Forward Jets and Particles at HERA S. R. Magill Argonne National Laboratory - * Introduction Low x Parton Density Evolution - # Inclusive Jets - * Forward Jets - * Forward π⁰s - * Azimuthal Decorrelation of Dijets - * Summary ## Proton Structure - post HERA Steep rise of the proton structure function $F_2(x,Q^2)$ at small x #### Parton evolution mechanisms BFKL (partons evolve with 1/x) dominating at small x? DGLAP (partons evolve with Q2) adequately describes ALL F2 data! Approaching unitarity - partons fill up the proton? Saturation effects seen? - Not yet ## Small x Evolution of Parton Densities BFKL DGLAP evolves with Q² large Q² (α_s In Q²)ⁿ angular, x, k_T ordering evolves with x small x (α_s In 1/x)ⁿ angular, x ordering <u>No k_T ordering</u> $k_{Tn} \sim Q \rightarrow \text{no } Q^2$ evolution on the ladder $\therefore \sigma_{DGLAP} \sim 0 \text{ for}$ $x_n \gg x \rightarrow \text{large ln } x_n/x$ 4 180 degrees - Azimuthal decorrelation ~180 degrees since k_Tgluon small ## Why Study Forward Jets and Particles? # With forward jets and particles: - Study physics of the target region in the proton - Investigate parton densities and evolution mechanisms at small - Search for local density fluctuations where saturation effects begin: Approach to saturation might start in small, local regions of the proton - "hot spots" (A. Mueller) -> Future analyses ## Implementation of Evolution Schemes DGLAP PS Models MEPS (LEPTO) HERWIG RAPGAP (DIR) RAPGAP (RES) BFKL-like Models CDM (ARIADNE) CCFM (CASCADE) ## Fixed-Order QCD Calculations DGLAP NLO QCD MEPJET DISENT NLOJET Includes ability to apply jet algorithms BFKL LO BFKL III LO tree-level diagrams only with no higher order corrections No jet algorithm #### Kwiecinski, Martín, Outhwaite - hep-ph/9903439 Gluon emissions are modified by "consistency constraint" – requires k_{T} of emitted parton to be limited by the transverse momentum of its corresponding ladder gluon Major parts of the non-leading BFKL equation are included Normalization is sensitive to infrared cut-off and scale of αs ## HERA Data - Inclusive Jets in DIS vs NLO QCD Jet data compared to fixed-order (NLO QCD) calculation with DGLAP evolution NLO QCD with DGLAP unable to describe data in forward region, at low Q2 and low ET #### Inclusive Jets in DIS - MC Models - -> Clear excess of data over fixedorder calculation (NLO QCD) in the forward region (high η) - -> Good agreement with CDM - -> Not good agreement with DGLAP Low x behavior not described well by DGLAP approach - fixed-order (NLO QCD) or parton shower model #### Forward Jets at HERA #### Select events with jets in forward region: - -> All target region jets in Breit Frame analysis - -> Jets with minimum n cut in Lab Frame #### DIS kinematics: \times - as small as possible, 10^{-3} -> 10^{-4} $Q^2 - \sim 10 \text{ GeV}^2$ and higher #### Jets - k_T or cone algorithm: x_{jet} - as large as possible (~.025 -> x_{iet}/x is therefore large, ~100 k_jet ~ Q - suppresses DGLAP contribution ## Forward Jet Properties BFKL-like Models CDM (ARIADNE) CCFM (CASCADE) DGLAP PS Models LEPTO HERWIG RAPGAP (DIR) RAPGAP (DIR+RES) #### Forward Jet Cross Sections I BFKL-like Models CCFM (CASCADE-1) CCFM (CASCADE-2) DGLAP NLO QCD DISENT #### Forward Jet Cross Sections II DGLAP NLO QCD MEPJET BFKL #### Forward Jets -> Forward Particles? #### Experimental challenges: Clean separation of jet from rest of proton remnant Model-dependent hadronization at small x Try high p_T forward particles -> ### Forward π^0 Cross Sections BFKL-like Models CDM (ARIADNE) CCFM (CASCADE) CCFM (CASCADE) CCFM (CASCADE) X+ DGLAP PS Models RAPGAP (DIR) RAPGAP (DIR+RES) BFKL Mod. LO BFKL CCFM OK where tuned to jet data ## Transverse Energy Flow around Forward π^0 s Transverse energy flow is highly collimated around the π^0 Most forward π^0 s - top left plot (HCM) Data around the π^0 is described best by CCFM or RAPGAP with resolved virtual photon The transverse momentum of the forward π^0 s is compensated near the particle, not far away as predicted by (and expected for) the DGLAP model RAPGAP with direct virtual photon only ## Azimuthal Decorrelation of Dijets #### DGLAP Picture Small k_T forward gluon barely perturbs dijets -> almost backto-back BFKL Picture Large k_T forward gluon(s) force dijets to recoil -> $\Delta\Phi$ < 180° ## Study of $\Delta\Phi$ tails - S Ratio ## Compare tails to peak using the ratio: $$S = rac{\int_0^{lpha} N_{ m 2-jet}(\Delta\phi^*,x,Q^2) \mathrm{d}\Delta\phi^*}{\int_0^{\pi} N_{ m 2-jet}(\Delta\phi^*,x,Q^2) \mathrm{d}\Delta\phi^*}, \;\; 0 < lpha < \pi$$ $\Delta \phi *$ = azimuthal angle between two hardest E_T jets $$\alpha$$ = 2/3 π DGLAP NLO QCD DISENT (2-jet) X NLOJET (3-jet) X #### S Ratio vs x - MC Models DGLAP PS Models RAPGAP (DIR) RAPGAP (DIR+RES) ## Saturation of partons - Nonlinear evolution - 1. The number of partons increases with time (emission ∞ density). Note that transverse size (∞ 1/Q) of the partons is constant (BFKL case). - 2. The number increases until partons cover the surface of the (flat) proton. - 3. Overlapping (low x) partons can recombine into a high x parton (\propto density²). - 4. The tradeoff between emission and recombination produces saturation in the parton evolution. ## Hot Spots - Approach to Saturation #### Very difficult to reach saturation region at HERA But, suppose saturation begins in small local regions in the proton first, at higher x and Q² than is necessary for the entire proton. These "Hot Spots" as proposed by Al Mueller would be regions of intense parton-parton interactions that might exhibit saturation effects in forward jets. - 1. Select DIS events with a forward jet use Breit frame to eliminate current jets - 2. Characterize each event by its most forward jet x_{jet} large, k_T^{jet} ~ Q - 3. Measure the cross section; which is a function of x, k_T^{jet} , and x_{jet} ; vs x at fixed x_{jet} , k_T^{jet} - 4. Compare to steep rise of inclusive F_2 at small x to see evidence of saturation effects ## Summary - ZEUS and H1 have studied forward jets and particles in DIS, comparing several types of measurements to alternative parton evolution mechanisms in MC models and fixed-order QCD calculations. - DGLAP-based parton shower MC models as well as fixed-order NLO QCD calculations are unable to adequately describe all of the data, with the exception of a model in which the exchanged virtual photon has a significant resolved component. - MC models utilizing BFKL-like evolution are able to describe most of the data adequately as is the modified LO BFKL calculation. - Studies of QCD dynamics are continuing, including extensions to more forward regions using calorimeter upgrades, higher statistics data with multiple forward jets, and other scattering processes. - Also, with the large data sets available now, measurements sensitive to possible saturation effects are underway.