Experimental Tests of

Peter Schleper University of Hamburg

European Conference on High Energy Physics Aachen, July 17, 2003

Many thanks to: C.Berger, S.Bethke, A.Bhatti, R.Galik, V.Jain, H.Jung, M.Klein, T.Kluge, M.Martinez, P.Newman, R.Nisius, T.Schoerner, H.Stenzel, A.Tapper, T.Wengler, M.Wobisch, P.Zerwas, ..., session speakers and organizers.

Perturbative approach to QCD

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

QCD: SU(3) gauge theory

- non abelian, self-interacting gluons, strong ! running coupling
- extremely rich phenomenology
- short distances: α_s small \rightarrow perturbative calculations
- factorisation of short (pert.) and long (non-pert.) scales

<u>QCD predictions:</u> •hard inter. (N)NLO •Scale dependences: $\alpha_s(Q^2)$, f(x,Q²)

Precision achievable / needed ?

Benchmarks for Precision QCD

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Highest possible precision is vital !

Benchmarks for Precision QCD

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

The high energy frontier: Decade of Hadron colliders: Tevatron, HERA, LHC

Higgs production at LHC

Discoveries depend on •input parton distributions •higher order calculations •non-pert. effects for signal and background

Comparison NLO / NNLO

What's New ?

New Data

- LEP: close to final precision
- HERA I: close to final High Q2 data
- Tevatron: first Run II data

Better Theory

- Fixed order: NLO → NNLO
- All orders: resummed calculations
- factorisation theorems

Event Shapes at LEP

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Cleanest measurements for α_s at LEP: $\Gamma(Z \rightarrow hadr.)$, τ decays

Event shapes: thrust, jet broadening, 3-jet parameter, C parameter, jet mass New results from LEP1,2, rad events (L3)

NLO resummed calculations

Energy dependence, corrected for hadronisation with MC

Event Shapes at LEP

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Power Corrections at LEP

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Dokshitzer-Webber ansatz: $\Box \alpha_0 = effective \alpha_s below \mu_1$ approx. for hadronisation

$$\begin{array}{lll} < y > &=& < y_{\rm pert} > + < y_{\rm power} > \\ y_{\rm power} &=& c_y \cdot P(\alpha_0)/Q \\ D_y(y) &=& D_{\rm pert} \left(y - c_y \cdot P(\alpha_0)\right) \end{array}$$

shapes well described

no consistent α_{s} $\alpha_{s} = 0.1207$

Event Shapes at HERA

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

New:

- resummed calculations
- fits to both means and shapes (H1)

Event Shapes at HERA

All event shapes

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

10

Old result without resummation

0.7 well described by o(µ, = 2 GeV) Power Correction Fits istat, and exp. sust, uncertainties) NLO + NLL + PCFit to shapes 0.6 H1 preliminary 1/0 dg/dt H1 preliminary GeV) NLO(a2)+NLL+PC Fits 0.60 0.5 ILO/ofi+NLL+P0 stat. and exp. syst. errors $\alpha_0(\mu_1=2)$ Q >20GeV 0.4 0.55 10 H1 0.3 0.1 0.12 0.13 0.14 $\alpha_{\rm e}({\rm M}_{\rm z})$ 0.50 × 10 00 0.45 Chi. KE CW world average 0.40 0.5 1.0 0.0 0.12 0.13 0.11 τ $\alpha_{s}(m_{z^{0}})$

Resummation + power correction very successful at HERA

Proton Structure

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

many unknowns: u_v , d_v , u_s , d_s , s, g many processes: DIS,Drell-Yan,Tevatron

Predictions depend on
•QCD evolution
•PDF's at low Q²

Quark densities

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Tevatron Run II: DO

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

15

Tevatron Run II: CDF incl.

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Parton Density fits

Peter Schleper Exp. Tests of QCD EPS 2003. Aachen

QCD fits to parton densities

- •Fit only inclusive DIS data: theoretically clean (H1,ZEUS,Alekhin)
- •Global fits: inclusive DIS, DY, Tevatron: jets, W/Z

more constraints (CTEQ, MRST,...)

Zeus/H1: fit to only **HERA** data !

similar precision as global fits

Gluon Density: Charm at HERA

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

very sensitive: disfavors MRST

Photon Structure from LEP

Peter Schleper Exp. Tests of QCD EPS 2003. Aachen

full x_range

x[±],<0.75

f = 1.0

• \mathbf{x}_{γ}^{+} or $\mathbf{x}_{\gamma}^{-} < 0.75$

NLO / $(1+\delta_{hadr})$

PYTHIA SaS 1D

f = 10.0

Albino, Klasen & Soldner Rembold, hep-ph/0205069

$$\alpha_s(M_Z^2) = 0.1198 \pm 0.0028(\text{exp.})^{+0.0034}_{-0.0046}(\text{theo.})$$

-1 f = 0.127.5 30 17.5 20 \bar{E}_{T}^{jet} [GeV] E_τ Confirmation of partonic deconvolution of γ 21

L3: $\gamma - \gamma$ at high PT

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

confirmation by other experiments

α_s global

 α_{s} from QCD fits

Limited everywhere by missing higher orders

Bethke 2002

 $\alpha_s(M_z)$

Higher Order Calculations

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

State of the art:
•data unfolded with LO+PS monte carlo
•results compared to NLO (+NLL) + hadr.cor.(LO+PS monte carlo)

Both need strong support from the community !

Higgs Production at LHC

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Benchmark test for status of QCD calculations

Beauty & Charm Production

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Beauty: Problem for QCD ?

