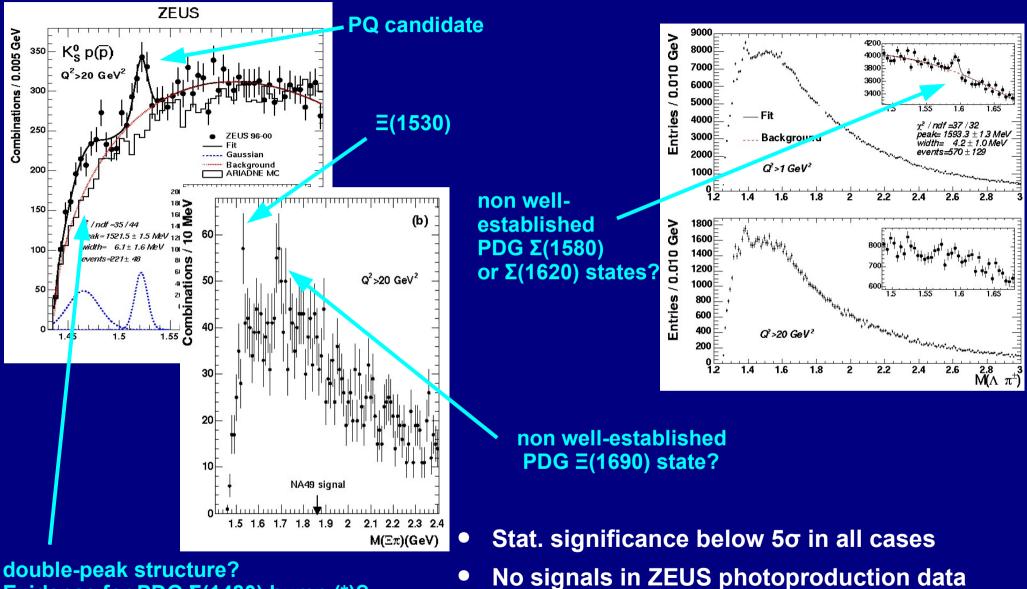

Heavy strange PQ in DIS


- Observed by NA49 Collab.
- Consistent with $\Xi^{-}_{3/2}$ (dsdsu)
- narrow width, mass ~1862 MeV

Reconstruction:


- Λ from secondary vertex
- combine with tracks which have small DCA from Λ
- combine E candidates with pions from primary vertex
 - ~3100 Ξ candidates

Heavy strange PQ



- Competitive number of Ξ⁰(1530) candidates (192±30)
- No signal near 1862 MeV
- Upper limit on the ratio $R = \Xi^{-(0)}_{3/2} / \Xi^{0}(1530) \sim 0.2-0.5$

Summary

- ZEUS Θ⁺ candidate is predominantly produced in the forward region, η^{Lab} >0 (towards incoming proton)
 - neither $\Lambda(1520)$ (from light-quark fragmentation) nor Λ_c^+ (from c-quark fragmentation after $g \rightarrow c\overline{c}$) has such property
- Absence of the Θ^+ signal in photoproduction data dominated by jets with E_{τ} >6-8 GeV. Small S/B ratio due to proton fragmentation origin of Θ^+ ?
 - Λ(1520) cannot be used as a "reference" state for other experiments
 - may explain non-observations of Θ⁺ in e⁺e⁻ and TEVATRON
- H1 did not find the Θ⁺ peak. However H1 upper limit does not contradict to the ZEUS observation
- No NA49 PQ signal... No Θ⁺⁺ signal...
- HERAII data is necessary for further studies

A few other unexpected peaks..

Evidence for PDG Σ(1480) bump (*)?

See more details in ZEUS contributed papers

Summary of experiments

LEPS CLAS CLAS SAPHIR DIANA ITEP	$ \begin{array}{c} \gamma n \to K^{-}(K^{+}n) \\ \gamma d \to p K^{-}(K^{+}n) \\ \gamma p \to \pi^{+} K^{-}(K^{+}n) \\ \gamma p \to K^{0}_{S} (K^{+}n) \end{array} $ $ \begin{array}{c} K^{+} X e \to X e'(K^{0}_{S} p) \\ \hline K^{+} X e \to X e'(K^{0}_{S} p) \\ \hline K^{+} X e \to X e'(K^{0}_{S} p) \end{array} $	1540 ± 6	< 25 < 21 < 26 < 25 < 9 < 20	4.6 5.2 7.8 4.8 4.4	$ \begin{array}{c} K^{+}n \; (S=+1) \\ K^{+}n \; (S=+1) \\ K^{+}n \; (S=+1) \\ K^{+}n \; (S=+1) \\ \hline K^{0}p \; (S =1) \\ K^{0}p \; (S =1) \\ K^{0}p \; (S =1) \\ \hline \end{array} $		
SVD	$ \begin{array}{c c} \nu A^* \to X(K^0_S \ p) \\ p A^{**} \to X(K^0_S \ p) \end{array} $	1533 ± 5 1526 ± 5	< 20 < 24	6.7 5.6	$\begin{vmatrix} K_S^0 p \ (S = 1) \\ K_S^0 p \ (S = 1) \end{vmatrix}$		
HERMES	$e^+d o X(K^0_S \ p)$	1526 ± 3	13 ± 9	~ 5	$K_S^0 p \ (S =1)$		
COSY-TOF	$pp \rightarrow \Sigma^+(K^0_S p)$	1530 ± 5	< 18	4-6	$\mid K^0_S p \; (S =1)$		
YEREVAN	$pC_3H_8 \rightarrow Xp(K_S^0 p)$	/	< 34	5.5	$ K_S^0 p(S =1) $		
ZEUS	$e^{\pm}p \rightarrow e^{\pm}X(K_S^0 \ p(\bar{p}))$)) 1522 ± 2	8 ± 4	~ 5	$K_S^0 p \left(\left S \right = 1 \right)$		l i
	(e results:
suppressed? No net baryon number in initial state? consistent with ZEUS PHP data		Belle	elle $e^+e^- \rightarrow \Psi(2S) \rightarrow B^0 \bar{B^0} \rightarrow \bar{p}(K^0_S p)$			$\rightarrow \bar{p}(K_S^0 p)$	$< 1.1 \times 10^{-5}$ B.R. $< 2.3 \times 10^{-7}$ B.R.
		BaBar	$e^+e^- \to \Upsilon(4S) \to BB \to X(K^0_S p)$				$< 1.0 \times 10^{-4}$ B.R.
		ALEPH	$\begin{array}{c} e^+e^- \to Z \to (K^0_S \ p) \\ p\bar{p} \to X(K^0_S \ p) \end{array}$			$< 6.2 \times 10^{-4}$ B.R.	
		- CDF				$< 0.03 imes \Lambda^*$	
isospin forbidden? M.Karliner, H.Lipkin hep-ph/0506084		E871	$pCu ightarrow X(K^0_S p)$			$< 2.5 \times 10^{-3}$ B.R.	
		HERA-B	$pA^* o X(K^0_S p)$				$< 0.02 imes \Lambda^*$
		PHENIX	$AuAu \rightarrow X(K^-\bar{n})$				(not given)
		CLAS	$\gamma p ightarrow K^0_S(K^+n)$			(not given)	
limit is consistent with ZEUS		H1	$e^{\pm}p \rightarrow e^{\pm}X(K^0_S p(\bar{p}))$			$< 120 \text{ pb}^{**}$	
observation		1 		-	, . .		19