Experimental Results on Exclusive Vector Mesons and Heavy Quarkonium

Paul Thompson Birmingham University

H1 and ZEUS Collaborations

- Introduction and Motivation
- □ Elastic Vector Meson production
 - Proton Dissociation
 - □ high |t|
 - □ Summary

Motivation

Investigation of vacuum-exchange processes

 Vacuum -exchange is complicated. Bulk of hadronic processes not calculable from first principles. Using high energy hard diffraction events we hope to learn more about the fundamental properties of strong force.

Exclusive Vector Mesons

•Study properties of the strong interaction and identify kinematic areas where pQCD is applicable: Look for soft-> hard transitions using the scales Q^2 , M_V^2 , |t|-Study of energy dependence is an important tool

Dipole separation ~ [Q²+m_q²]^{-1/2}
 Do we observe scaling in [Q²+M²]?

 Exclusive VM channel allows study of helicity structure using decay angles. Do we see helicity transfer, universal scaling behaviour, VM structure?

VMD and Regge Theory

VMDominance:

- photon fluctuates into VM
 before interaction
 (VM retains γ* helicity SCHC)
- VM scatters off proton (soft interaction)

Regge theory:

- Successful parameterisation of soft processes by Regge trajectories $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t$ soft pomeron $\alpha_{IP}(0) = 1.08$, $\alpha_{IP}' = 0.25 \text{ GeV}^{-2}$
- Intercept describes weak energy dependence of cross section $\sigma \sim W^{\delta} \quad \delta \sim 0.2 \quad \delta = 2 (\alpha_{IP}(0) 1)$
- Small scattering angles $d\sigma/dt \sim e^{b(W)t}$
- shrinkage $b(W) = b_0 + 4\alpha' \ln(W/W_0)$

Ringberg 2003

Dipole Picture in Proton Rest Frame

- $\gamma^* \rightarrow qq$ (wave function
- qq scattering off proton
- VM formed after interaction

- $\gamma^* \rightarrow qq$ (wave function parameterisations exist DGKP,NNPZ etc.)
- dipole cross section from proton. Lowest order colour singlet exchange 2 gluons.
- r: transverse separation of dipoles r ~ $[z(1-z)Q^2+m_q^2]^{-1/2}$
- Large Q² or m_q² small dipole resolve short distances -> pQCD
- Large dipole (small Q^2 and m_q^2) -> non-perturbative

pQCD predictions

 $\sigma_{L} |_{t=0} \sim \alpha_{s}^{2} (Q_{eff}^{2}) / Q^{6} | x G(x, Q_{eff}^{2}) |^{2}$

MRT: Phys. Rev. D62 (2000) 14022.

FKS: Phys. Rev. D57 (1998) 512.

- 1. Fast rise with energy from rise of gluon density $W^{-0.8}$ [$W^2 \sim 1/x$] Q^2 dependence slower than $1/Q^6$ due to xG
- 2. Longitudinal cross section asymptotically dominant (R= σ_L/σ_T =Q²/M²)
- 3. Q^2 dependence less than $1/Q^6$ due to gluon density
- 4. Approximate Flavour symmetry due to universal hard 2g-dipole scatter $\rho: \omega: \phi: J/\Psi = 9$ (9): 1 (0.8): 2 (2.4): 8 (28) modification proportional to mass due to dipole-VM transition
- 5. Transverse $\sigma_T \sim Q^{-8}$: large dipole sizes due to endpoint effects make problems for predictions for light VMs
- 6. Universal t-dependence ~ $e^{-4|t|}$. No shrinkage (2g)

Confront models with data ->

Ringberg 2003

Elastic VM in photoproduction $(Q^2=0, |t|\sim 0)$

Elastic J/Ψ Mesons in Photoproduction

Fast rise with W:

 $W^{\delta} \quad \delta \sim 0.7$

pQCD models with $M_{J/\Psi}$ as hard scale give qualitative description of data

Extraction of gluon density? $\sigma_L \sim [xG(x,Q_{eff}^2)]^2$ Choice of Q_{eff}^2 ? NLO effects?

