A Review of HERA Low x Results on Forward Jets and Particles, F_2 and F_L Measurements at Low Q^2

on behalf of the H1 and ZEUS collaborations

H. Jung, University of Lund

Xth Blois Workshop on Elastic and Diffractive Scattering, Helsinki, 23 - 28 June 2003

- Inclusive cross section and structure function: F_2 , the gluon and F_L
- Parton dynamics at high energies
- From central to forward (proton) direction: inclusive jet production forward jet production forward π⁰ production
- Conclusion

The general hard process in ep

The structure function $F_2(x,Q^2)$

ZEUS+H1

 $F_2(x,Q^2) = \sum_i e_i^2 x q_i(x,Q^2)$ e $x = \frac{Q}{W^2 + 0}$ **Precision measurements now:** $\sim 1-2$ % stat, ~ 2 % sys. Scaling violations perfectly described with NLO DGLAP: $0.63 \cdot 10^{-5} < x < 0.65$ $1 < Q^2 < 25000 \; {\rm GeV}^2$ • adjust input pdf to fit F_2 data \blacksquare extract pdf's from F_2 fit **Similar** pdf sets by MRST, CTEQ etc lacksim use pdfs to predict xsect. even at $par{p}$ **BUT** what at small x and Q^2 ??? predictions for F_L ???

NLO analysis of F_2 (ZEUS, H1)

NLO DGLAP fit to F2covering $2.5 < Q^2 < 30000$ GeV² covering $6.3 \, 10^{-5} < x < 0.65$ pdf extracted...

σ_{tot} at small Q^2 : measured and extrapolated

Xth Blois Workshop on Elastic and Diffractive Scattering, Helsinki, 2003 - p.5/28

From F_2 to gluon density and F_L

Measurement of F_L at small x and Q^2

 F_L from un-integrated pdf (BKS) \leftarrow works pretty well \cdots , also dipole (GBW) H1 fits only for $Q^2 > 1 \dots$ MRST fails \cdots

Measurement of F_L

F_L small, agrees with NLO DGLAP prediction at $Q^2>1~{ m GeV^2}$

Energy dependence of σ^{γ^*p}

What did we learn from inclusive measurements ????

- \blacktriangleright F_2 measurements now at $\sim 2 3\%$ level
- > (first) F_L measurements obtained (different methods \leftarrow agree !!!)
- ▶ DGLAP works, for $Q^2 > 1 2 \text{ GeV}^2$
- \blacktriangleright collinear pdf extracted and successful at large Q^2
- ▶ DGLAP not applicable at Q² < 1 − 2 GeV²:
 ▶ pdf and F_L become negative w unphysical....

Success from k_t -factorisation !!! un-integrated pdf's work even for F_L !!!

To understand in detail parton cascade evolution look into hadronic final state

From total cross section (F_2) to Jets !

Angular coverage of experiments at HERA

Single inclusive jets

Oopps: NLO- $\mathcal{O}(\alpha_s)$ fails at small x ... PS Monte Carlos much better

The failure of NLO in single inclusive jets

contributions to inclusive jet production

Inclusive (di-) jets

for di-jets: NLO- $\mathcal{O}(\alpha_s^2)$... agrees ... within large scale uncertainty $\$... higher order corrections needed ...

Xth Blois Workshop on Elastic and Diffractive Scattering, Helsinki, 2003 – p.16/28

Multi parton dynamics at small $oldsymbol{x}$

- describe multi-parton emissions only in approximations
- **•** put everything beyond $\mathcal{O}(\alpha_s^2)$ into **Evolution Equations**

Mueller - Navelet jets in DIS: Jet (π^0) in p - direction with $p_t^2 \sim Q^2$, x_{jet} large, BUT small x_{bj} $rac{1}{r}$ suppress DGLAP (Q^2) evolution, allow evolution in x (BFKL)

Parton dynamics at small x: Forward Jets

DGLAP too small,need resolved virtual photons (DIR+RES)orColor Dipole Model (CDM)or k_t factorisation with CCFM (CASCADE)

Forward Jets sensitive to un-integrated gluon density ?

 $\sigma(ep \to e'q\bar{q}) = \int \frac{dy}{y} d^2 Q \frac{dx_g}{x_g} \int d^2 k_t \hat{\sigma}(\hat{s}, k_t, Q) x_g \mathcal{A}(x_g, k_t, \bar{q})$ with $\int d^2 k_t x_g \mathcal{A}(x_g, k_t, \bar{q}) \simeq x_g G(x_g, Q^2)$ • CCFM un-integrated gluon fitted to H1/ZEUS F_2 data

JS2001 CCFM allow soft gluons $k_t > 0.2$ GeV

J03-1 CCFM only hard gluons $k_t > 1.4$ GeV full P_{gg} splitting function (including non - singular terms)

forward jets important for constraining un-integrated gluon densities

Forward Jets - at smaller angles

forward jets important for understanding parton radiation pattern in QCD

Parton dynamics at small x: Forward π^0

Parton dynamics at small x: Forward π^0 II

> collect 1fm^{-1} until 2006/2007

► measure high Q^2 region precisely (high statistics program) polarised charged current electroweak sector $xF_3(x,Q^2)$ heavy quarks $F_2^{c\bar{c}}(x,Q^2)$, $F_2^{b\bar{b}}(x,Q^2)$ with extended x range heavy quarks cross sections

- \blacktriangleright measure high E_T jets precisely
- diffraction new proton spectrometer in H1 (talk by X. Janssen) F₂^{D(4)}, diffractive jets, diffractive charm vector-mesons
- machine plans restart July, Lumi runs end Sept. goal: 20 pb⁻¹ till end 2003

New interesting, precise measurements from HERA to come

- Interest to continue running of HERA after 2006/2007
- > HERA program with protons/deuterons, measure $\bar{d} \bar{u}$ & large x pdf's precisely
- two groups expressed interest: H1 and a new experiment
- > 70 institutes, 200 individuals, and large theory support
- > Special emphasis on small x, small Q^2 measurements
- extend angular coverage down to small angles for electron and proton region

- Collective phenomena:
- Parton evolution
 BFKL/CCFM/DGLAP
 (dressed gluons)
- Gluon Trunks, Multi-Gluon
- Diffraction, Saturation

THE challenge is QCD !!!

Conclusions and Summary

- ► F_2 total cross section, 2 3 % precision reached: ► longitudinal cross section measured, 1st time in transition region !
- ✓ standard DGLAP plus fixed NLO matrix elements at $Q^2 > 1$ GeV² ok **BUT** more than DGLAP at small Q^2 needed
- high precision measurements of jets from central to forward region performed either NLO predictions have very large scale uncertainties ??? Or measurements much larger than standard DGLAP + NLO
 - ► need to go beyond DGLAP, BFKL ... CCFM ???
- Forward jets/particles < sensitive to un-integrated gluons</p> measure it ...
- > Future:
 - more data still to come ... HERA 2, HERA 3 !!!!
 data more precise than theory error (scale uncertainty)
 higher order calcs needed ...

Di - jets in γ^*p -CMS

Di - jets in DIS: more about parton cascade !

CDM (non-ordered) perfect

new dynamics

