Forward Jets and Particles at HERA

S. R. Magill

Argonne National Laboratory

- * Introduction Low x Parton Density Evolution
- # Inclusive Jets
- * Forward Jets
- * Forward π⁰s
- * Azimuthal Decorrelation of Dijets
- * Summary

Proton Structure - post HERA

Steep rise of the proton structure function $F_2(x,Q^2)$ at small x

Parton evolution mechanisms

BFKL (partons evolve with 1/x)
dominating at small x?
DGLAP (partons evolve with Q2) adequately describes ALL F2 data!

Approaching unitarity - partons fill up the proton?

Saturation effects seen? - Not yet

Small x Evolution of Parton Densities

BFKL

DGLAP

evolves with Q²
large Q²
(α_s In Q²)ⁿ
angular, x, k_T ordering

evolves with x small x (α_s In 1/x)ⁿ angular, x ordering <u>No k_T ordering</u>

 $k_{Tn} \sim Q \rightarrow \text{no } Q^2$ evolution on the ladder $\therefore \sigma_{DGLAP} \sim 0 \text{ for}$ $x_n \gg x \rightarrow \text{large ln } x_n/x$

4 180 degrees - Azimuthal decorrelation

~180 degrees since k_Tgluon small

Why Study Forward Jets and Particles?

With forward jets and particles:

- Study physics of the target region in the proton
- Investigate parton densities and evolution mechanisms at small
- Search for local density fluctuations where saturation effects begin:

Approach to saturation might start in small, local regions of the proton - "hot spots" (A. Mueller) -> Future analyses

Implementation of Evolution Schemes

DGLAP PS Models MEPS (LEPTO) HERWIG RAPGAP (DIR)

RAPGAP (RES)

BFKL-like Models
CDM (ARIADNE)
CCFM (CASCADE)

Fixed-Order QCD Calculations

DGLAP NLO QCD MEPJET DISENT NLOJET

Includes ability to apply jet algorithms

BFKL LO BFKL III LO tree-level diagrams only with no higher order corrections

No jet algorithm

Kwiecinski, Martín, Outhwaite - hep-ph/9903439

Gluon emissions are modified by "consistency constraint" – requires k_{T} of emitted parton to be limited by the transverse momentum of its corresponding ladder gluon

Major parts of the non-leading BFKL equation are included Normalization is sensitive to infrared cut-off and scale of αs

HERA Data - Inclusive Jets in DIS vs NLO QCD

Jet data compared to fixed-order (NLO QCD) calculation with DGLAP evolution

NLO QCD with DGLAP unable to describe data in forward region, at low Q2 and low ET

Inclusive Jets in DIS - MC Models

- -> Clear excess of data over fixedorder calculation (NLO QCD) in the forward region (high η)
- -> Good agreement with CDM
- -> Not good agreement with DGLAP

Low x behavior not described well by DGLAP approach - fixed-order (NLO QCD) or parton shower model

Forward Jets at HERA

Select events with jets in forward region:

- -> All target region jets in Breit Frame analysis
- -> Jets with minimum n cut in Lab Frame

DIS kinematics:

 \times - as small as possible, 10^{-3} -> 10^{-4} $Q^2 - \sim 10 \text{ GeV}^2$ and higher

Jets - k_T or cone algorithm:

x_{jet} - as large as possible (~.025 ->

 x_{iet}/x is therefore large, ~100 k_jet ~ Q - suppresses DGLAP contribution

Forward Jet Properties

BFKL-like Models

CDM (ARIADNE)

CCFM (CASCADE)

DGLAP PS Models

LEPTO

HERWIG

RAPGAP (DIR)

RAPGAP (DIR+RES)

Forward Jet Cross Sections I

BFKL-like Models

CCFM (CASCADE-1)

CCFM (CASCADE-2)

DGLAP NLO QCD

DISENT

Forward Jet Cross Sections II

DGLAP NLO QCD
MEPJET
BFKL

Forward Jets -> Forward Particles?