- Tevatron: data/theory ~3
- HERA: data/theory ~3
- LEP-γγ: data/theory ~ 3

Charm:

- Tevatron slightly high
- HERA and LEP- $\gamma\gamma$ ~ o.k.

•2 (3) scale problem: M_b, P_{Tb}, (Q2)
•HERA/LEP-γγ : M_b ~ P_{Tb} small,
Experimentally difficult: S/B ~ 1000

•B as part of gamma structure ?

Charm & Beauty at Tevatron

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Beauty at Tevatron

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Previous excess partially explained by: resummation of ln(P_T/M_b) data: jet with b theory: b only

Exclusive B Production

Update to more recent fragmentation functions

Problem partially solved

Beauty at HERA

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

- Exp difficult: low PT jets, S/B ~ 1000
- Comparison data/theorie
- Former: extrapolation of data to parton level and full phase space with LO+PS monte carlo
- Now: data as is, apply hadronisation corr. to NLO in visible phase space

Beauty at HERA

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Data still slightly above NLO, but main effect found: LO+PS differs from NLO invisible part of PS.

Charm & Beauty in $\gamma\gamma$ at LEP

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Direct Process

Single resolved process

New data

- L3: full LEP 2 data
- Delphi: first analysis (K in RICH)

Parton Dynamics

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

DGLAP factorisation:

integrated over trans. momentum $f(x,Q^2)$ expected to fail when $Q \sim K_T$ un-integrated PDFs:

$f(x,Q^2,K_T)$ BFKL,CCFM evolution

I mportant at low -x High parton density

 x_{Bi}

 X_{μ}

 X_{n-1}

 x_2

 X_{f}

CETTTT

Low – x physics: LEP

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Diffraction: factorization

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

jet jet No colour exchange from Proton gap Soft QCD ?

D

ZIP

XIP

Hard scattering: Q2 large Factorisation in diffract. PDF and partonic σ

$$\sigma_{ ext{DIS}}^{ ext{Dif}} \sim p_q^D(x_{{}_{I\!\!P}},t,x,Q^2) \otimes \hat{\sigma}_{ ext{pQCD}}$$

should follow DGLAP QCD evolution with Q²

Diffraction in NLO QCD

H1 2002 σ. D NLO QCD Fit H1 preliminary z ∑(z,Q⁻) z g(z,Q²) Q² [GeV² Singlet Gluon 0.2 6.5 0.1 0 0 0.2 15 0.1 0 0 0.2 90 0.1 0 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 1 z z H1 2002 J.P NLO QCD Fit (exp. error) (exp.+theor. error) H1 2002 σ, P LO QCD Fit

NLO QCD fits to incl data Same as in standard QCD fits to DIS

PDF(x,Q2) for fixed Proton momentum

Large gluon contribution

Use diffr. PDF to predict $\sigma(jet)$, $\sigma(charm)$

Peter Schleper

Exp. Tests of QCD EPS 2003, Aachen

Diffraction in NLO QCD

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

Jets

NLO QCD fit to inclusive data describes jet and charm
successful test of hard scattering factorisation

Charm

Current state: ~ all hard diffractive processes at HERA are described by NLO QCD

Skewed partons

Spin Parton Distributions

Peter Schleper Exp. Tests of QCD EPS 2003, Aachen

proton spin: $\frac{1}{2} = \frac{1}{2} \left(\Delta u_v + \Delta d_v + \Delta q_{sea} \right) + \Delta g + Lq + Lg$

Spin Parton Distributions

Next: <u>Gluon distribution</u>

<u>Compass Experiment</u>: data taking started 2002

- first results on particle production
- gluon density from $\gamma^*g \rightarrow cc X \dots soon$

well determined: u, d

Peter Schleper

Exp. Tests of QCD EPS 2003. Aachen

Pentaquarks: I

Evidence from 3 experiments: LEPS, DIANA, CLAS

hep-ex/0301020

 γ beam up to 2.4 GeV

LEPS: $\gamma n \rightarrow K^- K^+ n$

- Mass(K⁺ n) from K⁻ recoil
- background from comparison γn and γp

DIANA: $K^+ n \rightarrow K^0 p$ hep-ex/0304040 In Xe bubble chamber

Mass(K⁺ n) from K⁻ recoil

Pentaquarks: 2

•

Claim 5.8 σ observation

3 experiments taken together: •Observation of a new state (although size of effect in each experiment can be debated) mass consistent: 1540 ± 10 MeV width smaller than exp. resolution (10...20 MeV)

Interpretation: Bound system of uudds

1.Constituent Quark Model

- 2.Chiral symmetry breaking:
 - Prediction from Diakonov, Petrov, Polyakov:
 - decuplet of strange 5-quark systems

 M_{θ} =1530 MeV , Γ_{θ} < 15 MeV hep-ph/9703373

Related to di-baryon, 4-quark states

Conclusion

Overall: QCD is in excellent shape

α_s : higher orders vital

- Now: uncert. ~ 3 %
- NNLO: 1-2 % possible

Parton distributions:

- $pp \rightarrow H$: uncert. 10 %
- Requires new data from Tevatron/DY/HERA

Much progress in resummat., power corr., diffraction, spin, ...

Beauty puzzle:

- Tevatron and HERA slighty high, but much better with new calculations/observables
- Lecture for LEP $\gamma\gamma$?

L3 γγ

Huge excess seen, needs to be confirmed

Ready for LHC ? not quite, but Tevatron RUN II, HERA II, THEORY...