Pomeron Trajectory for J/Ψ in γp

Measure W-dependence in bins of t

⇒ "soft" Pomeron alone excluded

-Shrinkage observed

Ringberg 2003

W-dependence of elastic ρ^0 in bins of Q^2

W-dependence of elastic J/Ψ in bins of Q^2

Pomeron trajectory for J/Ψ in Electroproduction ZEUS

Is Q^2+M^2 a universal scale for W-dependence?

• SU(4) scaling works for ρ, ϕ, ω not for J/Ψ

but W dependences similar

Ringberg 2003

Measurement of $R = \sigma_L / \sigma_T v s Q^2$ for ρ^0

pQCD: $\sigma_{L} \sim a_{s}^{2}/Q^{6}$. [xG]²

Gluon density expected to weaken 1/Q⁶ dependence

Ringberg 2003

 Q^2 Dependence of J/Ψ Electroproduction

- Fit describes data, although χ^2 improves with increasing Q^2_{min}
- pQCD gives reasonable description

Ringberg 2003

Ratio of J/Ψ and ρ^0 vs Q^2 - SU(4) scaling?

- Ratio increases with Q²
- Approaching SU(4) value
- Far from enhancement (~3) due to mass predicted by pQCD

Helicity

Information about polarisation of VM obtained in helicity frame

s-channel helicity conversation (SCHC) - helicity of photon transferred to VM.

Ringberg 2003

What have we learned so far?

- Described by pQCD (Ivanov and Kirschner) based on 2g exchange
- SCHC violation requires longitudinal momentum of photon to be shared asymmetrically by qq

Ringberg 2003

Proton Dissociation ρ^0 Eletroproduction (low-|t|)

ZEUS

SCHC for ρ^0 proton dissociation

SCHC-breaking observed for dissociation process
t'=|t|-|t|_{min}

 described by pQCD based on 2g exchange where photon longitudinal momentum shared asymmetrically by qq

Ringberg 2003

R for ρ^0 proton dissociation

• R = $1/\epsilon r^{04}/(1-r^{04})$

•
$$r^{04} \sim (|T_{00}|^2 + |T_{11}|^2)$$

•No dependence of r^{04} (R) on t

 \Longrightarrow b-slopes for σ_{L} and σ_{T} SCHC amplitudes are similar

• non-perturbative contributions to σ_{T} small?

-> described by pQCD based on 2g exchange

Ringberg 2003

High-|t| Vector Meson Production

- calculations for `hard' BFKL pomeron
- gluon ladder couples to a single parton within proton
- BFKL LLA: W^{1.2} steep rise $\alpha'_{IP} < 0.1 \text{ GeV}^{-2}$ little shrinkage
- t-dependence $d\sigma/dt \sim |t|^{-n}$, $n \sim 3$ (n increases with t)

-In region $|t| < M^2$ DGLAP evolution possible through K_T ordering in ladder Gotsman, Maor et al.

Bartels, Forshaw et al.

-|t| >> M^2 , no phase space for DGLAP evolution. Unordered K_T from BFKL evolution

Do we approach the BFKL region at HERA?

Proton-dissociation in γp . at high |t|

VMs at High t: σ_v/σ_o and SU(4)

Indication of flavor independence of VM production at high |t|?

SCHC at high |t| in γp proton dissociation

- ρ^0 shows small SCHC breaking – due to asymmetric sharing of γ momentum by qq
- J/Ψ consistent with SCHC within stats. for all t

Non-relativistic approximation for J/Ψ wave function z=1/2, r=0 satisfactory for present data

Pomeron trajectory Dependence on [t]

J/Y elastic: moderate shrinkage

 J/Ψ p-dissociation: shrinkage consistent with zero.

Different "Pomeron" for p-diss and elastic? Is this the BFKL Pomeron?

Ringberg 2003

Summary

Diffractive VM production at HERA allows to study the dynamics of vacuum-exchange processes

 $\hfill Transition$ from soft to hard behaviour observed in Q^2 and/or M^2

Analysis of helicity structure allows detailed investigations of scaling and VM structure

VM production at high |t| shows hard behaviour in t and W dependence (BFKL?)

QCD has had many successes but

Recent results raise difficult questions

HERA II will continue to do so

Looking forward to the challenge!

Ringberg 2003