Experimental challenges:

Clean separation of jet from rest of proton remnant

Model-dependent hadronization at small x

Try high p_T forward particles ->

Forward π^0 Cross Sections

BFKL-like Models

CDM (ARIADNE)

CCFM (CASCADE)

CCFM (CASCADE)

CCFM (CASCADE)

X+

DGLAP PS Models

RAPGAP (DIR)

RAPGAP (DIR+RES)

BFKL

Mod. LO BFKL

CCFM OK where tuned to jet data

Transverse Energy Flow around Forward π^0 s

Transverse energy flow is highly collimated around the π^0

Most forward π^0 s - top left plot (HCM)

Data around the π^0 is described best by CCFM or RAPGAP with resolved virtual photon

The transverse momentum of the forward π^0 s is compensated near the particle, not far away as predicted by (and expected for) the DGLAP model RAPGAP with direct virtual photon only

Azimuthal Decorrelation of Dijets

DGLAP Picture

Small k_T forward gluon barely perturbs dijets -> almost backto-back

BFKL Picture

Large k_T forward gluon(s) force dijets to recoil -> $\Delta\Phi$ < 180°

Study of $\Delta\Phi$ tails - S Ratio

Compare tails to peak using the ratio:

$$S = rac{\int_0^{lpha} N_{
m 2-jet}(\Delta\phi^*,x,Q^2) \mathrm{d}\Delta\phi^*}{\int_0^{\pi} N_{
m 2-jet}(\Delta\phi^*,x,Q^2) \mathrm{d}\Delta\phi^*}, \;\; 0 < lpha < \pi$$

 $\Delta \phi *$ = azimuthal angle between two hardest E_T jets

$$\alpha$$
 = 2/3 π

DGLAP NLO QCD
DISENT (2-jet) X
NLOJET (3-jet) X

S Ratio vs x - MC Models

DGLAP PS Models

RAPGAP (DIR) RAPGAP (DIR+RES)

Saturation of partons - Nonlinear evolution

- 1. The number of partons increases with time (emission ∞ density). Note that transverse size (∞ 1/Q) of the partons is constant (BFKL case).
- 2. The number increases until partons cover the surface of the (flat) proton.
- 3. Overlapping (low x) partons can recombine into a high x parton (\propto density²).
- 4. The tradeoff between emission and recombination produces saturation in the parton evolution.

Hot Spots - Approach to Saturation

Very difficult to reach saturation region at HERA

But, suppose saturation begins in small local regions in the proton first, at higher x and Q² than is necessary for the entire proton.

These "Hot Spots" as proposed by Al Mueller would be regions of intense parton-parton interactions that might exhibit saturation effects in forward jets.

- 1. Select DIS events with a forward jet use Breit frame to eliminate current jets
- 2. Characterize each event by its most forward jet x_{jet} large, k_T^{jet} ~ Q
- 3. Measure the cross section; which is a function of x, k_T^{jet} , and x_{jet} ; vs x at fixed x_{jet} , k_T^{jet}
- 4. Compare to steep rise of inclusive F_2 at small x to see evidence of saturation effects

Summary

- ZEUS and H1 have studied forward jets and particles in DIS, comparing several types of measurements to alternative parton evolution mechanisms in MC models and fixed-order QCD calculations.
- DGLAP-based parton shower MC models as well as fixed-order NLO QCD calculations are unable to adequately describe all of the data, with the exception of a model in which the exchanged virtual photon has a significant resolved component.
- MC models utilizing BFKL-like evolution are able to describe most of the data adequately as is the modified LO BFKL calculation.
- Studies of QCD dynamics are continuing, including extensions to more forward regions using calorimeter upgrades, higher statistics data with multiple forward jets, and other scattering processes.
- Also, with the large data sets available now, measurements sensitive to possible saturation effects are underway.